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GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS

BY PIERRE DEL MORAL AND JOSSELIN GARNIER

Université de Nice and Université Paris 7

In this paper an original interacting particle system approach is devel-
oped for studying Markov chains in rare event regimes. The proposed parti-
cle system is theoretically studied through a genealogical tree interpretation
of Feynman–Kac path measures. The algorithmic implementation of the par-
ticle system is presented. An estimator for the probability of occurrence of
a rare event is proposed and its variance is computed, which allows to com-
pare and to optimize different versions of the algorithm. Applications and
numerical implementations are discussed. First, we apply the particle sys-
tem technique to a toy model (a Gaussian random walk), which permits to
illustrate the theoretical predictions. Second, we address a physically rele-
vant problem consisting in the estimation of the outage probability due to
polarization-mode dispersion in optical fibers.

1. Introduction. The simulation of rare events has become an extensively
studied subject in queueing and reliability models [16], in particular in telecom-
munication systems. The rare events of interest are long waiting times or buffer
overflows in queueing systems, and system failure events in reliability models.
The issue is usually the estimation of the probability of occurrence of the rare
event, and we shall focus mainly on that point. But our method will be shown to
be also efficient for the analysis of the cascade of events leading to the rare event,
in order to exhibit the typical physical path that the system uses to achieve the rare
event.

Standard Monte Carlo (MC) simulations are usually prohibited in these situa-
tions because very few (or even zero) simulations will achieve the rare event. The
general approach to speeding up such simulations is to accelerate the occurrence of
the rare events by using importance sampling (IS) [16, 24]. More refined sampling
importance resampling (SIR) and closely related sequential Monte Carlo methods
(SMC) can also be found in [4, 10]. In all of these well-known methods the sys-
tem is simulated using a new set of input probability distributions, and unbiased
estimates are recovered by multiplying the simulation output by a likelihood ratio.
In SIR and SMC these ratio weights are also interpreted as birth rates. The tricky
part of these Monte Carlo strategies is to properly choose the twisted distribution.
The user is expected to guess a more or less correct twisted distribution; otherwise
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these algorithms may completely fail. Our aim is to propose a more elaborate and
adaptative scheme that does not require any operation of the user.

Recently intensive calculations with huge numerical codes have been carried
out to estimate the probabilities of rare events. We shall present a typical case
where the probability of failure of an optical transmission system is estimated.
The outputs of these complicated systems result from the interplay of many dif-
ferent random inputs and the users have no idea of the twisted distributions that
should be used to favor the rare event. This is in fact one of the main practical
issues to identify the typical conjunction of events leading to an accident. Further-
more these systems are so complicated that it is very difficult for the user, if not
impossible, to modify the codes in order to twist the input probability distributions.
We have developed a method that does not require twisting the input probability
distribution. The method consists in simulating an interacting particle system (IPS)
with selection and mutation steps. The mutation steps only use the unbiased input
probability distributions of the original system.

The interacting particle methodology presented in this paper is also closely re-
lated to a class of Monte Carlo acceptance/rejection simulation techniques used in
physics and biology. These methods were first designed in the 1950s to estimate
particle energy transmission [15], self-avoiding random walks and macromolecule
evolutions [23]. The application model areas of these particle methods now have a
range going from advanced signal processing, including speech recognition, track-
ing and filtering, to financial mathematics and telecommunication [10].

The idea is the following one. Consider an E-valued Markov chain (Xp)0≤p≤n

with nonhomogeneous transition kernels Kp . The problem consists in estimating
the probability of occurrence PA of a rare event of the form {V (Xn) ∈ A} where V

is some function from E to R. The IPS consists of a set of N particles (X
(i)
p )1≤i≤N

evolving from time p = 0 to p = n. The initial generation at p = 0 is a set of
independent copies of X0. The updating from the generation p to the generation
p + 1 is divided into two stages:

(1) The selection stage consists in choosing randomly and independently N parti-
cles amongst (X

(i)
p )1≤i≤N according to a weighted Boltzmann–Gibbs particle

measure, with a weight function that depends on V . Thus, particles with low
scores are killed, while particles with high scores are multiplied. Note that the
total number of particles is kept constant.

(2) The mutation step consists in mutating independently the particles according
to the kernel Kp . Note that the true transition kernel is applied, in contrast
with IS.

The description is rough in that the IPS actually acts on the path level. The
mathematical tricky part consists in proposing an estimator of the probability PA

and analyzing its variance. The variance analysis will provide useful information
for a proper choice of the weight function of the selection stage.



2498 P. DEL MORAL AND J. GARNIER

The analysis of the IPS is carried out in the asymptotic framework N � 1 where
N is the number of particles, while the number n of mutation–selection steps is
kept constant. Note that the underlying process can be a Markov chain (X̃p)0≤p≤ñ

with a very large number of evolutionary steps ñ. As the variance analysis shows,
it can then be more efficient to perform selection steps on a subgrid of the natural
time scale of the process X̃. In other words, it is convenient to introduce the chain
(Xp)0≤p≤n = (X̃kp)0≤p≤n where k = ñ/n and n is in the range 10–100. The un-
derlying process can be a time-continuous Markov process (X̃t )t∈[0,T ] as well. In
such a situation it is convenient to consider the chain (Xp)0≤p≤n = (X̃pT/n)0≤p≤n.

Beside the modeling of a new particle methodology, our main contribution is
to provide a detailed asymptotic study of particle approximation models. Follow-
ing the analysis of local sampling errors introduced in Chapter 9 in the research
monograph [4], we first obtain an asymptotic expansion of the bias introduced by
the interaction mechanism. We also design an original fluctuation analysis of poly-
nomial functions of particle random fields, to derive new central limit theorems for
weighted genealogical tree-based occupation measures. The magnitude of the as-
ymptotic variances and comparisons with traditional Monte Carlo strategies are
discussed in the context of Gaussian models.

Briefly, the paper is organized as follows. Section 2 contains all the theoretical
results formulated in an abstract framework. We give a summary of the method
and present a user-friendly implementation in Section 3. We consider a toy model
(a Gaussian random walk) in Section 4 to illustrate the theoretical predictions on
an example where all relevant quantities can be explicitly computed. Finally, in
Section 5, we apply the method to a physical situation emerging in telecommuni-
cation.

2. Simulations of rare events by interacting particle systems.

2.1. Introduction. In this section we design an original IPS approach for ana-
lyzing Markov chains evolving in a rare event regime.

In Section 2.2 we use a natural large deviation perspective to exhibit natural
changes of reference measures under which the underlying process is more likely
to enter in a given rare level set. This technique is more or less well known. It
often offers a powerful and elegant strategy for analyzing rare deviation probabili-
ties. Loosely speaking, the twisted distributions associated to the deviated process
represent the evolution of the original process in the rare event regime. In MC
Markov chain literature, this changes-of-measure strategy is also called the impor-
tance sampling (IS) technique.

In Section 2.3 we present a Feynman–Kac formulation of twisted reference path
distributions. We examine a pair of Gaussian models for which these changes of
measures have a nice explicit formulation. In this context, we initiate a comparison
of the fluctuation-error variances of the “pure” MC and the IS techniques. In gen-
eral, the twisted distribution suggested by the physical model is rather complex,



GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS 2499

and its numerical analysis often requires extensive calculations. The practitioners
often need to resort to another “suboptimal” reference strategy, based on a more
refined analysis of the physical problem at hand. The main object of this section
is to complement this IS methodology, by presenting a genetic type particle inter-
pretation of a general and abstract class of twisted path models. Instead of hand
crafting or simplified simulation models, this new particle methodology provides
a powerful and very flexible way to produce samples according to any complex
twisted measures dictated by the physical properties of the model at hand. But,
from the strict practical point of view, if there exists already a good specialized IS
method for a specific rare event problem, then our IPS methodology may not be
the best tool for that application.

In Section 2.4 we introduce the reader to a new developing genealogical tree
interpretation of Feynman–Kac path measures. For a more thorough study on this
theme we refer to the monograph [4] and references therein. We connect this IPS
methodology with rare event analysis. Intuitively speaking, the ancestral lines as-
sociated to these genetic evolution models represent the physical ways that the
process uses to reach the desired rare level set.

In the final Section 2.5 we analyze the fluctuations of rare event particle sim-
ulation models. We discuss the performance of these interpretations on a class
of warm-up Gaussian models. We compare the asymptotic error-variances of ge-
nealogical particle models and the more traditional noninteracting IS schemes. For
Gaussian models, we show that the exponential fluctuation orders between these
two particle simulation strategies are equivalent.

2.2. A large deviation perspective. Let Xn be a Markov chain taking values
at each time n in some measurable state space (En,En) that may depend on the
time parameter n. Suppose that we want to estimate the probability Pn(a) that Xn

enters, at a given fixed date n, into the a-level set V −1
n ([a,∞)) of a given energy-

like function Vn on En, for some a ∈ R:

Pn(a) = P
(
Vn(Xn) ≥ a

)
.(2.1)

To avoid some unnecessary technical difficulties, we further assume that
Pn(a) > 0, and the pair (Xn,Vn) satisfies Cramér’s condition E(eλVn(Xn)) < ∞
for all λ ∈ R. This condition ensures the exponential decay of the probabilities
P(Vn(Xn) ≥ a) ↓ 0, as a ↑ ∞. To see this claim, we simply use the exponential
version of Chebyshev’s inequality to check that, for any λ > 0 we have

P
(
Vn(Xn) ≥ a

) ≤ e−λ(a−λ−1�n(λ)) with �n(λ)
def.= log E

(
eλVn(Xn)).

As an aside, it is also routine to prove that the maximum of (λa − �n(λ)) with
respect to the parameter λ > 0 is attained at the value λn(a) determined by the
equation a = E(Vn(Xn)e

λVn(Xn)))/E(eλVn(Xn))). The resulting inequality

P
(
Vn(Xn) ≥ a

) ≤ e−��
n(a) with ��

n(a) = sup
λ>0

(
λa − �n(λ)

)
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is known as large deviation inequality. When the Laplace transforms �n are ex-
plicitly known, this variational analysis often provides sharp tail estimates. We
illustrate this observation on an elementary Gaussian model. This warm-up exam-
ple will be used in several places in the further development of this article. In the
subsequent analysis, it is briefly used primarily to carry out some variance calcula-
tions for natural IS strategies. As we already mentioned in the Introduction, and in
this Gaussian context, we shall derive in Section 2.7 sharp estimates of mean error
variances associated to a pair of IPS approximation models.

Suppose that Xn is given by the recursive equation

Xp = Xp−1 + Wp(2.2)

where X0 = 0 and (Wp)p∈N∗ represents a sequence of independent and identically
distributed (i.i.d.) Gaussian random variables, with (E(W1),E(W 2

1 )) = (0,1). If
we take Vn(x) = x, then we find that �n(λ) = λ2n/2, λn(a) = a/n and ��

n(a) =
a2/(2n), from which we recover the well-known sharp exponential tails P(Xn ≥
a) ≤ e−a2/(2n).

In more general situations, the analytical expression of ��
n(a) is out of reach,

and we need to resort to judicious numerical strategies. The first rather crude MC
method is to consider the estimate

P N
n (a) = 1

N

N∑
i=1

1Vn(Xi
n)≥a

based on N independent copies (Xi
n)1≤i≤N of Xn. If is not difficult to check that

the resulting error-variance is given by

σ 2
n (a) = NE

[(
P N

n (a) − Pn(a)
)2] = Pn(a)

(
1 − Pn(a)

)
.

In practice, P N
n (a) is a very poor estimate mainly because the whole sample set is

very unlikely to reach the rare level.
A more judicious choice of MC exploration model is dictated by the large

deviation analysis presented above. To be more precise, let us suppose that
a > λ−1�n(λ), with λ > 0. To simplify the presentation, we also assume that the
initial value X0 = x0 is fixed, and we set V0(x0) = 0. Let Pλ

n be the new reference

measure on the path space Fn
def.= (E0 × · · · × En) defined by the formula

dP(λ)
n = 1

E(eλVn(Xn))
eλVn(Xn) dPn,(2.3)

where Pn is the distribution of the original and canonical path (Xp)0≤p≤n. By
construction, we have that

P
(
Vn(Xn) ≥ a

) = E(λ)
n

[
1Vn(Xn)≥a dPn/dP(λ)

n

]
= E(λ)

n

[
1Vn(Xn)≥a e−λVn(Xn)]E[

eλVn(Xn)]
≤ e−λ(a−λ−1�n(λ))P(λ)

n

(
Vn(Xn) ≥ a

)
,
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where E
(λ)
n represents the expectation operator with respect to the distribution P

(λ)
n .

By definition, the measure P
(λ)
n tends to favor random evolutions with high poten-

tial values Vn(Xn). As a consequence, the random paths under P
(λ)
n are much more

likely to enter into the rare level set. For instance, in the Gaussian example de-
scribed earlier, we have that

dP(λ)
n /dPn =

n∏
p=1

eλ(Xp−Xp−1)−λ2/2.(2.4)

In other words, under P
(λ)
n the chain takes the form Xp = Xp−1 + λ+Wp , and we

have P
(λ)
n (Xn ≥ a) = Pn(Xn ≥ a − λn) (= 1/2 as soon as a = λn).

These observations suggest to replace P N(a) by the weighted MC model

P N,λ
n (a) = 1

N

N∑
i=1

dPn

dP
(λ)
n

(X
λ,i
0 , . . . ,Xλ,i

n )1
Vn(X

λ,i
n )≥a

associated to N independent copies (Xλ,i
n )1≤i≤N of the chain under P

(λ)
n . Observe

that the corresponding error-variance is given by

σ (λ)
n (a)2 = NE

[(
P N,λ

n (a) − Pn(a)
)2]

= E
[
1Vn(Xn)≥a e−λVn(Xn)]E[

eλVn(Xn)] − P 2
n (a)(2.5)

≤ e−λ(a−λ−1�n(λ))Pn(a) − P 2
n (a).

For judicious choices of λ, one expects the exponential large deviation term
to be proportional to the desired tail probabilities Pn(a). In this case, we have
σ

(λ)
n (a)2 ≤ KP 2

n (a) for some constant K . Returning to the Gaussian situation, and
using Mill’s inequalities

1

t + 1/t
≤ P

(
N (0,1) ≥ t

)√
2πet2/2 ≤ 1

t

which are valid for any t > 0, and any reduced Gaussian random variable N (0,1)

(see, e.g., (6) on page 237 in [25]), we find that

σ (λ)
n (a)2 ≤ e−a2/(2n)Pn(a) − P 2

n (a) ≤ P 2
n (a)

[√
2π

(
a/

√
n + √

n/a
) − 1

]
for the value λ = λn(a) = a/n which optimizes the large deviation inequality (2.6).
For typical Gaussian type level indexes a = a0

√
n, with large values of a0, we find

that λn(a) = a0/
√

n and

σ (λ)
n (a)2 ≤ P 2

n (a)
[√

2π(a0 + 1/a0) − 1
]
.

As an aside, although we shall be using most of the time upper bound estimates,
Mill’s inequalities ensure that most of the Gaussian exponential deviations are
sharp.
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The formulation (2.5) also suggests a dual interpretation of the variance. First,
we note that

dPn/dP(λ)
n = E

[
eλVn(Xn)]E[

e−λVn(Xn)]dP(−λ)
n /dPn

and therefore

σ (λ)
n (a)2 = P(−λ)

n

(
Vn(Xn) ≥ a

)
E

[
eλVn(Xn)]E[

e−λVn(Xn)] − P 2
n (a).

In contrast to P
(λ)
n , the measure P

(−λ)
n now tends to favor low energy states Xn.

As a consequence, we expect P
(−λ)
n (Vn(Xn) ≥ a) to be much smaller than Pn(a).

For instance, in the Gaussian case we have

P(−λ)
n (Xn ≥ a) = Pn(Xn ≥ a + λn) ≤ e−(a+λn)2/(2n).

Since we have E[eλXn] = E[e−λXn] = eλ2n/2, we can write

σ (λ)
n (a)2 ≤ e−a2/ne(a−λn)2/(2n) − P 2

n (a)(2.6)

which confirms that the optimal choice (giving rise to the minimal variance) for
the parameter λ is λ = a/n.

2.3. Twisted Feynman–Kac path measures. The choice of the “twisted” mea-
sures P

(λ)
n introduced in (2.3) is only of pure mathematical interest. Indeed, the

IS estimates described below will still require both the sampling of random paths
according to P

(λ)
n and the computation of the normalizing constants. As we men-

tioned in the Introduction, the key difficulty in applying IS strategies is to choose
the so-called “twisted” reference measures. In the further development of Sec-
tion 2.4, we shall present a natural genealogical tree-based simulation technique
of twisted Feynman–Kac path distribution of the following form:

dQn = 1

Zn

{
n∏

p=1

Gp(X0, . . . ,Xp)

}
dPn.(2.7)

In the above display, Zn > 0 stands for a normalizing constant, and (Gp)1≤p≤n

represents a given sequence of potential functions on the path spaces (Fp)1≤p≤n.
Note that the twisted measures defined in (2.3) correspond to the (nonunique)
choice of functions

Gp(X0, . . . ,Xp) = eλ(Vp(Xp)−Vp−1(Xp−1)).(2.8)

As an aside, we mention that the optimal choice of twisted measure with respect to
the IS criterion is the one associated to the potential functions Gn = 1

V −1
n ([a,∞))

,
and Gp = 1, for p < n. In this case, we have Zn = P(Vn(Xn) ≥ a) and Qn is
the distribution of the random paths ending in the desired rare level. This optimal
choice is clearly infeasible, but we note that the resulting variance is null.
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The rare event probability admits the following elementary Feynman–Kac for-
mulation.

P
(
Vn(Xn) ≥ a

) = E

[
g(a)

n (X0, . . . ,Xn)

n∏
p=1

Gp(X0, . . . ,Xp)

]
= ZnQn

(
g(a)

n

)

with the weighted function defined by

g(a)
n (x0, . . . , xn) = 1Vn(xn)≥a

n∏
p=1

G−1
p (x0, . . . , xp)

for any path sequence such that
∏n

p=1 Gp(x0, . . . , xp) > 0. Otherwise, g
(a)
n is as-

sumed to be null.
The discussion given above already shows the improvements one might expect

in changing the reference exploration measure. The central idea behind this IS
methodology is to choose a twisted probability that mimics the physical behavior
of the process in the rare event regime. The potential functions Gp represent the
changes of probability mass, and in some sense the physical variations in the evo-
lution of the process to the rare level set. For instance, for time-homogeneous
models Vp = V , 0 ≤ p ≤ n, the potential functions defined in (2.8) will tend to
favor local transitions that increase a given V -energy function. The large deviation
analysis developed in Section 2.2 combined with the Feynman–Kac formula-
tion (2.3) gives some indications on the way to choose the twisted potential func-
tions (Gp)1≤p≤n. Intuitively, the attractive forces induced by a particular choice
of potentials are compensated by increasing normalizing constants. More formally,
the error-variance of the Qn-importance sampling scheme is given by the formula

σQ
n (a)2 = Q−

n

(
Vn(Xn) ≥ a

)
ZnZ

−
n − Pn(a)2,(2.9)

where Q−
n is the path Feynman–Kac measure given by

dQ−
n = 1

Z−
n

{
n∏

p=1

G−1
p (X0, . . . ,Xp)

}
dPn.

Arguing as before, and since Q−
n tends to favor random paths with low Gp energy,

we expect Q−
n (Vn(Xn) ≥ a) to be much smaller than the rare event probability

P(Vn(Xn) ≥ a). On the other hand, by Jensen’s inequality we expect the product of
normalizing constants ZnZ

−
n (≥ 1) to be very large. These expectations fail in the

“optimal” situation examined above (Gn = 1
V −1

n ([a,∞))
, and Gp = 1, for p < n).

In this case, we simply note that Qn = Q−
n = Law(X0, . . . ,Xn|Vn(Xn) ≥ a), and

Q−
n (Vn(Xn) ≥ a) = 1, and Zn = Z−

n = Pn(a). To avoid some unnecessary techni-
cal discussions, we always implicitly assume that the rare event probabilities Pn(a)

are strictly positive, so that the normalizing constants Zn = Z−
n = Pn(a) > 0 are

always well defined.
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We end this section with a brief discussion on the competition between making
a rare event more attractive and controlling the normalizing constants. We return
to the Gaussian example examined in (2.2), and instead of (2.4), we consider the
twisted measure

dQn = dP(λ)
n = 1

Z(λ)
n

{
n∏

p=1

eλXp

}
dPn.(2.10)

In this case, it is not difficult to check that for any λ ∈ R we have Z(λ)
n =

e
(λ2/2)

∑n
p=1 p2

. In addition, under P
(λ)
n the chain Xn has the form

Xp = Xp−1 + λ(n − p + 1) + Wp, 1 ≤ p ≤ n.(2.11)

When λ > 0, the rare level set is now very attractive, but the normalizing constants
can become very large Z(λ)

n = Z(−λ)
n (≥ eλ2n3/12). Also notice that in this situation

the first term in the right-hand side of (2.9) is given by

P(−λ)
n

(
Vn(Xn) ≥ a

)
Z(λ)

n Z(−λ)
n

≤ e
(−1/(2n))(a+λ

∑n
p=1 p)2+λ2 ∑n

p=1 p2

≤ e−a2/ne
(1/(2n))(a−λ

∑n
p=1 p)2+λ2[∑n

p=1 p2−(
∑n

p=1 p)2/n]
.

Although we are using inequalities, we recall that these exponential estimates are
sharp. Now, if we take λ = 2a/[n(n + 1)], then we find that

P(−λ)
n

(
Vn(Xn) ≥ a

)
Z(λ)

n Z(−λ)
n ≤ e−(a2/n)(2/3)(1+1/(n+1)).(2.12)

This shows that even if we adjust correctly the parameter λ, this IS estimate is
less efficient than the one associated to the twisted distribution (2.4). The reader
has probably noticed that the change of measure defined in (2.10) is more adapted
to estimate the probability of the rare level sets {Vn(Yn) ≥ a}, with the historical
chain Yn = (X0, . . . ,Xn) and the energy function Vn(Yn) = ∑n

p=1 Xp .

2.4. A genealogical tree-based interpretation model. The probabilistic inter-
pretation of the twisted Feynman–Kac measures (2.7) presented in this section
can be interpreted as a mean field path-particle approximation of the distribution
flow (Qn)n≥1. We also mention that the genetic type selection/mutation evolu-
tion of the former algorithm can also be seen as an acceptance/rejection particle
simulation technique. In this connection, and as we already mentioned in the Intro-
duction, we again emphasize that this IPS methodology is not useful if we already
know a specialized and exact simulation technique of the desired twisted measure.
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2.4.1. Rare event Feynman–Kac type distributions. To simplify the presenta-
tion, it is convenient to formulate these models in terms of the historical process

Yn
def.= (X0, . . . ,Xn) ∈ Fn

def.= (E0 × · · · × En).

We let Mn(yn−1, dyn) be the Markov transitions associated to the chain Yn. To
simplify the presentation, we assume that the initial value Y0 = X0 = x0 is fixed,
and we also denote by Kn(xn−1, dxn) the Markov transitions of Xn. We finally
let Bb(E) be the space of all bounded measurable functions on some measurable
space (E,E), and we equip Bb(E) with the uniform norm.

We associate to the pair potentials/transitions (Gn,Mn) the Feynman–Kac mea-
sure defined for any test function fn ∈ Bb(Fn) by the formula

γn(fn) = E

[
fn(Yn)

∏
1≤k<n

Gk(Yk)

]
.

We also introduce the corresponding normalized measure

ηn(fn) = γn(fn)/γn(1).

To simplify the presentation and avoid unnecessary technical discussions, we
suppose that the potential functions are chosen such that

sup
(yn,y′

n)∈F 2
n

Gn(yn)/Gn(y
′
n) < ∞.

This regularity condition ensures that the normalizing constants γn(1) and the
measure γn are bounded and positive. This technical assumption clearly fails for
unbounded or for indicator type potential functions. The Feynman–Kac and the
particle approximation models developed in this section can be extended to more
general situations using traditional cut-off techniques, by considering Kato-class
type of potential functions (see, e.g., [19, 22, 26]), or by using different Feynman–
Kac representations of the twisted measures (see, e.g., Section 2.5 in [4]).

In this section we provide a Feynman–Kac formulation of rare event probabili-
ties. The fluctuation analysis of their genealogical tree interpretations will also be
described in terms of the distribution flow (γ −

n , η−
n ), defined as (γn, ηn) by replac-

ing the potential functions Gp by their inverse

G−
p = 1/Gp.

The twisted measures Qn presented in (2.7) and the desired rare event probabil-
ities have the following Feynman–Kac representation:

Qn(fn) = ηn(fnGn)/ηn(Gn) and P
(
Vn(Xn) ≥ a

) = γn

(
T (a)

n (1)
)
.

In the above displayed formulae, T (a)
n (1) is the weighted indicator function defined

for any path yn = (x0, . . . , xn) ∈ Fn by

T (a)
n (1)(yn) = T (a)

n (1)(x0, . . . , xn) = 1Vn(xn)≥a

∏
1≤p<n

G−
p (x0, . . . , xp).
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More generally, we have for any ϕn ∈ Bb(Fn)

E[ϕn(X0, . . . ,Xn);Vn(Xn) ≥ a] = γn

(
T (a)

n (ϕn)
)

with the function T
(a)
n (ϕn) given by

T (a)
n (ϕn)(x0, . . . , xn) = ϕn(x0, . . . , xn)1Vn(xn)≥a

∏
1≤p<n

G−
p (x0, . . . , xp).(2.13)

To connect the rare event probabilities with the normalized twisted measures we
use the fact that

γn+1(1) = γn(Gn) = ηn(Gn)γn(1) =
n∏

p=1

ηp(Gp).

This readily implies that for any fn ∈ Bb(Fn)

γn(fn) = ηn(fn)
∏

1≤p<n

ηp(Gp).(2.14)

This yields the formulae

P
(
Vn(Xn) ≥ a

) = ηn

(
T (a)

n (1)
) ∏

1≤p<n

ηp(Gp),

E
(
ϕn(X0, . . . ,Xn);Vn(Xn) ≥ a

) = ηn

(
T (a)

n (ϕn)
) ∏

1≤p<n

ηp(Gp),(2.15)

E
(
ϕn(X0, . . . ,Xn)|Vn(Xn) ≥ a

) = ηn

(
T (a)

n (ϕn)
)
/ηn

(
T (a)

n (1)
)
.

To take the final step, we use the Markov property to check that the twisted
measures (ηn)n≥1 satisfy the nonlinear recursive equation

ηn = 	n(ηn−1)
def.=

∫
Fn−1

ηn−1(dyn−1)Gn−1(yn−1)Mn(yn−1, ·)/ηn−1(Gn−1)

starting from η1 = M1(x0, ·).

2.4.2. Interacting path-particle interpretation. The mean field particle model
associated with a collection of transformations 	n is a Markov chain ξn =
(ξ i

n)1≤i≤N taking values at each time n ≥ 1 in the product spaces FN
n . Loosely

speaking, the algorithm will be conducted so that each path-particle

ξ i
n = (ξ i

0,n, ξ
i
1,n, . . . , ξ

i
n,n) ∈ Fn = (E0 × · · · × En)

is almost sampled according to the twisted measure ηn.
The initial configuration ξ1 = (ξ i

1)1≤i≤N consists of N independent and identi-
cally distributed random variables with common distribution

η1(d(y0, y1)) = M1
(
x0, d(y0, y1)

) = δx0(dy0) K1(y0, dy1).
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In other words, ξ i
1

def.= (ξ i
0,1, ξ

i
1,1) = (x0, ξ

i
1,1) ∈ F1 = (E0 × E1) can be inter-

preted as N independent copies x0 � ξ i
1,1 of the initial elementary transition

X0 = x0 � X1. The elementary transitions ξn−1 � ξn from FN
n−1 into FN

n are de-
fined by

P
(
ξn ∈ d(y1

n, . . . , yN
n )|ξn−1

) =
N∏

j=1

	n(m(ξn−1))(dyj
n),(2.16)

where m(ξn−1)
def.= 1

N

∑N
i=1 δξi

n−1
, and d(y1

n, . . . , yN
n ) is an infinitesimal neighbor-

hood of the point (y1
n, . . . , yN

n ) ∈ FN
n . By the definition of 	n we find that (2.16)

is the overlapping of simple selection/mutation genetic transitions

ξn−1 ∈ FN
n−1

selection−→ ξ̂n−1 ∈ FN
n−1

mutation−→ ξn ∈ FN
n .

The selection stage consists of choosing randomly and independently N path-
particles

ξ̂ i
n−1 = (ξ̂ i

0,n−1, ξ̂
i
1,n−1, . . . , ξ̂

i
n−1,n−1) ∈ Fn−1

according to the Boltzmann–Gibbs particle measure

N∑
j=1

Gn−1(ξ
j
0,n−1, . . . , ξ

j
n−1,n−1)∑N

j ′=1 Gn−1(ξ
j ′
0,n−1, . . . , ξ

j ′
n−1,n−1)

δ
(ξ

j
0,n−1,...,ξ

j
n−1,n−1)

.

During the mutation stage, each selected path-particle ξ̂ i
n−1 is extended by an ele-

mentary Kn-transition. In other words, we set

ξ i
n = (

(ξ i
0,n, . . . , ξ

i
n−1,n), ξ

i
n,n

)
= (

(ξ̂ i
0,n−1, . . . , ξ̂

i
n−1,n−1), ξ

i
n,n

) ∈ Fn = Fn−1 × En,

where ξ i
n,n is a random variable with distribution Kn(ξ̂

i
n−1,n−1, ·). The mutations

are performed independently.

2.4.3. Particle approximation measures. It is of course out of the scope of this
article to present a full asymptotic analysis of these genealogical particle models.
We rather refer the interested reader to the recent monograph [4], and the refer-
ences therein. For instance, it is well known that the occupation measures of the
ancestral lines converge to the desired twisted measures. That is, we have with
various precision estimates the weak convergence result

ηN
n

def.= 1

N

N∑
i=1

δ(ξ i
0,n,ξ i

1,n,...,ξ i
n,n)

N→∞−→ ηn.(2.17)

In addition, several propagation-of-chaos estimates ensure that the ancestral lines
(ξ i

0,n, ξ
i
1,n, . . . , ξ

i
n,n) are asymptotically independent and identically distributed
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with common distribution ηn. The asymptotic analysis of regular models with un-
bounded potential functions can be treated using traditional cut-off techniques.

Mimicking (2.14), the unbias particle approximation measures γ N
n of the un-

normalized model γn are defined as

γ N
n (fn) = ηN

n (fn)
∏

1≤p<n

ηN
p (Gp).

By (2.15), we eventually get the particle approximation of the rare event probabil-
ities Pn(a). More precisely, if we let

P N
n (a) = γ N

n

(
T (a)

n (1)
) = ηN

n

(
T (a)

n (1)
) ∏

1≤p<n

ηN
p (Gp),(2.18)

then we find that P N
n (a) is an unbiased estimator of Pn(a) such that

P N
n (a)

N→∞−→ Pn(a) a.s.(2.19)

In addition, by (2.15), the conditional distribution of the process in the rare event
regime can be estimated using the weighted particle measure

P N
n (a,ϕn)

def.= ηN
n

(
T (a)

n (ϕn)
)
/ηN

n

(
T (a)

n (1)
)

(2.20)
N→∞−→ Pn(a,ϕn)

def.= E[ϕn(X0, . . . ,Xn)|Vn(Xn) ≥ a].
When no particles have succeeded in reaching the desired level V −1

n ([a,∞))

at time n, we have ηN
n (T

(a)
n (1)) = 0, and therefore ηN

n (T
(a)
n (ϕn)) = 0 for any

ϕn ∈ Bb(Fn). In this case, we take the convention P N
n (a,ϕn) = 0. Also notice that

ηN
n (T

(a)
n (1)) > 0 if and only if we have P N

n (a) > 0. When Pn(a) > 0, we have the
exponential decay of the probabilities P(P N

n (a) = 0) → 0 as N tends to infinity.
The above asymptotic, and reassuring, estimates are almost sure convergence

results. Their complete proofs, together with the analysis of extinction probabil-
ities, rely on a precise propagation-of-chaos type analysis. They can be found in
Section 7.4, pages 239–241, and Theorem 7.4.1, page 232 in [4]. In Section 2.5
we provide a natural and simple proof of the consistency of the particle measures
(γ N

n , ηN
n ) using an original fluctuation analysis.

In our context, these almost sure convergence results show that the genealog-
ical tree-based approximation schemes of rare event probabilities are consistent.
Unfortunately, the rather crude estimates say little, as much as more naive numer-
ical methods do converge as well. Therefore, we need to work harder to analyze
the precise asymptotic bias and the fluctuations of the occupation measures of the
complete and weighted genealogical tree. These questions, as well as comparisons
of the asymptotic variances, are addressed in the next three sections.

We can already mention that the consistency results discussed above will be
pivotal in the more refined analysis of particle random fields. They will be used in
the further development of Section 2.5, in conjunction with a semigroup technique,
to derive central limit theorems for particle random fields.



GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS 2509

2.5. Fluctuations analysis. The fluctuations of genetic type particle models
have been initiated in [5]. Under appropriate regularity conditions on the mutation
transitions, this study provides a central limit theorem for the path-particle model
(ξ i

0, . . . , ξ
i
n)1≤i≤N . Several extensions, including Donsker’s type theorems, Berry–

Esseen inequalities and applications to nonlinear filtering problems can be found
in [6–9]. In this section we design a simplified analysis essentially based on the
fluctuations of random fields associated to the local sampling errors. In this sub-
section we provide a brief discussion on the fluctuations analysis of the weighted
particle measures introduced in Section 2.4. We underline several interpretations of
the central limit variances in terms of twisted Feynman–Kac measures. In the final
part of this section we illustrate these general and theoretical fluctuations analyses
in the warm-up Gaussian situation discussed in (2.2), (2.4) and (2.10). In this con-
text, we derive an explicit description of the error-variances, and we compare the
performance of the IPS methodology with the noninteracting IS technique.

The fluctuations of the mean field particle models described in Section 2.4 are
essentially based on the asymptotic analysis of the local sampling errors associated
with the particle approximation sampling steps. These local errors are defined in
terms of the random fields WN

n , given for any fn ∈ Bb(Fn) by the formula

WN
n (fn) = √

N [ηN
n − 	n(η

N
n−1)](fn).

The next central limit theorem is pivotal ([4], Theorem 9.3.1, page 295). For any
fixed time horizon n ≥ 1, the sequence (WN

p )1≤p≤n converges in law, as N tends
to infinity, to a sequence of n independent, Gaussian and centered random fields
(Wp)1≤p≤n; with, for any fp,gp ∈ Bb(Fp), and 1 ≤ p ≤ n,

E[Wp(fp)Wp(gp)] = ηp

([fp − ηp(fp)][gp − ηp(gp)]).
Let Qp,n, 1 ≤ p ≤ n, be the Feynman–Kac semigroup associated to the distribu-
tion flow (γp)1≤p≤n. For p = n it is defined by Qn,n = Id , and for p < n it has
the following functional representation:

Qp,n(fn)(yp) = E

[
fn(Yn)

∏
p≤k<n

Gk(Yk)|Yp = yp

]

for any test function fn ∈ Bb(Fn), and any path sequence yp = (x0, . . . , xp) ∈ Fp .
The semigroup Qp,n satisfies

∀1 ≤ p ≤ n γn = γpQp,n.(2.21)

To check this assertion, we note that

γn(fn) = E

[
fn(Yn)

∏
1≤k<n

Gk(Yk)

]

= E

[[ ∏
1≤k<p

Gk(Yk)

]
× E

(
fn(Yn)

∏
p≤k<n

Gk(Yk)|(Y0, . . . , Yp)

)]
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for any fn ∈ Bb(En). Using the Markov property we conclude that

γn(fn) = E

[[ ∏
1≤k<p

Gk(Yk)

]
× E

(
fn(Yn)

∏
p≤k<n

Gk(Yk)|Yp

)]

= E

[[ ∏
1≤k<p

Gk(Yk)

]
Qp,n(fn)(Yp)

]
= γpQp,n(fn)

which establishes (2.21). To explain what we have in mind when making these
definitions, we now consider the elementary telescopic decomposition

γ N
n − γn =

n∑
p=1

[γ N
p Qp,n − γ N

p−1Qp−1,n].

For p = 1, we recall that ηN
0 = δx0 and γ1 = η1 = M1(x0, ·), from which we find

that ηN
0 Q0,n = γ1Q1,n = γn. Using the fact that

γ N
p−1Qp−1,p = γ N

p−1(Gp−1) × 	p−1(η
N
p−1) and γ N

p−1(Gp−1) = γ N
p (1)

the above decomposition implies that

Wγ,N
n (fn)

def.= √
N[γ N

n − γn](fn) =
n∑

p=1

γ N
p (1)WN

p (Qp,nfn).(2.22)

LEMMA 2.1. γ N
n is an unbiased estimate of γn, in the sense that for any p ≥ 1

and fn ∈ Bb(Fn), with ‖fn‖ ≤ 1, we have

E(γ N
n (fn)) = γn(fn) and sup

N≥1

√
NE[|γ N

n (fn) − γn(fn)|p]1/p ≤ cp(n)

for some constant cp(n) < ∞ whose value does not depend on the function fn.

PROOF. We first notice that (γ N
n (1))n≥1 is a predictable sequence, in the sense

that

E
(
γ N
n (1)|ξ0, . . . , ξn−1

) = E

(
n−1∏
p=1

ηN
p (Gp)|ξ0, . . . , ξn−1

)
=

n−1∏
p=1

ηN
p (Gp) = γ N

n (1).

On the other hand, by definition of the particle scheme, for any 1 ≤ p ≤ n, we also
have that

E
(
WN

p (Qp,nfn)|ξ0, . . . , ξp−1
)

= √
NE

([ηN
p − 	p(ηN

p−1)](Qp,nfn)|ξ0, . . . , ξp−1
) = 0.

Combining these two observations, we find that

E
(
γ N
p (1)WN

p (Qp,nfn)|ξ0, . . . , ξp−1
) = 0.
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This yields that γ N
n is unbiased. In the same way, using the fact that the potential

functions are bounded, we have for any p ≥ 1 and fn ∈ Bb(Fn), with ‖fn‖ ≤ 1,

E
[|[γ N

n − γn](fn)|p]1/p ≤
n∑

k=1

a1(k)E
[∣∣(ηN

p − 	p(ηN
p−1)

)
(Qp,nfn)

∣∣p]1/p

for some constant a1(k) < ∞ which only depends on the time parameter. We recall
that ηN

n is the empirical measure associated with a collection of N conditionally
independent particles with common law 	p(ηN

p−1). The end of the proof is now a
consequence of Burkholder’s inequality. �

Lemma 2.1 shows that the random sequence (γ N
p (1))1≤p≤n converges in prob-

ability, as N tends to infinity, to the deterministic sequence (γp(1))1≤p≤n. An ap-

plication of Slutsky’s lemma now implies that the random fields W
γ,N
n converge

in law, as N tends to infinity, to the Gaussian random fields W
γ
n defined for any

fn ∈ Bb(Fn) by

Wγ
n (fn) =

n∑
p=1

γp(1)Wp(Qp,nfn).(2.23)

In much the same way, the sequence of random fields

Wη,N
n (fn)

def.= √
N[ηN

n − ηn](fn)
(2.24)

= γn(1)

γ N
n (1)

× Wγ,N
n

(
1

γn(1)

(
fn − ηn(fn)

))

converges in law, as N tends to infinity, to the Gaussian random fields W
η
n defined

for any fn ∈ Bb(Fn) by

Wη
n (fn) = Wγ

n

(
1

γn(1)

(
fn − ηn(fn)

))
(2.25)

=
n∑

p=1

Wp

(
Qp,n

ηpQp,n(1)

(
fn − ηn(fn)

))
.

The key decomposition (2.24) also appears to be useful to obtain Lp-mean er-
ror bounds. More precisely, recalling that γn(1)/γ N

n (1) is a uniformly bounded
sequence w.r.t. the population parameter N ≥ 1, and using Lemma 2.1, we prove
the following result.

LEMMA 2.2. For any p ≥ 1 and fn ∈ Bb(Fn), with ‖fn‖ ≤ 1, we have

sup
N≥1

√
NE[|ηN

n (fn) − ηn(fn)|p]1/p ≤ cp(n)

for some constant cp(n) < ∞ whose value does not depend on the function fn.
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A consequence of the above fluctuations is a central limit theorem for the esti-
mators P N

n (a) and P N
n (a,φn) introduced in (2.18) and (2.20).

THEOREM 2.3. The estimator P N
n (a) given by (2.18) is unbiased, and it sat-

isfies the central limit theorem

√
N[P N

n (a) − Pn(a)] N→∞−→ N
(
0, σ γ

n (a)2)
(2.26)

with the asymptotic variance

σγ
n (a)2 =

n∑
p=1

[
γp(1)γ −

p (1)η−
p

(
Pp,n(a)2) − Pn(a)2]

(2.27)

and the collection of functions Pp,n(a) defined by

xp ∈ Ep �→ Pp,n(a)(xp) = E
[
1Vn(Xn)≥a|Xp = xp

] ∈ [0,1].(2.28)

In addition, for any ϕn ∈ Bb(Fn), the estimator P N
n (a,ϕn) given by (2.20) satisfies

the central limit theorem
√

N[P N
n (a,ϕn) − Pn(a,ϕn)] N→∞−→ N

(
0, σn(a,ϕn)

2)
(2.29)

with the asymptotic variance

σn(a,ϕn)
2 = Pn(a)−2

n∑
p=1

γp(1)γ −
p (1)η−

p

(
Pp,n(a,ϕn)

2)
(2.30)

and the collection of functions Pp,n(a,ϕn) ∈ Bb(Fp) defined by

Pp,n(a,ϕn)(x0, . . . , xp) = E
[(

ϕn(X0, . . . ,Xn) − Pn(a,ϕn)
)
1Vn(Xn)≥a|

(2.31)
(X0, . . . ,Xp) = (x0, . . . , xp)

]
.

PROOF. We first notice that
√

N [P N
n (a) − Pn(a)] = Wγ,N

n

(
T (a)

n (1)
)

(2.32)

with the weighted function T
(a)
n (1) introduced in (2.13). If we take fn = T

(a)
n (1)

in (2.22) and (2.23), then we find that W
γ,N
n (T

(a)
n (1)) converges in law, as N tends

to infinity, to a centered Gaussian random variable W
γ
n (T

(a)
n (1)) with the variance

σγ
n (a)2 def.= E

(
Wγ

n

(
T (a)

n (1)
)2)

=
n∑

p=1

γp(1)2ηp

([
Qp,n

(
T (a)

n (1)
) − ηpQp,n

(
T (a)

n (1)
)]2)

.
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To have a more explicit description of σ
γ
n (a) we notice that

Qp,n

(
T (a)

n (1)
)
(x0, . . . , xp)

=
{ ∏

1≤k<p

Gk(x0, . . . , xk)
−1

}
P

(
Vn(Xn) ≥ a|Xp = xp

)
.

By definition of ηp , we also find that

ηp

(
Qp,n

(
T (a)

n (1)
)) = P

(
Vn(Xn) ≥ a

)
/γp(1).

From these observations, we conclude that

σγ
n (a)2 =

n∑
p=1

{
γp(1)E

[ ∏
1≤k<p

G−
k (X0, . . . ,Xk)E

(
1Vn(Xn)≥a|Xp

)2
]

(2.33)

− Pn(a)2

}
.

This variance can be rewritten in terms of the distribution flow (η−
p )1≤p≤n, since

we have

γ −
p (fp) = E

[[ ∏
1≤k<p

G−(X0, . . . ,Xk)

]
× fp(Xp)

]
= η−

p (fp) × γ −
p (1)

for any fp ∈ Bb(Ep), and any 1 ≤ p ≤ n. Substituting into (2.33) yields (2.27).
Our next objective is to analyze the fluctuations of the particle conditional dis-

tributions of the process in the rare event regime defined in (2.20):

√
N[P N

n (a,ϕn)−Pn(a,ϕn)] = ηnT
(a)
n (1)

ηN
n T

(a)
n (1)

×Wη,N
n

(
T

(a)
n

ηnT
(a)
n (1)

(
ϕn−Pn(a,ϕn)

))
.

Using the same arguments as above, one proves that the sequence of random vari-

ables ηnT
(a)
n (1)

ηN
n T

(a)
n (1)

converges in probability, as N → ∞, to 1. Therefore, letting

fn = T
(a)
n

ηnT
(a)
n (1)

(
ϕn − Pn(a,ϕn)

)
in (2.24) and (2.25), and applying again Slutsky’s lemma, we have the weak con-
vergence

√
N[P N

n (a,ϕn) − Pn(a,ϕn)]1P N
n (a)>0

(2.34)
N→∞−→ Wη

n

(
T

(a)
n

ηnT
(a)
n (1)

(
ϕn − Pn(a,ϕn)

))
.
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The limit is a centered Gaussian random variable with the variance

σn(a,ϕn)
2 def.= E

[
Wη

n

(
T

(a)
n

ηnT
(a)
n (1)

(
ϕn − Pn(a,ϕn)

))2]
.

Taking into account the definition of W
η
n and the identities ηnT

(a)
n (1) = Pn(a)/

γn(1) and ηnT
(a)
n (ϕn − Pn(a,ϕn)) = 0, we obtain

σn(a,ϕn)
2 = Pn(a)−2

n∑
p=1

γp(1)γp

([
Qp,n

(
T (a)

n

(
ϕn − Pn(a,ϕn)

))]2)
.(2.35)

To derive (2.30) from (2.35), we notice that

Qp,n

(
T (a)

n

(
ϕn − Pn(a,ϕn)

))(
x0, . . . , xp

)
= E

[( ∏
p≤k<n

G(X0, . . . ,Xk)

)
1Vn(Xn)≥a

( ∏
1≤k<n

G−(X0, . . . ,Xk)

)

× (
ϕn(X0, . . . ,Xn) − Pn(a,ϕn)

)|(X0, . . . ,Xp) = (x0, . . . , xp)

]

=
( ∏

1≤k<p

G−(x0, . . . , xk)

)

× E
[(

ϕn(X0, . . . ,Xn) − Pn(a,ϕn)
)

×1Vn(Xn)≥a|(X0, . . . ,Xp) = (x0, . . . , xp)
]

=
( ∏

1≤k<p

G−(x0, . . . , xk)

)
× Pp,n(a,ϕn)(x0, . . . , xp)

from which we find that

γp

([
Qp,n

(
T (a)

n

(
ϕn − Pn(a,ϕn)

))]2)
= E

[( ∏
1≤k<p

G−(X0, . . . ,Xk)

)
× Pp,n(a,ϕn)(X0, . . . ,Xp)2

]

= γ −
p

(
Pp,n(a,ϕn)

2) = γ −
p (1) × η−

p

(
Pp,n(a,ϕn)

2)
. �

Arguing as in the end of Section 2.2, we note that the measures η−
p tend to

favor random paths with low (Gk)1≤k<p potential values. Recalling that these po-
tentials are chosen so as to represent the process evolution in the rare level set,
we expect the quantities η−

p (Pp,n(a)2) to be much smaller than Pn(a). In the re-
verse angle, by Jensen’s inequality we expect the normalizing constants products
γp(1)γ −

p (1) to be rather large. We shall make precise these intuitive comments in
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the next section, with explicit calculations for the pair Gaussian models introduced
in (2.4) and (2.10). We end the section by noting that

σn(a,ϕn)
2 ≤ Pn(a)−2

n∑
p=1

γp(1)γ −
p (1)η−

p

(
Pp,n(a)2)

for any test function ϕn, with sup(yn,y′
n)∈F 2

p
|ϕn(yn) − ϕn(y

′
n)| ≤ 1.

2.6. On the weak negligible bias of genealogical models. In this subsection
we complete the fluctuation analysis developed in Section 2.5 with the study of
the bias of the genealogical tree occupation measures ηN

n , and the corresponding
weighted measures P N

n (a,ϕn) defined by (2.20). The forthcoming analysis also
provides sharp estimates, and a precise asymptotic description of the law of a given
particle ancestral line. In this sense, this study also completes the propagation-of-
chaos analysis developed in [4]. The next technical lemma is pivotal in our way to
analyze the bias of the path-particle models.

LEMMA 2.4. For any n,d ≥ 1, any collection of functions (f i
n)1≤i≤d ∈

Bb(Fn)
d and any sequence (νi)1≤i≤d ∈ {γ, η}d , the random products∏d

i=1 Wνi ,N
n (f i

n) converge in law, as N tends to infinity, to the Gaussian prod-

ucts
∏d

i=1 Wνi

n (f i
n). In addition, we have

lim
N→∞ E

[
d∏

i=1

Wνi ,N
n (f i

n)

]
= E

[
d∏

i=1

Wνi

n (f i
n)

]
.

PROOF. We first recall from Lemmas 2.1 and 2.2 that, for ν ∈ {γ, η} and for
any fn ∈ Bb(Fn) and p ≥ 1, we have the Lp-mean error estimates

sup
N≥1

E[|Wν,N
n (fn)|p]1/p < ∞

with the random fields (W
γ,N
n ,W

η,N
n ) defined in (2.22) and (2.24). By the Borel–

Cantelli lemma this property ensures that(
γ N
n (fn), η

N
n (fn)

) N→∞−→ (
γn(fn), ηn(fn)

)
a.s.

By the definitions of the random fields (W
γ,N
n ,W

γ
n ) and (W

η,N
n ,W

η
n ), given

in (2.22), (2.23), and in (2.24), (2.25), we have that

Wν,N
n (fn) =

n∑
p=1

cν,N
p,n WN

p (f ν
p,n) and Wν

n (fn) =
n∑

p=1

cν
p,nWp(f ν

p,n)

with

cγ,N
p,n = γ N

p (1)
N→∞−→ cγ

p,n = γp(1),

cη,N
p,n = γ N

p (1) γn(1)/γ N
n (1)

N→∞−→ cη
p,n = γp(1),
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and the pair of functions (f
γ
p,n, f

η
p,n) defined by

f γ
p,n = Qp,n(fn), f η

p,n = Qp,n

(
1

γn(1)

(
fn − ηn(fn)

))
.

With this notation, we find that

d∏
i=1

Wνi ,N
n (f i

n) =
n∑

p1,...,pd=1

[
d∏

i=1

cνi ,N
pi,n

]
×

[
d∏

i=1

WN
pi

(
f i,νi

pi ,n

)]
,

d∏
i=1

Wνi

n (f i
n) =

n∑
p1,...,pd=1

[
d∏

i=1

cνi

pi ,n

]
×

[
d∏

i=1

Wpi

(
f i,νi

pi ,n

)]
.

Recalling that the sequence of random fields (WN
p )1≤p≤n converges in law, as N

tends to infinity, to a sequence of n independent, Gaussian and centered random
fields (Wp)1≤p≤n, one concludes that

∏d
i=1 Wνi ,N

n (f i
n) converges in law, as N

tends to infinity, to
∏d

i=1 Wνi

n (f i
n). This ends the proof of the first assertion.

Using Hölder’s inequality, we can also prove that any polynomial function of
terms

Wν,N
n (fn), ν ∈ {γ, η}, fn ∈ Bb(Fn)

forms a uniformly integrable collection of random variables, indexed by the size
and precision parameter N ≥ 1. This property, combined with the continuous map-
ping theorem, and the Skorohod embedding theorem, completes the proof of the
lemma. �

We first present an elementary consequence of Lemma 2.4. We first rewrite
(2.24) as follows

Wη,N
n (fn) = Wγ,N

n

(
1

γn(1)

(
fn − ηn(fn)

))

+
(

γn(1)

γ N
n (1)

− 1
)

× Wγ,N
n

(
1

γn(1)

(
fn − ηn(fn)

))

= Wγ,N
n (f̃n) − 1√

N

γn(1)

γ N
n (1)

Wγ,N
n (f̃n)W

γ,N
n (g̃n)

with the pair of functions (f̃n, g̃n) defined by

f̃n = 1

γn(1)

(
fn − ηn(fn)

)
and g̃n = 1

γn(1)
.

This yields that

NE[ηN
n (fn) − ηn(fn)] = −E

[
γn(1)

γ N
n (1)

Wγ,N
n (f̃n)W

γ,N
n (g̃n)

]
.



GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS 2517

Since the sequence of random variables (γn(1)/γ N
n (1))N≥1 is uniformly bounded,

and it converges in law to 1, as N tends to infinity, by Lemma 2.4 we conclude that

lim
N→∞NE[ηN

n (fn) − ηn(fn)] = −E[Wγ
n (f̃n)W

γ
n (g̃n)]

(2.36)

= −
n∑

p=1

ηp

(
Qp,n(1)Qp,n

(
fn − ηn(fn)

))

where the renormalized semigroup Qp,n is defined by

Qp,n(fn) = Qp,n(fn)

ηpQp,n(1)
= γp(1)

γn(1)
Qp,n(fn).

We are now in position to state and prove the main result of this subsection.

THEOREM 2.5. For any n ≥ 1 and ϕn ∈ Bb(Fn), we have

NE
[(

P N
n (a,ϕn) − Pn(a,ϕn)

)
1P N

n (a)>0
]

N→∞−→ −Pn(a)−2
n∑

p=1

γp(1)γ −
p (1)η−

p [Pp,n(a)Pp,n(a,ϕn)]

with the collection of functions Pp,n(a), Pp,n(a,ϕn) ∈ Bb(Fp) defined, respec-
tively, in (2.28) and (2.31).

PROOF. The proof is essentially based on a judicious way to rewrite (2.34). If
we define

f (a)
n = T

(a)
n

ηnT
(a)
n (1)

(
ϕn − Pn(a,ϕn)

)
and g(a)

n = T
(a)
n (1)

ηnT
(a)
n (1)

,

then, on the event {P N
n (a) > 0}, we have

N[P N
n (a,ϕn) − Pn(a,ϕn)]
= N

[
ηN

n

(
f (a)

n

) − ηn

(
f (a)

n

)] − 1

ηN
n (g

(a)
n )

Wη,N
n

(
f (a)

n

)
Wη,N

n

(
g(a)

n

)
.

By Lemma 2.4 and (2.36) we conclude that

NE
[(

P N
n (a,ϕn) − Pn(a,ϕn)

)
1P N

n (a)>0
]

N→∞−→ −E
[
Wη

n

(
f (a)

n

)
Wη

n

(
g(a)

n

)] − E

[
Wγ

n

(
f

(a)
n

γn(1)

)
Wγ

n

(
1

γn(1)

)]
.
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On the other hand, using (2.25) we find that

E
[
Wη

n

(
f (a)

n

)
Wη

n

(
g(a)

n

)]
=

n∑
p=1

(
γp(1)/γn(1)

)2
E

[
Wp

(
Qp,n

(
f (a)

n

))
Wp

(
Qp,n

(
g(a)

n − 1
))]

=
n∑

p=1

(
γp(1)/γn(1)

)2
ηp

(
Qp,n

(
f (a)

n

)
Qp,n

(
g(a)

n − 1
))

.

Similarly, by (2.23) we have

E

[
Wγ

n

(
f

(a)
n

γn(1)

)
Wγ

n

(
1

γn(1)

)]

=
n∑

p=1

γp(1)2 E

[
Wp

(
Qp,n

f
(a)
n

γn(1)

)
Wp

(
Qp,n

1

γn(1)

)]
.

It is now convenient to notice that

E

[
Wp

(
Qp,n

f
(a)
n

γn(1)

)
Wp

(
Qp,n

1

γn(1)

)]

= γn(1)−2E
[
Wp

(
Qp,n

(
f (a)

n

))
Wp(Qp,n(1))

]
= γn(1)−2 × ηp

(
Qp,n

(
f (a)

n

)
Qp,n(1)

)
.

This implies that

E

[
Wγ

n

(
f

(a)
n

γn(1)

)
Wγ

n

(
1

γn(1)

)]
=

n∑
p=1

(
γp(1)/γn(1)

)2
ηp

(
Qp,n(1)Qp,n

(
f (a)

n

))

from which we conclude that

NE
([P N

n (a,ϕn) − Pn(a,ϕn)]1P N
n (a)>0

)
(2.37)

N→∞−→ −
n∑

p=1

(
γp(1)/γn(1)

)2
ηp

(
Qp,n

(
f (a)

n

)
Qp,n

(
g(a)

n

))
.

By the definition of the function T
(a)
n (ϕn) we have ηnT

(a)
n (1) = Pn(a)/γn(1) and

for any yp = (x0, . . . , xp) ∈ Fp

Qp,n

(
T (a)

n (ϕn)
)
(x0, . . . , xp)

=
[ ∏

1≤k<p

G−
k (x0, . . . , xk)

]

× E
[
ϕn(X0, . . . ,Xn)1Vn(Xn)≥a|(X0, . . . ,Xp) = (x0, . . . , xp)

]
.
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By the definition of the pair of functions (f
(a)
n , g

(a)
n ), these observations yield

Qp,n

(
f (a)

n

)
(x0, . . . , xp) = γn(1)

Pn(a)

[ ∏
1≤k<p

G−
k (x0, . . . , xk)

]

× Pp,n(a,ϕn)(x0, . . . , xp),

Qp,n

(
g(a)

n

)
(x0, . . . , xp) = γn(1)

Pn(a)

[ ∏
1≤k<p

G−
k (x0, . . . , xk)

]
Pp,n(a)(x0, . . . , xp).

To take the final step, we notice that

Qp,n

(
f (a)

n

)
(x0, . . . , xp) × Qp,n

(
g(a)

n

)
(x0, . . . , xp) × (

Pn(a)/γn(1)
)2

=
[ ∏

1≤k<p

G−
k (x0, . . . , xk)

2

]
Pp,n(a,ϕn)(x0, . . . , xp)Pp,n(a)(x0, . . . , xp).

This implies that

γp

(
Qp,n

(
f (a)

n

)
Qp,n

(
g(a)

n

)) × (
Pn(a)/γn(1)

)2

= E

([ ∏
1≤k<p

G−
k (X0, . . . ,Xk)

]

× Pp,n(a,ϕn)(X0, . . . ,Xp)Pp,n(a)(X0, . . . ,Xp)

)

= γ −
p

(
Pp,n(a,ϕn)Pp,n(a)

) = γ −
p (1) × η−

p

(
Pp,n(a,ϕn)Pp,n(a)

)
.

Using the identity γp = γp(1)ηp and substituting the last equation into (2.37) com-
pletes the proof. �

2.7. Variance comparisons for Gaussian particle models. Let (Xp)1≤p≤n be
the Gaussian sequence defined in (2.2). We consider the elementary energy-like
function Vn(x) = x, and the Feynman–Kac twisted models associated to the po-
tential functions

Gp(x0, . . . , xp) = exp[λ(xp − xp−1)] for some λ > 0.(2.38)

Arguing as in (2.4), we prove that the Feynman–Kac distribution η−
p is the path

distribution of the chain defined by the recursion

X−
p = X−

p−1 + Wp and X−
k = X−

k−1 − λ + Wk, 1 ≤ k < p,

where X0 = 0, and where (Wk)1≤k≤p represents a sequence of independent and
identically distributed Gaussian random variables, with (E(W1),E(W 2

1 )) = (0,1).
We also observe that in this case we have

γp(1)γ −
p (1) = E[eλXp−1]2 = eλ2(p−1).(2.39)
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The next lemma is instrumental for estimating the quantities η−
p (Pp,n(a)2) intro-

duced in (2.27).

LEMMA 2.6. Let (W1,W2) be a pair of independent Gaussian random vari-
ables, with (E(Wi),E(W 2

i )) = (0, σ 2
i ), with σi > 0 and i = 1,2. Then, for any

a > 0, we have the exponential estimate

C(a,σ1, σ2) ≤ E[P(W1 + W2 ≥ a|W1)
2] exp

(
a2

2σ 2
1 + σ 2

2

)
≤ 1,

where

C(a,σ1, σ2) = (2π)3/2
(

σ2a

2σ 2
1 + σ 2

2

+ 2σ 2
1 + σ 2

2

σ2a

)−2(
2σ1a

2σ 2
1 + σ 2

2

+ 2σ 2
1 + σ 2

2

2σ1a

)−1

.

PROOF. Using exponential version of Chebyshev’s inequality we first check
that, for any λ > 0, we have

P(W1 + W2 ≥ a|W1) ≤ eλ(W1−a) E(eλW2) = eλ(W1−a)+λ2σ 2
2 /2.

Integrating the random variable W1 and choosing λ = a/(2σ 2
1 + σ 2

2 ), we establish
the upper bound

E[P(W1 + W2 ≥ a|W1)
2] ≤ e−2λa+λ2(2σ 2

1 +σ 2
2 ) = e−a2/(2σ 2

1 +σ 2
2 ).

For any ε ∈ (0,1), we have

E[P(W1 + W2 ≥ a|W1)
2] ≥ P(W2 ≥ εa)2P

(
W1 ≥ (1 − ε)a

)
.

Applying Mill’s inequality yields

E[P(W1 + W2 ≥ a|W1)
2] ≥ (2π)3/2

(εa/σ2 + σ2/(εa))2((1 − ε)a/σ1 + σ1/((1 − ε)a))

× e−a2(ε2/σ 2
2 +(1−ε)2/(2σ 2

1 )).

Choosing ε = σ 2
2 /(2σ 2

1 + σ 2
2 ) establishes the lower bound. �

From previous considerations, we notice that

η−
p

(
Pp,n(a)2) = E

[
P

(
W1 + W2 ≥ (

a + λ(p − 1)
)|W1

)2]
,

where (W1,W2) are a pair of independent and centered Gaussian random variables,
with (E(W 2

1 ),E(W 2
2 )) = (p,n − p). Lemma 2.6 now implies that

η−
p

(
Pp,n(a)2) ≤ exp

[−(
a + λ(p − 1)

)2
/(n + p)

]
.(2.40)



GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS 2521

Substituting the estimates (2.39) and (2.40) into (2.27), we find that

σγ
n (a)2 ≤

n∑
p=1

[
eλ2(p−1)−(a+λ(p−1))2/(n+p) − Pn(a)2]

= ∑
0≤p<n

[
e−a2/ne(p+1)/(n(n+p+1))[a−λ(np)/(p+1)]2+λ2p/(p+1) − Pn(a)2]

.

For λ = a/n, this yields that

σγ
n (a)2 ≤ ∑

0≤p<n

[
e−a2/nea2/n2(1−1/(n+p+1)) − Pn(a)2]

(2.41)
≤ n

(
e−(a2/n)(1−1/n) − Pn(a)2)

.

We find that this estimate has the same exponential decay as the one obtained
in (2.6) for the corresponding noninteracting IS model. The only difference be-
tween these two asymptotic variances comes from the multiplication parameter n.
This additional term can be interpreted as the number of interactions used in the
construction of the genealogical tree simulation model. We can compare the effi-
ciencies of the IPS strategy and the usual MC strategy which are two methods that
do not require to twist the input probability distribution, in contrast to IS. The IPS
provides a variance reduction by a factor of the order of nPn(a). In practice the
number n of selection steps is of the order of ten or a few tens, while the goal is
the estimation of a probability Pn(a) of the order of 10−6–10−12. The gain is thus
very significant, as we shall see in the numerical applications.

Now, we consider the Feynman–Kac twisted models associated to the potential
functions

Gp(x0, . . . , xp) = exp(λxp) for some λ > 0.(2.42)

Arguing as in (2.11), we prove that η−
p is the distribution of the Markov chain

X−
p = X−

p−1 + Wp and X−
k = X−

k−1 − λ(p − k) + Wk, 1 ≤ k < p,

where X0 = 0, and where (Wk)1≤k≤p represents a sequence of independent and
identically distributed Gaussian random variables, with (E(W1),E(W 2

1 )) = (0,1).
We also notice that

γp(1)γ −
p (1) = E

[
eλ

∑
1≤k<p Xk

]2 = eλ2 ∑
1≤k<p k2

.(2.43)

In this situation, we observe that

η−
p (Pp,n(a)2) = E

[
P

(
W1 + W2 ≥ a + λ

∑
1≤k<p

k|W1

)2]
,
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where (W1,W2) are a pair of independent and centered Gaussian random variables,
with (E(W 2

1 ),E(W 2
2 )) = (p,n − p). As before, Lemma 2.6 now implies that

η−
p (Pp,n(a)2) ≤ exp

[
− 1

n + p

(
a + λ

p(p − 1)

2

)2]
.(2.44)

Using the estimates (2.43) and (2.44), and recalling that
∑

1≤k≤n k2 = n(n +
1)(2n + 1)/6, we conclude that

σγ
n (a)2 ≤

n∑
p=1

[
e(1/6)λ2(p−1)p(2p−1)−(a+λp(p−1)/2)2/(n+p) − Pn(a)2]

=
n∑

p=1

[
e−(a2/n)ep/(n(n+p))[a−λn(p−1)/2]2+(1/12)λ2(p−1)p(p+1) − Pn(a)2]

.

If we take λ = 2a/[n(n − 1)], then we get

σγ
n (a)2 ≤

n∑
p=1

[
e−a2/nea2/(n2(n−1)2)[np/(n+p)(n−p)2+(p−1)p(p+1)/3] − Pn(a)2]

=
n∑

p=1

[
e−a2/ne(a2/n)n2/(n−1)2[θ(p/n)−p/(3n3)] − Pn(a)2]

with the increasing function θ : ε ∈ [0,1] −→ θ(ε) = ε (1−ε)2

(1+ε)
+ ε3

3 ∈ [0,1/3]. From
these observations, we deduce the estimate

σγ
n (a)2 ≤ n

[
e−(a2/n)(2/3)(1−1/(n−1)) − Pn(a)2]

.(2.45)

Note that the inequalities are sharp in the exponential sense by the lower bound
obtained in Lemma 2.6. Accordingly we get that the asymptotic variance is not
of the order of Pn(a)2, but rather Pn(a)4/3. As in the first Gaussian example, we
observe that this estimate has the same exponential decays as the one obtained
in (2.12) for the corresponding IS algorithm. But, once again, the advantage of the
IPS method compared to IS is that it does not require to twist the original transition
probabilities, which makes the IPS strategy much easier to implement.

Conclusion. The comparison of the variances (2.41) and (2.45) shows that the
variance of the estimator P N

n (a) is much smaller when the potential (2.38) is used
rather than the potential (2.42). We thus get the important qualitative conclusion
that it is not efficient to select the “best” particles (i.e., those with the highest
energy values), but it is much more efficient to select amongst the particles with
the best energy increments. This conclusion is also an a posteriori justification of
the necessity to carry out a path-space analysis, and not only a state-space analysis.
The latter one is simpler but it cannot consider potentials of the form (2.38) that
turn out to be more efficient.
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3. Estimation of the tail of a probability density function. We collect and
sum up the general results presented in Section 2 and we apply them to pro-
pose an estimator for the tail of the probability density function (p.d.f.) of a real-
valued function of a Markov chain. We consider an (E,E)-valued Markov chain
(Xp)0≤p≤n with nonhomogeneous transition kernels Kp . In a first time, we show
how the results obtained in the previous section allow us to estimate the probability
of a rare event of the form {V (Xn) ∈ A}:

PA = P
(
V (Xn) ∈ A

) = E[1A(V (Xn))],(3.1)

where V is some function from E to R. We shall construct an estimator based on
an IPS. As pointed out in the previous section, the quality of the estimator depends
on the choice on the weight function. The weight function should fulfill two con-
ditions. First, it should favor the occurrence of the rare event without involving too
large normalizing constants. Second, it should give rise to an algorithm that can be
easily implemented. Indeed the implementation of the IPS with an arbitrary weight
function requires recording the complete set of path-particles. If N particles are
generated and time runs from 0 to n, this set has size (n+ 1)×N × dim(E) which
may exceed the memory capacity of the computer. The weight function should be
chosen so that only a smaller set needs to be recorded to compute the estimator
of the probability of occurrence of the rare event. We shall examine two weight
functions and the two corresponding algorithms that fulfill both conditions.

ALGORITHM 1. Let us fix some β > 0. The first algorithm is built with the
weight function

Gβ
p(x) = exp[βV (xp)].(3.2)

The practical implementation of the IPS reads as follows.

Initialization. We start with a set of N i.i.d. initial conditions X̂
(i)
0 , 1 ≤ i ≤ N ,

chosen according to the initial distribution of X0. This set is complemented with
a set of weights Ŷ

(i)
0 = 1, 1 ≤ i ≤ N . This forms a set of N particles: (X̂

(i)
0 , Ŷ

(i)
0 ),

1 ≤ i ≤ N , where a particle is a pair (X̂, Ŷ ) ∈ E × R+.
Now, assume that we have a set of N particles at time p denoted by (X̂

(i)
p , Ŷ

(i)
p ),

1 ≤ i ≤ N .

Selection. We first compute the normalizing constant

η̂N
p = 1

N

N∑
i=1

exp
[
βV

(
X̂(i)

p

)]
.(3.3)

We choose independently N particles according to the empirical distribution

µN
p (dX̌, dY̌ ) = 1

Nη̂N
p

×
N∑

i=1

exp
[
βV

(
X̂(i)

p

)]
δ
(X̂

(i)
p ,Ŷ

(i)
p )

(dX̌, dY̌ ).(3.4)
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The new particles are denoted by (X̌
(i)
p , Y̌

(i)
p ), 1 ≤ i ≤ N .

Mutation. For every 1 ≤ i ≤ N , the particle (X̌
(i)
p , Y̌

(i)
p ) is transformed into

(X̂
(i)
p+1, Ŷ

(i)
p+1) by the mutation procedure

X̌(i)
p

Kp+1−→ X̂
(i)
p+1,(3.5)

where the mutations are performed independently, and

Ŷ
(i)
p+1 = Y̌ (i)

p exp
[−βV

(
X̌(i)

p

)]
.(3.6)

The memory required by the algorithm is N dim(E) + N + n, where N dim(E)

is the memory required by the record of the set of particles, N is the memory
required by the record of the set of weights and n is the memory required by
the record of the normalizing constants η̂N

p , 0 ≤ p ≤ n − 1. The estimator of the
probability PA is then

P N
A =

[
1

N

N∑
i=1

1A

(
V

(
X̂(i)

n

))
Ŷ (i)

n

]
×

n−1∏
k=0

η̂N
p .(3.7)

This estimator is unbiased in the sense that E[P N
A ] = PA. The central limit theorem

for the estimator states that
√

N(P N
A − PA)

N→∞−→ N (0,QA)(3.8)

where the variance is

QA =
n∑

p=1

E

[
EXp [1A(V (Xn))]2

p−1∏
k=0

G−1
k (X)

]
E

[p−1∏
k=0

Gk(X)

]

(3.9)
− E[1A(Xn)]2.

ALGORITHM 2. Let us fix some α > 0. The second algorithm is built with the
weight function

Gα
p(x) = exp

[
α

(
V (xp) − V (xp−1)

)]
.(3.10)

Initialization. We start with a set of N i.i.d. initial conditions X̂
(i)
0 , 1 ≤ i ≤ N ,

chosen according to the initial distribution of X0. This set is complemented with
a set of parents Ŵ

(i)
0 = x0, 1 ≤ i ≤ N , where x0 is an arbitrary point of E with

V (x0) = V0. This forms a set of N particles: (Ŵ
(i)
0 , X̂

(i)
0 ), 1 ≤ i ≤ N , where a

particle is a pair (Ŵ , X̂) ∈ E × E.
Now, assume that we have a set of N particles at time p denoted by (Ŵ

(i)
p , X̂

(i)
p ),

1 ≤ i ≤ N .
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Selection. We first compute the normalizing constant

η̂N
p = 1

N

N∑
i=1

exp
[
α

(
V

(
X̂(i)

p

) − V
(
Ŵ (i)

p

))]
.(3.11)

We choose independently N particles according to the empirical distribution

µN
p (dW̌ , dX̌) = 1

Nη̂N
p

N∑
i=1

exp
[
α

(
V

(
X̂(i)

p

) − V
(
Ŵ (i)

p

))]
(3.12)

× δ
(Ŵ

(i)
p ,X̂

(i)
p )

(dW̌ , dX̌).

The new particles are denoted by (W̌
(i)
p , X̌

(i)
p ), 1 ≤ i ≤ N .

Mutation. For every 1 ≤ i ≤ N , the particle (W̌
(i)
p , X̌

(i)
p ) is transformed into

(Ŵ
(i)
p+1, X̂

(i)
p+1) by the mutation procedure X̌

(i)
p

Kp+1−→ X̂
(i)
p+1 where the mutations are

performed independently, and Ŵ
(i)
p+1 = X̌

(i)
p .

The memory required by the algorithm is 2N dim(E) + n. The estimator of the
probability PA is then

P N
A =

[
1

N

N∑
i=1

1A

(
V

(
X̂(i)

n

))
exp

(−α
(
V

(
Ŵ (i)

n

) − V0
))] ×

[
n−1∏
k=0

η̂N
p

]
.(3.13)

This estimator is unbiased and satisfies the central limit theorem (3.8).
Let us now focus our attention to the estimation of the p.d.f. tail of V (Xn).

The rare event is then of the form {V (Xn) ∈ [a, a + δa)} with a large a and an
evanescent δa. We assume that the p.d.f. of V (Xn) is continuous so that the p.d.f.
can be seen as

p(a) = lim
δa→0

1

δa
pδa(a), pδa(a) = P

(
V (Xn) ∈ [a, a + δa)

)
.

We propose to use the estimator

pN
δa(a) = 1

δa
× P N[a,a+δa)(3.14)

with a small δa. The central limit theorem for the p.d.f. estimator takes the form
√

N
(
pN

δa(a) − pδa(a)
) N→∞−→ N

(
0,p2

2(a, δa)
)
,(3.15)

where the variance p2
2(a, δa) has a limit p2

2(a) as δa goes to 0 which admits a
simple representation formula:

p2
2(a) = lim

δa→0

1

δa
E

[
1[a,a+δa)(V (Xn))

n−1∏
k=0

G−1
k (X)

]
E

[
n−1∏
k=0

Gk(X)

]
.(3.16)
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Note that all other terms in the sum (3.9) are of order δa2 and are therefore negligi-
ble. This is true as soon as the distribution of V (Xn) given Xp for p < n admits a
bounded density with respect to the Lebesgue measure. Accordingly, the variance
p2

2(a) can be estimated by limδa→0(δa)−1QN[a,a+δa), where QN
A is given by

QN
A =

[
1

N

N∑
i=1

1A

(
V

(
X̂(i)

n

))(
Ŷ (i)

n

)2
]

×
[

n−1∏
k=0

η̂N
p

]2

(3.17)

for Algorithm 1, and by

QN
A =

[
1

N

N∑
i=1

1A

(
V

(
X̂(i)

n

))
exp

(−2α
(
V

(
Ŵ (i)

n

) − V0
))] ×

[
n−1∏
k=0

η̂N
p

]2

(3.18)

for Algorithm 2. The estimators of the variances are important because confidence
intervals can then be obtained.

The variance analysis carried out in Section 2.7 predicts that the second algo-
rithm [with the potential (3.2)] should give better results than the Algorithm 1
[with the potential (3.10)]. We are going to illustrate this important statement in
the following sections devoted to numerical simulations.

From a practical point of view, it can be interesting to carry out several IPS
simulations with different values for the parameters β (Algorithm 1) and α (Algo-
rithm 2), and also one MC simulation. It is then possible to reconstruct the p.d.f.
of V (Xn) by the following procedure. Each IPS or MC simulation gives an esti-
mation for the p.d.f. p (whose theoretical value does not depend on the method)
and also an estimation for the ratio p2/p (whose theoretical value depends on the
method). We first consider the different estimates of a �→ p2/p(a) and detect, for
each given value of a, which IPS gives the minimal value of p2/p(a). For this
value of a, we then use the estimation of p(a) obtained with this IPS. This method
will be used in Section 5.

4. A toy model. In this section we apply the IPS method to compute the
probabilities of rare events for a very simple system for which we know ex-
plicit formulas. The system under consideration is the Gaussian random walk
Xp+1 = Xp + Wp+1, X0 = 0, where the (Wp)p=1,...,n are i.i.d. Gaussian random
variables with zero mean and variance 1. Let n be some positive integer. The goal
is to compute the p.d.f. of Xn, and in particular the tail corresponding to large
positive values.

We choose the weight function

Gα
p(x) = exp[α(xp − xp−1)].(4.1)

The theoretical p.d.f. is a Gaussian p.d.f. with variance n:

p(a) = 1√
2πn

exp
(
−a2

2n

)
.(4.2)
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The theoretical variance of the p.d.f. estimator can be computed from (3.16):

p2
2(a) = p2(a) × √

2πn exp
(
α2 n − 1

n
+ (a − α(n − 1))2

2n

)
.(4.3)

When α = 0, we have p2
2(a) = p(a), which is the result of standard MC. For

α �= 0, the ratio p2(a)/p(a) is minimal when a = α(n − 1) and then p2(a) =
p(a)

4
√

2πn exp(α2(n − 1)/(2n)). This means that the IPS with some given α is
especially relevant for estimating the p.d.f. tail around a = α(n − 1).

Let us assume that n � 1. Typically we look for the p.d.f. tail for a = a0
√

n with
a0 > 1 because

√
n is the typical value of Xn. The optimal choice is α = a0/

√
n

and then the relative error is p2(a)/p(a) � 4
√

2πn.
In Figure 1 we compare the results from MC simulations, IPS simulations and

theoretical formulas with the weight function (4.1). We use a set of 2 × 104 par-
ticles to estimate the p.d.f. tail of Xn with n = 15. The agreement shows that we
can be confident with the results given by the IPS for predicting rare events with
probabilities 10−12.

We now choose the weight function

Gβ
p(x) = exp(βxp).(4.4)

We get the same results, but the explicit expression for the theoretical variance of
the p.d.f. estimator is

p2
2(a) = p2(a) × √

2πn exp
(
β2 n(n2 − 1)

12
+ (a − βn(n − 1)/2)2

2n

)
.(4.5)

When β = 0, we have p2
2(a) = p(a), which is the result of standard MC. For

β �= 0, the ratio p2(a)/p(a) is minimal when a = βn(n − 1)/2 and then p2(a) =

FIG. 1. (a) P.d.f. estimations obtained by the usual MC technique (squares) and by the IPS with the
weight function (4.1) with α = 1 (stars). The solid line stands for the theoretical Gaussian distribu-
tion. (b) Empirical and theoretical ratios p2/p.
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FIG. 2. (a) P.d.f. estimations obtained by the usual MC technique (squares) and by the IPS with
the weight function (4.4) with β = 0.15 (stars). The solid line stands for the theoretical Gaussian
distribution. (b) Empirical and theoretical ratios p2/p.

p(a)
4
√

2πn exp(β2n(n2 − 1)/24). This means that the IPS with some given β is
especially relevant for estimating the p.d.f. tail around a = βn(n − 1)/2.

Let us assume that n � 1. Typically we look for the p.d.f. tail for a = a0
√

n

with a0 > 1. The optimal choice is β = 2a0/n3/2 and then the relative error is
p2(a)/p(a) � (2πn)1/4 exp(a2

0/6) = (2πn)−1/12p(a)−1/3. The relative error is
larger than the one we get with the weight function (4.1). In Figure 2 we com-
pare the results from MC simulations, IPS simulations and the theoretical formulas
with the weight function (4.4). This shows that the weight function (4.4) is less ef-
ficient than (4.1). Thus the numerical simulations confirm the variance comparison
carried out in Section 2.7.

5. Polarization mode dispersion in optical fibers.

5.1. Introduction. The study of pulse propagation in a fiber with random bire-
fringence has become of great interest for telecommunication applications. Recent
experiments have shown that polarization mode dispersion (PMD) is one of the
main limitations on fiber transmission links because it can involve significant pulse
broadening [13]. PMD has its origin in the birefringence [27], that is, the fact that
the electric field is a vector field and the index of refraction of the medium depends
on the polarization state (i.e., the unit vector pointing in the direction of the electric
vector field). Random birefringence results from variations of the fiber parameters
such as the core radius or geometry. There exist various physical reasons for the
fluctuations of the fiber parameters. They may be induced by mechanical distor-
tions on fibers in practical use, such as pointlike pressures or twists [21]. They may
also result from variations of ambient temperature or other environmental parame-
ters [2].



GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS 2529

The difficulty is that PMD is a random phenomenon. Designers want to ensure
that some exceptional but very annoying event occurs only a very small fraction
of time. This critical event corresponds to a pulse spreading beyond a threshold
value. For example, a designer might require that such an event occurs less than
1 minute per year [3]. PMD in an optical fiber varies with time due to vibrations
and variations of environmental parameters. The usual assumption is that the fiber
passes ergodically through all possible realizations. Accordingly requiring that an
event occurs a fraction of time p is equivalent to requiring that the probability of
this event is p. The problem is then reduced to the estimation of the probability of
a rare event. Typically the probability is 10−6 or less [3]. It is extremely difficult
to use either laboratory experiments or MC simulations to obtain a reliable esti-
mate of such a low probability because the number of configurations that must be
explored is very large. Recently IS has been applied to numerical simulations of
PMD [2]. This method gives good results; however, it requires very good physical
insight into the problem because it is necessary for the user to know how to pro-
duce artificially large pulse widths. We would like to revisit this work by applying
the IPS strategy. The main advantage is that we do not need to specify how to pro-
duce artificially large pulse widths, as the IPS will automatically select the good
“particles.”

5.2. Review of PMD models. The pulse spreading in a randomly birefringent
fiber is characterized by the so-called square differential group delay (DGD) τ =
|r̂|2. The vector r̂ is the so-called PMD vector, which is solution of

r̂z = ω�(z) × r̂ + �(z),(5.1)

where �(z) is a three-dimensional zero-mean stationary random process model-
ing PMD.

5.2.1. The white noise model. Simplified analytical models have been studied.
In the standard model [12, 13, 20, 27] it is assumed that the process � is a white
noise with autocorrelation function E[�i(z

′)�j (z)] = σ 2δij δ(z
′ − z). In such a

case the differential equation (5.1) must be interpreted as a stochastic differential
equation:

dr̂1 = σωr̂3 ◦ dW 2
z − σωr̂2 ◦ dW 3

z + σ dW 1
z ,(5.2)

dr̂2 = σωr̂1 ◦ dW 3
z − σωr̂3 ◦ dW 1

z + σ dW 2
z ,(5.3)

dr̂3 = σωr̂2 ◦ dW 1
z − σωr̂1 ◦ dW 2

z + σ dW 3
z ,(5.4)

where ◦ stands for the Stratonovich integral and the Wj ’s are three independent
Brownian motions. It is then possible to establish [12] that the DGD τ is a dif-
fusion process and in particular that τ(ω, z) obeys a Maxwellian distribution if
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r̂(0) = (0,0,0)T . More precisely the p.d.f. of τ(ω, z) is

p(τ) = τ 1/2
√

2π(σ 2z)3/2
exp

(
− τ

2σ 2z

)
1[0,∞)(τ ).

5.2.2. Realistic models. The white noise model gives an analytical formula
for the p.d.f. of the DGD, which in turns allows us to compute exactly the proba-
bility that the DGD exceeds a given threshold value. However, it has been pointed
out that the p.d.f. tail of the DGD does not fit with the Maxwellian distribution
in realistic configurations [1]. Various numerical and experimental PMD genera-
tion techniques involve the concatenation of birefringent elements with piecewise
constant vectors � [18]. Equation (5.1) can be solved over each segment, and con-
tinuity conditions on the segments junctions give a discrete model for the PMD
vector r̂. The total PMD vector after the (n + 1)st section can then be obtained
from the concatenation equation [14]

r̂n+1 = Rn+1r̂n + σ�n+1,(5.5)

where σ is the DGD per section, �n = �(θn) with

�(θ) = (
cos(θ), sin(θ),0

)T
.

Rn is a matrix corresponding to a rotation through an angle φn about the axis �n.
Explicitly Rn = R(θn,φn) with

R(θ,φ) =
( cos2(θ) + sin2(θ) cos(φ) sin(θ) cos(θ)

(
1 − cos(φ)

)
sin(θ) sin(φ)

sin(θ) cos(θ)
(
1 − cos(φ)

)
sin2(θ) + cos2(θ) cos(φ) − cos(θ) sin(φ)

− sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)

)
.

From the probabilistic point of view, the angles φn are i.i.d. random variables uni-
formly distributed in (0,2π). The angles θn are i.i.d. random variables such that
cos(θn) are uniformly distributed in (−1,1) [2]. Accordingly, (r̂n)n∈N is a Markov
chain. Let us assume that the fiber is modeled as the concatenation of n segments
and that the outage event is of the form |r̂n| > a for some fixed threshold value a.
In the case where a is much larger than the expected value of the final DGD |r̂n|,
the outage probability is very small, and this is the quantity that we want to esti-
mate.

5.3. Estimations of outage probabilities.

5.3.1. Importance sampling. In [2] IS is used to accurately calculate out-
age probabilities due to PMD. As discussed in the Introduction, the key diffi-
culty in applying IS is to properly choose the twisted distribution for the driving
process (θp,φp)1≤p≤n. The papers [2, 11, 17] present different twisted distribu-
tions and the physical explanations why such distributions are likely to produce
large DGD’s. As a result the authors obtain with 105 simulations good approxi-
mations of the p.d.f. tail even for probabilities of the order of 10−12. The main
reported physical result is that the probability tail is significantly smaller than the
Maxwellian tail predicted by the white noise model.
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5.3.2. Interacting particle systems. In this subsection we apply our IPS
method and compare the results with those obtained by MC and IS. To get a
reliable estimate of the outage probability of the event, it is necessary to gener-
ate realizations producing large DGD’s. The main advantage of the IPS approach
is that it proposes a “blink” method that does not require any physical insight.
Such a method could thus be generalized to more complicated situations. Here the
Markov process is the PMD vector (r̂n)n∈N at the output of the nth fiber section.
The state space is R3, the initial PMD vector is r̂0 = (0,0,0)T , the Markov transi-
tions are described by (5.5) and the energy-like function is V (r̂) = |r̂|. We estimate
the p.d.f. p(a) of |r̂n| by implementing the IPS with the two weight functions

Gβ
p(r̂) = exp(β|r̂p|)(5.6)

parameterized by β ≥ 0, and

Gα
p(r̂) = exp[α(|r̂p| − |r̂p−1|)](5.7)

parameterized by α ≥ 0. We have implemented Algorithms 1 and 2 as described in
Section 3. Before presenting and discussing the results, we would like to underline
that we have chosen to perform a selection step at the output of each segment,
because the number of segments is not very large. If the number of segments were
very large, it should be better to perform a selection step every two or three or n0
segments.

In Figure 3(a) we plot the estimation of the DGD p.d.f. obtained by the IPS
method with the weight function G

β
n defined by (5.6). The fiber consists in the

FIG. 3. (a) Segments of the DGD p.d.f. obtained by the usual MC technique (squares) and by the

IPS with the weight function G
β
n with β = 0.33 (triangles) and β = 1 (stars). The solid line stands

for the Maxwellian distribution obtained with the white noise model. The Maxwellian distribution
fails to describe accurately the p.d.f. tail. (b): Ratios p2/p. The quantity p2 is the standard deviation
of the estimator of the DGD p.d.f. In the IPS cases, the standard deviations are estimated via the
formula (3.17).
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FIG. 4. (a) Segments of the DGD p.d.f. obtained by the usual MC technique (squares) and by the
IPS with the weight function Gα

p with α = 2.0 (triangles) and α = 6.0 (stars). The solid line stands for
the Maxwellian distribution obtained with the white noise model. (b) Ratios p2/p. The quantity p2
is the standard deviation of the estimator of the DGD p.d.f. In the IPS cases, the standard deviations
are estimated via (3.18).

concatenation of n = 15 segments. The DGD per section is σ = 0.5. We use a
set of N = 2 × 104 interacting particles. This result can be compared with the
one obtained in [2], which shows excellent agreement. The difference is that our
procedure is fully adaptative, it does not require any guess of the user, and it does
not require to twist the input probability density. The variance p2

2 of the estimator
of the DGD p.d.f. is plotted in Figure 3(b). This figure is actually used to determine
the best estimator of the DGD p.d.f. by the procedure described at the end of
Section 3.

In Figure 4(a) we plot the estimation of the DGD p.d.f. obtained by the IPS
method with the weight function Gα

p defined by (5.7). It turns out that the esti-
mated variance of the estimator is smaller with the weight function Gα

p than with

the weight function G
β
p [cf. Figures 4(b) and 3(b)]. This observation confirms the

theoretical predictions obtained with the Gaussian random walk.
The IPS approach is also powerful to compute conditional probabilities or ex-

pectations given the occurrence of some rare event. For instance, we can be inter-
ested in the moments of the intermediate DGDs given that the final DGD lies in
the rare set (a, a + δa):

D
q
a,a+δa(p,n) = E[|r̂p|q ||r̂n| ∈ [a, a + δa)].

This information gives us the typical behaviors of the PMD vectors along the fiber
that give rise to a large final DGD. We use the estimator (2.20) based on the IPS
with the weight function (5.7). As shown by Figure 5, the typical conditional tra-
jectory of the DGD is close to a linear increase with a constant rate given by the
ratio of the final DGD over the length of the fiber. The conditional variances are



GENEALOGICAL PARTICLE ANALYSIS OF RARE EVENTS 2533

FIG. 5. Conditional expectations D1
a,a+δa(p,n) of the intermediate DGD at p = 4, 8, 12, given

that the final DGD lies in the interval (a, a + δa) with n = 15, δa = 0.18, and ( from top to bot-
tom) a = 7, a = 6.1, a = 5.2. The error bars are obtained from the estimations of the conditional
variances.

found to be small, which shows that fluctuations are relatively small around this
average behavior.
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