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STOCHASTIC SPATIAL MODELS OF HOST-PATHOGEN AND
HOST-MUTUALIST INTERACTIONS I
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CNRS–Université de Rouen and University of Minnesota

Mutualists and pathogens, collectively called symbionts, are ubiquitous
in plant communities. While some symbionts are highly host-specific, others
associate with multiple hosts. The outcomes of multispecies host-symbiont
interactions with different degrees of specificity are difficult to predict at this
point due to a lack of a general conceptual framework. Complicating our pre-
dictive power is the fact that plant populations are spatially explicit, and we
know from past research that explicit space can profoundly alter plant-plant
interactions. We introduce a spatially explicit, stochastic model to investigate
the role of explicit space and host-specificity in multispecies host-symbiont
interactions. We find that in our model, pathogens can significantly alter the
spatial structure of plant communities, promoting coexistence, whereas mu-
tualists appear to have only a limited effect. Effects are more pronounced the
more host-specific symbionts are.

1. Introduction. The diversity and structure of plant communities are largely
determined by nutrient availability, competition among plants, herbivory and as-
sociations between plants and their symbionts. The first three have been the focus
of much ecological research, both empirical and theoretical. The role of symbionts
on diversity and structure has received less attention [1] and will be the topic of
this paper.

A symbiont is an organism that lives in close association with a host. It can have
either a harmful effect, in which case we call it a pathogen, or a beneficial effect,
in which case we call it a mutualist. Symbionts are ubiquitous. For instance, more
than 90% of terrestrial plants associate with mycorrhizal fungi [18], a beneficial
association that supplies nutrients to the plant and, in return, carbon to the fungal
partner. Fecundity and viability of virtually all plants are affected by pathogens,
sometimes with devastating effects, such as Dutch elm disease or chestnut blight
that point to the important role of pathogens in structuring plant communities.
Mathematical models play an important role in elucidating the roles of symbionts
in community dynamics.

Modeling of disease dynamics has had a long tradition, starting with the model
by Kermack and McKendrick [14], which describes the course of a disease out-
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break caused by a single disease infecting a single host. This model and its ex-
tensions have yielded enormously valuable insights into disease dynamics and po-
tential control strategies. Although originally developed to describe epidemics in
human populations, it can equally well be applied to plant diseases. A key con-
cept of disease dynamics is the basic reproductive rate R0, which is defined as the
expected number of secondary infections caused by an infected individual when
introduced into a population of susceptible individuals [2]. The condition for a dis-
ease outbreak is given in the biological literature as R0 > 1. This condition is based
on a single-host, single-disease model in a nonspatial population. Including spatial
structure in the form of local interactions has shown that for a disease to spread,
R0 needs to exceed a threshold that is greater than that for a nonspatial population.
The reason for this is the lack of sufficient numbers of susceptible individuals near
the location of a disease outbreak once the disease starts spreading. One of the first
models where this has been demonstrated mathematically is the contact process
[11, 16].

Much of the theoretical work in the epidemiological literature has focused on
single-host, single-disease dynamics. A rapidly increasing empirical body of work
on multispecies host-disease dynamics necessitates the development of a theoreti-
cal framework. This has only begun recently (see [13], and references therein). An
attempt for a broad classification was made by Holt et al. [13] using a graphical iso-
cline framework that allows for generalizations that are applicable to a wide range
of host-pathogen models. A recent model by Dobson [4] investigates persistence
of a pathogen that can infect multiple hosts.

Modeling of host-mutualist interactions has primarily focused on evolutionary
questions, such as the evolution of cheaters (i.e., symbionts that receive benefits
but do not confer them). Almost no modeling has been done on the effects of
local (spatial) interactions on host-mutualist dynamics. Similarly, no theoretical
framework has been developed for multispecies host-mutualist interactions.

An important component of multihost, multisymbiont models is the degree to
which different symbionts and hosts can associate with each other. This is referred
to as specificity. A specialist symbiont associates with a very small number of
hosts; a generalist symbiont associates with many hosts. The ease of transmission
of a symbiont to a host, referred to as transmissibility, is another important factor
in host-symbiont interactions.

In this paper we investigate the role of spatial structure caused by local in-
teractions, such as symbiont transmission and host dispersal, on persistence of
host-symbiont associations for both generalists and specialists in multihost, mul-
tisymbiont models. We employ the simplest of all multispecies models to de-
scribe the host dynamics, the voter model [3, 12]. The voter model is defined
on the d-dimensional integer lattice, where each lattice site is occupied by an
individual characterized by one of a finite number of types. Individuals give
birth to offspring of their own kind at a constant rate, and their offspring dis-
place randomly chosen individuals within their dispersal neighborhood. The dy-
namics imply that all sites remain occupied at all times. Into this population,
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we introduce symbionts with varying degrees of specificity and transmissibility.
More precisely, our spatial model is a continuous-time Markov process ξt : Zd −→
{1,2, . . . , κ} × {0,1, . . . , κ} where the integer κ denotes both the number of hosts
and the number of symbionts involved in the interaction. A site x ∈ Z

d is said to
be occupied by an unassociated host of type i, i = 1,2, . . . , κ , if ξ(x) = (i,0),
and by a host of type i, i = 1,2, . . . , κ , associated with a symbiont of type j ,
j = 1,2, . . . , κ , if ξ(x) = (i, j). We will write ξt (x) = (ξ1

t (x), ξ2
t (x)), where ξ1

t (x)

denotes the type of the host present at x at time t and ξ2
t (x) denotes the type of

the symbiont present at x at time t , with ξ2
t (x) = 0 denoting the absence of a sym-

biont. We set ‖x‖ = supi=1,2,...,d |xi |. The evolution at site x ∈ Z
d is described by

the transition rates

(i, j) → (k,0) at rate λ
∑

0<‖x−z‖≤R1

{
1{ξ(z)=(k,0)} + g

κ∑
�=1

1{ξ(z)=(k,�)}
}

(i,0) → (i, j) at rate cij

∑
0<‖x−z‖≤R2

κ∑
�=1

1{ξ(z)=(�,j)}.

The transition (i, j) → (k,0) is the birth of an unassociated host at x by either
unassociated or associated neighboring hosts. The birth rate of unassociated hosts
is equal to λ. The parameter g indicates the variation of the birth rate of hosts
associated with a symbiont. If 0 ≤ g < 1, the symbiont is a pathogen; if g = 1,
the symbiont has no effect on the birth rate of the host and we refer to this as the
neutral case; if g > 1, the symbiont is a mutualist. The transition (i,0) → (i, j)

is the transmission of a neighboring symbiont j to an unassociated host of type i

at x. The parameters cij denote the rate at which symbiont j infects host i. This
parameter will allow us to mimic specialist and generalist symbionts. Births and
infections occur within a local neighborhood, with R1 denoting the birth range
of hosts, and R2 the infection range of symbionts. Neighborhoods are punctured
boxes with side 2Ri + 1, i = 1,2, centered at site x, that is, N i

x = {z ∈ Z
d : 0 <

‖x − z‖ ≤ Ri}. The cardinality of this set is denoted by νRi
= |N i

x |.
Before we describe the behavior of the spatially explicit, stochastic model, we

will look at the mean-field model [9]. The mean-field model is described by a
system of differential equations for the densities of unassociated and associated
hosts. To define it, we let ui denote the density of unassociated hosts of type i,
i = 1,2, . . . , κ , and vij denote the density of host i associated with symbiont j ,
i, j = 1,2, . . . , κ . It follows from the dynamics of the spatially explicit, stochastic
model that at all times

∑
i

ui + ∑
i,j

vij = 1.



HOST-PATHOGEN AND HOST-MUTUALIST INTERACTIONS 451

Furthermore, we assume that for i = 1,2, . . . , κ , cii = β , and for i, j = 1,2, . . . , κ

with i �= j , cij = α with 0 ≤ α ≤ β . We define

u· =
κ∑

i=1

ui, v·j =
κ∑

i=1

vij , vi· =
κ∑

j=1

vij and v·· =
κ∑

i=1

κ∑
j=1

vij .

One way to obtain the mean-field limit is to set the neighborhood ranges R1 and R2
equal to R and then let R go to infinity. To obtain a meaningful limit, we also need
to rescale the parameters λ, α and β by the neighborhood size νR ; that is, we set
λ = 1

νR
(this also sets the time scale), and define

α = a

νR

and β = b

νR

.

In the limit R → ∞, sites become independent. If, in addition, the initial con-
figuration is translation invariant, the dynamics of the densities for i �= j is then
described by the following system of differential equations, called mean-field
equations:

dui

dt
= (1 − ui)(ui + gvi·) − ui

∑
j �=i

(uj + gvj ·) − buiv·i − a
∑
j �=i

uiv·j ,

dvii

dt
= buiv·i − vii(u· + gv··),

dvij

dt
= auiv·j − vij (u· + gv··).

When a = 0, the symbionts are specialists. As a increases to b, the association
turns into a generalist relationship. The following results are proved in Section 2.
When g = 1, the system has a conserved quantity, namely the initial host densities
hi = ui + vi·, i = 1,2, . . . , κ . If (κ − 1)a + b > κ , then for g �= 1, there exists a
nontrivial equilibrium with u1 = u2 = · · · = uκ ≥ 0 and v1· = v2· = · · · = vκ· > 0
such that for i = 1,2, . . . , κ ,

ui = g

(κ − 1)a + b − κ(1 − g)
and hi = 1

κ
.

Furthermore, for i �= j

vij

vii

= a

b
.

Numerical simulations indicate that the nontrivial equilibrium is locally stable
for a < b when g < 1, but not for g > 1. In addition, if g = 0 and (κ − 1)a +
b > κ , all hosts will be associated at equilibrium. If initially only two hosts and one
symbiont, say symbiont 1, are present, then for 0 < g < 1, simulations indicate that
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FIG. 1. Solution curves of the mean-field model with a = 0 and b = 3. The parameter g is equal to
0.5 and 2, respectively.

pathogen 1 will go extinct and both host 1 and host 2 may coexist. We will conjec-
ture similar behavior for the spatial model, except in the one-dimensional, nearest-
neighbor case (see Theorem 3 and discussion following the theorem). When g > 1,
host 2 goes extinct provided the initial density of mutualists of type 1 is sufficiently
large. The spatial analogue of this result is proved in Theorem 2. Both results are
illustrated in Figure 1.

We now return to the spatially explicit model with parameters λ, α and β . To
define the time scale, we set λ = 1. We will discuss both the generalist case α = β

and the specialist case α = 0, and provide comparisons with the mean-field model.

Generalist interactions. We consider the generalist case α = β of the spatially
explicit, stochastic model. In the corresponding mean-field model, coexistence of
hosts and symbionts is possible when b > 1. For b ≤ 1, symbionts are unable to
persist. When a = b, symbionts are no longer host-specific, and the mean-field
model can be reduced to one with ui and vi·. It is not hard to see then that the
nontrivial equilibrium of unassociated hosts, (u·, v··), is locally stable since in this
case

dv··
dt

= v··[(b − 1)u· − gv··].

With u· + v·· = 1, it follows that the boundary point v·· = 0 is unstable for b > 1
and that

(u·, v··) =
(

g

b − 1 + g
,

b − 1

b − 1 + g

)
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is locally stable. Furthermore, any vector (h1, h2, . . . , hκ) with hi ≥ 0 and∑
i hi = 1 gives rise to an equilibrium if we set

ui = g

b − 1 + g
hi and vi· = b − 1

g
ui.

The behavior of the spatially explicit model is more complicated and may depend
on the spatial dimension, as we will see in the following.

If g = 1, then the symbionts have no effect on the hosts, which means that the
spatially explicit processes ξ1

t and ξ2
t are stochastically independent. Moreover,

by looking at the transition rates, it is easy to see that ξ1
t is a multitype voter

model run at rate 1, and that ξ2
t is a multitype contact process in which particles

give birth at rate βνR2 and die at rate νR1 . See, respectively, [12, 17] for a study of
these two processes. It follows that there exists a critical value βc(R1,R2) ∈ (0,∞)

that depends on the neighborhood sizes νR1 and νR2 such that the symbionts can
survive if and only if β > βc(R1,R2). If we ignore host and symbiont types but
rather focus on associated versus unassociated hosts, then for β > βc(R1,R2),
regardless of the spatial dimension, there exists a nontrivial stationary distribution
of associated and unassociated hosts. Moreover, if d ≥ 3, there exists a stationary
distribution in which all hosts and symbionts coexist.

Unfortunately, we cannot say much about coexistence when g �= 1. To analyze
this case, we define the “color-blind” process where a site is in state 0 if it is
occupied by an unassociated host, and in state 1 if it is occupied by an associated
host. We obtain a particle system ζt : Zd −→ {0,1} with transitions at x ∈ Z

d :

0 → 1 at rate β
∑

0<‖x−z‖≤R2

1{ζ(z)=1},

1 → 0 at rate
∑

0<‖x−z‖≤R1

{
1{ζ(z)=0} + g1{ζ(z)=1}

}
.

When g = 0, the process reduces to a biased voter model. When g = 1, it reduces
to a contact process with birth rate βνR2 and death rate νR1 . We denote the critical
value of this contact process by βc(R1,R2) as above. A standard coupling argu-
ment allows us to compare the processes with g �= 1 and g = 1, and to deduce that
if g ≤ 1 and β > βc(R1,R2), then ζt has a nontrivial stationary measure, while if
g ≥ 1 and β ≤ βc(R1,R2), then the mutualists die out, that is, ζt ⇒ δ0, the “all 0”
configuration [i.e., ζ(x) ≡ 0]. To cover the remaining cases, we introduce the con-
tact process ηt in which particles give birth at rate βνR2 and die at rate gνR1 . Then
ηt has a nontrivial stationary measure if and only if β > gβc(R1,R2) which, with
a new coupling argument, implies that if g ≤ 1 and β ≤ gβc(R1,R2), then the
pathogens die out, while if g ≥ 1 and β > gβc(R1,R2), then ζt has a nontrivial
stationary measure.

We now focus on the case β > 1 and g > 0 close to 0. First of all, we observe
that if g = 0 and R1 = R2, then the process ζt is the biased voter model with para-
meters β and 1. In particular, P(ζt (x) = 0) → 1 if β < 1 while P(ζt (x) = 1) → 1
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FIG. 2. Phase diagram of the spatial model with generalist interactions.

if β > 1 provided we start with infinitely many 0’s and 1’s at time 0. Moreover,
in the latter case, fixation occurs for the process ξt since hosts associated with
pathogens are now sterile. The behavior is identical to that of the mean-field model.
We will use a perturbation argument in Section 4 to show that if β > 1 and g > 0 is
sufficiently close to 0, then the pathogens still survive. The results are summarized
in Figure 2 and in the following theorem where “⇒” denotes weak convergence
and δ0 is the distribution that concentrates on the “all 0” configuration.

THEOREM 1. Assume that α = β and that ζ0 is translation invariant with
P(ζ0(x) = 1) > 0.

(a) If g ≤ 1, then ζt ⇒ δ0 if β ≤ gβc, and a nontrivial equilibrium exists if
β > βc. If g ≥ 1, then ζt ⇒ δ0 if β ≤ βc, and a nontrivial equilibrium exists if
β > gβc.

(b) If β > 1, there exists gc > 0 such that if g ≤ gc, then ζt ⇒ µ with µ(ζ(x) =
1) �= 0.

Part (b) of this theorem will be proved in Section 4.
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Specialist interactions. In the specialist case α = 0 and β > 0, the process is
more difficult to investigate since the evolution of each symbiont strongly depends
on the configuration of the host population. That is, there is no particle system
ζt : Zd −→ {0,1} which allows us to describe the global evolution of the symbionts
regardless of their type. Since for any i = 1,2, . . . , κ the symbiont i can live only
through hosts of type i, it is, however, easy to deduce from a coupling argument
that if g ≤ 1, then the processes with α = 0 and α = β can be defined on the
same space so that, starting from the same configuration, the process with α = 0
has fewer pathogens. In words, the survival of the pathogens is harder to obtain
with specialist interactions. In particular, if g ≤ 1 and β ≤ max(βcg,1), then the
pathogens die out.

The next step is to extend the results of the mean-field model summarized in
Figure 1 to the corresponding spatial model with short-range interactions. To do
this, we consider a population of two hosts with only one type of symbiont, say
symbiont of type 1, and start the evolution with all the hosts of type 1 associated
with a symbiont. Then, in the limiting case β = ∞, the transition (1,0) → (1,1) is
instantaneous; that is, unassociated hosts of type 1 become instantaneously asso-
ciated with a symbiont, provided that R1 ≤ R2 to avoid the problem of an isolated
unassociated host that cannot be reached by any symbiont. This implies that the
process ξ1

t is a biased voter model in which hosts of type 1 give birth at rate gνR1

and hosts of type 2 at rate νR1 . In particular, if g < 1, then ξ1
t ⇒ δ2, the “all 2”

configuration, while if g > 1, then ξ1
t ⇒ δ1, the “all 1” configuration. Theorem 2

tells us that, in any dimension, the result still holds if g > 1 and β ∈ (0,∞) is
sufficiently large.

THEOREM 2. Assume that α = 0, g > 1 and R1 ≤ R2. At time 0, ξ0(x) =
(1,1) or (2,0) for all x ∈ Z

d . Then, there is a critical value βTh2
cr ∈ (0,∞) such

that if β > βTh2
cr , then ξ1

t ⇒ δ1.

The arguments in our proof, however, do not imply the analogous result for
g < 1. We think actually that except in the one-dimensional nearest-neighbor case,
P(ξ1

t (x) = 2) �→ 1. Before explaining our intuition, we describe the behavior of
the one-dimensional process with nearest-neighbor interactions for the hosts and
short-range interactions for the pathogens. Assume that at time 0, ξ1

0 (x) = 1 for
x > 0 with infinitely many pathogens of type 1, and ξ1

0 (x) = 2 for x ≤ 0 with no
associated pathogens. Denote by r2

t = sup{x ∈ Z : ξ1
t (x) = 2} the rightmost host of

type 2. Then r2
0 = 0. The following result implies that for β large enough, 2’s will

spread to the right and eliminate 1’s together with their associated pathogens.

THEOREM 3. Assume d = 1 and R1 = R2 = 1. If α = 0 and g < 1, there exists
βTh3

cr ∈ (0,∞) such that if β > βTh3
cr , then r2

t → ∞ as t → ∞ with probability 1.
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We conjecture that this result should only be true in the one-dimensional
nearest-neighbor case. Here is the intuition. We first observe that except in the
one-dimensional nearest-neighbor case, the dynamics produce isolated hosts, that
is, hosts of type 1 (resp. 2) surrounded by a cluster of hosts of type 2 (resp. 1). As
suggested by Theorem 2, when g > 1, isolated 2’s are swallowed very quickly by
surrounding 1’s. On the other hand, when g < 1, an isolated 1 located in a linearly
growing cluster of 2’s cannot be invaded anymore by any pathogen as soon as the
cluster has reached some critical size. In this expanding region, the process then
behaves like an unbiased voter model in which 1’s can now compete with 2’s, and
survive. See Figure 3 in Section 5 for simulations in d = 2.

Finally, we investigate the coexistence of symbionts in the neutral case g = 1.
We observe that, in this case, the first coordinate process ξ1

t performs a voter model
run at rate 1. In particular, in d ≤ 2, there does not exist any stationary distribu-
tion µ such that µ(ξ1(x) = i) �= 0 for any i ∈ {1,2, . . . , κ} (see [12]). Since in the
specialist case, ξ2

t (x) = i implies that ξ1
t (x) = i, the same conclusion holds for

the symbionts. In d ≥ 3, coexistence occurs for the process ξ1
t , that is, there is a

stationary measure µ which satisfies the condition above. However, due to the for-
mation of clusters, the problem of coexistence of the symbionts remains a difficult
question. Namely, the voter model ξ1

t exhibits clusters whose diameter can exceed
some critical size, which prevents the symbionts from spreading out. To get around
this difficulty, we introduce a modification of the particle system, denoted by ξ̂t ,
in which the symbionts evolve as previously but where the hosts now perform a
threshold θ voter model. More precisely, the process ξ̂t evolves according to the
following transitions at x ∈ Z

d :

(i, j) → (k,0) at rate




1, if card{z ∈ Z
d : 0 < ‖x − z‖ ≤ R1

and ξ̂1(z) = k} ≥ θ ,

0, otherwise,

(i,0) → (i, i) at rate β card{z ∈ Z
d : 0 < ‖x − z‖ ≤ R2 and ξ̂2(z) = i}.

The introduction of this particle system is motivated by Theorem 1 of [7] which
implies that the threshold θ voter model has a nontrivial stationary distribution
which is close enough to a product measure to produce our next result. We will
prove the following result.

THEOREM 4. Let g = 1 and θ < νR1/κ . If R1 and R2 are sufficiently large,
then there is a critical value βTh4

cr ∈ (0,∞), depending on κ , such that the following
holds: If β > βTh4

cr , then coexistence occurs, and if β < βTh4
cr , then coexistence is

not possible.

Here coexistence means that there is a stationary measure µ such that
µ(ξ̂2(x) = i) �= 0 for any type i ∈ {1,2, . . . , κ}. Unfortunately, we do not know
how to prove something better than coexistence is not possible when β < βTh4

cr .
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However, we conjecture that starting from product measure in which each host
is associated with a symbiont and has density 1/κ , all the symbionts die out. To
justify our conjecture, we observe that the processes ηi

t defined by ηi
t (x) = 1 if

ξ̂2
t (x) = i and ηi

t (x) = 0 otherwise, do not interact since they are confined to their
associated hosts. Since Theorem 1 of [7] tells us that the hosts coexist with density
of each type close to 1/κ , each symbiont should remain subcritical. Finally, since
the symbionts can only spread out through their host, we conjecture that βTh4

cr is
increasing with respect to κ .

Comparison of the spatially explicit and the mean-field model. Numerical sim-
ulations of the mean-field model indicate that coexistence is only possible when
g < 1. Simulations of the spatially explicit model show similar behavior. When
g < 1 and α < β , then coexistence of hosts and pathogens is possible. We ob-
served that in this case, cluster size is limited by the presence of pathogens: In
the absence of pathogens, clusters grow at the expense of neighboring clusters
that contain symbionts. Upon invasion by the preferred symbionts (those with in-
fection rate β), the clusters appear to shrink again. The case g > 1 and α < β is
quite different. Clusters of hosts with their preferred mutualists form and appear to
continue to grow, just as in the voter model case. Less preferred mutualists (those
with infection rate α) do not seem to be able to persist with preferred mutualists,
just as is the mean-field case of one host and two symbionts with infection rates
a and b, respectively (a < b). In summary, pathogens have the ability to alter the
spatial structure of their hosts by promoting local diversity, whereas mutualists do
not alter the spatial structure of their hosts. This difference in behavior is more
pronounced the more host-specific the symbionts are.

The rest of this paper is devoted to proofs. In Section 2 we will investigate the
mean-field model. In Section 3 we will prove a preliminary result about the biased
voter model to prepare the proofs of Theorems 1 and 2 which will be carried out in
Sections 4 and 5, respectively. Section 6 will be devoted to the proof of Theorem 3.
Finally, we will investigate the coexistence of symbionts and prove Theorem 4 in
Section 7.

2. The mean-field model. The mean-field model was introduced in Section 1.
Our first claim was that the host density hi = ui + vi· is a conserved quantity when
g = 1. A straightforward calculation shows that if g = 1,

d

dt
(ui + vi·) = 0,

from which our claim follows.
We summarize the behavior of the mean-field model in the following proposi-

tion.
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PROPOSITION 2.1. For (κ − 1)a + b > κ and g ≥ 0, there exists a nontrivial
equilibrium with u1 = u2 = · · · = uκ ≥ 0 and v1· = v2· = · · · = vκ· > 0 such that
for i = 1,2, . . . , κ ,

ui = g

(κ − 1)a + b − κ(1 − g)
and hi = 1

κ
.

Furthermore, for i �= j

vij

vii

= a

b
.

PROOF. If we denote by hi = ui + vi· the density of host i (both associated
and unassociated), then

dhi

dt
= ui + gvi· − hi(u· + gv··).

By setting the right-hand side equal to 0, we obtain

hi = ui + gvi·
u· + gv··

.

It follows that
hi

hj

= ui(1 − g) + ghi

uj (1 − g) + ghj

from which we conclude that
hi

hj

= ui

uj

= vi·
vj ·

.

In the symmetric case, h1 = h2 = · · · = hκ = 1
κ

, we find u1 = u2 = · · · = uκ and
v1· = v2· = · · · = vκ·. The nontrivial equilibrium can then be computed explicitly.
We find

ui = g

(κ − 1)a + b − κ(1 − g)
and hi = 1

κ
.

Specifically, when g = 0, ui = 0 and consequently all hosts will be associated
at equilibrium. The condition for the existence of a nontrivial point equilibrium,
namely (κ − 1)a + b > κ , follows directly from requiring that ui < 1/κ and hi =
1/κ . Furthermore, it follows from

buiv·i = vii(u· + gv··) and auiv·j = vij (u· + gv··)

that
a

b
= v·i

v·j
vij

vii

.

Since v·i = v·j by symmetry, the last claim follows as well. �
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3. Preliminary results about the biased voter model. As explained in the
Introduction, if α = β and R1 = R2, then the “color-blind” process ζt performs a
biased voter model when g = 0. If we set α = 0 and consider a population of two
host types with only one symbiont type, then the process ξ1

t , which describes the
evolution of both host types, performs a biased voter model in the limiting case
β = ∞. So, to prove Theorems 1 and 2, we will start by proving a general result
about the biased voter model, and then apply a perturbation argument to extend
this result to the region g > 0 small in the first case, and to the region β < ∞ large
in the second case. Let β1, β2 ∈ (0,∞), and ηt : Zd −→ {1,2} be the biased voter
model with parameters β1 and β2, that is, the process whose state at site x changes
as follows:

i → j at rate βj

∑
0<‖x−z‖≤R1

1{η(z)=j}.

It is a well-known fact that if β1 > β2, then P(ηt (x) = 1) → 1 as t → ∞, provided
that at time 0, the process has infinitely many 1’s and 2’s (see, e.g., [6], Chapter 3).

To prove Theorems 1 and 2, we will follow the strategy described in [10], Sec-
tion 3. We begin with a rescaling argument to estimate the rate of convergence of
P(ηt (x) = 1). This estimate will have to be good enough so that a perturbation
argument can be applied. The basic idea is to show that for given ε > 0, members
of the family of processes under consideration, when viewed on suitable length
and time scales, dominate an M-dependent oriented percolation process in which
sites are open with probability 1 − ε ([8], Section 4). To compare the process with
a percolation process, we consider a positive integer L to be fixed later, and scale
space by setting

B = [−L,L]d, (z) = Lz, Bz = (z) + B

for any z ∈ Z
d . Let � be a positive integer, and say that (z, n) is occupied if all

sites in Bz are occupied by 1’s at time n�L. The first step in proving Theorems
1 and 2 is the following.

PROPOSITION 3.1. Let ε > 0 and β1 > β2. Then M , L and � can be chosen
in such a way that the set of occupied sites dominates the set of open sites in an
M-dependent oriented site percolation process where sites are open with proba-
bility p = 1 − 2ε/3.

The key to the proof is duality ([6], Chapter 3). To define the dual process of the
biased voter model, we consider two collections of independent Poisson processes
{T x,z

n :n ≥ 1} and {Ux,z
n :n ≥ 1} where 0 < ‖x − z‖ ≤ R1, with parameter β2 and

β1 − β2, respectively. At times T x,z
n we draw an arrow from z to x and put a δ at

site x, while at times Ux,z
n we draw an arrow from z to x without putting a δ at the

tip. The process is then obtained from the graphical representation as follows: At
time T x,z

n , the particle at x imitates the one at z. At time Ux,z
n , the site x becomes
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occupied by a particle of type 1 if z is. We say that there is a path from (x,0)

to (z, t) if there is a sequence of times s0 = 0 < s1 < · · · < sn+1 = t and spatial
locations x0 = x, x1, . . . , xn = z such that the following two conditions hold:

1. For i = 1,2, . . . , n, there is an arrow from xi−1 to xi at time si .
2. For i = 0,1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain

any δ’s.

Finally, we say that there exists a dual path from (x, t) to (z, t − s), 0 ≤ s ≤ t , if
there is a path from (z, t − s) to (x, t), and define the dual process starting at (x, t)

by setting

η̂(x,t)
s = {z ∈ Z

d : there is a dual path from (x, t) to (z, t − s)}
for any 0 ≤ s ≤ t . The reason why we introduce the dual process is that it allows
us to deduce the state of site x at time t from the configuration at earlier times.
More precisely,

ηt (x) = 1 if and only if ηt−s(z) = 1 for some z ∈ η̂(x,t)
s .

See [6], Chapter 3. The strategy to proving Proposition 3.1 can then be summarized
as follows: Let T = �L and x ∈ Bz with ‖z‖ = 1. Then, we will prove that, with
probability arbitrarily close to 1, there exists a dual path As starting at (x, T ) and
landing in the target set B . More precisely, we will prove that As hits the set
J = [−R1,R1]d by time T where R1 < L/2, and then stays inside B until time T .
Recall that R1 denotes the range of the interactions. In particular, if B is void of
2’s at time 0, then, with probability close to 1, Bz will be void of 2’s as well T

units of time later. To define the dual path As , we start the process at A0 = (x, T )

and go down the graphical representation. If As comes across a δ at some time
s = T − T x,z

n with x = As , then move As to z. If As meets the tip of an arrow
that is without a δ at some time s = T − Ux,z

n , then move As to z only if it takes
it closer to 0. Intuitively, this should cause As to drift toward the set B . We now
make this argument precise in a series of lemmas.

LEMMA 3.2. Assume that x ∈ Bz, ‖z‖ = 1 and β1 > β2. There exist C1, γ1 ∈
(0,∞) such that

sup
x∈Bz

Px(As /∈ J for all s ≤ T ) ≤ C1 exp(−γ1L)

for L and � sufficiently large. Here, the subscript x indicates the starting point.

PROOF. Let σk denote the kth time As encounters the tip of an arrow (with
or without a δ). At time σk , the arrow does not have a δ at its tip with probability
(β1 − β2)/β1 > 0. Moreover, if Aσk

/∈ J and the arrow does not have a δ at its
tip, then with probability at least 1/2d > 0, As moves closer to 0. In particular, if
N = inf{k ≥ 1 :Aσk

∈ J }, then there is c > 0 such that

P(N ≥ cL) ≤ C2 exp(−γ2L)
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for suitable C2, γ2 ∈ (0,∞). Since P(σk − σk−1 > t) = exp(−β1t), the result fol-
lows. �

LEMMA 3.3. Assume that β1 > β2. For any y ∈ J there exist C3 < ∞ and
γ3 > 0 such that

sup
y∈J

Py(As /∈ B for some s ≤ T ) ≤ C3 exp(−γ3L)

for L sufficiently large.

PROOF. We let s0 = 0 and, for k ≥ 1, define the following stopping times:

tk = inf{t > sk−1 :At /∈ (−L/2,L/2)d},
sk = inf{t > tk :At ∈ J },
τ = inf{t > 0 :At /∈ B}.

Moreover, we denote by M(t) = sup{k ≥ 1 :σk < t} the number of tips of arrows
encountered by As by time t . Then for any site y ∈ J

Py(As /∈ B for some s ≤ T )

= Py

(
Aσk

/∈ B for some k ≤ M(T )
)

≤ Py

(
Aσk

/∈ B for some k ≤ 2β1T
) + P

(
M(T ) > 2β1T

)
≤ Py(sk > τ for some k ≤ 2β1T ) + P

(
M(T ) > 2β1T

)
≤ 2β1T sup

z∈J

Pz(s1 > τ) + P
(
M(T ) > 2β1T

)
.

Since As has a drift toward J and the time between consecutive jumps has ex-
ponential bound, P(s1 > τ) ≤ C4 exp(−γ4L) for appropriate C4 < ∞ and γ4 > 0
(see the proof of Lemma 3.2). Furthermore, since EM(T ) = β1T , large deviation
estimates imply that there are C5 < ∞ and γ5 > 0 such that P(M(T ) > 2β1T ) ≤
C5 exp(−γ5T ). �

LEMMA 3.4. Assume that x ∈ Bz, ‖z‖ = 1 and β1 > β2. There exist C6, γ6 ∈
(0,∞) such that

sup
y∈Bz

Px(AT /∈ B) ≤ C6 exp(−γ6L)

for � and L sufficiently large.

PROOF. By decomposing according to whether As ∈ J for some s ≤ T or not,
we obtain

Px(AT /∈ B) ≤ Px(As /∈ J for all s ≤ T ) + P(AT /∈ B;As ∈ J for some s ≤ T ).
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The first term on the right-hand side can be bounded using Lemma 3.2. For the
second term, we first observe that

P(AT /∈ B;As ∈ J for some s ≤ T ) ≤ sup
y∈J

Py(As /∈ B for some s ≤ T )

and then apply Lemma 3.3. This completes the proof. �

Since there are (2L + 1)d sites in Bz, it follows from Lemma 3.4 and duality
that there is a constant C7 < ∞ independent of L such that for � and L sufficiently
large

P
(
ηT (x) = 2 for some x ∈ Bz

) ≤ ∑
x∈Bz

Px(AT /∈ B)

≤ (2L + 1)dC6 exp(−γ6L) ≤ C7L
−1 ≤ ε/3.

Moreover, since each of the dual paths has a drift toward J , we can fix M > 0, say
M = 3, so that for any ε > 0

P(any of the selected paths is not contained in

[−ML,ML]d at some time s ≤ T ) ≤ ε/3

by choosing L sufficiently large. This shows that boxes that are sufficiently far
apart are independent of each other with high probability and completes the proof
of Proposition 3.1.

4. Proof of Theorem 1. This section is devoted to the proof of part (b) of
Theorem 1 which describes the behavior of the process for β > 1 and g close to
0 in the generalist case α = β . As already explained in the Introduction, if g = 0,
then the process ζt : Zd −→ {0,1} reduces to the biased voter model with parame-
ters 1 and β so that if β > 1, then P(ζt (x) = 1) → 1 as t → ∞. To prove that the
pathogens still survive when g > 0 is sufficiently small, we show that for M = 3
and any ε > 0, we can choose L and � such that Proposition 3.1 holds for β1 = β

and β2 = 1. Now that � and L are fixed and M = 3, we can assert that there exists
gc > 0 small so that

P(some infected host in [−ML,ML]d gives birth

to a healthy host sent to B between time 0 and time T )

≤ (2ML + 1)d
(
1 − exp(−gcT )

) ≤ ε/3.

This tells us that if g < gc, then the set of occupied sites dominates the set of open
sites in an oriented percolation process with parameter p = 1 − ε. Here (z, n) oc-
cupied means that all sites in Bz are occupied by pathogens at time nT . Finally, by
taking ε > 0 sufficiently small so that percolation occurs with positive probability,
Theorem 1 follows.



HOST-PATHOGEN AND HOST-MUTUALIST INTERACTIONS 463

5. Proof of Theorem 2. The proof of Theorem 2 also relies on a perturbation
argument. In the case β = ∞ and R1 ≤ R2, the transition (1,0) → (1,1) is instan-
taneous, that is, unassociated hosts of type 1 become instantaneously associated
with a mutualist, provided that all the hosts of type 1 are initially associated with
a mutualist. The assumption R1 ≤ R2 is to avoid the problem of births of isolated,
unassociated hosts of the same type that are not accessible to mutualists. Under
these assumptions, the process ξ1

t performs a biased voter model with parameters
β1 = g and β2 = 1. In particular, well-known results about the biased voter model
imply that if g > 1, then P(ξ1

t (x) = 1) → 1 as t → ∞.
To extend the result to the region β > 0 large, we prove that if hosts of type 1 be-

come occupied by their associated mutualists quickly enough, then ξ1
t will evolve

like a biased voter model in the space-time box B ×[0,�L] with probability close
to 1. We first define ξt on the same space as the biased voter model ηt introduced
in Section 3 with β1 = g and β2 = 1. At time T x,w

n , the host present at site w

gives birth to an unassociated host of the same type which is then sent to x. At
time Ux,w

n , the birth from w to x occurs only if the host at w is associated with
a mutualist. To describe the evolution of the mutualists, we consider one more
collection of independent Poisson processes, {V x,w

n :n ≥ 1}, 0 < ‖x − w‖ ≤ R2,
with parameter β . At time V x,w

n , we draw an arrow labeled with a 1 from w to x

to indicate that a mutualist (of type 1) present at site w gives birth to a mutualist
at site x if this site is already occupied by a host of type 1. We will prove that
there exists βTh2

cr ∈ (0,∞) such that if β > βTh2
cr and ξ1

0 = η0 on B , then ξ1
T = ηT

on Bz with ‖z‖ = 1 at time T = �L with probability ≥ 1 − ε/3. Since boxes
that are sufficiently far apart are independent of each other with probability close
to 1, we can focus on [−ML,ML]d × [0,�L], M = 3, to estimate this event. Let
x ∈ [−ML,ML]d and follow the line {x}× [0,�L] by going forward in time. Each
time a host at w attempts to give birth at site x, we require that the next 1-arrow
from w to x appears before the host at w is replaced or the host at x gives birth.
A straightforward calculation shows that this event occurs with probability

P
(
V

x,w
1 < min(T

y,x
1 ,U

y,x
1 ) for any y ∈ N 1

x and

V
x,w
1 < min(T

w,y
1 ,U

w,y
1 ) for any y ∈ N 1

w

) = β(β + 2m)−1,

where m = gνR1 . Let us now denote by K(x,T ) the number of unlabeled arrows
and δ-arrows that point at site x by time T , and set IM = [−ML,ML]d . Then, by
observing that EK(x,T ) = mT , and by decomposing the event to be estimated
according to whether K(x,T ) > 2mT or not, we finally obtain

P(ξ1
T �= ηT on Bz) ≤ ∑

x∈IM

P
(
K(x,T ) > 2mT

) + 2mT
∑

x∈IM

2m

β + 2m

≤ (2ML)d × {C8 exp(−γ8T ) + 4m2T (β + 2m)−1}
for appropriate C8 < ∞ and γ8 > 0. Taking L and then β sufficiently large so that

P(ξ1
T �= ηT on Bz) ≤ ε/3,
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FIG. 3. Process with nearest-neighbor interactions on the 200 × 200 torus at time 250. Left β = 2
and g = 0.5. The process starts with unassociated white hosts in J = (90,110)2 and black hosts
associated with a pathogen outside J . Right: β = 4 and g = 2. The process starts with black hosts
associated with a mutualist in J and unassociated white hosts outside J . In both pictures, gray sites
refer to black hosts associated with a symbiont.

and applying Proposition 3.1 imply that the set of occupied sites dominates the set
of open sites in an oriented percolation process with parameter p = 1 − ε. Here
(z, n) occupied means that all sites in Bz are occupied by associated hosts of type 1
at time nT . This almost produces Theorem 2. Our last problem is that oriented site
percolation has a positive density of unoccupied sites. To prove that there is an
in-all-directions expanding region which is void of hosts of type 2, we apply a
result from Durrett [7] which shows that unoccupied sites do not percolate when
ε is close enough to 0. Since hosts of either type cannot appear spontaneously,
once a region is void of one type, this type can only reappear in the region through
invasion from the outside. This implies that P(ξ1

t (x) = 2) → 0 as t → ∞ for any
x ∈ Z

d and completes the proof of Theorem 2.

6. Proof of Theorem 3. This section is devoted to the proof of Theorem 3.
The method of the proof can also be applied to give a more explicit proof of The-
orem 2 without too much more work. For the proof, we will assume that the birth
rate λ is not set equal to 1. In fact, we will prove Theorem 3 first for λ small and
then change the time scale so that it holds for λ = 1 as well. We start by introduc-
ing the rightmost host-2 process r2

t and the leftmost symbiont-1 process �1
t , that

is,

r2
t = sup{x ∈ Z : ξ1

t (x) = 2} and �1
t = inf{x ∈ Z : ξ2

t (x) = 1}.
We observe that because of nearest-neighbor interactions, �1

t − r2
t ≥ 1 at any time

t ≥ 0. Moreover, if Gt = �1
t − r2

t − 1 denotes the number of sites between both
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processes, then r2
t changes as follows:

for Gt = 0 : r2
t →

{
r2
t + 1, at rate λ,

r2
t − 1, at rate λg,

and

for Gt > 0 : r2
t →

{
r2
t + 1, at rate λ,

r2
t − 1, at rate λ,

which suggests that r2
t drifts to the right if g < 1 (and to the left if g > 1). To make

this argument precise, we will prove the following lemma.

LEMMA 6.1. For g �= 1, there exists ε0 > 0 such that limT →∞ 1
T

×∫ T
0 1{Gt=0} dt ≥ ε0.

To deduce Theorem 3 from Lemma 6.1, we first observe that Er2
t ≥ λ(1−g)ε0t

for g < 1. A large deviation estimate then implies that

P
(
r2
t ≥ (1 − ε)σ t

) ≥ 1 − C9e
−γ9t ,

where σ = λ(1−g)ε0. This implies that if g < 1, then r2
t → ∞ with probability 1.

If g > 1, then Er2
t ≤ −λ(g − 1)ε0t , and a similar argument implies that r2

t → −∞
with probability 1. The proof of Lemma 6.1 is based on a rescaling argument.
The main objective is to prove that the fraction of time the host present at site
r2
t + 1 is associated with a symbiont is greater than some positive constant. To

be able to compare the particle system with oriented percolation process, we will
artificially freeze r2

t by introducing the process seen from the interface, namely
ιt (x) = ξt (x + r2

t + 1). From this new point of view, the symbiont evolves on the
half-line Z

+. To do this comparison, we need to extend some results on oriented
percolation to oriented percolation in half-space, that is, the process in which all
sites to the left of 0 are closed.

Oriented percolation in half-space. As explained above, our first objective is
to investigate 1-dependent site percolation process in the half-space. Let

� = {(x, n) :x + n is even and n ≥ 0}.
For any (x, n) ∈ �, let ω(x,n) define a random variable with the following prop-
erty: If x < 0, then ω(x,n) = 0, while if x ≥ 0, then ω(x,n) = 1 with probability p

and ω(x,n) = 0 with probability 1 − p. The site (x, n) is said to be open (resp.
closed) if ω(x,n) = 1 (resp. 0). Finally, 1-dependent with parameter p means that
whenever (xi, ni), 1 ≤ i ≤ m, is a sequence with xi ≥ 0 for any 1 ≤ i ≤ m where
‖(xi, ni) − (xj , nj )‖∞ > 1 for i �= j , then

P
(
ω(xi, ni) = 0 for 1 ≤ i ≤ m

) = (1 − p)m.
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We say that (y, n) can be reached from (x,m) and write (x,m) → (y, n) if there
exists a sequence of points x = xm,xm+1, . . . , xn = y such that |xi+1 − xi | = 1 for
m ≤ i ≤ n− 1, and ω(xi, i) = 1 for m ≤ i ≤ n. To formulate the next result, we let

WA
n = {y : (x,0) → (y, n) for some x ∈ A} and τA = inf{n :WA

n = ∅}
for any A ⊂ 2Z

+. Finally, if A = 2Z
+, we will write Wn = WA

n and τ = τA.

LEMMA 6.2. If p > 1 − 3−72, then there exists ε1 > 0 such that P(0 ∈
W2n) ≥ ε1 for any n ≥ 0.

PROOF. The proof closely follows ([5], Section 10) so we will try to be as
brief as possible, and refer the reader to this reference for details. The first step is a
slight modification of the contour argument applied to independent site percolation
process. Let A = {0,2, . . . ,2N} and C = {(y, n) : there exists x ∈ A with (x,0) →
(y, n)}. We set

D = {(a, b) ∈ R
2 : |a| + |b| ≤ 1} and W = ⋃

z∈C

(z + D).

If the set C is finite, we denote by � the boundary of the unbounded component of
(R × (−1,∞)) − W and orient the boundary in such a way that the segment from
(2N,−1) to (2N + 1,0) is oriented in the direction indicated. The boundary is a
contour line, if it exists, starting at (2N,−1) and ending at (0,−1). There are at
most 3m−1 contours of length m. Moreover, for a contour of length m to exist, there
must be at least m/8 closed sites to the right of zero. To prove this point, we call a
segment a line segment of the form x + F where x ∈ C and F is one of the sides
of D. The site closest to the right of the segment is the site associated with the
segment. Here, right and left are defined according to the orientation introduced
above. We call segments of � which look like ↖, ↙, ↘ and ↗ segments of types
1, 2, 3 and 4, respectively. By construction, a site associated with a segment of type
1 or 2 must be closed. Let mi and m̄i be, respectively, the number of segments of
type i and the number of segments of type i located on the left of zero. Since the
contour starts at (2N,−1) and ends at (0,−1), m1 + m2 = m3 + m4 + 2N , so
if the contour has length m, then m1 + m2 ≥ m/2. The same reasoning leads to
m1 + m4 = m2 + m3 so that m̄2 + m̄3 ≤ m/2. Now, since the sites located on the
left of zero are closed with probability 1, we obtain m̄1 = 0 and m̄2 = m̄3 ≤ m/4,
which implies (m1 + m2) − (m̄1 + m̄2) ≥ m/4. Finally, since a site in Wc can be
associated with at most two segments of type 1 and 2, it follows that the number of
sites on the right of zero that must be closed is ≥ m/8. Noticing that the shortest
possible contour has length 2N + 4, one can conclude that

P
(
τ [0,2N] < ∞) ≤

∞∑
m=2N+4

3m(1 − p)m/8 = C10
(
3(1 − p)1/8)2N
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if p > 1 − 3−8 and the variables ω(x,n) are independent. To deal with the
1-dependent case, we observe that there are nine sites in � with (|m|+ |n|)/2 ≤ 1,
so for each � of length m there is a set of m/72 sites which are separated by
more than one and which must be closed for the contour to exist. In conclusion, if
p > 1 − 3−72, then P(τ 0 = ∞) > 0. Finally, if we map � into itself by sending
(x,m) �→ (x, n − m) and reverse the orientation of the graph, then

P(WA
n ∩ B �= ∅) = P(WB

n ∩ A �= ∅).

Taking A = 2Z
+ and B = {0}, it then follows that P(0 ∈ W2n) ↓ P(τ 0 = ∞) > 0.

In conclusion, the lemma holds by setting ε1 = P(τ 0 = ∞). �

The process seen from the interface. To prove Lemma 6.1 for g < 1, we in-
troduce the nearest-neighbor contact process ξ−

t in which a particle at x dies at
rate 2λ, gives birth at rate βνR2 and sends its offspring to one of the neighbors
at random in N 2

x . The process is modified so that particles located in the interval
(−∞, r2

t ] are removed. More precisely, each time a particle in ξ−
t tries to give birth

to a particle which is sent to a site in (−∞, r2
t ], the birth is suppressed. Further-

more, if a particle is present at site r2
t + 1 when the process r2

t moves to the right,
then this particle is removed. (The proof is similar in the case g > 1, provided one
replaces ξ− by ξ+ where particles give birth at rate βνR2 but now die at rate 2λg.)
The first step is to prove that ξt dominates the process ξ−

t .

LEMMA 6.3. If g < 1, the processes ξt and ξ−
t can be defined on the same

probability space in such a way that if the inclusion ξ−
0 ⊂ ξ2

0 holds at time 0, then
ξ−
t ⊂ ξ2

t at any later time.

PROOF. Let us start by observing that if the rightmost process r2
t jumps to the

right, a particle located at r2
t + 1, if it is present, is removed from both processes

ξ−
t and ξ2

t and that, if it jumps to the left, both configurations stay unchanged.
Therefore, it suffices to prove that the inclusion holds when r2

t is constant, say
r2
t = 0 at any time. This follows from a standard coupling argument so we just

need to define a graphical representation that preserves the inclusion. We consider
for any x, z ≥ 0 with |x − z| = 1 the independent Poisson processes {Sx,z

n :n ≥ 1}
and {T x,z

n :n ≥ 1} with rate λg and λ(1 − g), respectively. For any x, z ≥ 0, with
0 < ‖z−x‖ ≤ R2, we also introduce the Poisson process {Ux,z

n :n ≥ 1} with rate β .
The evolution of ξt is as follows: At time Sx,z

n , the host present at site x gives birth
to a healthy host of the same type, which is then sent to z. At time T x,z

n , the birth
occurs only if the host at x is healthy. At time Ux,z

n , a pathogen (of type 1) at
site x infects a host of type 1 at z if it is present. Finally, the process ξ−

t evolves
according to the following rules: At time Ux,z

n , a particle at site x gives birth to a
new particle which is then sent to z. If the site is empty, the birth occurs. Otherwise,
it is suppressed. At times T x,z

n and Sx,z
n , a particle present at z is removed. Such a

coupling leads to the desired result. �
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We now introduce the process seen from the interface: ηt (x) = ξ−
t (x + r2

t + 1).
To describe this process, we define the translation operators τ1 and τ−1 by setting

[τ1η](x) = η(x + 1) and [τ−1η](x) =
{

η(x − 1), if x ≥ 1,

0, if x ≤ 0.

Then ηt evolves according to the following rules:

1. A particle at x gives birth at rate βνR2 to a new particle which is then sent to
a neighbor within the neighborhood N 2

x . If the target site is empty the birth occurs;
otherwise it is suppressed. Moreover, no births are allowed to the left of 0.

2. Each particle dies at rate 2λ.
3. Depending on whether ξ2

t (r2
t +1) = 0 or 1, ηt , respectively, shifts as follows:

ηt →
{

τ1ηt , at rate λ,

τ−1ηt , at rate λ,
and ηt →

{
τ1ηt , at rate λ,

τ−1ηt , at rate λg.

To compare ηt with an oriented percolation process in half-space, we let
� and L be two large integers to be fixed later, and scale space by setting

B = [−L,L], (z) = Lz and Bz = (z) + B.

Let Jz = (z) + (−L/5,L/5), and say that the site (z, n) ∈ � is occupied if there
is at least one particle in the interval Jz at time n�L. Let us fix z ≥ 0 even, and start
the process ηt with one particle in Jz. The first step is to investigate the process
with no deaths inside Bz and modified so that any particle outside Bz is killed. We
denote by η̄t this new process.

LEMMA 6.4. Let ε2 = 6−72 and β > λ. Then � and L can be chosen so that

P(η̄�L ∩ Jz+1 �= ∅) ≥ 1 − 2ε2/3.

PROOF. A standard coupling argument implies that η̄t has more particles if
we increase the range of the interactions. So, we just need to prove the result when
the offspring is sent to one of the two nearest neighbors. The idea is to prove that
the rightmost particle in η̄t reaches the right edge of Bz by time �L, and then stays
inside Jz+1 ∩ Bz until time �L. Let

rt = sup{x ∈ Bz : η̄t (x) = 1} and τ = inf{t ≥ 0 : rt = (z + 1)}.
Then, on the set {τ > t}, we have E(rt − r0) ≥ (β −λ)t . In particular, since β > λ,
the parameters � and L can be chosen such that P(τ > �L) ≤ ε2/3. This implies
that the rightmost particle will reach Jz+1 by time �L with high probability. To
prove that the rightmost particle does not leave Jz+1 until time �L, we observe
that

rt → rt − 1 at rate ≤ λ and

rt → rt + 1 at rate
{≥ β, if rt < (z + 1),

0, if rt = (z + 1).
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Then well-known estimates about random walks imply that

P(∃ t ∈ [τ,�L] : rt /∈ Jz+1) ≤ �L
(

λ

β

)L/5

≤ ε2/3

for L sufficiently large. This completes the proof. �

We now fix � and L such that Lemma 6.4 holds. To extend the result to the
process ηt , we just need to choose λ > 0 sufficiently small so that the probability
a death occurs in the space-time region Bz × [0,�L] is smaller than ε2/3. In other
respects, since the result holds for the process modified so that any particle outside
Bz is killed, it follows that: If λ > 0 is small, then the set of occupied sites domi-
nates the set of wet sites in an oriented percolation process in the half-space with
parameter 1 − 6−72. Lemma 6.2 then implies that

P(there is at least one particle in Jz at time 2n�L) ≥ ε1 > 0

for any integer n ≥ 0, provided that η0 contains infinitely many particles. Now,
it is easy to see that there exists a constant ε3 > 0 independent of n such that: If
there is at least one particle in the interval Jz at time 2n�L, then the probability
that ξ−

t (r2
t + 1) = ηt (0) = 1 for at least one unit of time between times 2n�L and

2(n + 1)�L is greater than ε3. This tells us that

lim
T →∞

1

T

∫ T

0
1{ηt (0)=1} dt ≥ ε0

for some appropriate constant ε0 > 0. Since Lemma 6.3 implies that {ηt (0) = 1} ⊂
{Gt = 0}, Lemma 6.1 follows from the previous inequality. A time change now
allows us to set λ = 1, which then completes the proof of Theorem 3.

7. Proof of Theorem 4. This section is devoted to the proof of Theorem 4
which addresses coexistence of the symbionts in the neutral case g = 1. To re-
mind the reader, we assume that the symbionts evolve as previously but the hosts
perform a threshold θ voter model according to the following rate at x:

i → j at rate




1, if card{z ∈ Z
d : 0 < ‖x − z‖ ≤ R1

and ξ̂1
t (z) = j} ≥ θ ,

0, otherwise.

It is easy to see that the critical value for the infection rate, βTh4
cr (κ), is strictly

bounded away from 0. Namely, if κ = 1, then the symbionts perform a basic con-
tact process with death rate 1, provided θ ≤ νR1 , and birth rate βνR2 . Furthermore,
since the contact process is monotone, βTh4

cr (κ) ≥ βTh4
cr (1) for κ ≥ 1, from which

our claim follows.
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To prove Theorem 4, we will compare the particle system viewed on suitable
length and time scales with a 1-dependent oriented percolation process in two di-
mensions. The properties of the process in the absence of symbionts was described
in [7]. To apply his results, we introduce, for any x ∈ Z

d , the house

Hx = [
x1L, (x1 + 1)L

) × · · · × [
xdL, (xd + 1)L

)
,

where L is an integer to be fixed later and xi denotes the ith coordinate of the
vector x. We fix σ < 1/κ such that θ < σνR1 , and say that Hx is good if it contains
at least σLd hosts of each type. For x ∈ Z

d , we define ‖x‖2 = (|x1|2 + · · · +
|xd |2)1/2 and set B2(x, r) = {y :‖y − x‖2 ≤ r}. We say that B2(0, r) is good if for
any x ∈ B2(0, r) the house Hx is good. For z even for even n or z odd for odd n,
we will say that (z, n) is occupied if the following two conditions hold:

1. For any x ∈ B2(zKe1,K), the house Hx is good at time n�L.
2. For any i = 1,2, . . . , κ , B2(zKLe1,KL) has at least one symbiont of type i at

time n�L.

Here, e1 denotes the first unit vector, and K and � are large integers that will be
fixed later. Note that the set B2(zKe1,K) is defined on the rescaled lattice, whereas
B2(zKLe1,KL) is defined on the original lattice. We will prove the following result.

PROPOSITION 7.1. Let ε > 0 and θ < νR1/κ . There exists βTh4
cr ∈ (0,∞) such

that if β > βTh4
cr , then K , L and � can be chosen in such a way that the set of oc-

cupied sites dominates the set of open sites in a 1-dependent oriented percolation
process with parameter 1 − ε.

The first step in proving Proposition 7.1 is to summarize the results of Durrett
([7], Section 2), which describe the behavior of the process in the absence of sym-
bionts. To formulate the result we are interested in, we set R1 = L(M1 + 1) where
L and M1 are large integers.

LEMMA 7.2 (Durrett). Let ε > 0 and θ < νR1/κ . There exist R0, M0 and �

such that the following holds: If M1 ≥ M0 and B2(0,R0M1) is good at time 0,
then, for L large, B2(0,R0M1) is good until time �L and B2(0,2R0M1) is good
at time �L with probability at least 1 − ε/3.

The sets described in Lemma 7.2 provide an environment favorable to the sur-
vival of symbionts. To explain this, we introduce, for any type i = 1,2, . . . , κ , the
processes ηi

t defined by ηi
t (x) = 1 if ξ̂2

t (x) = i and ηi
t (x) = 0 otherwise. Since

α = 0, it is easy to see that, for i = 1,2, . . . , κ , the processes ηi
t do not interact. We

fix a type i ∈ {1,2, . . . , κ}, and focus on the process ηi
t . The evolution of ηi

t is as
follows:

1. Each particle dies at rate at most κ and gives birth at rate βνR2 .
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2. A particle born at site x is sent to a site z chosen at random from N 2
x .

3. If the target site z is occupied by an unassociated host of type i, then the
birth occurs. Otherwise, it is suppressed.

The proof of Theorem 4 relies, like Theorems 1 and 2, on a perturbation argument.
More precisely, we first prove Proposition 7.1 in the extreme case β = ∞, and
then extend the result to the region β > 0 large. We denote by η̄i

t the process ηi
t

modified so that no births are allowed outside B2(0,KL).

LEMMA 7.3. Assume that B2(0,K) is good until time �L and that at time 0
there exists x ∈ B2(0,KL) with ηi

0(x) = 1. If R2 ≥ 4dL and β = ∞, then

{x ∈ Z
d : ξ̂1

t (x) = i} ∩ B2(0,KL) = {x ∈ Z
d : η̄i

t (x) = 1} for all t ≤ �L.

PROOF. This is elementary geometry. To begin with, we cover the set
B2(0,KL) with a finite number of Euclidean balls Bj , j ∈ I ; each of them has
radius r = √

dL. Then, it is easy to see that, for any j ∈ I , Bj contains at least one
house. In particular, as long as B2(0,K) is good, Bj contains at least one host of
type i provided that Bj ⊂ B2(0,KL). At any time 0 ≤ t ≤ �L, let us pick one at
random and denote by Xj(t) its spatial location. Now, since R2 ≥ 4r

√
d , we have

min{‖Xj(t) − Xk(t)‖ :k �= j} ≤ R2 for all j ∈ I and for all t ≤ �L.

This implies that, for any x, z ∈ B2(0,KL) occupied by a host of type i, there exists
a chain of sites x0 = x, x1, . . . , xn = z such that the following two conditions hold:

1. For k = 1,2, . . . , n, ‖xk−1 − xk‖ ≤ R2.
2. For k = 0,1, . . . , n, the site xk is occupied by a host of type i.

In particular, since η̄i
t starts with at least one particle in B2(0,KL) and B2(0,KL)

is finite, all the hosts of type i are instantaneously invaded by a symbiont at time 0.
It is easy to prove by induction that this holds until time �L. If a host of type i

gives birth to an unassociated host which is sent to a site x ∈ B2(0,KL) at time t ,
pick Xj(t) such that ‖x − Xj(t)‖ ≤ R2. Since Xj(t) is occupied by a symbiont of
type i, the host at x will be instantaneously invaded. �

To extend the result to β > 0 large, it is convenient to construct the process ξ̂t

from a graphical representation. For any type i ∈ {1,2, . . . , κ} and x ∈ Z
d , let

{T i,x
n :n ≥ 1} be independent Poisson processes with rate 1. At time T i,x

n the state
of x flips to (i,0) if the set N 1

x has at least θ hosts of type i. For x ∈ Z
d , let

{Ux
n :n ≥ 1} be independent Poisson processes with rate β . At time Ux

n , we choose
at random a site z from N 2

x . If a host of a certain type is present at site x, and
a symbiont of the same type is present at site z, then the host at site x becomes
associated if it is not already. So that Lemma 7.3 holds for β < ∞ large, we now
require the following two good events, denoted by G1 and G2, respectively: First,
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we need a quick invasion of the ball B2(0,KL) by the symbionts. More precisely,
G1 will be the event that if at time 0 there exists x ∈ B2(0,KL) with ηi

0(x) = 1,
then for all z ∈ B2(0,KL), with z occupied by host i, the host present at site z

becomes associated before another host attempts to give birth in B2(0,KL). To
estimate P(G1), we observe that, for any z ∈ B2(0,KL), the host at site z can be
reached in at most 4KL/R2 steps by a symbiont, that is, if the host at z is of type i,
then there is a chain of sites x0, x1, . . . , xn = z with n ≤ 4KL/R2, satisfying the
conditions 1 and 2 above and such that x0 is occupied by a symbiont of type i at
time 0. We denote by νKL the number of sites in the ball B2(0,KL). Then since
the transition i → j occurs at rate at most 1 and there are κ hosts and νKL sites in
B2(0,KL), new hosts are born at rate at most κνKL. We set n equal to the integer
part of 4KL/R2. Then

P(G1) ≥ 1 − νKLn
κνKL

κνKL + β/n

≥ 1 − νKL
4KL

R2

κνKL

κνKL + R2β/4KL
.

Now that B2(0,KL) has been invaded, we secondly require it to remain fully occu-
pied until time �L. In other words, G2 will be the event that given that at time 0
all hosts are associated, each time a host is born at some site x ∈ B2(0,KL), it be-
comes associated before another host is born in the ball B2(0,KL); this occurs from
time 0 to time �L. Let N denote the number of times a host is born in B2(0,KL)

from time 0 to time �L. Since EN ≤ κνKL�L, we find that

P(N > 2κνKL�L) ≤ C11 exp(−γ11�L)

for appropriate C11 < ∞ and γ11 > 0. If only one host in B2(0,KL) is unassoci-
ated, it becomes associated at rate at least β . Births of hosts in B2(0,KL) occur at
rate at most κνKL. Let X be a random variable with exponential distribution with
parameter β and let Y be a random variable with exponential distribution with
parameter κνKL. Then

P(Gc
2) ≤ P(N > 2κνKL�L) + P(Gc

2;N ≤ 2κνKL�L)

≤ C11 exp(−γ11�L) + 2κνKL�LP(Y ≤ X)

≤ C11 exp(−γ11�L) + 2κνKL�L
κνKL

β + κνKL
.

The proof of Proposition 7.1 is now straightforward. Let ε > 0 and assume that
B2(0,K) is good and that B2(0,KL) has at least one symbiont of each type at
time 0. Fix R1 = L(M1 + 1) and K = R0M1, then apply Lemma 7.2 and choose L

sufficiently large so that B2(0,K) is good from time 0 to time �L and B2(0,2K)

is good at time �L with probability at least 1 − ε/3. Now, increase L and then
choose β sufficiently large so that both probabilities P(G1) and P(G2|G1) are
greater than 1 − ε/3. To see that this produces the desired result, we observe that
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if B2(0,K) is good from times 0 to �L, then Lemma 7.3 implies that, on G1 ∩G2,
the balls B2(−KLe1,KL) and B2(KLe1,KL) contain at least one symbiont of each
type. This completes the proof.

To deduce the existence of a nontrivial stationary measure µ from Proposi-
tion 7.1, we start the process ξ̂t from a product measure in which each host is
associated with a symbiont and has density 1/κ . Then, we take the Cesaro average
of the distributions from time 0 to time T and extract a convergent subsequence.
By Proposition 1.8 of [15], the limit µ is known to be an invariant measure. To see
that µ has the desired property, we observe that if L is large, then the law of large
numbers implies that (z,0), z even, is occupied with probability close to 1. More-
over, if ε > 0 is small, well-known percolation results imply that, at any level n,
the density of occupied sites is positive, which implies that µ(ξ̂2(x) = i) �= 0 for
any i ∈ {1,2, . . . , κ}. At this point, we have proved that there is a critical value
βTh4

cr ∈ (0,∞) such that if β > βTh4
cr , then coexistence occurs.

To see that βTh4
cr can be chosen so that if β < βTh4

cr then coexistence does not
occur, we rely on a standard coupling argument. If we think of the process as
being generated by the Poisson processes introduced above, it is easy to see that if
β1 < β2, then the processes with parameters β1 and β2 can be defined on the same
space, starting from the same initial configuration, in such a way that the process
with parameter β1 has fewer symbionts of type i for any i ∈ {1,2, . . . , κ}. This
completes the proof of Theorem 4.
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