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In this paper we give a complete analysis of the phase transitions in
the mean-field Blume–Emery–Griffiths lattice-spin model with respect to
the canonical ensemble, showing both a second-order, continuous phase
transition and a first-order, discontinuous phase transition for appropriate
values of the thermodynamic parameters that define the model. These phase
transitions are analyzed both in terms of the empirical measure and the
spin per site by studying bifurcation phenomena of the corresponding sets
of canonical equilibrium macrostates, which are defined via large deviation
principles. Analogous phase transitions with respect to the microcanonical
ensemble are also studied via a combination of rigorous analysis and
numerical calculations. Finally, probabilistic limit theorems for appropriately
scaled values of the total spin are proved with respect to the canonical
ensemble. These limit theorems include both central-limit-type theorems,
when the thermodynamic parameters are not equal to critical values, and
noncentral-limit-type theorems, when these parameters equal critical values.

1. Introduction. The Blume–Emery–Griffiths (BEG) model [4] is an impor-
tant lattice-spin model in statistical mechanics. It is one of the few and certainly
one of the simplest models known to exhibit, in its mean-field version, both a
continuous, second-order phase transition and a discontinuous, first-order phase
transition. Because of this property, the model has been studied extensively as
a model of many diverse systems, including He3-He4 mixtures—the system for
which Blume, Emery and Griffiths first devised their model [4]—as well as solid-
liquid-gas systems [18, 24, 25], microemulsions [23], semiconductor alloys [19]
and electronic conduction models [17]. Phase diagrams for a class of models in-
cluding the Blume–Emery–Griffiths model are discussed in [1], which lists addi-
tional work on this and related models. On a more theoretical level, the BEG model
has also played an important role in the development of the renormalization-group
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theory of phase transitions of the Potts model; see [16, 20] for details and refer-
ences.

As a model with a simple description but a relatively complicated phase
transition structure, the BEG model continues to be of interest in modern statistical
mechanical studies. In this paper we focus on the mean-field version of the BEG
model or, equivalently, the BEG model on the complete graph onn vertices. Our
motivation for revisiting this model was initiated by a recent observation in [2, 3]
that the BEG model on the complete graph has nonequivalent microcanonical
and canonical ensembles, in the sense that it exhibits microcanonical equilibrium
properties having no equivalent within the canonical ensemble. This observation
is supported in [15] by numerical calculations both at the thermodynamic level, as
in [2, 3], and at the level of equilibrium macrostates. In response to these earlier
works, in this paper we address the phase transition behavior of the model by
giving separate analyses of the structure of the sets of equilibrium macrostates for
each of the two ensembles. Not only are our results consistent with the findings
in [2, 3, 15], but also we rigorously prove for the first time a number of results
that significantly generalize those found in these papers, where they were derived
nonrigorously. For the canonical ensemble, full proofs of the structure of the set
of equilibrium macrostates are provided. For the microcanonical ensemble, full
proofs could not be attained. However, using numerical methods and following an
analogous technique used in the canonical case, we also analyze the structure of
the set of microcanonical equilibrium macrostates.

The BEG model that we consider is a spin-1 model defined on the complete
graph onn vertices 1,2, . . . , n. The spin at sitej ∈ {1,2, . . . , n} is denoted byωj ,
a quantity taking values in� = {−1,0,1}. The Hamiltonian for the BEG model is
defined by

Hn,K(ω) =
n∑

j=1

ω2
j − K

n

(
n∑

j=1

ωj

)2

,

whereK > 0 is a given parameter representing the interaction strength andω =
(ω1, . . . ,ωn) ∈ �n. The energy per particle is defined by

hn,K(ω) = 1

n
Hn,K(ω) =

∑n
j=1 ω2

j

n
− K

(∑n
j=1 ωj

n

)2

.(1.1)

In order to analyze the phase transition behavior of the model, we first intro-
duce the sets of equilibrium macrostates for the canonical ensemble and the micro-
canonical ensemble. As we will see, the canonical equilibrium macrostates solve a
two-dimensional, unconstrained minimization problem, while the microcanonical
equilibrium macrostates solve a dual, one-dimensional, constrained minimization
problem. The definitions of these sets follow from large deviation principles de-
rived for general models in [10]. In the particular case of the BEG model, they are
consequences of the fact that the BEG-Hamiltonian can be written as a function of
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the empirical measures of the spin random variables and that, according to Sanov’s
theorem, the large deviation behavior of these empirical measures is governed by
the relative entropy.

We use two innovations to analyze the structure of the set of canonical
equilibrium macrostates. The first is to reduce to a one-dimensional problem the
two-dimensional minimization problem that characterizes these macrostates. This
is carried out by absorbing the noninteracting component of the energy per particle
function into the prior measure, which is a product measure on configuration space.
This manipulation allows us to express the canonical ensemble in terms of the
empirical means, or spin per siteSn/n = ∑n

j=1 ωj/n, of the spin random variables.
Doing so reduces the analysis of the BEG model to the analysis of a Curie–Weiss-
type model [9] with single-site measures depending onβ.

The analysis of the set of canonical equilibrium macrostates is further simplified
by a second innovation. Because the thermodynamic parameter that defines the
canonical ensemble is the inverse temperatureβ, a phase transition with respect
to this ensemble is defined by fixing the Hamiltonian-parameterK and varyingβ.
Our analysis of the set of canonical equilibrium macrostates is based on a much
more efficient approach that fixesβ and variesK . Proceeding in this way allows
us to solve rigorously and in complete detail the reduced one-dimensional problem
characterizing the equilibrium macrostates. We then extrapolate these results
obtained by fixingβ and varyingK to physically relevant results that hold for
fixed K and varyingβ. These include a second-order, continuous phase transition
and a first-order, discontinuous phase transition for different ranges ofK .

For the microcanonical ensemble, we use a technique employed in [2] that
absorbs the constraint into the minimizing function. This step allows us to reduce
the constrained minimization problem defining the microcanonical equilibrium
macrostates to another minimization problem that is more easily solved. Rigorous
analysis of the reduced problem being limited, we rely mostly on numerical
computations to complete our analysis of the set of equilibrium macrostates.
Because the thermodynamic parameter defining the microcanonical ensemble is
the energy per particleu, a phase transition with respect to this ensemble is defined
by fixing K and varyingu. By analogy with the canonical case, our numerical
analysis of the set of microcanonical equilibrium macrostates is based on a much
more efficient approach that fixesu and variesK . The analysis with respect toK
rather thanu allows us to solve in some detail the reduced problem characterizing
the equilibrium macrostates. We then extrapolate these results obtained by fixingu

and varyingK to physically relevant results that hold for fixedK and varyingu.
As in the case of the canonical ensemble, these include a second-order, continuous
phase transition and a first-order, discontinuous phase transition for different
ranges ofK .

The contributions of this paper include a rigorous global analysis of the first-
order phase transition in the canonical ensemble. Blume, Emery and Griffiths did
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a local analysis of the spin per site to show that their model exhibits a second-
order phase transition for a range of values ofK and that, at a certain value ofK ,
a tricritical point appears [4]; a similar study of a related model is carried out
in [5, 6]. This tricritical point has the property that, for all smaller values ofK , we
are dealing with a first-order phase transition. Mathematically, the tricritical point
marks the beginning of the failure of the local analysis; beyond this point, one
has to resort to a global analysis of the spin per site. While the first-order phase
transition has been studied numerically by several authors, the present paper gives
the first rigorous global analysis.

Another contribution is that we analyze the phase transition for the canonical
ensemble both in terms of the spin per site and the empirical measure. While
all previous studies of the BEG model, except for [15], focused only on the spin
per site, the analysis in terms of the empirical measure is the natural context for
understanding equivalence and nonequivalence of ensembles [15].

A main consequence of our analysis is that the tricritical point—the critical
value of the Hamiltonian parameterK at which the model changes its phase
transition behavior from second-order to first-order—differs in the two ensembles.
Specifically, the tricritical point is smaller in the microcanonical ensemble than in
the canonical ensemble. Therefore, there exists a range of values ofK such that
the BEG model with respect to the canonical ensemble exhibits a first-order phase
transition, while, with respect to the microcanonical ensemble, the model exhibits
a second-order phase transition. As we discuss in Section 5, these results are
consistent with the observation, seen numerically in [15], that there exists a subset
of the microcanonical equilibrium macrostates that are not realized canonically.
This observation implies that the two ensembles are nonequivalent at the level of
equilibrium macrostates.

A final contribution of this paper is to present probabilistic limit theorems for
appropriately scaled partial sumsSn = ∑n

j=1 ωj with respect to the canonical en-
semble. These limits follow from our work in Section 3 and known limit theorems
for the Curie–Weiss model derived in [12, 14]. They include conditioned limit
theorems when there are multiple equilibrium macrostates representing coexisting
phases. In most cases the limits involve the central-limit-type scalingn1/2 and con-
vergence in distribution of(Sn −nz̃)/n1/2 to a normal random variable, wherez̃ is
an equilibrium macrostate. They also include the following two nonclassical cases,
which hold for appropriate critical values of the parameters defining the canonical
ensemble:

Sn/n3/4 D−→ X whereP {X ∈ dx} = const· exp[−const· x4]dx

and

Sn/n5/6 D−→ X whereP {X ∈ dx} = const· exp[−const· x6]dx.

As in the case of more complicated models, such as the Ising model, these
nonclassical theorems signal the onset of a phase transition in the BEG model ([9],
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Section V.8). They are analogues of a result for the much simpler Curie–Weiss
model ([9], Theorem V.9.5).

The outline of the paper is as follows. In Section 2, following the general
procedure described in [10], we define the canonical ensemble, the microcanonical
ensemble and the corresponding sets of equilibrium macrostates. In Section 3 the
structure of the set of canonical equilibrium macrostates is studied. The initial
analysis is carried out in Sections 3.2 and 3.3 at the level of the spin per siteSn/n

after the BEG model is written as a Curie–Weiss-type model in Section 3.1. In
Sections 3.4 and 3.5 the information at the level of the spin per site is lifted to the
level of the empirical measures of the spin random variables using the contraction
principle, a main tool in the theory of large deviations. In Section 4 we present
new theoretical insights into, and numerical results concerning, the structure of
the set of microcanonical equilibrium macrostates. In Section 5 we discuss the
implications of the results in the two previous sections concerning the nature of the
phase transitions in the BEG model, which in turn is related to the phenomenon
of ensemble nonequivalence at the level of equilibrium macrostates. Section 6 is
devoted to probabilistic limit theorems for appropriately scaled sumsSn.

2. Sets of equilibrium macrostates for the two ensembles. The canonical
and microcanonical ensembles are defined in terms of probability measures on a
sequence of probability spaces(�n,Fn). The configuration spaces�n consist of
microstatesω = (ω1, . . . ,ωn) with eachωj ∈ � = {−1,0,1}, andFn is theσ -field
consisting of all subsets of�n. We also introduce then-fold product measurePn

on�n with identical one-dimensional marginalsρ = 1
3(δ−1 + δ0 + δ1).

In terms of the energy per particlehn,K defined in (1.1), for eachn ∈ N, β > 0
andK > 0, the partition function is defined by

Zn(β,K) =
∫
�n

exp[−nβhn,K ]dPn.

For setsB ∈ Fn, the canonical ensemble for the BEG model is the probability
measure

Pn,β,K(B) = 1

Zn(β,K)
·
∫
B

exp[−nβhn,K ]dPn.(2.1)

For u ∈ R, r > 0, K > 0 and setsB ∈ Fn, the microcanonical ensemble is the
conditional probability measure

P u,r,K
n (B) = Pn{B|hn,K ∈ [u − r, u + r]}

(2.2)

= Pn{B ∩ {hn,K ∈ [u − r, u + r]}}
Pn{hn,K ∈ [u − r, u + r]} .

As we point out after (2.4), for appropriate values ofu and all sufficiently largen,
the denominator is positive and, thus,P u,r,K

n is well defined.
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The key to our analysis of the BEG model is to express both the canonical and
the microcanonical ensembles in terms of the empirical measureLn defined for
ω ∈ �n by

Ln = Ln(ω, ·) = 1

n

n∑
j=1

δωj
(·).

Ln takes values inP (�), the set of probability measures on� = {−1,0,1}. For
i ∈ �, Ln(ω, {i}) denotes the relative frequency of spinsωj taking the valuei. We
rewritehn,K as

hn,K(ω) =
∑n

j=1 ω2
j

n
− K

(∑n
j=1 ωj

n

)2

=
∫
�

y2Ln(ω,dy) − K

(∫
�

yLn(ω,dy)

)2

,

and, forµ ∈ P (�), we define

fK(µ) =
∫
�

y2µ(dy) − K

(∫
�

yµ(dy)

)2

(2.3)
= (µ1 + µ−1) − K(µ1 − µ−1)

2.

The range of this function is the closed interval[min(1−K,0),1]. In terms offK ,
we expresshn,K in the form

hn,K(ω) = fK(Ln(ω)).

We appeal to the theory of large deviations to define the sets of canonical
equilibrium macrostates and microcanonical equilibrium macrostates. Since any
µ ∈ P (�) has the form

∑1
i=−1 µiδi , whereµi ≥ 0 and

∑1
i=−1 µi = 1, P (�) can

be identified with the set of probability vectors inR3. We topologizeP (�) with
the relative topology that this set inherits as a subset ofR

3. The relative entropy of
µ ∈ P (�) with respect toρ is defined by

R(µ|ρ) =
1∑

i=−1

µi log(3µi).

Sanov’s theorem states that, with respect to the product measuresPn, the empirical
measuresLn satisfy the large deviation principle (LDP) onP (�) with rate
functionR(·|ρ) ([9], Theorem VIII.2.1). That is, for any closed subsetF of P (�),
we have the large deviation upper bound

lim sup
n→∞

1

n
logPn{Ln ∈ F } ≤ − inf

µ∈F
R(µ|ρ),



PHASE TRANSITIONS IN THE MEAN-FIELD BEG MODEL 2209

and, for any open subsetG of P (�), we have the large deviation lower bound

lim sup
n→∞

1

n
logPn{Ln ∈ G} ≥ − inf

µ∈G
R(µ|ρ).

From the LDP for thePn-distributions ofLn, we can derive the LDPs ofLn

with respect to the two ensemblesPn,β,K and P u,r,K
n . In order to state these

LDPs, we introduce two basic thermodynamic functions, one associated with
each ensemble. Forβ > 0 andK > 0, the basic thermodynamic function for the
canonical ensemble is the canonical free energy

ϕK(β) = − lim
n→∞

1

n
logZn(β,K).

It follows from Theorem 2.4(a) in [10] that this limit exists for allβ > 0 andK > 0
and is given by

ϕK(β) = inf
µ∈P (�)

{R(µ|ρ) + βfK(µ)}.

For the microcanonical ensemble, the basic thermodynamic function is the
microcanonical entropy

sK(u) = − inf{R(µ|ρ) :µ ∈ P (�),fK(µ) = u}.(2.4)

SinceR(µ|ρ) ≥ 0 for all µ, sK(u) ∈ [−∞,0] for all u. We define domsK to
be the set ofu ∈ R for which sK(u) > −∞. Clearly, domsK coincides with the
range offK on P (�), which equals the closed interval[min(1 − K,0),1]. For
u ∈ domsK and all sufficiently largen, the denominator in the second line of (2.2)
is positive and, thus, the microcanonical ensembleP u,r,K

n is well defined ([10],
Proposition 3.1).

The LDPs forLn with respect to the two ensembles are given in the next
theorem. They are consequences of Theorems 2.4 and 3.2 in [10].

THEOREM 2.1. (a) With respect to the canonical ensemble Pn,β,K , the
empirical measures Ln satisfy the LDP on P (�) with rate function

Iβ,K(µ) = R(µ|ρ) + βfK(µ) − ϕK(β).(2.5)

(b) With respect to the microcanonical ensemble P u,r,K
n , the empirical mea-

sures Ln satisfy the LDP on P (�), in the double limit n → ∞ and r → 0, with
rate function

Iu,K(µ) =
{

R(µ|ρ) + sK(u), if fK(µ) = u,
∞, otherwise.

(2.6)

For µ ∈ P and ε > 0, we denote byB(µ, ε) the closed ball inP with
center µ and radiusε. If Iβ(µ) > 0, then for all sufficiently smallε > 0,
infν∈B(µ,ε) Iβ(µ) > 0. Hence, by the large deviation upper bound forLn with
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respect to the canonical ensemble, for allµ ∈ P (�) satisfying Iβ(µ) > 0, all
sufficiently smallε > 0 and all sufficiently largen,

Pn,β,K{Ln ∈ B(µ, ε)} ≤ exp
[
−n

(
inf

ν∈B(µ,ε)
Iβ(ν)

)/
2
]
,

which converges to 0 exponentially fast. Consequently, the most probable
macrostatesν solve Iβ,K(ν) = 0. It is therefore natural to define the set of
canonical equilibrium macrostates to be

Eβ,K = {ν ∈ P (�) : Iβ,K(ν) = 0}
(2.7)

= {ν ∈ P (�) :ν minimizesR(ν|ρ) + βfK(ν)}.
Similarly, because of the large deviation upper bound forLn with respect to
the microcanonical ensemble, it is natural to define the set of microcanonical
equilibrium macrostates to be

Eu,K = {ν ∈ P (�) : Iu,K(ν) = 0}
(2.8)

= {ν ∈ P (�) :ν minimizesR(ν|ρ) subject tofK(ν) = u}.
Each elementν in Eβ,K and Eu,K has the formν = ν−1δ−1 + ν0δ0 + ν1δ1
and describes an equilibrium configuration of the model in the corresponding
ensemble. Fori = −1,0,1, νi gives the asymptotic relative frequency of spins
taking the valuei.

In the next section we begin our study of the sets of equilibrium macrostates for
the BEG model by analyzingEβ,K .

3. Structure of the set of canonical equilibrium macrostates. In this
section we give a complete description of the setEβ,K of canonical equilibrium
macrostates for all values ofβ and K . In contrast to all other studies of the
model, which fixK and varyβ, we analyze the structure ofEβ,K by fixing β

and varyingK . As stated in Theorems 3.1 and 3.2, there exists a critical value
of β, denoted byβc and equal to log 4, such thatEβ,K has two different forms
for 0 < β ≤ βc and forβ > βc. Specifically, for fixed 0< β ≤ βc, Eβ,K exhibits

a continuous bifurcation asK passes through a critical valueK(2)
c (β), while for

fixed β > βc, Eβ,K exhibits a discontinuous bifurcation asK passes through a

critical valueK
(1)
c (β). In Section 5 we show how to extrapolate this information

to information concerning the phase transition behavior of the canonical ensemble
for varyingβ: a continuous, second-order phase transition for all fixed, sufficiently
large values ofK and a discontinuous, first-order phase transition for all fixed,
sufficiently small values ofK .

In terms of the uniform measureρ = 1
3(δ−1 + δ0 + δ1), we define

ρβ(dωj ) = 1

Z(β)
· exp(−βω2

j )ρ(dωj ),(3.1)
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where Z(β) = ∫
� exp(−βω2

j )ρ(dωj ). The next two theorems give the form
of Eβ,K for 0< β ≤ βc and forβ > βc. Theorem 3.1 will be proved in Section 3.5
as a consequence of Theorem 3.6, which is proved in Section 3.2.

THEOREM 3.1. Define βc = log 4 and let ρβ be the measure defined in (3.1).
For 0< β ≤ βc, the following conclusions hold:

(a) There exists a critical value K
(2)
c (β) > 0 defined in (3.19)and having the

following properties:

(i) For 0< K ≤ K
(2)
c (β), Eβ,K = {ρβ}.

(ii) For K > K
(2)
c (β), there exist probability measures ν+(β,K) and

ν−(β,K) in P (�) such that ν+(β,K) �= ν−(β,K) �= ρβ and Eβ,K = {ν+(β,K),

ν−(β,K)}.
(b) If we write ν+(β,K) = ν+

−1δ−1 + ν+
0 δ0 + ν+

1 δ1, then ν−(β,K) = ν+
1 δ−1 +

ν+
0 δ0 + ν+

−1δ1.

(c) For each choice of sign, ν±(β,K) is a continuous function for K> K
(2)
c (β),

and as K → (K
(2)
c (β))+, ν±(β,K) → ρβ . Therefore, Eβ,K exhibits a continuous

bifurcation at K
(2)
c (β).

The continuous bifurcation described in part (c) of the theorem is an analogue
of a second-order phase transition and explains the superscript 2 on the critical
valueK

(2)
c (β). The next theorem shows that, forβ > βc, the setEβ,K exhibits a

discontinuous bifurcation at a valueK(1)
c (β). This analogue of a first-order phase

transition explains the superscript 1 on the corresponding critical valueK
(1)
c (β).

Theorem 3.2 will be proved in Section 3.5 as a consequence of Theorem 3.8,
which is proved in Section 3.3. As we will see in the proof of the latter theorem,
K

(1)
c (β) is the unique zero of the functionA(K) defined in (3.31) forK ≥ K1(β);

K1(β) is specified in Lemma 3.9.

THEOREM 3.2. Define βc = log 4 and let ρβ be the measure defined in (3.1).
For β > βc, the following conclusions hold:

(a) There exists a critical value K
(1)
c (β) > 0 having the following properties:

(i) For 0< K < K
(1)
c (β), Eβ,K = {ρβ}.

(ii) For K = K
(1)
c (β), there exist probability measures ν+(β,K

(1)
c (β))

and ν−(β,K
(1)
c (β)) such that ν+ �= ν− �= ρβ and Eβ,K = {ρβ, ν+(β,K

(1)
c (β)),

ν−(β,K
(1)
c (β))}.

(iii) For K > K
(1)
c (β), there exist probability measures ν+(β,K) and

ν−(β,K) such that ν+(β,K) �= ν−(β,K) �= ρβ and Eβ,K = {ν+(β,K),

ν−(β,K)}.
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(b) If we write ν+(β,K) = ν+
−1δ−1 + ν+

0 δ0 + ν+
1 δ1, then ν−(β,K) = ν+

1 δ−1 +
ν+

0 δ0 + ν+
−1δ1.

(c) For each choice of sign, ν±(β,K) is a continuous function for K≥ K
(1)
c (β),

and as K → (K
(1)
c (β))+, ν±(β,K) → ν±(β,K

(1)
c (β)) �= ρβ . Therefore, Eβ,K ex-

hibits a discontinuous bifurcation at K
(1)
c (β).

We prove Theorems 3.1 and 3.2 in several steps. In the first step, carried out
in Section 3.1, we absorb the noninteracting component of the energy per particle
into the product measure of the canonical ensemble. This reduces the model to a
Curie–Weiss-type model, which can be analyzed in terms of the empirical means
Sn/n = ∑n

j=1 ωj/n. The structure of the set of canonical equilibrium macrostates
for this Curie–Weiss-type model is analyzed in Section 3.2 for 0< β ≤ βc and
in Section 3.3 forβ > βc. In Section 3.4 we lift our results from the level of the
empirical means up to the level of the empirical measures using the contraction
principle, a main tool in the theory of large deviations. Finally, in Section 3.5 we
derive Theorems 3.1 and 3.2 from the results derived in Section 3.2 for 0< β ≤ βc

and in Section 3.3 forβ > βc.

3.1. Reduction to the Curie–Weiss model. The first step in the proofs of
Theorems 3.1 and 3.2 is to rewrite the canonical ensemblePn,β,K in the form of a
Curie–Weiss-type model. We do this by absorbing the noninteracting component
of the energy per particlehn,K into the product measure ofPn,β,K . Defining
Sn(ω) = ∑n

j=1 ωj , we write

Pn,β,K(dω) = 1

Zn(β,K)
· exp[−nβhn,K(ω)]Pn(dω)

= 1

Zn(β,K)
· exp

[
−nβ

(∑n
j=1 ω2

j

n
− K

(∑n
j=1 ωj

n

)2)]
Pn(dω)

= 1

Zn(β,K)
· exp

[
nβK

(
Sn(ω)

n

)2] n∏
j=1

exp(−βω2
j )ρ(dωj )

= (Z(β))n

Zn(β,K)
· exp

[
nβK

(
Sn(ω)

n

)2]
Pn,β(dω).

In this formulaZ(β) = ∫
� exp(−βω2

j )ρ(dωj ) and Pn,β is the product measure
on�n with identical one-dimensional marginalsρβ defined in (3.1).

We define

Z̃n(β,K) =
∫
�n

exp
[
nβ

(
Sn

n

)2]
dPn,β.
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SincePn,β,K is a probability measure, it follows that

Z̃n(β,K) = Zn(β,K)

[Z(β)]n
and, thus, that

Pn,β,K(dω) = 1

Z̃n(β,K)
· exp

[
nβK

(
Sn(ω)

n

)2]
Pn,β(dω).(3.2)

By expressing the canonical ensemble in terms of the empirical meansSn/n,
we have reduced the BEG model to a Curie–Weiss-type model. Cramér’s theorem
([9], Theorem II.4.1) states that, with respect to the product measuresPn,β ,
Sn/n satisfies the LDP on[−1,1] with rate function

Jβ(z) = sup
t∈R

{tz − cβ(t)}.(3.3)

In this formulacβ is the cumulant generating function defined by

cβ(t) = log
∫
�

exp(tω1)ρβ(dω1)

(3.4)

= log
[

1+ e−β(et + e−t )

1+ 2e−β

]
.

Jβ is finite on the closed interval[−1,1] and is differentiable on the open
interval (−1,1). This function is expressed in (3.3) as the Legendre–Fenchel
transform of the finite, strictly convex, differentiable functioncβ . By the theory
of these transforms ([22], Theorem 25.1, [9], Theorem VI.5.3(d)), for each
z ∈ (−1,1),

J ′
β(z) = (c′

β)−1(z).(3.5)

From the LDP forSn/n with respect toPn,β , Theorem 2.4 in [10] gives the LDP
for Sn/n with respect to the canonical ensemble written in the form (3.2).

THEOREM 3.3. With respect to the canonical ensemble Pn,β,K written in the
form (3.2),the empirical means Sn/n satisfy the LDP on [−1,1] with rate function

Ĩβ,K = Jβ(z) − βKz2 − inf
t∈R

{Jβ(t) − βKt2}.(3.6)

In Section 2 the canonical ensemble for the BEG model is expressed in terms of
the empirical measuresLn. The corresponding setEβ,K of canonical equilibrium
macrostates is defined as the set of probability measuresν ∈ P (�) for which the
rate functionIβ,K in the associated LDP satisfiesIβ,K(ν) = 0 [see (2.7)]. By
contrast, in (3.2) the canonical ensemble is expressed in terms of the empirical
meansSn/n. We now consider the set̃Eβ,K of canonical equilibrium macrostates
for the BEG model expressed in terms of the empirical means. Theorem 3.3 makes
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it natural to defineẼβ,K as the set ofz ∈ [−1,1] for which the rate function in that
theorem satisfies̃Iβ,K(z) = 0. Sincez is a zero of this rate function if and only if
z minimizesJβ(z) − βKz2, we have

Ẽβ,K = {z ∈ [−1,1] : z minimizesJβ(z) − βKz2}.(3.7)

As we will see in Theorem 3.13, eachz ∈ Ẽβ,K equals the mean of a corresponding
measureν ∈ Eβ,K . Thus, eachz ∈ Ẽβ,K describes an equilibrium configuration of
the model in terms of the specific magnetization, or the asymptotic average spin
per site.

Although Jβ(z) can be computed explicitly, the expression is messy. Instead,
we use an alternative characterization ofẼβ,K given in the next proposition to
determine the points in that set. This proposition is a special case of Theorem A.1
in [7].

PROPOSITION3.4. For z ∈ R, define

Gβ,K(z) = βKz2 − cβ(2βKz).(3.8)

Then for each β > 0 and K > 0,

min|z|≤1
{Jβ(z) − βKz2} = min

z∈R

{Gβ,K(z)}.(3.9)

In addition, the global minimum points of Jβ(z) − βKz2 coincide with the global
minimum points of Gβ,K . As a consequence,

Ẽβ,K = {z ∈ R : z minimizes Gβ,K(z)}.(3.10)

PROOF. The finite, convex functionf (z) = cβ(2βKz)/(2βK) has the
Legendre–Fenchel transform

f ∗(z) = sup
x∈R

{xz − f (x)} =
{

Jβ(z)/(2βK), for |z| ≤ 1,
∞, for |z| > 1.

We prove the proposition by showing the following three steps:

1. supz∈R{f (z) − z2/2} = sup|z|≤1{z2/2− f ∗(z)}.
2. Both suprema in step 1 are attained, the first for somez ∈ R and the second for

somez ∈ (−1,1).
3. The global maximum points off (z)− z2/2 coincide with the global maximum

points ofz2/2− f ∗(z).
The proof uses three properties of Legendre–Fenchel transforms:

1. For allz ∈ R, f ∗∗(z) = (f ∗)∗(z) equalsf (z) ([9], Theorem VI.5.3(e)).
2. If for somex ∈ R and z ∈ R, we havez = f ′(x), thenf (x) + f ∗(z) = xz

([22], Theorem 25.1, [9], Theorem VI.5.3(c)). In particular, ifz = x, then
f (x) + f ∗(x) = x2.
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3. If there existsx ∈ (−1,1) andy ∈ R such that

f ∗(z) ≥ f ∗(x) + y(z − x) for all z ∈ [−1,1],(3.11)

theny = (f ∗)′(x) ([22], Theorem 25.1). Hence, by properties 1 and 2,

f ∗(x) + f ∗∗(y) = f ∗(x) + f (y) = xy.

In particular, if (3.11) is valid withy = x, thenf (x) + f ∗(x) = x2.

Step 1 in the proof is a special case of Theorem C.1 in [8]. For completeness,
we present the straightforward proof. LetM = supz∈R{f (z)−z2/2}. Since for any
|z| ≤ 1 andx ∈ R

f ∗(z) + M ≥ xz − f (x) + M ≥ xz − x2/2,

we have

f ∗(z) + M ≥ sup
x∈R

{xz − x2/2} = z2/2.

It follows thatM ≥ z2/2 − f ∗(z) and thus thatM ≥ sup|z|≤1{z2/2 − f ∗(z)}. To
prove the reverse inequality, letN = sup|z|≤1{z2/2 − f ∗(z)}. Then for anyz ∈ R

and|x| ≤ 1,

z2/2+ N ≥ xz − x2/2+ N ≥ xz − f ∗(x).

Sincef ∗(x) = ∞ for |x| > 1, it follows from property 1 that

z2/2+ N ≥ sup
|x|≤1

{xz − f ∗(x)} = f (z)

and thus thatN ≥ supz∈R{f (z) − z2/2}. This completes the proof of step 1.
Sincef (z) ∼ |z| asz → ∞, f (z) − z2/2 attains its supremum overR. Since

z2/2 − f ∗(z) is continuous and lim|z|→1(f
∗)′(z) = ∞, z2/2 − f ∗(z) attains its

supremum over[−1,1] in the open interval(−1,1). This completes the proof of
step 2.

We now prove that the global maximum points of the two functions coincide.
Let x be any point inR at which f (z) − z2/2 attains its supremum. Then
x = f ′(x), and so by the second assertion in property 2,f (x) + f ∗(x) = x2. The
point x lies in (−1,1) because the range off ′(z) = c′

β(2βKz) equals(−1,1).
Step 1 now implies that

sup
|z|≤1

{z2/2− f ∗(z)} = sup
z∈R

{f (z) − z2/2}

= f (x) − x2/2= x2/2− f ∗(x).

We conclude thatz2/2− f ∗(z) attains its supremum atx ∈ (−1,1).
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Conversely, letx be any point in(−1,1) at which z2/2 − f ∗(z) attains its
supremum. Then for anyz ∈ [−1,1],

x2/2− f ∗(x) ≥ z2/2− f ∗(z).

It follows that, for anyz ∈ [−1,1],
f ∗(z) ≥ f ∗(x) + (z2 − x2)/2≥ f ∗(x) + x(z − x).

The second assertion in property 3 implies thatf ∗(x) + f (x) = x2, and, in
conjunction with step 1, this in turn implies that

sup
z∈R

{f (z) − z2/2} = sup
|z|≤1

{z2/2− f ∗(z)}

= x2/2− f ∗(x) = f (x) − x2/2.

We conclude thatf (z) − z2/2 attains its supremum atx. This completes the proof
of the proposition. �

Proposition 3.4 states that̃Eβ,K consists of the global minimum points of
Gβ,K(z) = βKz2 − cβ(2βKz). In order to simplify the minimization problem, we
make the change of variablesz → z/(2βK) in Gβ,K , obtaining the new function

Fβ,K(z) = Gβ,K

(
z

2βK

)
= z2

4βK
− cβ(z).(3.12)

Proposition 3.4 gives the alternative characterization ofẼβ,K to be

Ẽβ,K =
{

w

2βK
∈ R :w minimizesFβ,K(w)

}
.(3.13)

We useFβ,K to analyzeẼβ,K because the second term ofFβ,K contains only the
parameterβ, while both terms inGβ,K contain both parametersβ andK . In order
to analyze the structure of̃Eβ,K , we take advantage of the simpler form ofFβ,K

by fixing β and varyingK . This innovation makes the analysis ofẼβ,K much
more efficient than in previous studies. Our goal is prove that the elements ofẼβ,K

change continuously withK for all 0 < β ≤ βc = log 4 (Theorem 3.1) and have a

discontinuity atK(1)
c for all β > βc (Theorem 3.2).

In order to determine the minimum points ofFβ,K and, thus, the points iñEβ,K ,
we study the derivative

F ′
β,K(w) = w

2βK
− c′

β(w).(3.14)

F ′
β,K(w) consists of a linear partw/(2βK) and a nonlinear partc′

β(w). As we
will see in Sections 3.2 and 3.3, the basic mechanism underlying the change in
the bifurcation behavior of̃Eβ,K is the change in the concavity behavior ofc′

β(w)
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for 0 < β ≤ βc versusβ > βc, which is the subject of the next theorem. A related
phenomenon was observed in [11], Theorem 1.2(b), and in [13], Theorem 4, in the
context of work on the Griffiths–Hurst–Sherman correlation inequality for models
of ferromagnets; this inequality is used to show the concavity of the specific
magnetization as a function of the external field.

THEOREM 3.5. For β > βc = log 4,define

wc(β) = cosh−1(1
2eβ − 4e−β) ≥ 0.(3.15)

The following conclusions hold:

(a) For 0< β ≤ βc, c′
β(w) is strictly concave for w > 0.

(b) For β > βc, c′
β(w) is strictly convex for 0 < w < wc(β) and c′

β(w) is
strictly concave for w > wc(β).

PROOF. (a) We show that for all 0< β ≤ βc, c′′′
β (w) < 0 for all w > 0. A short

calculation yields

c′′′
β (w) = [2e−β sinhw][1− 2e−β coshw − 8e−2β ]

[1+ 2e−β coshw]3 .(3.16)

Since 2e−β sinhw and 1+ 2e−β coshw are positive forw > 0, c′′′
β (w) < 0 for

w > 0 if and only if

1− 2e−β coshw − 8e−2β < 0 for w > 0.

The inequality coshw > 1 for w > 0 implies that

[1− 2e−β coshw − 8e−2β ] < [1− 2e−β − 8e−2β ]
= (1− 4e−β)(1+ 2e−β) for all w > 0.

Therefore, for all 0< β ≤ log4,c′′′
β (w) < 0 for w > 0.

(b) Fixing β > βc, we determine the critical valuewc(β) such thatc′
β(w)

is strictly convex for 0< w < wc(β) and strictly concave forw > wc(β).
From the expression forc′′′

β (w) in (3.16), c′′′
β (w) > 0 for w > 0 if and only if

(1− 2e−β coshw − 8e−2β) > 0 for w > 0. Therefore,c′
β(w) is strictly convex for

0 < w < cosh−1(1
2eβ − 4e−β)

.

On the other hand, sincec′′′
β (w) < 0 for w > 0 if and only if (1 − 2e−β coshw −

8e−2β) < 0 for w > 0, we conclude thatc′
β(w) is strictly concave for

w > cosh−1(1
2eβ − 4e−β)

.

This completes the proof of part (b).�
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The concavity description ofc′
β stated in Theorem 3.5 allows us to find the

global minimum points ofFβ,K and thus the points iñEβ,K for all values of the
parametersβ andK . We carry this out in the next two sections, first for 0< β ≤ βc

and then forβ > βc. In Section 3.4 we use this information to give the structure of
the setEβ,K of canonical equilibrium macrostates defined in (2.7).

3.2. Description of Ẽβ,K for 0< β ≤ βc. In Theorem 3.1 we state the structure
of the setEβ,K of canonical equilibrium macrostates for the BEG model with
respect to the empirical measures when 0< β ≤ βc = log4. The main theorem in
this section, Theorem 3.6, does the same for the setẼβ,K , which has been shown
to have the alternative characterization

Ẽβ,K =
{

w

2βK
∈ R :w minimizesFβ,K(w)

}
.(3.17)

We recall thatFβ,K(w) = w2/(4βK) − cβ(w), wherecβ is defined in (3.4). In
Section 3.4 we will prove that there exists a one-to-one correspondence between
Ẽβ,K andEβ,K . In Section 3.5 we will use this fact to fully describe the latter set
for all 0< β ≤ βc andK > 0.

According to part (a) of Theorem 3.5, for 0< β ≤ βc, c′
β(w) is strictly concave

for w > 0. As a result, the study of̃Eβ,K is similar to the study of the equilibrium
macrostates for the classical Curie–Weiss model as given in Section IV.4 of [9].
Following the discussion in that section, we first use a graphical argument to
motivate the continuous bifurcation exhibited byẼβ,K for 0 < β ≤ βc. A detailed
statement is given in Theorem 3.6.

Minimum points ofFβ,K satisfyF ′
β,K(w) = 0, which can be rewritten as

w

2βK
= c′

β(w).(3.18)

Since the slope of the functionw �→ w/(2βK) is 1/(2βK), the nature of the
solutions of (3.18) depends on whether

c′′
β(0) ≤ 1

2βK
or 0<

1

2βK
< c′′

β(0).

This motivates the definition of the critical value

K(2)
c (β) = 1

2βc′′
β(0)

= 1

4βe−β
+ 1

2β
.(3.19)

We use the same notation here as for the critical value in Theorem 3.1 because, as
we will later prove, the continuous bifurcation inK exhibited by both setsEβ,K

andẼβ,K occur at the same valueK(2)
c (β).

We illustrate the minimum points ofFβ,K graphically in Figure 1 forβ = 1.
For three ranges of values ofK , this figure depicts the two components of
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FIG. 1. Continuous bifurcation for β = 1. (a)K < K
(2)
c (β), (b) K = K

(2)
c (β), (c) K > K

(2)
c (β).

F ′
β,K : the linear componentw/(2βK) and the nonlinear componentc′

β(w).

Figure 1(a) corresponds to 0< K < K
(2)
c (β). Sincec′′

β(0) = 1/(2βK
(2)
c (β)), for

0< K < K
(2)
c (β), the two components ofF ′

β,K intersect at only the origin, and,
thus,Fβ,K has a unique global minimum point atw = 0. Figure 1(b) corresponds

to K = K
(2)
c (β). In this case the two components ofF ′

β,K are tangent at the
origin, and againFβ,K has a unique global minimum point atw = 0. Figure 1(c)

corresponds toK > K
(2)
c (β). For suchK , the global minimum points ofFβ,K are

symmetric nonzero pointsw = ±w̃(β,K), w̃(β,K) > 0.
Figures 1(a) and 1(c) give similar information as Figures IV.3(b) and IV.3(d)

in [9], which depict the phase transition in the Curie–Weiss model. In these two
sets of figures the functions being graphed are Legendre–Fenchel transforms of
each other.

The graphical information just obtained concerning the global minimum points
of Fβ,K for 0< β ≤ βc motivates the form of̃Eβ,K stated in the next theorem. The
positive quantitỹz(β,K) equalsw̃(β,K)/(2βK); w̃(β,K) is the unique positive
global minimum point ofFβ,K for K > K

(2)
c (β), the existence of which is proved

in Lemma 3.7. According to part (c) of the theorem,z̃(β,K) is a continuous
function forK > K

(2)
c (β), and asK → (K

(2)
c (β))+, z̃(β,K) converges to 0. As a

result, the bifurcation exhibited bỹEβ,K atK(2)
c (β) is continuous.

THEOREM 3.6. Define Ẽβ,K by (3.7);equivalently,

Ẽβ,K =
{

w

2βK
∈ R :w minimizes Fβ,K(w)

}
.

For all 0 < β ≤ βc, the critical value K
(2)
c (β) = 1/(2βc′′

β(0)) has the following
properties:

(a) For 0< K ≤ K
(2)
c (β), Ẽβ,K = {0}.

(b) For K > K
(2)
c (β), there exists a positive number z̃(β,K) such that Ẽβ,K =

{±z̃(β,K)}.
(c) z̃(β,K) is a strictly increasing continuous function for K > K

(2)
c (β),

and as K → (K
(2)
c (β))+, z̃(β,K) → 0. Therefore, Ẽβ,K exhibits a continuous

bifurcation at K
(2)
c (β).
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The proof of the theorem depends on the next lemma, in which we show that,
for K > K

(2)
c (β), Fβ,K has a unique positive global minimum at a pointw̃(β,K).

LEMMA 3.7. For 0 < β ≤ βc = log4, define Fβ,K by (3.12).The following
conclusions hold:

(a) For each K > K
(2)
c (β), Fβ,K has a critical point w̃(β,K) > 0 satisfying

F ′
β,K

(
w̃(β,K)

) = 0 and F ′′
β,K

(
w̃(β,K)

)
> 0.

(b) For each K > K
(2)
c (β), Fβ,K has unique nonzero global minimum points at

w = ±w̃(β,K).
(c) The points {w̃(β,K),K > K

(2)
c (β)} span the positive real line; that is, for

each x > 0, there exists K > K
(2)
c (β) such that x = w̃(β,K).

PROOF. (a) For anyK > K
(2)
c (β), we have

1

2βK
<

1

2βK
(2)
c (β)

= c′′
β(0) = lim

w→0

c′
β(w)

w
.(3.20)

Sincec′
β is continuous, for sufficiently smallw > 0, we havew/(2βK) < c′

β(w)

and, thus,F ′
β,K(w) < 0. On the other hand,|c′

β(w)| < 1 for all w and, therefore,
limw→∞ F ′

β,K(w) = ∞. It follows thatF ′
β,K(w) > 0 for sufficiently largew > 0.

Consequently, by the continuity ofF ′
β,K , there exists at least one positive critical

point ofFβ,K ; the analyticity ofFβ,K implies thatFβ,K has at most finitely many
critical points. Denote bỹw(β,K) > 0 the smallest positive critical point ofFβ,K .

We now prove thatF ′′
β,K(w̃(β,K)) > 0. SinceF ′

β,K(w̃(β,K)) = 0, the mean
value theorem yields the existence ofα ∈ (0, w̃(β,K)) such that

c′′
β(α) = c′

β(w̃(β,K))

w̃(β,K)
= 1

2βK
.

By part (a) of Theorem 3.5, sinceα < w̃(β,K), it follows that c′′
β(α) >

c′′
β(w̃(β,K)) and thus that

F ′′
β,K

(
w̃(β,K)

) = 1

2βK
− c′′

β

(
w̃(β,K)

)
>

1

2βK
− c′′

β(α) = 0.(3.21)

This completes the proof of part (a).
(b) For anyw > w̃(β,K), the strict concavity ofc′

β(w) for w > 0 [Theo-
rem 3.5(a)] implies thatc′′

β(w) < c′′
β(w̃(β,K)). Therefore, by (3.21), we have

F ′′
β,K(w) = 1

2βK
− c′′

β(w)

>
1

2βK
− c′′

β

(
w̃(β,K)

) = F ′′
β,K

(
w̃(β,K)

)
> 0.
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Thus,F ′
β,K is strictly increasing forw > w̃(β,K). This property allows us to con-

clude thatw̃(β,K) is the unique positive critical point and the unique positive local
minimum point ofFβ,K . By symmetry,Fβ,K has a unique negative local minimum
point atw = −w̃(β,K). In addition, as shown in (3.20), for anyK > K2

c (β), we
haveF ′′

β,K(0) = 1/(2βK) − c′′
β(0) < 0. Since lim|w|→∞ Fβ,K(w) = ∞, we con-

clude that±w̃(β,K) are the unique global minimum points ofFβ,K .
(c) Givenx > 0, define the positive numberKx = x/(2βc′

β(x)). Then

F ′
β,Kx

(x) = x

2βKx

− c′
β(x) = 0.

Since c′
β(w) is strictly concave forw > 0, we havec′′

β(0) > c′
β(x)/x, and,

therefore,

Kx = x

2βc′
β(x)

>
1

2βc′′
β(0)

= K(2)
c (β).

It follows thatx is a positive critical point ofFβ,K for K = Kx > K
(2)
c (β); by the

uniqueness of the positive critical point,x = w̃(β,Kx). This completes the proof

that the points{w̃(β,K),K > K
(2)
c (β)} span the positive real line.�

PROOF OF THEOREM 3.6. (a) For 0< K ≤ K
(2)
c (β), F ′

β,K(0) = 0, and,
thus, w = 0 is a critical point ofFβ,K . We prove thatw = 0 is the unique
global minimum point ofFβ,K by showing that, forw > 0, F ′

β,K(w) > 0 and for
w < 0, F ′

β,K(w) < 0. Sincec′
β(w) is strictly concave forw > 0 [Theorem 3.5(a)],

for any w > 0, we havec′′
β(0) > c′

β(w)/w. As a result, for allw > 0 and all

0< K ≤ K
(2)
c (β) = 1/(2βc′′

β(0)),

F ′
β,K(w) = w

2βK
− c′

β(w)

≥ w

2βK
(2)
c (β)

− c′
β(w) = wc′′

β(0) − c′
β(w) > 0.

On the other hand, sinceF ′
β,K is an odd function,F ′

β,K(w) < 0 for all w < 0.
Therefore,w = 0 is the unique global minimum point ofFβ,K . It follows that, for

0< K ≤ K
(2)
c (β), Ẽβ,K = {0}.

(b) ForK > K
(2)
c (β), let w̃(β,K) be the unique positive global minimum point

of Fβ,K , the existence of which is proved in part (a) of Lemma 3.7, and define

z̃(β,K) = w̃(β,K)/(2βK). It follows that, forK > K
(2)
c (β), Ẽβ,K = {±z̃(β,K)}.

(c) By part (a) of Lemma 3.7,

F ′
β,K

(
w̃(β,K)

) = 0 and F ′′
β,K

(
w̃(β,K)

)
> 0.
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The implicit function theorem implies that, forK > K
(2)
c (β), w̃(β,K) and, thus,

z̃(β,K) are continuously differentiable functions ofK and are thus continuous.
Straightforward calculations yield

∂w̃(β,K)

∂K
= w̃(β,K)

2βK2F ′′
β,K(w̃(β,K))

and

∂z̃(β,K)

∂K
= 2βw̃(β,K)

(2βK)2

( c′′
β(w̃(β,K))

F ′′
β,K(w̃(β,K))

)
.

Since w̃(β,K) is positive and bothc′′
β(w̃(β,K)) > 0 andF ′′

β,K(w̃(β,K)) > 0,

w̃(β,K) andz̃(β,K) are strictly increasing functions forK > K
(2)
c (β).

As K ↘ K
(2)
c (β), w̃(β,K) > 0, w̃(β,K) is strictly decreasing, and the points

{w̃(β,K),K > K
(2)
c (β)} span the positive real line [Lemma 3.7(c)]. We conclude

that lim
K→K

(2)
c (β)+ w̃(β,K) = 0 and thus that lim

K→K
(2)
c (β)+ z̃(β,K) = 0. This

completes the proof of the theorem.�

Theorem 3.6 describes the continuous bifurcation exhibited byẼβ,K for
0 < β ≤ βc. Theorem 3.8 in the next section describes the discontinuous bifur-
cation exhibited byẼβ,K for β in the complementary regionβ > βc.

3.3. Description of Ẽβ,K for β > βc. In Theorem 3.2 we state the structure of
the setEβ,K of canonical equilibrium macrostates for the BEG model with respect
to the empirical measures whenβ > βc. The main theorem in this subsection,
Theorem 3.8, does the same for the setẼβ,K , which has been shown to have the
alternative characterization

Ẽβ,K =
{

w

2βK
∈ R :w minimizesFβ,K(w)

}
.(3.22)

As in Section 3.2,Fβ,K(w) = w2/(4βK)− cβ(w), wherecβ is defined in (3.4). In
Section 3.4 we will prove that there exists a one-to-one correspondence between
Ẽβ,K andEβ,K . In Section 3.5 we will use this fact to fully describe the latter set
for all β > βc andK > 0.

Minimum points ofFβ,K satisfy the equation

F ′
β,K(w) = w

2βK
− c′

β(w) = 0.(3.23)

In contrast to the previous section, where for 0< β ≤ βc, c′
β(w) is strictly concave

for w > 0, part (b) of Theorem 3.5 states that, forβ > βc, there existswc(β) > 0
such thatc′

β(w) is strictly convex forw ∈ (0,wc(β)) and strictly concave for
w > wc(β). As a result, forβ > βc, we are no longer in the situation of the classical
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Curie–Weiss model for which the bifurcation with respect toK is continuous.
Instead, forβ > βc, as K increases through the critical valueK(1)

c (β), Ẽβ,K

exhibits a discontinuous bifurcation.
While the discontinuous bifurcation exhibited bỹEβ,K for β > βc is easily

observed graphically, the full analytic proof is more complicated than in the case
0< β ≤ βc. As in the previous subsection, we will first motivate this discontinuous
bifurcation via a graphical argument. A detailed statement is given in Theorem 3.8.

Forβ > βc, we divide the range of the positive parameterK into three intervals
separated by the valuesK1 = K1(β) and K2 = K2(β). K1 is defined to be the
unique value ofK such that the linew/(2βK) is tangent to the curvec′

β at a
point w1 = w1(β) > 0. The existence and uniqueness ofK1 andw1 are proved
in Lemma 3.9.K2 is defined to be the value ofK such that the slopes of the
line w/(2βK) and the curvec′

β atw = 0 agree. Specifically,

K2 = 1

2βc′′
β(0)

= 1

4βe−β
+ 1

2β
.(3.24)

Figure 2 represents graphically the values ofK1 andK2 for β = 4, showing that
K1 < K2. In Lemma 3.9 it is proved that this inequality holds for allβ > βc.

In each of Figures 3–7, for fixedβ > βc and for different ranges of values
of K > 0, the first graph (a) depicts the two components ofF ′

β,K : the linear
componentw/(2βK) and the nonlinear componentc′

β . The second graph (b)
shows the corresponding graph ofFβ,K . In these figures the following values ofβ

were used:β = 4 in Figures 3, 5, 6, 7 andβ = 2.8 in Figure 4.

FIG. 2. Graphical representation of the values K1 and K2 for β = 4.
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FIG. 3. (a)Graph of two components of F ′
β,K and (b) graph of Fβ,K for 0< K < K1.

FIG. 4. (a)Graph of two components of F ′
β,K and (b) graph of Fβ,K for K ≥ K2.

FIG. 5. (a)Graph of two components of F ′
β,K and (b) graph of Fβ,K for K1 < K < K

(1)
c (β).

FIG. 6. (a)Graph of two components of F ′
β,K and (b) graph of Fβ,K for K

(1)
c (β) < K < K2.
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FIG. 7. (a)Graph of two components of F ′
β,K and (b) graph of Fβ,K for K = K

(1)
c (β).

As we see in Figure 3, for 0< K < K1, the linear component intersects the
nonlinear component at only the origin and, thus,Fβ,K has a unique global
minimum point atw = 0. Sinceβ is fixed, the graph of the nonlinear componentc′

β

also remains fixed. AsK increases, the slope of the linear componentw/(2βK)

decreases, leading to the discontinuous bifurcation inEβ,K with respect toK .
The graph ofFβ,K is depicted in Figure 4 forK ≥ K2. We see thatFβ,K has

two global minimum points atw = ±w̃(β,K), where w̃(β,K) is positive.
Therefore, for 0< K ≤ K1, we haveẼβ,K = {0} and for K ≥ K2, we have
Ẽβ,K = {±z̃(β,K)}, wherez̃(β,K) = w̃(β,K)/(2βK) is positive.

Now suppose thatK ∈ (K1,K2). In this region there exists̃w(β,K) > 0 such
thatFβ,K has three local minimum points atw = 0 andw = ±w̃(β,K). As we see
in Figure 5, forK > K1 but sufficiently close toK1, Fβ,K(0) < Fβ,K(w̃(β,K));
as a result, the unique global minimum point ofFβ,K is w = 0. On the other
hand, we see in Figure 6 that, for 0< K < K2 but sufficiently close toK2,
Fβ,K(0) > Fβ,K(w̃(β,K)); as a result, the global minimum points ofFβ,K are
w = ±w̃(β,K). As K increases over the interval(K1,K2), Fβ,K(w̃(β,K))

decreases continuously (Lemma 3.12). Consequently, as Figure 7 reveals, there
exists a critical valueK(1)

c (β) such thatF
β,K

(1)
c (β)

(0) = F
β,K

(1)
c (β)

(w̃(β,K)); as a
result, the global minimum points ofF

β,K
(1)
c (β)

arew = 0 andw = ±w̃(β,K).

We use the same notationK(1)
c (β) as for the critical value in Theorem 3.2.

As we will later prove, the discontinuous bifurcation inK exhibited by both sets
Eβ,K andẼβ,K occur at the same pointK(1)

c (β).
The graphical information just obtained concerning the global minimum points

of Fβ,K for β > βc motivates the form ofẼβ,K stated in the next theorem.
The positive quantityz̃(β,K) equalsw̃(β,K)/(2βK), where w̃(β,K) is the
unique positive global minimum point ofFβ,K for K ≥ K

(1)
c (β) [Lemma 3.10(b)].

According to part (d) of the theorem,̃z(β,K) is a continuous function for
K > K

(1)
c (β), and asK → (K

(1)
c (β))+, z̃(β,K) converges to the positive

quantity z̃(β,K
(1)
c (β)). Hence, the bifurcation exhibited bỹEβ,K at K

(1)
c (β) is

discontinuous. As we will see in the proof of Theorem 3.8,K
(1)
c (β) is the unique
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zero of the functionA(K) defined in (3.31) forK ≥ K1(β); K1(β) is specified in
Lemma 3.9.

THEOREM 3.8. Define Ẽβ,K by (3.7);equivalently,

Ẽβ,K =
{

w

2βK
∈ R :w minimizes Fβ,K(w)

}
.

For all β > βc = log4, there exists a critical value K
(1)
c (β) satisfying K1 <

K
(1)
c (β) < K2 and having the following properties:

(a) For 0 < K < K
(1)
c (β), Ẽβ,K = {0}.

(b) For K = K
(1)
c (β), Ẽβ,K = {0,±z̃(β,K)}, where z̃(β,K) > 0.

(c) For K > K
(1)
c (β), Ẽβ,K = {±z̃(β,K)}, where z̃(β,K) > 0.

(d) For K ≥ K
(1)
c (β), z̃(β,K) is a strictly increasing continuous function, and

as K → (K
(1)
c (β))+, z̃(β,K) → z̃(β,K

(1)
c (β)) > 0. Therefore, Ẽβ,K exhibits a

discontinuous bifurcation at K
(1)
c (β).

The proof of the theorem depends on several lemmas. In the first lemma we
prove that, for eachβ > βc, there exists a uniqueK = K1(β) such that the
line w/(2βK) is tangent to the curvec′

β at a pointw1(β) > 0.

LEMMA 3.9. For β > βc = log4,we define cβ by (3.4),Fβ,K by (3.12),wc(β)

by (3.15)and K2 = K2(β) by (3.24).Then in the set w > 0, K > 0, there exists a
unique solution (w1,K1) = (w1(β),K1(β)) of

F ′
β,K(w) = w

2βK
− c′

β(w) = 0,(3.25)

F ′′
β,K(w) = 1

2βK
− c′′

β(w) = 0.(3.26)

Furthermore, w1 > wc(β) and K1 < K2 for all β > βc.

PROOF. The function g(w) = wc′′
β(w) − c′

β(w) has the properties that
g′(w) = wc′′′

β (w) and that solutions of (3.25)–(3.26) solveg(w) = 0. According to
part (b) of Theorem 3.5,c′

β(w) is strictly convex for 0< w < wc(β) andc′
β(w) is

strictly concave forw > wc(β); equivalently,c′′′
β (w) > 0 for 0< w < wc(β) and

c′′′
β (w) < 0 for w > wc(β). Therefore,

g′(w) > 0 for 0< w < wc(β) and g′(w) < 0 for w > wc(β).(3.27)

Since

wc′′
β(w) = 2we−β coshw + 4we−2β

[1+ 2e−β coshw]2 ,
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we see that limw→∞ wc′′
β(w) = 0. It follows that

lim
w→∞g(w) = lim

w→∞wc′′
β(w) − lim

w→∞ c′
β(w) = −1.

This limit and the fact thatg(0) = 0, combined with the continuity ofg and (3.27),
imply that there exists a uniquew1 > wc(β) such thatg(w1) = 0; that is,

c′
β(w1)

w1
= c′′

β(w1).(3.28)

Substitutingw1 into (3.25) and (3.26), we define

K1 = 1

2βc′′
β(w1)

= w1

2βc′
β(w1)

.(3.29)

The pair (w1,K1) is a solution of (3.25)–(3.26) in the setw > 0,K > 0. If
(ŵ, K̂) is another solution of (3.25)–(3.26) in this set, thenŵ solvesg(w) = 0,
a contradiction to the fact thatw1 is the unique positive solution ofg(w) = 0.
It follows that (w1,K1) is the unique solution of (3.25)–(3.26) in the setw > 0,
K > 0.

We complete the proof by showing thatK1 < K2. SinceK2 = 1/(2βc′′
β(0)), we

are done if we show thatc′′
β(w1) > c′′

β(0). By the mean value theorem and (3.28),
there existsα ∈ (0,w1) such that

c′′
β(α) = c′

β(w1)

w1
= c′′

β(w1).(3.30)

We claim thatα < wc(β). If α ≥ wc(β), then sincec′
β is strictly concave

on (wc(β),∞), the inequalitieswc(β) ≤ α < w1 imply that c′′
β(α) > c′′

β(w1).
Because this contradicts (3.30), we conclude thatα < wc(β). This inequality
in combination with the strict convexity ofc′

β on (0,wc(β)) and (3.30) yields
c′′
β(0) < c′′

β(α) = c′′
β(w1). The proof of the lemma is complete.�

We next state two lemmas that are analogous to Lemma 3.7 and part (c) of
Theorem 3.6. Before stating them, we need some preliminaries. In Lemma 3.9, we
proved that, forβ > βc, equations (3.25)–(3.26) have a unique solution(w1,K1) =
(w1(β),K1(β)) in the setw > 0,K > 0 and thatw1 > wc(β); according to (3.25),

F ′′
β,K1

(w1) = 1

2βK1
− c′′

β(w1) = 0.

In addition, for 0< β ≤ βc, the quantityK
(2)
c (β) = 1/(2βc′′

β(0)) introduced
in (3.19) has the property that

F ′′
β,K

(2)
c (β)

(0) = 1

2βK
(2)
c (β)

− c′′
β(0) = 0.
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For β > βc, c′
β(w) is strictly concave forw > wc(β) [Theorem 3.5(b)]. Thus for

w ≥ w1, the graph ofFβ,K1(w) over the interval[w1,∞) for β > βc (Figure 2)
is similar to that ofF

β,K
(2)
c (β)

(w) over the interval[0,∞) for 0 < β ≤ βc

[Figure 1(b)]. Specifically, forβ > βc andw ∈ [w1,∞), the graph of

Fβ,K1(w) =
∫ w

w1

(
x

2βK1
− c′

β(x)

)
dx + Fβ,K1(w1)

is determined by the difference between the strictly concave functionc′
β(w) and

the linear functionw/(2βK1), which is tangent toc′
β at w = w1. Similarly, for

0< β ≤ βc andw ∈ [0,∞), the graph of

F
β,K

(2)
c (β)

(w) =
∫ w

0

(
x

2βK
(2)
c (β)

− c′
β(x)

)
dx

is determined by the difference between the strictly concave functionc′
β(w)

[Theorem 3.5(a)] and the linear functionw/(2βK
(2)
c (β)), which is tangent toc′

β

atw = 0.
As we saw in Section 3.2 for 0< β ≤ βc, asK increases fromK

(2)
c (β) and

thus the slope of the linew/(2βK) decreases,Fβ,K develops a unique positive
local minimum pointw̃(β,K), which is shown to be the unique global minimum
point on the interval[0,∞) [Lemma 3.7(b)]. This can be seen graphically in
Figure 1(c). Similarly, as Figures 4(b)–7(b) illustrate, forβ > βc, asK increases
from K1, Fβ,K develops a unique positive local minimum pointw̃(β,K). As in
part (b) of Lemma 3.7,̃w(β,K) can be shown to be the unique global minimum
point on the interval[w1,∞). However, it is not a global minimum point on the
entire halfline[0,∞) unlessFβ,K(w̃(β,K)) ≤ 0= Fβ,K(0); in fact, this inequality
is valid only for all K sufficiently large. WhenFβ,K(w̃(β,K)) > 0 = Fβ,K(0),
which holds for allK > K1 sufficiently close toK1, 0 is the unique global
minimum point ofFβ,K .

Because the behavior of the functionFβ,K over the interval[w1,∞) for β > βc

is similar to that ofFβ,K over the interval[0,∞) for 0 < β ≤ βc, the proofs
of Lemma 3.10 and Lemma 3.11 are analogous, respectively, to the proofs of
Lemma 3.7 and part (c) of Theorem 3.6. Therefore, we state these new lemmas
without proof.

In Lemma 3.10 we state the existence and two properties of a positive critical
point w̃(β,K) of Fβ,K for eachK > K1.

LEMMA 3.10. For β > βc = log 4, define Fβ,K by (3.12)and let (w1,K1) =
(w1(β),K1(β)) be the unique solution of (3.25)–(3.26)in the set w > 0,K > 0
(Lemma 3.9).The following conclusions hold:

(a) For each K > K1, Fβ,K has a critical point w̃(β,K) > w1 satisfying

F ′
β,K

(
w̃(β,K)

) = 0 and F ′′
β,K

(
w̃(β,K)

)
> 0.
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(b) For each K > K1, Fβ,K has unique nonzero local minimum points at
w = ±w̃(β,K).

(c) The points {w̃(β,K),K > K1} span the interval (w1,∞); that is, for each
x > w1, there exists K > K1 such that x = w̃(β,K).

The next lemma states continuity and related properties ofw̃(β,K) and
z̃(β,K) that are similar to properties of the analogous quantities for 0< β ≤ βc

[Theorem 3.6(c)].

LEMMA 3.11. For β > βc = log 4 and K > K1, let w̃(β,K) be the
unique positive local minimum point of Fβ,K considered in Lemma 3.10. Then
for K > K1, w̃(β,K) and z̃(β,K) = w̃(β,K)/(2βK) are continuous, strictly
increasing functions of K and limK→K+

1
w̃(β,K) = w1.

We fix β > βc. The proof of Theorem 3.8 also makes use of the function

D(K) =
{

Fβ,K1(w1), if K = K1,
Fβ,K

(
w̃(β,K)

)
, if K > K1.

(3.31)

The quantityw̃(β,K) isthe unique positive local minimum point ofFβ,K , the
existence of which is given in Lemma 3.10.

LEMMA 3.12. For β > βc = log 4, the function D(K) defined in (3.31) is
continuous and strictly decreasing on its domain [K1(β),∞).

PROOF. Since Fβ,K(w) is a continuous function ofw and w̃(β,K) is a
continuous function ofK (Lemma 3.11),D(K) is continuous forK > K1.
Furthermore, by part (c) of Lemma 3.11, limK→K+

1
w̃(β,K) = w1 and, thus,

limK→K+
1

Fβ,K(w̃(β,K)) = Fβ,K1(w1). We conclude thatD(K) is continuous
on [K1,∞).

We now prove thatD(K) is strictly decreasing on[K1,∞). For K > K1, we
have

∂Fβ,K

∂w

(
w̃(β,K)

) = 0

by part (a) of Lemma 3.10. As in the proof of part (c) of Theorem 3.6, one can
show thatw̃(β,K) is continuously differentiable forK > K1. Hence, forK > K1,

D ′(K) = dFβ,K(w̃(β,K))

dK

= ∂Fβ,K

∂K

(
w̃(β,K)

) + ∂Fβ,K

∂w

(
w̃(β,K)

) · ∂w̃(β,K)

∂K

= −[w̃(β,K)]2
4βK2 < 0.
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This completes the proof.�

PROOF OF THEOREM 3.8. As we showed in Lemma 3.9, forβ > βc,
equations (3.25)–(3.26) have a unique solution(w1,K1) = (w1(β),K1(β)) in the
set w > 0,K > 0. In addition,K1 < K2 = 1/(2βc′′

β(0)). We start the proof of
Theorem 3.8 by proving the following two facts:

1. For 0< K ≤ K1, Fβ,K has a unique global minimum point atw = 0 [Figures
2 and 3(b)].

2. For K ≥ K2, Fβ,K has unique global minimum points atw = ±w̃(β,K)

(Figure 7).

According to Lemma 3.10,F ′
β,K(w1) = 0. Using concavity properties ofc′

β(w)

established in part (b) of Theorem 3.5 and calculations similar to those used
to establish other results in this and the preceding section, one shows that, for
0 < K < K1, F ′

β,K(w) > 0 for all w > 0 and thatF ′
β,K1

(w) > 0 for all w > 0,
w �= w1. These properties, which can be seen in Figure 2 and Figure 3(a), are
proved in detail in Lemma 2.3.10 in [21]. By symmetry, for 0< K < K1,
F ′

β,K(w) < 0 for all w < 0 andF ′
β,K(w) < 0 for all w < 0,w �= −w1. It follows

that, for 0< K ≤ K1, Fβ,K is strictly decreasing forw < 0 and strictly increasing
for w > 0. We conclude that, for 0< K ≤ K1, Fβ,K has a unique global minimum
point atw = 0, as claimed in fact 1.

Since lim|w|→∞ Fβ,K(w) = ∞, the global minimum values ofFβ,K must be
attained at local minimum points of the function. Lemma 3.10 states that, for
K > K1, w = ±w̃(β,K) are the unique nonzero local minimum points ofFβ,K .
Therefore, we prove that, forK ≥ K2, Fβ,K has unique global minimum points
at w = ±w̃(β,K) by proving thatw = 0 is a local maximum point ofFβ,K .
According to part (b) of Theorem 3.5,c′

β(w) is strictly convex for 0< w < wc(β).
Therefore, forK ≥ K2 andw ∈ (0,wc(β)),

F ′
β,K(w) = w

2βK
− c′

β(w) = w

2βK
−

∫ w

0
c′′
β(x) dx

<
w

2βK
− c′′

β(0)w = w

2βK
− w

2βK2
≤ 0;

that is, for w ∈ (0,wc(β)), F ′
β,K(w) < 0. By symmetry, forw ∈ (−wc(β),0),

F ′
β,K(w) > 0. It follows thatw = 0 is a local maximum point ofFβ,K . Therefore,

as claimed in fact 2, forK ≥ K2, Fβ,K has unique global minimum points at
w = ±w̃(β,K).

For K1 < K < K2, Fβ,K has exactly three local minimum points atw = 0 and
w = ±w̃(β,K). Since global minimum values ofFβ,K must be attained at local
minimum points of the function andFβ,K is symmetric, finding global minimum
points of Fβ,K requires comparing the values of the function atw = 0 and at
w = w̃(β,K).
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Since for 0< K ≤ K1 Fβ,K has a unique global minimum point atw = 0, we
have

D(K1) = Fβ,K1(w1) > Fβ,K1(0) = 0.

Similarly, since for K ≥ K2 Fβ,K has unique global minimum points at
w = ±w̃(β,K), for K ≥ K2, we have

D(K) = Fβ,K

(
w̃(β,K)

)
< Fβ,K(0) = 0.

SinceD(K) is continuous and strictly decreasing forK > K1 (Lemma 3.12), there
exists a unique critical valueK(1)

c (β) satisfyingK1 < K
(1)
c (β) < K2 and having

the following properties:

(i) For K1 < K < K
(1)
c (β),

Fβ,K

(
w̃(β,K)

) = D(K) > 0= Fβ,K1(0),

and, thus,Fβ,K has a unique global minimum point atw = 0.

(ii) For K = K
(1)
c (β),

Fβ,K

(
w̃(β,K)

) = D(K) = 0= Fβ,K1(0),

and, thus,Fβ,K has three global minimum points atw = 0,±w̃(β,K).

(iii) For K
(1)
c (β) < K < K2,

Fβ,K

(
w̃(β,K)

) = D(K) < 0= Fβ,K1(0),

and, thus,Fβ,K has two global minimum points atw = ±w̃(β,K).
We definez̃(β,K) = w̃(β,K)/(2βK). The form ofẼβ,K given in parts (a)–(c)

of Theorem 3.8 follows from the information on the global minimum points
of Fβ,K just given in items (i)–(iii) and from facts 1 and 2 stated at the start of the

proof. In addition, the positivity of̃z(β,K
(1)
c (β)) is a consequence of the positivity

of w̃(β,K
(1)
c (β)). Since by Lemma 3.11̃z(β,K) is a strictly increasing function

for K ≥ K
(1)
c (β), part (d) of the theorem is also proved. The proof of Theorem 3.8

is now complete. �

Together, Theorems 3.6 and 3.8 give a full description of the setẼβ,K for all
values ofβ andK . In the next section, we use the contraction principle to lift our
results concerning the structure of the setẼβ,K up to the level of the empirical
measures, making use of a one-to-one correspondence between the points in the
two setsẼβ,K andEβ,K of canonical equilibrium macrostates.
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3.4. One-to-one correspondence between Eβ,K and Ẽβ,K . We start by recall-
ing the definitions of the setsEβ,K andẼβ,K :

Eβ,K = {ν ∈ P (�) :ν minimizesR(ν|ρ) + βfK(ν)}(3.32)

and

Ẽβ,K = {z ∈ [−1,1] : z minimizesJβ(z) − βKz2}.(3.33)

In the definition ofEβ,K , R(µ|ρ) is the relative entropy ofµ with respect to
ρ = 1

3(δ−1 + δ0 + δ1) andfK(µ) is the function defined in (2.3). In the definition
of Ẽβ,K , Jβ is the Cramér rate function defined in (3.3). We now state the one-to-
one correspondence between the points inẼβ,K and the points inEβ,K . According
to Theorems 3.6 and 3.8,Ẽβ,K consists of either 1,2 or 3 points.

THEOREM 3.13. Fix β > 0 and K > 0 and suppose that Ẽβ,K = {zα}rα=1,
r = 1,2 or 3. Define να,α = 1, . . . , r , to be measures in P (�) with densities

dνα

dρβ

(y) = exp(tαy) · 1∫
� exp(tαy)ρβ(dy)

,(3.34)

where tα is chosen such that
∫
� yνα(dy) = zα . Then for each α = 1, . . . , r ,

tα exists and is unique, and Eβ,K consists of the unique elements να,α = 1, . . . , r .
Furthermore, tα = 2βKzα for α = 1, . . . , r .

For z ∈ [−1,1], we define

A(z) =
{
µ ∈ P (�) :

∫
�

yµ(dy) = z

}
.(3.35)

The proof of the theorem depends on the following two lemmas. Both lemmas
use the contraction principle ([9], Theorem VIII.3.1), which states that, for all
z ∈ [−1,1],

Jβ(z) = min{R(µ|ρβ) :µ ∈ A(z)}.(3.36)

LEMMA 3.14. For β > 0 and K > 0,

min
µ∈P (�)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}
= min|z|≤1

{Jβ(z) − βKz2}.

PROOF. The contraction principle (3.36) implies that

min
µ∈P (�)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}

= min|z|≤1

(
min

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2

:µ ∈ A(z)

})



PHASE TRANSITIONS IN THE MEAN-FIELD BEG MODEL 2233

= min|z|≤1

(
min{R(µ|ρβ) :µ ∈ A(z)} − βKz2)

= min|z|≤1
{Jβ(z) − βKz2}.

This completes the proof.�

The second lemma shows that the mean of any measureν ∈ Eβ,K is an element
of Ẽβ,K .

LEMMA 3.15. Fix β > 0 and K > 0. Given ν ∈ Eβ,K , we define z̃ =∫
� yν(dy), where � = {−1,0,1}. Then z̃ ∈ Ẽβ,K .

PROOF. Since ν ∈ Eβ,K , ν is a global minimum point ofR(µ|ρβ) −
βK(

∫
� yµ(dy))2. Thus, for allµ ∈ P (�),

R(ν|ρβ) − βK

(∫
�

yν(dy)

)2

= R(ν|ρβ) − βKz̃2 ≤ R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2

.

In particular, this inequality holds for anyµ that satisfies
∫
� yµ(dy) = z̃. For

suchµ, the last display becomes

R(ν|ρβ) ≤ R(µ|ρβ).

Thus,ν satisfies

R(ν|ρβ) = min{R(µ|ρβ) :µ ∈ A(z̃)},
whereA(z̃) is defined in (3.35). The contraction principle (3.36) and Lemma 3.14
imply that

Jβ(z̃) − βKz̃2 = R(ν|ρβ) − βK

(∫
�

yν(dy)

)2

= min
µ∈P (�)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}

= min|z|≤1
{Jβ(z) − βKz2}.

Therefore,̃z ∈ Ẽβ,K , as claimed. This completes the proof.�

We next prove Theorem 3.13.
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PROOF OFTHEOREM3.13. A short calculation shows that, for anyµ ∈ P (�),

R(µ|ρ) + βfK(µ) − inf
ν∈P (�)

{R(ν|ρ) + βfK(ν)}

= R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2

− inf
ν∈P (�)

{
R(ν|ρβ) − βK

(∫
�

yν(dy)

)2}
.

Hence, we obtain the following alternate characterization ofEβ,K :

Eβ,K =
{
ν ∈ P (�) :ν minimizesR(ν|ρβ) − βK

(∫
�

yν(dy)

)2}
.(3.37)

We first show for eachα = 1, . . . , r and zα ∈ Ẽβ,K , να is the unique global
minimum point ofR(µ|ρβ) − βK(

∫
� yµ(dy))2 over

A(zα) =
{
µ ∈ P (�) :

∫
�

yµ(dy) = zα

}
.

We then prove that

inf
µ∈A(zα)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}

= inf
µ∈A(z)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}

for all α,  = 1, . . . , r . It will then follow that {να}rα=1 equals the set of
global minimum points ofR(µ|ρβ) − βK(

∫
� yµ(dy))2 over the setA =⋃r

α=1 A(zα). Finally, by showing that all the global minimum points ofR(µ|ρβ)−
βK(

∫
� yµ(dy))2 lie in A, we will complete the proof thatEβ,K = {να}rα=1. If

r = 2 or 3, then since
∫
� y να(dy) = zα , it is clear that ifzα �= z, thenνα �= ν.

By Theorem VIII.3.1 in [9], for eachα = 1, . . . , r , the pointtα in the statement
of Theorem 3.13 exists and is unique,

Jβ(zα) = R(να|ρβ),(3.38)

andR(µ|ρβ) attains its infimum overA(zα) at the unique measureνα . Therefore,
for eachα = 1, . . . , r , να is the unique global minimum point ofR(µ|ρβ) −
βK(

∫
� yµ(dy))2 overA(zα).

We next show that

inf
µ∈A(zα)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}

= inf
µ∈A(z)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}
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for all α,  = 1, . . . , r . Sincezα, z ∈ Ẽβ,K , zα andz are global minimum points
of Jβ(z) − βKz2. Thus, by (3.38), we have

inf
µ∈A(zα)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}

= inf
µ∈A(zα)

R(µ|ρβ) − βKz2
α

= Jβ(zα) − βKz2
α

= Jβ(z) − βKz2


= inf
µ∈A(z)

R(µ|ρβ) − βKz2


= inf
µ∈A(z)

{
R(µ|ρβ) − βK

(∫
�

yµ(dy)

)2}
.

As a result,{να}rα=1 equals the set of global minimum points ofR(µ|ρβ) −
βK(

∫
� yµ(dy))2 over the setA = ⋃r

α=1 A(zα).
Last, we showR(µ|ρβ) − βK(

∫
� y µ(dy))2 attains its global minimum at

points inA. Let σ be a global minimum point ofR(µ|ρβ) − βK(
∫
� yµ(dy))2.

By (3.37), this implies thatσ ∈ Eβ,K . Defineζ = ∫
� yσ(dy). Then Lemma 3.15

implies thatζ ∈ Ẽβ,K and, thus, thatζ = zα for someα = 1, . . . , r . It follows that
σ ∈ A(zα) ⊂ A for someα = 1, . . . , r .

The last step is to prove thattα = 2βKzα for α = 1, . . . , r . From definition (3.4),
we have

c′
β(tα) =

∫
�

yνα(dy) = zα.

In turn, the inverse relationship (3.5) implies that

tα = (c′
β)−1(zα) = J ′

β(zα).

Therefore, sincezα ∈ Ẽβ,K , the definition (3.33) guarantees thatzα is a critical
point ofJβ(z) − βKz2. Thus,

tα = J ′
β(zα) = 2βKzα.(3.39)

This completes the proof of Theorem 3.13.�

In the next section we use Theorem 3.13 to prove Theorems 3.1 and 3.2.

3.5. Proofs of Theorems 3.1 and 3.2. Theorem 3.1 gives the structure of
the setEβ,K of canonical equilibrium macrostates, pointing out the continuous
bifurcation exhibited by that set for 0< β ≤ βc = log4. The structure ofEβ,K

for β > βc, given in Theorem 3.2, features a discontinuous bifurcation inK . The
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proofs of these theorems are immediate from Theorems 3.6 and 3.8, respectively,
which give the structure of̃Eβ,K for 0 < β ≤ βc and for β > βc, and from
Theorem 3.13, which states a one-to-one correspondence betweenẼβ,K andEβ,K .

Before proving Theorems 3.1 and 3.2, it is useful to express the measures
ρβ andνα in Theorem 3.13 in the formsρβ = ρβ,−1δ−1 + ρβ,0δ0 + ρβ,1δ1 and
να = να,−1δ−1 + να,0δ0 + να,1δ1, respectively. Sincetα = 2βKzα , in terms of
zα ∈ Ẽβ,K we have

ρβ,−1 = e−β

1+ 2e−β
, ρβ,0 = 1

1+ 2e−β
, ρβ,1 = e−β

1+ 2e−β

and

να,−1 = e−2βKzα−β

C(β,K)
, να,0 = 1

C(β,K)
, να,1 = e2βKzα−β

C(β,K)
.

Here

C(β,K) = e−2βKzα−β + e2βKzα−β + 1.

In particular,να = ρβ whenzα = 0.
We first indicate how Theorem 3.1 follows from Theorem 3.6. Fix 0< β ≤ βc.

The critical valueK
(2)
c (β) in Theorem 3.1 coincides with the valueK(2)

c (β)

in Theorem 3.6. For 0< K ≤ K
(2)
c (β), part (a) of Theorem 3.6 indicates that

Ẽβ,K = {0}; hence,Eβ,K = {ρβ}. For K > K
(2)
c (β), part (b) of Theorem 3.6

indicates that̃Eβ,K = {±z̃(β,K)}, wherez̃(β,K) > 0. It follows that the measures
ν+(β,K) andν−(β,K) in part (a)(ii) of Theorem 3.1 are given by (3.34) with
zα = z̃(β,K) andzα = −z̃(β,K), respectively. Sincẽz(β,K) > 0, it follows that
ν+(β,K) �= ν−(β,K) �= ρβ . Finally, part (c) of Theorem 3.6 allows us to conclude

that, for each choice of sign,ν±(β,K) is a continuous functions forK > K
(2)
c (β)

and that asK → (K
(2)
c (β))+, ν± → ρβ . This completes the proof of Theorem 3.1.

In a completely analogous way, Theorem 3.2, including the discontinuous
bifurcation noted in part (c) of the theorem, follows from Theorem 3.8.

In this section we have completely analyzed the structure of the setEβ,K

of canonical equilibrium macrostates. In particular, we discovered that, for
0 < β ≤ βc, Eβ,K undergoes a continuous bifurcation atK = K

(2)
c (β) (Theo-

rem 3.1) and that, forβ > βc, Eβ,K undergoes a discontinuous bifurcation at

K = K
(1)
c (β) (Theorem 3.2). We depict these bifurcations in Figure 8. While the

second-order critical valuesK(2)
c (β) are explicitly defined in Theorem 3.6, the

first-order critical valuesK(1)
c (β) in the figure are computed numerically. The nu-

merical procedure calculatesK(1)
c (β) for fixed values ofβ by determining the

value ofK for which the number of global minimum points ofGβ,K(z) changes
from one atz = 0 to three atz = 0 andz = ±z̃(β,K), wherez̃(β,K) > 0. Accord-
ing to these numerical calculations for the discontinuous bifurcation, it appears
thatK(1)

c (β) tends to 1 asβ → ∞. However, we are unable to prove this limit.
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FIG. 8. Bifurcation diagram for the BEG model with respect to the canonical ensemble.

In Section 5 we will see that Figure 8 is a phase diagram that describes the phase
transitions in the canonical ensemble asβ changes. We will also show that the
nature of the bifurcations studied up to this point by varyingK , while keepingβ
fixed, is the same if we varyβ and keepK fixed instead. The latter situation
corresponds to what is referred to physically as a phase transition; specifically,
the continuous bifurcation corresponds to a second-order phase transition and the
discontinuous bifurcation to a first-order phase transition. In order to substantiate
this claim concerning the bifurcations and the phase transitions, we have to transfer
our analysis ofEβ,K from fixedβ and varyingK to an analysis ofEβ,K for fixed
K and varyingβ.

In the next section we study the BEG model with respect to the microcanonical
ensemble.

4. Structure of the set of microcanonical equilibrium macrostates. In
previous studies of the BEG model with respect to the microcanonical ensemble,
results were obtained that either relied on a local analysis or used strictly
numerical methods [2, 3, 15]. In this section we provide a global argument to
support the existence of a continuous bifurcation exhibited by the setEu,K of
microcanonical equilibrium macrostates for fixed, sufficiently large values ofu
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and for varyingK . Specifically, for fixed, sufficiently largeu, Eu,K exhibits a
continuous bifurcation asK passes through a critical valueK

(2)
c (u). The argument

is similar to the one employed to analyze the canonical ensemble in Section 3.
However, unlike the canonical case, where a rigorous analysis of the structure
of the setEβ,K of canonical equilibrium macrostates was obtained for all values
of β and K , the analysis ofEu,K for sufficiently largeu and varyingK relies
on a mixture of analysis and numerical methods. At the end of this section we
summarize the numerical methods used to deduce the existence of a discontinuous
bifurcation exhibited byEu,K for fixed, sufficiently smallu and varyingK . In
Section 5 we show how to extrapolate this information to information concerning
the phase transition behavior of the microcanonical ensemble for varyingu:
a continuous, second-order phase transition for all sufficiently large values ofK

and a discontinuous, first-order phase transition for all sufficiently small values
of K .

We begin by recalling several definitions from Section 2.P (�) denotes the
set of probability measures with support� = {−1,0,1}; ρ denotes the measure
1
3(δ−1 + δ0 + δ1) ∈ P (�); for µ ∈ P (�),

R(µ|ρ) =
1∑

i=−1

µi log 3µi

denotes the relative entropy ofµ with respect toρ; andfK(µ) is defined by

fK(µ) =
∫
�

y2µ(dy) − K

(∫
�

yµ(dy)

)2

= (µ1 + µ−1) − K(µ1 − µ−1)
2.

ForK > 0, we also defined the set of microcanonical equilibrium macrostates by

Eu,K = {ν ∈ P (�) : Iu,K(ν) = 0}
(4.1)

= {ν ∈ P (�) :ν minimizesR(ν|ρ) subject tofK(ν) = u},
Eu,K is well defined forK > 0 andu ∈ domsK = [min(1− K,0),1]. Throughout
this section we fixu ∈ domsK ; sK is defined in (2.4).

Determining the elements inEu,K requires solving a constrained minimization
problem, which is the dual of the unconstrained minimization problem associated
with the setEβ,K of canonical equilibrium macrostates defined in (2.7). In order to
simplify the analysis of the setEu,K , we employ the technique used in [2] to reduce
the constrained minimization problem definingEu,K to another minimization
problem that is more easily studied. For fixedK > 0 andu ∈ domsK , we define

Du,K = {µ ∈ P (�) :fK(µ) = u}.(4.2)

Forµ ∈ Du,K , let z = µ1 − µ−1 andq = µ1 + µ−1. Sinceµ ∈ Du,K implies that

fK(µ) = (µ1 + µ−1) − K(µ1 − µ−1)
2 = u,
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we see thatq = u + Kz2. Thus, forµ ∈ Du,K , we have

R(µ|ρ) =
1∑

i=−1

µi log 3µi

= q − z

2
log

[
3

2
(q − z)

]
+ q + z

2
log

[
3

2
(q + z)

]

+ (1− q) log[3(1− q)]
= q + z

2
log(q + z) + q − z

2
log(q − z)

+ (1− q) log(1− q) − (q log 2− log 3).

Settingq = u + Kz2, we define the quantity

Ru,K(z) = q + z

2
log(q + z) + q − z

2
log(q − z)

(4.3)
+ (1− q) log(1− q) − (q log2− log 3)

and the set

Mu,K = {z ∈ R : z = µ1 − µ−1 for someµ ∈ Du,K}.(4.4)

The derivation ofRu,K makes it clear thatMu,K ⊂ (−1,1) is the domain ofRu,K .
We next introduce the set

Ẽu,K = {z̃ ∈ Mu,K : z̃ minimizesRu,K(z)}.
The following theorem states a one-to-one correspondence between the elements
of Eu,K and Ẽu,K under an assumption on the structure ofẼu,K . In [15], for
particular values ofu andK , numerical experiments show thatẼu,K consists of
either 1,2 or 3 points. Although we are not able to prove that this is valid for all
u ∈ domsK andK > 0, because of our numerical computations, we make it an
assumption in the next theorem.

THEOREM 4.1. Fix K > 0 and u ∈ domsK . Suppose that Ẽu,K = {zα}rα=1,
where r equals 1, 2or 3. Define να = ∑1

i=−1 να,iδi ∈ P (�) by the formulas

να,1 = u + Kz2
α + zα

2
, να,−1 = u + Kz2

α − zα

2
, να,0 = 1− να,1 − να,−1.

Then Eu,K consists of the distinct elements να,α = 1, . . . , r .

PROOF. Using the definition (4.2) ofDu,K , we can rewrite the setEu,K of
microcanonical equilibrium macrostates defined in (4.1) as

Eu,K = {ν ∈ Du,K :ν is a minimum point ofR(µ|ρ)}.
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We show that, forα = 1, . . . , r , fK(να) = u and R(να|ρ) < R(µ|ρ) for all
µ ∈ Du,K for whichµ �= να .

From the definition ofνα , we have

fK(να) = (να,1 + να,−1) − K(να,1 − να,−1)
2 = (u + Kz2

α) − Kz2
α = u.

Therefore, να ∈ Du,K for all α = 1, . . . , r . Since for all zα, z ∈ Ẽu,K ,
α,  = 1, . . . , r ,

R(να|ρ) = Ru,K(zα) = Ru,K(z) = R(ν|ρ),

it follows thatR(να|ρ) are equal for allα = 1, . . . , r .
We now considerµ = ∑1

i=−1 µiδi ∈ Du,K such thatµ �= να for all α = 1, . . . , r .
Definingζ = µ1 − µ−1, we claim thatζ �= zα for all α = 1, . . . , r . Suppose other-
wise; that is, for somezα ,

µ1 − µ−1 = ζ = zα = να,1 − να,−1.(4.5)

But µ ∈ Du,K implies thatfK(µ) = u = fK(να) and, thus, that

µ1 + µ−1 = να,1 + να,−1.(4.6)

Combining (4.5) and (4.6) yields the contradiction thatµ = να . Becauseζ �= zα

for all α = 1, . . . , r , it follows thatζ /∈ Ẽu,K and, thus, thatRu,K(zα) < Ru,K(ζ )

for all α = 1, . . . , r . As a result, forα = 1, . . . , r , we have

R(να|ρ) = Ru,K(zα) < Ru,K(ζ ) = R(µ|ρ).

We complete the proof by showing that ifzα �= z, thenνα �= ν. Indeed, if
να = ν, then, for each choice of sign, we would haveKz2

α ± zα = Kz2
 ± z. Since

this leads to the contradiction thatzα = z, the proof of the theorem is complete.
�

Theorem 4.1 allows us to analyze the setEu,K of microcanonical equilibrium
macrostates by calculating the minimum points of the functionRu,K defined
in (4.3). Define

ϕu,K(z) = q + z

2
log(q + z) + q − z

2
log(q − z) + (1− q) log(1− q),

whereq = u + Kz2. With this notation (4.3) becomes

Ru,K(z) = ϕu,K(z) − (u + Kz2) log2+ log 3.

This separation ofRu,K into the nonlinear componentϕu,K and the quadratic
component is similar to the method used in Sections 3.2 and 3.3 in determining the
elements in the set̃Eβ,K . There we separated the minimizing functionFβ,K(w)

into a nonlinear componentcβ(w) and a quadratic componentw2/(4βK);
minimum points ofFβ,K satisfyF ′

β,K(w) = c′
β(w) − w/(2βK) = 0. Solving this
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equation was greatly facilitated by understanding the concavity and convexity
properties ofcβ , which are proved in Theorem 3.5.

Following the success of this method in studying the canonical ensemble, we
apply a similar technique to determine the minimum points ofRu,K . We call
a pair (u,K) admissible ifu ∈ domsK . While an analytic proof could not be
found, our numerical experiments show that there exists a curveK = C(u) in
the (u,K)-plane such that for all admissible(u,K) lying above the graph of this
curve, ϕ′

u,K is strictly convex on its positive domain. The graph ofK = C(u)

is depicted in Figure 9. We denote byG+ the set of admissible(u,K) lying
above this graph and byG− the set of admissible(u,K) lying below this graph.
Using a similar argument as in the proof of Theorem 3.6 for the canonical case,
we are led to believe that, for all(u,K) ∈ G+, the BEG model with respect to
the microcanonical ensemble exhibits a continuous bifurcation inK ; that is, there
exists a critical valueK(2)

c (u) > 0 such that the following hold:

• For 0< K ≤ K
(2)
c (u), Ẽu,K = {0}.

• For K > K
(2)
c (u), there exists a positive numberz̃(u,K) such thatẼu,K =

{±z̃(u,K)}.
• lim

K→(K
(2)
c (u))+ z̃(u,K) = 0.

FIG. 9. Bifurcation diagram for the BEG model with respect to the microcanonical ensemble.
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Combined with the one-to-one correspondence between the elements ofẼu,K

and Eu,K proved in Theorem 4.1, the structure ofẼu,K just given yields a
continuous bifurcation inK exhibited byEu,K for (u,K) lying in the regionG+
above the graph of the curveK = C(u). Similar to the definition of the critical
value K

(2)
c (β) given in (3.19) for the continuous bifurcation inK exhibited by

Ẽβ,K , the critical valueK(2)
c (u) is the solution of the equation

R′′
u,K(0) = 0 or ϕ′′

u,K(0) = 2K log 2.

Consequently, sinceϕ′′
u,K(0) = 1/u + 2K[log(u/(1− u))], we define the second-

order critical value to be

K(2)
c (u) = ϕ′′

u,K(0)

2 log 2
= 1

2u log(2(1− u)/u)
.(4.7)

The derivation of this formula forK(2)
c (u) for the critical values of the continuous

bifurcation inK exhibited byEu,K rests on the existence of the curveK = C(u),
which in turn was derived numerically. However, the accuracy of (4.7) is supported
by the fact that the graph of the curveK(2)

c (u) fits the critical values derived
numerically in Figures 2 and 3 of [15].

For values of(u,K) lying in the regionG− below the graph of the curve
K = C(u), the strict convexity behavior ofϕ′

u,K no longer holds. Therefore,
numerical computations were used to determine the behavior ofRu,K for
such(u,K), showing a discontinuous bifurcation inK in this region. Specifically,
there exists a critical valueK(1)

c (u) such that the following hold:

• For 0< K < K
(1)
c (u), Ẽu,K = {0}.

• ForK = K
(1)
c (u), there exists̃z(u,K) > 0 such thatẼu,K = {0,±z̃(u,K)}.

• ForK > K
(1)
c (u), there exists̃z(u,K) > 0 such thatẼu,K = {±z̃(u,K)}.

The critical valuesK(1)
c (u) were computed numerically by determining the value

of K for which the number of global minimum points ofRu,K(z) changes from
one atz = 0 to three atz = 0 andz = ±z̃(u,K), z̃(u,K) > 0.

The results of this section are summarized in the bifurcation diagram for
the BEG model with respect to the microcanonical ensemble, which appears in
Figure 9. In the next section we will see that Figure 9 is a phase diagram that
describes the phase transition in the microcanonical ensemble asu changes. In
order to substantiate this, we have to transfer our analysis ofEu,K from fixed u

and varyingK to an analysis ofEu,K for fixedK and varyingu.

5. Comparison of phase diagrams for the two ensembles. We end our
analysis of the canonical and microcanonical ensembles by explaining what our
results imply concerning the nature of the phase transitions in the BEG model.
These phase transitions are defined by varyingβ andu, the two parameters that
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define the ensembles. As we will see, the order of the phase transitions is a
structural property of the phase diagram in the sense that it is the same whether we
varyK or β in the canonical ensemble andK or u in the microcanonical ensemble
while keeping the other parameter fixed.

Before doing this, we first review one of the main contributions of the
preceding two sections, which is to analyze the bifurcation behavior of the sets
Eβ,K and Eu,K of equilibrium macrostates with respect to both the canonical
and microcanonical ensembles. Figure 8 summarizes the canonical analysis and
Figure 9 the microcanonical analysis. The figures exhibit two different values ofK

called tricritical values and denoted byKcanon
tri andKmicro

tri . As we soon explain, at
each of these values ofK the corresponding ensemble changes its behavior from
a continuous, second-order phase transition to a discontinuous, first-order phase
transition.

For the canonical ensemble, the tricritical value in Figure 8 is given by

Kcanon
tri = K(2)

c (βc) = K(2)
c (log 4) ≈ 1.0820,

whereK
(2)
c (β) is defined in (3.19). With respect to the microcanonical ensemble,

the tricritical valueKmicro
tri is the value ofK at which the curvesK = C(u) and

K
(2)
c (u) shown in Figure 9 intersect. From the numerical calculation of the curve

K = C(u), we obtain the following approximation for the tricritical valueKmicro
tri :

Kmicro
tri ≈ 1.0813.

These values ofKcanon
tri andKmicro

tri agree with the values derived in [2] via a local
analysis and numerical computations.

We first illustrate how our analysis ofEβ,K in Theorems 3.1 and 3.2 for
fixed β and varyingK yields a continuous, second-order phase transition and a
discontinuous, first-order phase transition with respect to the canonical ensemble.
These phase transitions are defined for fixedK and varyingβ, the thermodynamic
parameter that defines the ensemble. In order to study the phase transition, we must
therefore transform the analysis ofEβ,K for fixed β and varyingK to an analysis
of the same set for fixedK and varyingβ. After we consider the microcanonical
phase transition in an analogous way, we will focus on the region

Kmicro
tri ≈ 1.0813< K < 1.0820≈ Kcanon

tri .

As we will point out, the fact that forK in this region the two ensembles
exhibit different phase transition behavior—discontinuous for the canonical and
continuous for the microcanonical—is closely related to the phenomenon of
ensemble nonequivalence in the model.

We begin with the continuous phase transition for the canonical ensemble.
Figure 8 exhibits a monotonically decreasing functionK = K

(2)
c (β) for 0 < β <

βc = log 4. Inverting this function yields a monotonically decreasing functionβ =
β

(2)
c (K) for K > Kcanon

tri = K
(2)
c (βc) ≈ 1.0820. Consider, for fixedK > Kcanon

tri
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and smallδ > 0, values ofβ ∈ (β
(2)
c (K) − δ,β

(2)
c (K) + δ). Our analysis ofEβ,K

in Theorem 3.1 shows the following:

• Forβ ∈ (β
(2)
c (K) − δ, β

(2)
c (K)], the model exhibits a single phaseρβ .

• For β ∈ (β
(2)
c (K),β

(2)
c (K) + δ), the model exhibits two distinct phases

ν+(β,K) andν−(β,K).

We claim that, for fixedK > Kcanon
tri , this is a second-order phase transition;

that is, asβ → (β
(2)
c (K))+, we haveν+(β,K) → ρβ and ν−(β,K) → ρβ . To

see this, we recall from Figure 1(b) that, forβ = β
(2)
c (K), the graph of the

linear componentw/(2βK) of F ′
β,K(w) is tangent to the graph of the nonlinear

componentc′
β(w) of F ′

β,K(w) at the origin. This figure was referred to in

Section 3.1 when we analyzed the structure of the setẼβ,K (Theorem 3.6). Since
both components ofF ′

β,K(w) are continuous with respect toβ, a perturbation inβ

yields a continuous phase transition inẼβ,K and thus inEβ,K . A similar argument
shows that each of the double phasesν+(β,K) and ν−(β,K) are continuous
functions ofβ for β > β

(2)
c (K).

We now analyze the discontinuous phase transition for the canonical ensem-
ble in a similar way. Figure 8 exhibits a monotonically decreasing function
K = K

(1)
c (β) for β > βc = log4. Inverting this function yields a monoton-

ically decreasing functionβ = β
(1)
c (K) for 0 < K < Kcanon

tri ≈ 1.0820. For

fixed 0< K < Kcanon
tri and smallδ > 0, consider values ofβ ∈ (β

(1)
c (K) − δ,

β
(1)
c (K) + δ). Our analysis ofEβ,K in Theorem 3.2 shows the following:

• Forβ ∈ (β
(1)
c (K) − δ,β

(1)
c (K)), the model exhibits a single phaseρβ .

• For β = β
(1)
c (K), the model exhibits three distinct phasesρβ , ν+(β,K),

andν−(β,K).
• For β ∈ (β

(1)
c (K),β

(1)
c (K) + δ), the model exhibits two distinct phases

ν+(β,K) andν−(β,K).

We claim that, for fixed 0< K < Kcanon
tri , this is a first-order phase transi-

tion; that is, asβ → (β
(1)
c (K))+, we have, for each choice of sign,ν±(β,K) →

ν±(β
(1)
c (K),K) �= ρβ . To see this, we recall from Figure 7(a) that, forβ = β

(1)
c (K),

the graph of the linear componentw/(2βK) of F ′
β,K(w) intersects the graph of the

nonlinear componentc′
β(w) of F ′

β,K(w) in five places such that the signed area
between the two graphs is 0. This results in three values ofw that are global min-
imum points ofFβ,K ; namely,w = 0, w̃(β,K),−w̃(β,K) (Theorem 3.8). These
three values ofw give rise to three values ofz = w/(2βK) that constitute the
setẼβ,K for β = β

(2)
c (K). Since both components ofF ′

β,K(w) are continuous with

respect toβ, a perturbation inβ yields a discontinuous phase transition inẼβ,K and
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thus inEβ,K . A similar argument shows that each of the equilibrium macrostates

ν+(β,K) andν−(β,K) are continuous functions ofβ for β > β
(2)
c (K).

The phase transitions for the microcanonical ensemble are defined for fixedK

and varyingu, the thermodynamic parameter defining the ensemble. Therefore, in
order to study these phase transitions, we must transform the analysis ofEu,K done
in Section 4 for fixedu and varyingK to an analysis of the same set for fixedK

and varyingu. This is carried out in a way that is similar to what we have just done
for the canonical ensemble. In particular, we find that, forK > Kmicro

tri ≈ 1.0813,
the BEG model with respect to the microcanonical ensemble exhibits a continuous,
second-order phase transition and that, for 0< K < Kmicro

tri , the model exhibits a
discontinuous, first-order phase transition.

We now focus on values ofK satisfyingKmicro
tri < K < Kcanon

tri . As we have just
seen, for suchK , the two ensembles exhibit different phase transition behavior: for
Kmicro

tri < K , the microcanonical ensemble undergoes a continuous, second-order
phase transition, while for 0< K < Kcanon

tri , the canonical ensemble undergoes
a discontinuous, first-order phase transition. This observation is consistent with
a numerical calculation given in Figure 10 showing that, for a fixed value of
K ∈ (Kmicro

tri ,Kcanon
tri ), there exists a subset of the microcanonical equilibrium

macrostates that are not realized canonically [15]. As a result, for this value ofK ,
the two ensembles are nonequivalent at the level of equilibrium macrostates.

Figures 10(a) and 10(b) exhibit, for a range of values ofu andβ, the structure
of the setEu,K of microcanonical equilibrium macrostates and the setEβ,K

of canonical equilibrium macrostates forK = 1.0817. This value ofK lies in
the interval(Kmicro

tri ,Kcanon
tri ) ≈ (1.0813,1.0820). Each equilibrium macrostate in

FIG. 10. Structure of (a) the set Eu,K and (b) the set Eβ,K for K = 1.0817.
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Eu,K andEβ,K is an empirical measure having the form

ν = ν1δ1 + ν0δ0 + ν−1δ−1.

In both figures the solid and dashed curves can be taken to represent the
componentsν1 and ν−1. The componentsν1 and ν−1 in the microcanonical
ensemble are functions ofu [Figure 10(a)] and in the canonical ensemble are
functions ofβ [Figure 10(b)]. Figures 10(a) and 10(b) were taken from [15].

Comparing the two figures reveals that the ensembles are nonequivalent for this
value ofK . Specifically, because of the discontinuous, first-order phase transition
in the canonical ensemble, there exists a subset ofP (�) that is not realized
by Eβ,K for anyβ > 0. On the other hand, since the setEu,K of microcanonical
equilibrium macrostates exhibits a continuous, second-order phase transition, the
subset ofP (�) not realized canonically is realized microcanonically. As a result,
there exists a nonequivalence of ensembles at the level of equilibrium macrostates.
The reader is referred to [15] for a more complete analysis of ensemble equivalence
and nonequivalence for the BEG model.

6. Limit theorems for the total spin with respect to Pn,β,K . In Section 3.1
we rewrote the canonical ensemblePn,β,K for the BEG model in terms of the
total spinSn. This allowed us to reduce the analysis of the setEβ,K of canonical
equilibrium macrostates to that of a Curie–Weiss-type model. We end this paper
by deriving limit theorems for thePn,β,K -distributions of appropriately scaled
partial sumsSn = ∑n

j=1 ωj , which represents the total spin in the model. Since
Sn/n = ∫

{−1,0,1} yLn(dy), the limit theorems forSn are also limit theorems for the
empirical measuresLn. As we will see, the new limit theorems follow from those
for the Curie–Weiss model proved in [12, 14].

Let τ be a Borel probability measure onR satisfying
∫
R

exp[bx2]τ(dx) < ∞
for all b > 0. The Curie–Weiss model considered in [12, 14] is defined in terms of
a canonical ensemble on(Rn,BRn

) given by

P τ
n,β(dω) = 1

Zτ
n(β)

· exp
[
nβ

2

(
Sn(ω)

n

)2]
P τ

n (dω).(6.1)

In this formula β > 0, P τ
n is the product measure onRn with identical one-

dimensional marginalsτ , and Zτ
n(β) is a normalization makingP τ

n,β a proba-
bility measure. The canonical ensemble for the BEG model is defined by the
measurePn,β,K in (2.1), which is re-expressed in (3.2) as a Curie–Weiss-type mea-
sure. This measure has the form (6.1), in whichβ is replaced by 2βK andτ equals
the measureρβ defined in (3.1).

For t ∈ R, definecτ (t) = log
∫
R

exp(tω1)τ (dω1). As shown in [12, 14], the
P τ

n,β -limits for Sn are determined by the global minimum points of the function

Gτ
β(z) = 1

2βz2 − cτ (βz).(6.2)
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Let z̃ be a global minimum point ofGτ
β . SinceGτ

β is real analytic, there exists a

positive integerr = r(z̃) such that(Gτ
β)(2r)(z̃) > 0 and

Gτ
β(z) = Gτ

β(z̃) + (Gτ
β)(2r)(z̃)

(2r)! (z − z̃)2r + O
(
(z − z̃)2r+1) asz −→ z̃.

We call r(z̃) the type of the minimum point̃z. If r = 1, then(Gτ
β)′′(z̃) = β −

β2(cτ
β)′′(z̃), and if r ≥ 2, then(Gτ

β)(2r)(z̃) = −β2r (cτ
β)(2r)(z̃).

The canonical ensemblePn,β,K for the BEG model has the form of the Curie–
Weiss measureP τ

n,β with β replaced by 2βK andτ = ρβ . Therefore, the function

that plays the role ofGτ
β for the BEG model isG

ρβ

2βK . This coincides with the
function

Gβ,K(z) = βKz2 − cβ(2βKz)

= βKz2 − log
∫
{−1,0,1}

exp(2βKω1)ρβ(dω1),

defined in (3.8). For 0< β ≤ βc andK > 0, detailed information about the setẼβ,K

of global minimum points ofGβ,K is given in Theorem 3.6; forβ > βc andK > 0,
detailed information about̃Eβ,K is given in Theorem 3.8.

We next indicate the form of the limit theorems for the Curie–Weiss model,
restricting to those cases that arise in the BEG model. The first, Theorem 6.1,
states limits that are valid whenGτ

β has a unique global minimum point atz = 0.
The second, Theorem 6.2, states a conditioned limit that is valid whenGτ

β has
multiple global minimum points all of type 1.

A law of large numbers forSn/n is given in part (a) of Theorem 6.1. In part (b)
f0,σ2(β) denotes the density of aN(0, σ 2(β)) random variable with

σ 2(β) = β · (cτ
β)′′(0)

(Gτ
β)′′(0)

.(6.3)

When the type of the minimum point at 0 isr = 1, σ 2(β) > 0 because, in this
case,(Gτ

β)′′(0) > 0 and, in general,(cτ
β)′′(0) > 0. If f is a nonnegative, integrable

function onR, then, forr ∈ N, we write

P τ
n,β{Sn/n1−1/2r ∈ dx} �⇒ f (x) dx

to mean that, asn → ∞, theP τ
n,β -distributions ofSn/n1−1/2r converge weakly to

a distribution having a density proportional tof . Whenr = 1, f = f0,σ2(β), and
the limit is a central-limit-type theorem with scalingn1/2. Whenr ≥ 2, the limits
involve the nonclassical scalingn1−1/2r , and theP τ

n,β -distributions of the scaled
random variables converge weakly to a distribution having a density proportional
to exp[−const· x2r ]. Theorem 6.1 is proved in Theorem 2.1 in [12] forβ = 1;
rescaling yields the more general form given here.
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THEOREM 6.1. Consider the Curie–Weiss model, for which the canonical
ensemble P τ

n,β is defined by (6.1). For β > 0, assume that Gτ
β has a unique

global minimum point at z = 0 having type r . Let f0,σ2(β) be the density of

a N(0, σ 2(β)) random variable, where σ 2(β) is the positive quantity defined
in (6.3).The following conclusions hold:

(a) P τ
n,β{Sn/n ∈ dx} �⇒ δ0 as n → ∞.

(b) As n → ∞,

P τ
n,β

{
Sn

n1−1/2r
∈ dx

}
�⇒

{
f0,σ2(β)(x) dx, for r = 1,

exp
(−(Gτ

β)(2r)(0) · x2r/(2r)!)dx, for r ≥ 2.

The next theorem is valid whenGτ
β has multiple global minimum points all

of type 1. Part (a), proved in Theorem 3.8 in [12], states a law of large numbers
for Sn/n. Part (b), proved in Theorem 2.4 in [14], states a conditioned limit. For
each global minimum point̃z of type 1, we define the positive quantity

σ 2(β, z̃) = β · (cτ
β)′′(βz̃)

(Gτ
β)′′(βz̃)

.(6.4)

THEOREM 6.2. Consider the Curie–Weiss model, for which the canonical
ensemble P τ

n,β is defined by (6.1).For β > 0, assume that Gτ
β has global minimum

points, all of type 1, at {z1, . . . , zm} for m ≥ 2. For each j = 1, . . . ,m, we define

bj = σ 2(β, zj )∑m
=1 σ 2(β, z)

,

where σ 2(β, zj ) is the positive quantity defined in (6.4). Let f0,σ2(β,zj ) be the

density of a N(0, σ 2(β, zj )) random variable. The following conclusions hold:

(a) P τ
n,β{Sn/n ∈ dx} �⇒ ∑m

j=1 bj δzj
as n → ∞.

(b) There exists α = α(zj ) > 0 such that, for any a ∈ (0, α),

P τ
n,β

{
Sn − nzj

n1/2 ∈ dx
∣∣∣Sn

n
∈ [zj − a, zj + a]

}

�⇒ f0,σ2(β,zj )(x) dx as n → ∞.

In order to adapt these limit theorems to the BEG model, we now classify
each of the points inẼβ,K by type. Ẽβ,K denotes the set of global minimum
points of Gβ,K = G

ρβ

2βK , which plays the same role for the BEG model asGτ
β

for the Curie–Weiss model. The classification of the points inẼβ,K by type is
done in Theorem 6.3 for 0< β ≤ βc and K > 0, in which caseẼβ,K exhibits
a continuous bifurcation, and in Theorem 6.4 forβ > βc and K > 0, in which
caseẼβ,K exhibits a discontinuous bifurcation. The associated limit theorems are



PHASE TRANSITIONS IN THE MEAN-FIELD BEG MODEL 2249

given in Theorems 6.5 and 6.6. Except whenK = K2
c (β) [Theorem 6.3(b)], the

type of each of the global minimum points is 1. In these cases, the associated limit
theorems are central-limit-type theorems with scalingsn1/2. WhenK = K2

c (β),
we haveẼβ,K = {0}, and the type of the minimum point at 0 isr = 2 or r = 3,
depending on whether 0< β < βc or β = βc. The associated limit theorems have
noncentral-limit scalingsn3/4 or n5/6, and in each case

Pn,β,K{Sn/n1−1/2r ∈ dx} �⇒ const· exp[−const· x2r ]dx.

These nonclassical limit theorems signal the onset of a phase transition ([9], Sec-
tion V.8). AsK increases throughK2

c (β), the global minimum point at 0 bifurcates
continuously into symmetric, nonzero global minimum points±z̃(β,K).

We first consider 0< β ≤ βc = log4. According to Theorem 3.6, there exists a
critical value

K(2)
c (β) = 1

2βc′′
β(0)

= 1

4βe−β
+ 1

2β
,(6.5)

with the following properties:

• For 0< K ≤ K
(2)
c (β), Ẽβ,K = {0}.

• ForK > K
(2)
c (β), there exists̃z(β,K) > 0 such thatẼβ,K = {±z̃(β,K)}.

The next theorem gives the type of each of these points inẼβ,K . The type is

always 1 except whenK = K
(2)
c (β); in this case the global minimum point at 0

has typer = 2 if 0 < β < βc and typer = 3 if β = βc.

THEOREM 6.3. Consider the BEG model, for which the canonical ensemble
is given by (3.2).Let 0 < β ≤ βc = log 4and define K

(2)
c (β) by (6.5).The following

conclusions hold:

(a) For 0< K < K
(2)
c (β), z = 0 has type r = 1.

(b) Let K = K
(2)
c (β).

(i) For β < βc, z = 0 has type r = 2.
(ii) For β = βc, z = 0 has type r = 3.

(c) For K > K
(2)
c (β) and each choice of sign, z = ±z̃(β,K) has type r = 1.

PROOF. (a) By (6.5), we have

G′′
β,K(0) = 2βK

(
1− 2βKc′′

β(0)
)

= 2βK

(
1− K

K
(2)
c (β)

)
.

Therefore, 0< K < K
(2)
c (β) implies thatG′′

β,K(0) > 0 and, thus, thatz = 0 has
typer = 1.
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(b) ForK = K
(2)
c (β), G′′

β,K(0) = 0. A simple calculation yields

G
(4)
β,K(0) = −(2βK)4c

(4)
β (0)

(6.6)

= −(2βK)4 · 2e−β(1+ 2e−β)(1− 2e−β − 8e−2β)

(1+ e−β)4 .

Therefore, forβ < βc, G
(4)
β,K(0) > 0 and forβ = βc, G

(4)
β,K(0) = 0. Computing the

sixth derivative yields

G
(6)
βc,K

(0) = 2 · 34.(6.7)

As a result,z = 0 has type 2 ifβ < βc and has type 3 ifβ = βc.
(c) Lemma 3.7 states the existence and uniqueness of nonzero global minimum

points±w̃(β,K) of

Fβ,K(w) = w2/(4βK) − cβ(w) = Gβ,K(w/(2βK)).

According to part (a) of the lemma,F ′′
β,K(w̃(β,K)) > 0. Since z̃(β,K) =

w̃(β,K)/(2βK), F ′′
β,K(w̃(β,K)) > 0 impliesG′′

β,K(z̃(β,K)) > 0. The symmetry
of Gβ,K allows us to conclude that, for each choice of sign,±z̃(β,K) has type
r = 1. This completes the proof.�

We next classify by type the points iñEβ,K for β > βc andK > 0. According

to Theorem 3.8, there exists a critical valueK
(1)
c (β) with the following properties:

• For 0< K < K
(1)
c (β), Ẽβ,K = {0}.

• ForK = K
(1)
c (β), there exists̃z(β,K) > 0 such thatẼβ,K = {0,±z̃(β,K)}.

• ForK > K
(1)
c (β), Ẽβ,K = {±z̃(β,K)}.

The next theorem shows that the type of each of these points inEβ,K is 1.

THEOREM 6.4. Consider the BEG model, for which the canonical ensemble
is given by (3.2).Let β > βc and K > 0. The points in Ẽβ,K all have type r = 1.

PROOF. We first assume that 0∈ Ẽβ,K , in which case 0< K ≤ K
(1)
c (β).

Define K2 = 1/(2βc′′
β(0)). According to Theorem 3.8, we haveK(1)

c (β) < K2.
Since

G′′
β,K(0) = 2βK

(
1− 2βKc′′

β(0)
)

(6.8)

= 2βK

(
1− K

K2

)
,

it follows that, whenever 0< K ≤ K
(1)
c (β), 1 > K/K2 and, thus,G′′

β,K(0) > 0.
We conclude that the global minimum point ofGβ,K at z = 0 has typer = 1, as
claimed.
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For K ≥ K
(1)
c (β), Ẽβ,K also contains the symmetric, nonzero minimum points

±z̃(β,K) of Gβ,K . Lemma 3.10 states the existence and uniqueness of nonzero
global minimum points±w̃(β,K) of

Fβ,K(w) = w2/(4βK) − cβ(w) = Gβ,K(w/(2βK)).

Furthermore, according to part (a) of the lemma,F ′′
β,K(w̃(β,K)) > 0. Since

z̃(β,K) = w̃(β,K)/(2βK), F ′′
β,K(w̃(β,K)) > 0 impliesG′′

β,K(z̃(β,K)) > 0. The
symmetry ofGβ,K allows us to conclude that, for each choice of sign,±z̃(β,K)

has typer = 1. This completes the proof.�

Theorems 6.1 and 6.2, together with the classification by type of the global
minimum points ofGβ,K , yield limit theorems for thePn,β,K -distributions for
appropriately scaled partial sumsSn for the BEG model. The first, Theorem 6.5,
states limits that are valid whenGβ,K has a unique global minimum point atz = 0.

This is the case for 0< β ≤ βc, 0< K ≤ K
(2)
c (β) [Theorem 3.6(a)] and forβ > βc,

0< K < K
(1)
c (β) [Theorem 3.8(a)]. The second, Theorem 6.6, states a law of large

numbers and a conditioned limit that are valid whenGβ,K has multiple global
minimum points.

In Theorem 6.5f0,σ2(β,K) denotes the density of aN(0, σ 2(β,K)) random
variable with

σ 2(β,K) = 2βK · c′′
β(0)

G′′
β,K(0)

.(6.9)

When the type of the global minimum point at 0 isr = 1, σ 2(β,K) > 0.

THEOREM 6.5. Consider the BEG model, for which the canonical ensemble
Pn,β,K is given by (3.2).Suppose that Ẽβ,K = {0} and let r be the type of the point
z = 0 as given in Theorems 6.3and 6.4.The following conclusions hold:

(a) Pn,β,K{Sn/n ∈ dx} �⇒ δ0 as n → ∞.
(b) As n → ∞,

Pn,β,K

{
Sn

n1−1/2r
∈ dx

}

�⇒
{

f0,σ2(β,K)(x) dx, for r = 1,

exp
(−G

(2r)
β,K(0) · x2r/(2r)!)dx, for r = 2 or r = 3.

When r = 2 [K = K
(2)
c (β), β < βc], G

(4)
β,K(0) is given by (6.6), and when r = 3

[K = K
(2)
c (β), β = βc], G

(6)
β,K(0) = 2 · 34.

The last theorem states a law of large numbers and a conditioned limit that are
valid whenGβ,K has multiple global minimum points. This holds in the following
three cases:
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1. 0 < β ≤ βc and K > K
(2)
c (β), in which case the global minimum points

are±z̃(β,K) with z̃(β,K) > 0 [Theorem 3.6(b)];
2. β > βc and K = K

(1)
c (β), in which case the global minimum points are 0,

±z̃(β,K) with z̃(β,K) > 0 [Theorem 3.8(b)];
3. β > βc and K > K

(1)
c (β), in which case the global minimum points

are±z̃(β,K) with z̃(β,K) > 0 [Theorem 3.8(c)].

In each case in whichGβ,K has multiple global minimum points, Theorems
6.3 and 6.4 states that all the global minimum points have typer = 1. For each
global minimum point̃z of type 1, we define the positive quantity

σ 2(β,K, zj ) = 2βK · c′′
β(2βKzj )

G′′
β,K(zj )

.(6.10)

THEOREM 6.6. Consider the BEG model, for which the canonical ensemble
Pn,β,K is given by (3.2). Suppose that Ẽβ,K = {z1, . . . , zm} for m = 2 or m = 3.
For each j = 1, . . . ,m, we define

bj = σ 2(β, zj )∑m
=1 σ 2(β, z)

,

where σ 2(β, zj ) is the positive quantity defined in (6.10). Let f0,σ2(β,zj ) be the

density of a N(0, σ 2(β, zj )) random variable. The following conclusions hold:

(a) Pn,β,K{Sn/n ∈ dx} �⇒ ∑m
j=1 bj δzj

as n → ∞.
(b) There exists α = α(zj ) > 0 such that, for any a ∈ (0, α),

Pn,β,K

{
Sn − nzj

n1/2 ∈ dx
∣∣∣Sn

n
∈ [zj − a, zj + a]

}

�⇒ f0,σ2(β,zj )(x) dx as n → ∞.

This completes our study of the limits for thePn,β,K -distributions of appropri-
ately scaled partial sumsSn = ∑n

j=1 ωj .
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