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ON APPROXIMATE PATTERN MATCHING FOR A CLASS
OF GIBBS RANDOM FIELDS

BY JEAN-RENE CHAZOTTES, FRANK REDIG AND EVGENY VERBITSKIY

CNRS-Ecole Polytechnique, Leiden University and Philips Research

We prove an exponential approximation for the law of approximate oc-
currence of typical patterns for a class of Gibssian sources on the lattice Zd ,
d ≥ 2. From this result, we deduce a law of large numbers and a large devia-
tion result for the waiting time of distorted patterns.

1. Introduction. In recent years there has been growing interest in a detailed
probabilistic analysis of pattern matching and approximate pattern matching. For
example, in information theory, motivation comes from studying performance of
idealized Lempel–Ziv coding schemes. In mathematical biology one likes to have
accurate estimates for the probability that two (e.g., DNA) sequences agree in a
large interval with some error-percentage. There is also considerable interest in the
analysis of occurrence of patterns in the multi-dimensional setting, for example,
in the context of video-image compression [2], and more generally, lossy data
compression [5, 6, 10].

In this paper we study the following problem. Fix a pattern An in a cubic box
of size n. Given a configuration σ of a Gibbs random field, what is the size of the
“observation window” in which we do not necessarily see exactly this pattern for
the first time, but any pattern obtained by distortion of the fixed pattern An? By
this, we mean a pattern which contains a fixed fraction ε of spins different from
those of An. We are interested in the behavior of the volume of this observation
window, which we call “approximate hitting-time,” when n grows.

Our main result (Theorem 2.6) can be phrased as follows. The distribution of
the approximate hitting-time, when properly normalized, gets closer and closer to
an exponential law. The normalization is the product of a certain parameter �n

and the probability of the set of distorted patterns [An]ε . In fact, we get a precise
control of the error term which allows us to derive two corollaries for the “approx-
imate waiting-time”: given a configuration η randomly chosen from an ergodic
Gibbs random field, we increase the observation window in a random configura-
tion σ drawn from the given Gibbs random field until we see approximately the
pattern ηCn . The first corollary implies a law of large numbers allowing to get
the rate-distortion function almost surely from this approximate waiting-time. The
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second corollary is related to large deviation bounds. While the law of large num-
bers for approximate waiting-times appears in [6] (under different conditions), the
large deviation result is new. We emphasize that Theorem 2.6 is a new result in the
context of approximate pattern-matching.

We briefly indicate the key ingredients needed to prove this exponential approx-
imation. First, we assume that the Gibbs random field satisfies a certain strong
mixing condition (nonuniformly ϕ-mixing condition). For instance, this property
holds for all Markov random fields which satisfy the Dobrushin uniqueness con-
dition. The second key ingredient is a result by Chi [4] allowing one to obtain the
rate distortion function “à la Shannon–McMillan–Breiman.” We take advantage of
our previous work [1] in which we deal with “exact” hitting-times. The proof of
the main result of the present work readily follows a large part of the proof in [1],
but there is a crucial step which is different (second moment estimate). Moreover,
one has to restrict to “good” patterns: if a pattern has “too much overlap” with its
translates by vectors of size of order n, then one cannot hope to obtain an exponen-
tial distribution. These good patterns are shown to be typical in the sense that their
measure approaches one exponentially fast as n diverges (Proposition 2.7). When
we have a random field distributed according to a Bernoulli measure, the goodness
assumption on patterns can be removed. In this case, we prove (Theorem 2.8) that
for any pattern Theorem 2.6 applies. Surprisingly, our proof involves the strong
invariance principle for simple random walks. We have no idea how to provide a
simpler proof.

Outline of the paper. In the next section we set notation and definitions and
state our main theorems. In Section 3 we apply the exponential approximation of
the previous section to approximate waiting times for which we obtain a.s. strong
approximation and large deviations results. In Section 4 we state our proofs.

2. Set-up and main results. For the sake of simplicity, we consider a
{0,1}-valued random field on the lattice Zd , d ≥ 2. Our results hold for any fi-
nite alphabet as well. Configurations are denoted η,σ,ω and collected in the set
� = {0,1}Zd

. � is provided with the Borel σ -field, and for V ⊆ Zd , FV denotes
the σ -algebra generated by {σx :x ∈ V }.

For a finite subset V ⊆ Zd and configurations σ,η ∈ �, we denote by

�(V,η,σ ) = ∑
x∈V

|ηx − σx |(2.1)

the number of mismatches between σ and η in the volume V , that is, the Hamming
distance between ηV and σV .

We denote by Cn the n-cube [0, n]d ∩ Zd . An n-pattern is a map
An :Cn → {0,1}. It is naturally associated to its cylinder [An] =
{σ ∈ � :σCn = An}. For a pattern An and x ∈ Zd , we denote by θ−xAn the pattern
supported on Cn + x defined by An(y + x) = An(y) (y ∈ Cn).
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We let [An]ε denote the set of configurations which ε-match with An:

[An]ε = {ω ∈ � :�(Cn,ω,An) ≤ ε|Cn|}.(2.2)

The set of configurations [An]ε can also be viewed as a set of n-patterns. With a
slight abuse of notation, we will use the same symbol for the set of configurations
and the set of n-patterns which are restrictions of configurations in [An]ε to Cn.

DEFINITION 2.1. The approximate hitting-time of [An]ε in a configuration σ

is defined as

T[An]ε (σ ) = min{|Ck| :k > 0,∃x ∈ Zd,Cn + x ⊆ Ck and θ−xσ ∈ [An]ε}.(2.3)

In words, given a configuration, the approximate hitting-time of the distorted
pattern [An]ε is by definition the smallest volume of a k-cube (“observation win-
dow”) such that there is some translate of an n-cube, contained in the observation
window, which “hits” the ε|Cn|-ball (in the Hamming distance) around An.

For ε = 0 (exact matching time or occurrence time of a pattern), we obtained
in [1] an exponential approximation for the law of T[An]ε under the hypotheses of
nonuniform ϕ-mixing and Gibbsianness of the random field. We recall here this
mixing assumption. For m > 0, define

ϕ(m) = sup
1

|A1|
∣∣Pr

(
EA1 |EA2

) − Pr
(
EA1

)∣∣,(2.4)

where the supremum is taken over all finite subsets A1,A2 of Zd , with
d(A1,A2) ≥ m [as usual, d(A1,A2) := inf{d(x, y) :x ∈ A1, y ∈ A2} and
d(x, y) := ‖x − y‖∞ = max1≤i≤d |xi − yi |] and EAi

∈ FAi
, with Pr(EA2) > 0.

Note that this ϕ(m) differs from the usual ϕ-mixing function since we divide by
the size of the dependence set of the event EA1 .

DEFINITION 2.2. A random field is nonuniformly exponentially ϕ-mixing if
there exist constants C1,C2 > 0 such that

ϕ(m) ≤ C1e
−C2m for all m > 0.(2.5)

A typical example of a Gibbs field satisfying this assumption is the 2d-Ising
model above critical temperature. In general, it is satisfied in the so-called high-
temperature regime of Dobrushin uniqueness. We refer the reader to [8, 9] for more
details on this and on Gibbs measures in general.

An important property of Gibbs measures is the so-called “finite energy” prop-
erty. This means that there is a continuous version of the conditional probability
P(σ0 = 0|σZd\{0}) such that

δ < P
(
σ0 = 0|σZd\{0}

)
< (1 − δ),(2.6)
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where δ ∈ (0, 1
2) is independent of σ . This immediately implies the existence of

κ > 0 such that, for all V ⊆ Zd , and all η ∈ �,

P({σ :σV = ηV }) ≤ e−κ|V |.(2.7)

We will use the following estimate:

LEMMA 2.3. Under the assumption that P is a Gibbs measure, there exist
εc > 0 and K = K(εc) > 0 such that, for any pattern An and any ε < εc,

P([An]ε) ≤ e−Knd

.

PROOF. This is an immediate consequence of the estimate (2.7) and the esti-
mate

|[An]ε| ≤
εnd∑
k=0

(
nd

k

)
≤ endI (ε),

with I (ε) ↓ 0 if ε ↓ 0. �

Contrary to the situation for exact matching, we will need an assumption on
the patterns in order to obtain an exponential law. This can be compared with the
condition of not being “badly self-repeating” needed to obtain the exponential law
for return times in [1]. As we shall see, being a “good” pattern is a typical property.

DEFINITION 2.4. Given 0 < α < 1,0 ≤ ε < 1, we say that an n-pattern An is
(ε,α)-good if the set [An]ε ∩ θx[An]ε is empty for all x ∈ Zd such that |x| ≤ αn.
The set of all (ε,α)-good patterns is denoted by Gn(ε,α). By abuse of notation, we
use the same symbol for the set of configurations ω such that ωCn is (ε,α)-good.

For ε = 0 and α < 1/2, Gn(ε,α) coincides with the set of nonbadly self-
repeating patterns in [1], Definition 5.1.

We shall need a result by Chi [4] on the rate distortion function. We recall briefly
the definition of the rate distortion function and refer the reader to [3] for more
information and background and to [6] for a discussion on lossy data compression.
Given a stationary and ergodic measure Q and a stationary and ergodic Gibbs
measure P, the rate distortion function R(Q,P, ε) is defined as follows:

R(Q,P, ε) = lim
n→∞Rn(Q,P, ε),(2.8)

Rn(Q,P, ε) = inf
Jn

1

|Cn|H(Jn ‖ Qn × Pn),(2.9)

where the infimum taken over all joint distributions Jn on {0,1}nd × {0,1}nd
such

that the {0,1}nd
-marginal of Jn is Qn and∫

�(Cn,ω,σ )

|Cn| dJn(ω,σ ) ≤ ε.
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H(Jn ‖ Qn × Pn) is the relative entropy between Jn and Qn × Pn.
We have the following key result which follows from [4] and [6], Theorem 25.

PROPOSITION 2.5. Let Q be a stationary and ergodic measure and P be a
stationary and ergodic Gibbs measure. Then

R(Q,P, ε) = − lim
n→∞

1

|Cn| log P
([

ωCn

]ε)
Q-almost-surely.(2.10)

Moreover, R is a convex (and, hence, continuous) function of ε and is nonzero in
some interval [0, ε0).

The property (2.10) is called the generalized asymptotic equipartition property
in [6]. Throughout we will simply write R(ε) instead of R(Q,P, ε).

We can now state our main result.

THEOREM 2.6. Suppose that P is a nonuniformly exponentially ϕ-mixing
Gibbs measure and Q is a stationary and ergodic Gibbs measure. Assume that the
rate distortion function (2.8) is strictly positive in [0, ε0). Then for all α ∈ (0,1)

and ε > 0 small enough, namely,

ε

α
< ε0,

there exist �1,�2,C, c ∈ (0,∞), such that and for every t > 0, n ≥ 1, and
Q-almost all ω with ωCn ∈ Gn(ε,α), the following estimate holds:∣∣∣∣P

(
T[ωCn ]ε >

t

�nP([ωCn]ε)
)

− e−t

∣∣∣∣ ≤ Ce−ct e−Knd

,(2.11)

where �n = �(ωCn) is such that

�1 ≤ �n ≤ �2.(2.12)

Dependence of the parameters in Theorem 2.6 on ε and α will be discussed after
the proof; see Remark 4.1.

Let us briefly comment on the difference between Theorem 2.6 and the one
obtained in [1] for exact matching, that is, the case corresponding to ε = 0. First of
all, we need to restrict ourselves to special patterns, that is, (ε,α)-good patterns,
whereas in [1] result applies to all patterns. Second, the error term that we obtain in
[1] is of the form Ce−ctP([ωCn])ρ , where ρ > 0. Of course, the factor P([ωCn])ρ
is uniformly exponentially small for Gibbs measures. This is no longer true for
P([ωCn]ε) if ε is too large. This is precisely why we need Lemma 2.3. Third,
a crucial step in the proof of Theorem 2.6, which differs slightly from that in [1]
for the case ε = 0, involves Proposition 2.5. This explains why we need to restrict
to typical configurations in the sense of this result.
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Let us close this set of remarks by noticing that Q has to be a stationary and
ergodic measure, but not necessarily Gibbsian. But for later use of Theorem 2.6, we
shall also need the latter assumption, so we already impose it to state the theorem.

The following proposition shows that “ωCn ∈ G(ε,α),” that is, that a pattern
being (ε,α)-good, is a typical property.

PROPOSITION 2.7. Let Q be a stationary Gibbs measure. Then, if α < 1/2
and ε > 0 is small enough, there exists ν > 0 such that, for all n ≥ 1,

Q
(
Gn(ε,α)

)
> 1 − e−νnd

.(2.13)

It turns out that if the random field has a nontrivial dependence structure, then
the restriction to (ε,α)-good patterns is unavoidable. However, in the case of a ran-
dom field distributed according to a Bernoulli measure, the exponential law (2.11)
holds for all approximate patterns. This is expressed by the following theorem.

THEOREM 2.8. If P is the Bernoulli measure with P(σ0 = 1) = 1/2, then
(2.11) holds without the restriction that ωCn is (ε,α)-good.

3. Approximate waiting-time fluctuations. The purpose of this section is to
derive two consequences of Theorem 2.6 and Proposition 2.7. The first one implies
a strong law of large numbers for the approximate waiting-time. It was previously
derived in [6] directly using the mixing property (2.5). The second one concerns
large deviations of the approximate waiting-time and it is a new result. Given two
configurations ω,σ , the approximate waiting-time is Wε

n(ω,σ ) := T[ωCn ]ε (σ ).

PROPOSITION 3.1. Under the assumptions of Theorem 2.6 and Proposi-
tion 2.7, there exists γ0 > 0 such that, for all γ > γ0,

−γ logn ≤ log
(
Wε

n(ω,σ )P
([

ωCn

]ε)) ≤ log(lognγ )(3.1)

Q × P-eventually almost surely. In particular,

lim
n→∞

1

|Cn| log Wε
n(ω,σ ) = R(Q,P, ε), Q × P-almost surely.

With Proposition 3.1, we recover the results of Theorems 26 and 27 in [6]. How-
ever, there is a substantial difference in conditions on random fields. We have to
restrict ourselves to measures Q which are stationary and ergodic Gibbs measures,
while in [6] Q is only assumed to be stationary and ergodic. On the other hand, we
permit P to be Gibbsian, while in [6] P must be a Bernoulli measure. The reason
for our assumptions on Q is that Proposition 2.7 is valid for Gibbs measures. We
do not know if it can be extended to more general situations.

Let us also remark that, by a basic result in Probability Theory, this strong
approximation implies that if a central limit theorem holds for −1/|Cn|×
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log P([ωCn]ε), then it holds also for (1/|Cn|) log Wε
n(ω,σ ). Unfortunately, the

former seems to be a difficult issue, except in the i.i.d. case. We refer the reader to
[6] for some results in that direction.

We have the following (partial) large deviation results. We first need the follow-
ing lemma showing that we can define the generalized conditional q-order Rényi
entropy for Gibbs random fields. This was first done in [11] for (α-mixing) sto-
chastic processes (d = 1) with the difference that here we need to condition on
(ε,α)-good patterns and use the Gibbs property instead of mixing.

LEMMA 3.2. Let Q,P be stationary Gibbs measures and assume that α <

1/2 and 0 ≤ ε < 1. Then, for all q ∈ R, the following function is well defined:

Eε(q) := Eε(q;Q,P) = lim
n→∞

1

|Cn| log
∫

P
([

ωCn

]ε)q
dQGn(ε,α)(ω).(3.2)

(QGn(ε,α) denotes the measure Q conditioned on the set of good patterns.)

The generalized q-order Rényi entropy should be defined as −Eε(−q)/q .
We now have the following theorem. By an ≈ bn, we mean that

max{an/bn, bn/an}
is bounded from above.

THEOREM 3.3. Let P be a nonuniformly exponentially ϕ-mixing Gibbs mea-
sure and Q a stationary and ergodic Gibbs measure. If ε > 0 is small enough, then
for any α0 ≤ α < 1/2, we have∫∫ (

Wε
n(ω,σ )

)q
dQGn(ε,α)(ω)dP(σ )

(3.3)
≈

∫
P

([
ωCn

]ε)−q
dQGn(ε,α)(ω) if q ≥ −1

and ∫∫ (
Wε

n(ω,σ )
)q

dQGn(ε,α)(ω)dP(σ )

(3.4)
≈

∫
P

([
ωCn

]ε)
dQGn(ε,α)(ω) if q < −1.

In particular,

lim
n→∞

1

|Cn| log
∫∫ (

Wε
n(ω,σ )

)q
dQGn(ε,α)(ω)dP(σ )

(3.5)

=
{
Eε(−q), if q ≥ −1,

Eε(1), if q < −1.
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It follows from this theorem that Theorem 4.5.20 in [7] applies to {1/|Cn|×
log Wε

n(η, σ )}n. However, to obtain a full large deviation principle, we would need
to know under which conditions the function q �→ Eε(q) is, for instance, differen-
tiable for q > −1 (and for ε small enough). If that were the case, we would have
a large deviation principle with a rate function given by the Legendre transform of
Eε(−q).

4. Proofs.

4.1. Proof of Theorem 2.6. The proof of Theorem 2.6 is quite similar to the
proof of exponential law in [1]. We describe briefly the common approach and
indicate the differences. We also provide the necessary modifications of the proof.

It is well known that a random variable Z has an exponential distribution if and
only if

P(Z > s + t |Z > t) = P(Z > s)

or, equivalently,

P(Z > s + t) = P(Z > s)P(Z > t).

The basic ingredient of the proof in [1] was Lemma 4.4 (“Iteration Lemma”). This
result establishes that, for a pattern An and any finite number of cubes Ci ⊆ Zd ,
i = 1, . . . , k, with equal volumes

|Ci | =
(

1

P(An)

)γ

,

we have

P

(
An does not occur in

k⋃
i=1

Ci

)
≈ P(An does not occur in C1)

k.(4.1)

In [1] we also observed that the Iteration Lemma remains valid if a pattern An is
replaced by the event [An]ε , with [An]ε not occuring in volume V if any pattern
Bn ∈ [An]ε does not occur in volume V .

Another important ingredient of the proof is the control of the parameter of the
exponential distribution. Lemma 4.3 (“The parameter”) in [1] concerns nontrivial-
ity of the parameter �n, that is, the fact that it is neither null nor infinite. To prove
Lemma 4.3, we established a uniform second moment estimate for the number of
occurrences of a pattern An in a configuration σ restricted to a box that has later
to be taken of size 1/P([An]). It is the proof of this second moment estimate that
we have to modify completely. In Remark 4.1 in [1], we noticed that if En ∈ FCn

are events such that P(En) < e−cnd
for some c > 0, and such that

lim sup
n→∞

∑
0<|x|<n

P(En ∩ θxEn)

P(En)
< ∞,(4.2)
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then this implies, together with the mixing property (2.5) and the Gibbs prop-
erty (2.7), that the desired uniform second moment estimate holds. In turn, this
implies the nontriviality of the parameter (2.12) (Lemma 4.3 in [1]).

Thus, we turn to prove (4.2) when the event En is [An]ε , where An is a good
and typical pattern. We assume that patterns An are such that

⋂
n An = {σ }, with

σ chosen in the set with Q-measure one from Proposition 2.5, and such that An is
good in the sense of Definition 2.4.

We have to show for patterns An ∈ Gn(ε,α) with ε/α < ε0 that there exists a
finite number C(ε,α) such that, for all n,

∑
0<|x|≤n

P([An]ε ∩ θx[An]ε)
P([An]ε) ≤ C(ε,α).(4.3)

First of all, since An ∈ Gn(ε,α) (see Definition 2.4), the terms corresponding to
x with |x| < αn are equal to 0. Therefore, we have to estimate the sum

∑
αn≤|x|≤n

P([An]ε ∩ θx[An]ε)
P([An]ε) ·(4.4)

Note that, for x with |x| ≥ αn, the intersection (Cn + x) ∩ Cn is not very large:

|(Cn + x) ∩ Cn| ≤ (1 − α)nd.

Note also that �(V,ω,An) denotes the number of differences between ω and An

in the volume V , see (2.1). Then we can write

P([An]ε ∩ θx[An]ε)
(4.5)

= P
(
ω :�(Cn,ω,An) ≤ εnd ∩ �(Cn + x,ω, θ−xAn) ≤ εnd)

where, by θ−xAn, we mean θ−xAn(y + x) = An(y), y ∈ Cn. For the sake of con-
venience, we simply write C for Cn and Cx for Cn + x in the course of this proof.
We also introduce the short-hand notation

S1 = �(C \ Cx,ω,An),

S2 = �(C ∩ Cx,ω,An),
(4.6)

S3 = �(C ∩ Cx,ω, θ−xAn),

S4 = �(C \ Cx,ω, θ−xAn).

With this notation what we have to estimate is∑
αn≤|x|≤n

P([An]ε ∩ θx[An]ε)
P([An]ε)

(4.7)
= ∑

αn≤|x|≤n

P(S3 + S4 ≤ εnd |S1 + S2 ≤ εnd).
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The following estimate is a corollary of [4] and a basic property of a Gibbs mea-
sures: for any configuration ξ ,

P
({ω :�(Vn,ω,σ ) ≤ ε|Vn|}| ξV c

n

) ≤ exp
(−|Vn| R(ε) + c|∂Vn|).(4.8)

Indeed, the unconditioned statement is proved in [4], and conditioning can at most
introduce a term of order exp(c|∂Vn|).

We proceed as follows:

P
(
(S1 + S2) ≤ εnd ∩ (S3 + S4) ≤ εnd)

≤ P
(
(S1 + S2) ≤ εnd ∩ S4 ≤ εnd)

≤ sup
ξ

P
(
S4 ≤ εnd |ξZd\(Cx\C)

)
P([An]ε)

≤ exp
(
−αndR

(
ε

α

)
+ cnd−1

)
P([An]ε).

Therefore,∑
αn≤|x|≤n

P([An]ε ∩ θx[An]ε)
P([An]ε) ≤ nd exp

(
−αndR

(
ε

α

)
+ cnd−1

)
=: Cn(ε,α).

Taking into account that ε/α < ε0, and, hence, R(ε/α) > 0, we conclude that
Cn(ε,α) → 0 as n → ∞, and, hence,

C(ε,α) = sup
n

Cn(ε,α)

is finite. This completes the proof.

REMARK 4.1. The parameters of Theorem 2.6 depend on the choice of ε

and α. The most interesting is the dependence of �1 and �2. Lemma 4.3 in [1] in
fact shows that a uniform choice �2 = 2 suffices. A more interesting question is
whether we can give a uniform bound on �1 for a large set of ε and α. The present
modification of the second moment estimate, together with the rest of Lemma 4.3
in [1], which remains unchanged, gives that, for some c, dependent on ε alone, the
following choice of �1 = �1(ε,α) will suffice:

�1 = 1

c + C(ε,α)
.

The rate distortion function R is a monotonically decreasing function. Hence, for
a fixed ε > 0, αR( ε

α
) is a monotonically increasing function of α, and finally,

C(ε,α) is monotonically decreasing in α. Therefore, if ε < ε0, then for all α >

α0 := 0.99 ε
ε0

,

�1(ε,α) ≥ �1(ε,α0) > 0.

Therefore, for a fixed ε > 0, we obtain a uniform (in α) bound on the parameter �1.
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4.2. Proof of Proposition 2.7. For ε = 0, we know that most patterns
are (0, α)-good for any α < 1. Indeed, it is proved in [1] (Lemma 5.3) that
Q(Gn(ε,α)) ≥ 1 − e−κ ′nd

, for some κ ′ > 0.
Let us now argue that for small ε this is still the case. Suppose α < 1/2, that

is, we are going to consider vectors x ∈ Zd such that |x| ≤ n
2 . An element A of

[An]ε ∩ θx[An]ε satisfies ∑
y∈Cx∩C

|A(y) − A(y − x)| ≤ 2εnd.(4.9)

(Recall that C = Cn and Cx = Cn + x.) This implies that there exists a set Vn ⊆ C

and a disjoint translate Vn + z ⊆ C such that |Vn| > (1/2)dnd such that θ−zAVn+z

matches with error fraction 2d+1ε with AVn ; this can be made as small as e−νnd
, for

some ν > 0, for ε sufficiently small uniformly in AVn by Lemma 2.3. Therefore,
we obtain that

Q
(
G

(
ε,α0

))
> 1 − e−νnd

(4.10)

for all α < 1/2 and ε small enough.

4.3. Proof of Theorem 2.8. We consider the case d = 1 only, because the case
d ≥ 2 is completely analogous. Start with the particular pattern An = 0 · · ·0 that
we simply denote by 0n. The difficulty with this “bad pattern” comes from the fact
that the second moment estimate does not apply, because (4.2) fails. Therefore, we
have to prove by other means that there exists δ > 0 such that, for all n ∈ N,

δ < P

(
T[0n]ε >

1

P([0n]ε)
)

< 1 − δ,(4.11)

which would imply the nontriviality of the parameter �n. We will first show that
there exists a sequence kn ↑ ∞ such that

δ < P
(
T[0n]ε > kn

)
< 1 − δ.(4.12)

It will then follow easily from the Bernoulli character of P that kn does not de-
pend on the choice of the pattern, that is, (4.12) holds with the same kn for
any pattern An. Then we can apply Theorem 2.6 for good patterns, and obtain
kn = 1/P([An]ε) = 1/P([0n]ε). We have the following identities:

P
(
T[0n]ε ≤ kn

) = P

(
kn

min
k=0

k+n∑
i=k

ωi ≤ nε

)

= P

(
kn

max
k=0

k+n∑
i=k

(1 − 2ωi) ≥ (1 − 2ε)n

)
(4.13)

= P

(
kn

max
k=0

(Sk+n − Sk) ≥ (1 − 2ε)n

)
,
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where Sn is the position of a simple random walk on Z (with S0 = 0) after n

steps. By Theorem 7.23 in [12], together with the strong invariance principle ([12],
page 53), we have

kn
max
k=0

(Sk+n − Sk) = a log kn + b log log kn + c + o(1) + X,(4.14)

where X is a random variable with a Gumbel distribution. Therefore, if we choose
kn such that

(1 − 2ε)n = a log kn + b log log kn + c + o(1),(4.15)

then (4.12) holds.
If we now choose any other pattern An, then, under P, Sn = 2

∑n
i=0(1/2 − σi −

An(i)) is again distributed as a simple random walk, so we find the same kn, which
completes the proof of the theorem.

4.4. Proof of Proposition 3.1. By using Theorem 2.6, we immediately get

Q × P
{
(ω,σ ) : log

(
Wε

n(ω,σ )P
([

ωCn

]ε))
> log t

}
=

∫
dQ(ω) P

{
σ : log

(
T[ωCn ]ε (σ )P

([
ωCn

]ε))
> log t

}
≤ e−�1t + Ce−Knd + ∑

An∈Gc
n(ε,α)

Q([An]).

Now we choose t = tn = log(nγ ) with γ > 0 such that �1γ > 1. This makes the
first term in the right–hand side summable in n. The last one equals the Q-measure
of the complement of Gn(ε,α), which is less than e−νnd

by Proposition 2.7. We
thus get the upper bound in (3.1) by an application of the Borel–Cantelli lemma.

Now we turn to prove the lower bound in (3.1). Proceeding as before, we get

Q × P
{
(ω,σ ) : log

(
Wε

n(ω,σ )P
([

ωCn

]ε)) ≤ log t
}

≤ 1 − e−�2t + Ce−Knd + ∑
An∈Gc

n(ε,α)

Q([An])

≤ �2t + Ce−Knd + e−νnd

.

We have used Theorem 2.6 and Proposition 2.7. We now choose t = tn = n−γ ,
with γ > 1, to get a summable upper bound in n for the above probability. An
application of Borel–Cantelli lemma gives the desired result and the proof of the
proposition is complete.
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4.5. Proof of Lemma 3.2. We only consider the case q > 0 leaving the (very
similar) proof for the case q < 0 to the reader. Let S� be the system of all rectan-
gular boxes of the form

V = Zd ∩
d∏

k=1

[mk,nk] with mk,nk ∈ Z, mk ≤ nk.

Before proceeding, we have to extend Definition 2.4 somewhat. We will denote by
GV (ε,α) the set of good patterns supported on V ∈ S�. We shall need Proposi-
tion 2.7, which remains valid if one replaces Gn(ε,α) with GV (ε,α) and n by |V |
in (2.13).

We are going to prove that the function a :S� → (−∞,+∞) defined as

a(V ) := − log
∫

Pq([σV ]ε) dQGV ∪V ′ (ε,α)(σ )

satisfies the following approximate sub-additive property:

a(V ∪ V ′) ≤ a(V ) + a(V ′) + C |∂(V ∪ V ′)|
for all V,V ′ ∈ S� such that V ∪ V ′ ∈ S� and V ∩ V ′ = ∅, where C is a constant
(depending on q), and where ∂V denotes the boundary of V . Of course, |∂(V ∪
V ′)| is a surface order correction. If such a property holds [together with a(V +
x) = a(V ), for all x ∈ Zd , V ∈ S� which is obvious by stationarity of the measure],
then a generalized sub-additive lemma, obtained as a combination of a lemma
found in [8] and another one given in [7], will guarantee that

lim
n→∞

a(Cn)

|Cn|
exists, as we wish. For all q ∈ R, V,V ′ ∈ S� such that V ∪ V ′ ∈ S� and
V ∩ V ′ = ∅, we have the following:

Pq([σV ∪V ′ ]ε) =
( ∑

ωV ∪V ′∈[σV ∪V ′ ]ε
P([ωV ∪V ′ ])

)q

≥ eK1|∂(V ∪V ′)|
( ∑

ωV ∪V ′∈[σV ∪V ′ ]ε
P([ωV ])P([ωV ′ ])

)q

≥ eK2|∂(V ∪V ′)|
( ∑

ωV ∈[σV ]ε
P([ωV ])

)q( ∑
ωV ′∈[ωV ′ ]ε

P([ωV ′ ])
)q

= eK2|∂(V ∪V ′)| Pq([σV ∪V ′ ]ε)Pq([σV ∪V ′ ]ε),
where K1,K2 are constants. The first inequality follows from the Gibbs property
and the second one is a simple consequence of the Hamming distance property. To
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complete the proof, we again use the Gibbs property to get∫
Pq([σV ∪V ′ ]ε) dQGV ∪V ′ (ε,α)(σ )

= ∑
ωV ∪V ′∈{0,1}V ∪V ′

Pq([ωV ∪V ′ ]ε)QGV ∪V ′ (ε,α)([ωV ∪V ′ ])

≥ Q
(
GV ∪V ′(ε,α)

)
eK3|∂(V ∪V ′)|

× ∑
ωV ∈{0,1}V

Pq([ωV ]ε)QGV ∪V ′ (ε,α)([ωV ])

× ∑
ωV ′∈{0,1}V ′

Pq([ωV ′ ]ε)QGV ∪V ′ (ε,α)([ωV ′ ])

≥ 1
2eK3|∂(V ∪V ′)|

∫
Pq([σV ]ε) dQGV (ε,α)(σ )

×
∫

Pq([σV ′ ]ε) dQGV ′ (ε,α)(σ ),

where K3 is a constant. The second inequality is the consequence of Proposi-
tion 2.7 if |V ∪ V ′| is large enough. The lemma is proved.

4.6. Proof of Theorem 3.3. Since the proof of this theorem is very similar
to that of Theorem 2.7 in [1], we only sketch it to indicate the little differences
between them.

The starting point is of course to write∫∫ (
Wε

n(ω,σ )
)q

dQGn(ε,α)(ω) dP(σ ) =
∫

dQGn(ε,α)(ω)

∫
Tq

[ωCn ]ε(σ ) dP(σ ).

Then we can mimic the proof of Theorem 2.7 in [1] by using Theorem 2.6 and the
analog of Lemma 4.3 in [1], which holds true when T[ωCn ] is replaced by T[ωCn ]ε ,
provided that ωCn be an (ε,α)-good pattern (see the beginning of the proof of
Theorem 2.6), and ω be Q-typical in the sense of Proposition 2.5. Notice that we
integrate with respect to the conditional measure QGn(ε,α) which takes care of these
two properties.
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