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STRONG APPROXIMATION FOR THE SUPERMARKET MODEL

BY MALWINA J. LUCZAK AND JAMES NORRIS

London School of Economics and University of Cambridge

We prove three strong approximation theorems for the “supermarket” or
“join the shortest queue” model—a law of large numbers, a jump process
approximation and a central limit theorem. The estimates are carried through
rather explicitly, and rely in part on couplings. This allows us to approximate
each of the infinitely many components of the process in its own scale and to
exhibit a cut-off in the set of active components which grows slowly with the
number of servers.

1. Introduction. The supermarket model is a system ofN single-server
queues. Customers arrive as a Poisson process of rateNλ, whereλ ∈ (0,1). Each
customer examinesd queues, chosen randomly from allN queues, whered ≥ 2,
and joins the shortest of thesed queues, choosing randomly if the shortest queue is
not unique. The service times of all customers are independent rate 1 exponential
random variables. We will be concerned with the behavior of this model when
λ andd are fixed, over a finite time interval[0, t0], asN → ∞. We shall consider
the case when the system starts in some well-behaved state with low server loads
(in a sense to be made precise below).

This model has attracted attention because it turns out that the choice offered
to customers, even ifd = 2, dramatically reduces queue lengths (see [5, 14, 16])
and, in particular, the length of the longest queue (see [10, 11]). Given that our
analysis relies onN being very much larger thand, the model does not describe
well the behavior of a real supermarket. Rather it serves as an example where a
simple dynamic routing rule leads to a greatly improved performance, which is of
interest in the context of communications networks.

Our results provide strong approximations for the supermarket model, and
include a law of large numbers and a diffusion approximation. In arriving at
these results, we have developed techniques to establish weak convergence of
a sequence of Markov processesXN in infinitely many dimensions, where the
jumps of XN are of orderN−1 and occur at a rate of orderN . The classical
results for fluid limits are set in a finite-dimensional context. We make essential
use of the fact that the number of “active” components inXN grows only very
slowly with N . We have used direct and quantitative methods based on exponential

Received May 2004; revised December 2004.
AMS 2000 subject classifications. Primary 60K25; secondary 60F15.
Key words and phrases. Supermarket model, join the shortest queue, law of large numbers,

diffusion approximation, exponential martingale inequalities, coupling.

2038



ASYMPTOTICS OF SUPERMARKET MODEL 2039

martingales and strong approximation of Poisson processes by Brownian motion.
These methods seem well-suited to deal with such “almost finite-dimensional”
Markov processes. Earlier results for this model include laws of large numbers
in [5, 6, 14, 16], quantitative concentration of measure estimates in [10] and a
central limit theorem [7]. See also [9] for a preliminary version of the law of
large numbers presented in the present paper (for a more general range of initial
conditions).

The limiting behavior of the supermarket model asN → ∞ may conveniently
be described in terms of the vectorXt = (Xk

t : k ∈ N), whereXk
t denotes the

proportion of allN queues having at leastk customers at timet . The process
X = (Xt)t≥0 is a Markov chain. We will suppose throughout thatX0 = x0 with x0
nonrandom and we will suppress the dependence ofX onN to lighten the notation.
Now X has the form of a density dependent Markov chain such as considered by
Ethier and Kurtz in [4], Chapter 11. Thus, one might expect to be able to find a
deterministic process(xt )t≥0 and a Gaussian process(γt )t≥0 such that

Xt = xt + O(N−1/2), Xt = xt + N−1/2γt + O(logN/N).

However, the number of nonzero components inX grows withN so the standard
theory does not apply.

We will see that, for small initial data, the componentXk has a scale
ak = λ1+d+···+dk−1

, which, of course, decays very rapidly withk. Thus, the number
of queues having at leastk customers is of orderNak . We can findm of order
log logN such thatNam is of order 1. Thus, we can exhibit a cut-off in the number
of active components which grows only slowly withN . Below the cut-off, for
k ≤ m − 1, we prove convergence with explicit control of error probabilities for
each of the log logN active components.

We thereby obtain results of the form

Xk
t = xk

t + akO
(√

log log logN/Nak

)
,

Xk
t = xk

t + N−1/2γ k
t + akO

(
log(Nak)/Nak

)
.

Note that each component is estimated in the correct scale, with an error depending
on the number of queues active at that level. The log log logN in the first equation
is a (small) price we pay for working with infinitely many components. These
asymptotics will be established with a degree of uniformity inx0, which thus
allows a dependence ofx0 on N . The Gaussian approximation relies, as in the
finite-dimensional case, on a sophisticated coupling of the compensated Poisson
process with Brownian motion due to Komlós, Major and Tusnády [8].

We will give a third result, fork ≤ m − 1, of the form

Xk
t = xk

t + N−1/2γ̃ k
t + akO

(
(log log logN/Nak)

3/4).
Here (γ̃t )t≥0 is a jump process with drift which depends onN but is of a
simpler type thanX in that it is a linear function of additive Poisson noise. The
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characteristics of̃γ are derived in a simple and canonical way from those ofX.
Moreover,γ̃ andX share a common filtration. The error term is larger than for the
Gaussian approximation. On the other hand, the derivation is significantly simpler.

We obtain also the behavior of the queue sizes at and above the cut-off. We
see a residual randomness in(Xm

t )t≥0 even for large values ofN . This may be
approximated in terms of anM/M/∞ queue with arrival rateNλ(xm−1

t )d and
service rate 1. Over a given finite time interval, there are no queues with lengths
greater thanm.

Thus, we will show for the supermarket model that its infinite-dimensional
character does not prevent the derivation of precise asymptotics. We expect the
general approach taken here to adapt well to a number of further examples of
similar character.

2. Statement of results. Let S0 denote the set of nonincreasing sequences
x = (xk : k ∈ N) in [0,1], whereN = {1,2, . . . }. Forx ∈ S0, setx0 = 1 and define
λk+(x) = λ((xk−1)d −(xk)d), λk−(x) = xk −xk+1 andbk(x) = λk+(x)−λk−(x). It is
shown in [16] that, givenx0 ∈ S0, there is a unique solution(xt )t≥0 to ẋt = b(xt )

in S0. Moreover, for any other solution(yt )t≥0 in S0, xk
0 ≤ yk

0 for all k implies
xk
t ≤ yk

t for all k and allt ≥ 0.

Recall thatak = λ1+d+···+dk−1
for k ∈ N. Thena = (ak : k ∈ N) is the unique

solution in S0 to b(x) = 0 such that limk→∞ xk = 0; to see this note that
xk+1 − λ(xk)d is independent ofk for any solutionx.

Define‖x‖ = supk |xk|/ak , setE = {x ∈ R
N :‖x‖ < ∞} and setS = S0 ∩ E.

We shall work on a fixed interval[0, t0]. For us, the good initial conditions will be
thosex0 ∈ S for which‖xt‖ ≤ ρ for all t ∈ [0, t0], for someρ < ∞. Write S(ρ, t0)

for the set of suchx0. We note that, ifx0 ∈ S0 with ‖x0‖ ≤ 1, then, by comparison
with the stationary solutiona, ‖xt‖ ≤ 1 for all t , sox0 ∈ S(1, t0) for all t0. More
generally, ifx0 ∈ S, then t �→ ‖xt‖ is continuous (and finite) on some interval
[0, ζ ), sox0 ∈ S(ρ, t0) for someρ < ∞ for all t0 < ζ . To see this, we extendλ±
andb to R

N by settingλk+(x) = λ((yk−1)d − (yk)d)+, λk−(x) = (yk − yk+1)+,
whereyk = (xk)+; thenb mapsE to itself and is locally Lipschitz for the given
norm [to prove this fact, carry out estimates similar to those in (5) and (6) below];
so if x0 ∈ S, then there is a local solution(xt )t<ζ in S, which must coincide with
the global solution(xt )t≥0 in S0 for t < ζ .

The state-spaceI of the Markov chainX = (Xt)t≥0 is the set of nonincreasing
sequences inN−1{0,1, . . . ,N} with finitely many nonzero terms. Thus,I ⊆ S.
The Lévy kernel forX is given by

K(x, dy) =
∞∑

k=1

[
Nλk+(x)δek/N(dy) + Nλk−(x)δ−ek/N(dy)

]
,
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whereek denotes thekth standard basis vector. Givenm ∈ N, let (X̂m
t )t≤t0 be a

process starting fromxm
0 and such thatNX̂m is anM/M/∞ queue, with arrival

rateNλ(xm−1
t )d and service rate 1. We can now state our law of large numbers.

THEOREM 2.1. Set m = m(N) = inf{k ∈ N :Nak ≤ (logN)4}. There is a
coupling of X̂m and Xm such that, for all ρ ≥ 1, t0 > 0 and all sequences R(N)

with R(N)/
√

log log logN → ∞, we have

sup
x0∈I∩S(ρ,t0)

Px0

(√
N |XN,k

t − xk
t | > R(N)

√
ak for some k ≤ m − 1

or X
N,m
t �= X̂

N,m
t or X

N,m+1
t �= 0 for some t ≤ t0

) → 0.

In particular,

sup
k≤m−1

sup
t≤t0

|Xk,N
t − xk

t |/ak → 0

in probability, uniformly in x0 ∈ I ∩ S(ρ, t0).

We know (see [16]) that ifρ > 0 and‖x0‖ ≤ ρ, thenxk
t → ak ast → ∞. Thus,

for k ≤ m − 1, the proportional error in approximatingXk
t by the deterministic

processxk
t is small for large values ofN .

The central limit theorem shows generically that the power
√

N in Theorem 2.1
cannot be improved while the approximating process(xt )t≥0 remains determin-
istic. Our next result is a refined approximation which allows an improvement
to N3/4. Let µ̃ be a Poisson random measure onR

N × (0, t0] with intensity

ν̃(dy, dt) = K(xt , dy) dt.

For anyy,

∇bk(x)y = λd(xk−1)d−1yk−1 − λd(xk)d−1yk − yk + yk+1.

We show in Section 6 that the linear equations

γ̃ k
t = √

N

∫
RN×(0,t]

yk(µ̃ − ν̃)(dy, ds) +
∫ t

0
∇bk(xs)γ̃s ds(1)

have a unique cadlag solution(γ̃ k
t : k ∈ N, t ≤ t0). SetX̃t = xt + N−1/2γ̃t .

THEOREM 2.2. Define m(N) as in Theorem 2.1. There is a coupling of
X̃ and X, in a common filtration, such that, for all ρ ≥ 1, t0 > 0 and all
sequences R̃(N) with R̃(N)/(log log logN)3/4 → ∞, we have

sup
x0∈I∩S(ρ,t0)

Px0

(
N3/4|Xk

t − X̃k
t | > R̃(N)a

1/4
k for some k ≤ m − 1, t ≤ t0

) → 0.
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The final result is a diffusion approximation. LetBk+,Bk−, k ∈ N, be independent

standard Brownian motions. Setσk±(x) =
√

λk±(x). We show in Section 6 that the
linear equations

γ k
t =

∫ t

0
σk+(xs) dBk+(s) −

∫ t

0
σk−(xs) dBk−(s) +

∫ t

0
∇bk(xs)γs ds,

(2)
t ≤ t0,

have a unique solution(γ k
t : k ∈ N, t ≤ t0) with

sup
k∈N

E

(
sup
t≤t0

|γ k
t |2

)
< ∞.

SetX̄t = xt + N−1/2γt .

THEOREM 2.3. Define m(N) as in Theorem 2.1. There is a coupling of
X̄ and X such that, for all ρ ≥ 1, t0 > 0, there is a constant R̄, independent of N ,
such that

sup
x0∈I∩S(ρ,t0)

Px0

(
N |Xk

t − X̄k
t | > R̄ log(Nak) for some k ≤ m − 1, t ≤ t0

) → 0.

We remark that there are alternative versions of all three theorems in whichx0

is replaced byx(m)
0 = (x1

0, . . . , xm−1
0 ,0, . . .) andλ±(x) is replaced byλ±(x)(m),

so that the approximating deterministic dynamics are(m − 1)-dimensional. The
proofs are a minor modification of the proofs given below. These alternative ver-
sions would have merit in any computational implementation of the approxima-
tions sincem is of order only log logN .

In comparison with previous results, our theorems for the first time approximate
each component of the infinite dimensional process in its own scale, while at
the same time providing explicit rates of convergence. In particular, Theorem 2.1
strengthens the law of large numbers in [5, 6, 16], and Theorem 2.3 strengthens
the central limit theorem in [7]. Unlike the techniques developed in [10], ours
apply only on finite time intervals and do not extend to the equilibrium distribution.
On the other hand, the estimates in [10] do not distinguish between the magnitudes
of different components of the process.

3. Law of large numbers. In the first half of this section, we fixN and
A,R ≥ 1 and setm = inf{k ∈ N :Nak ≤ A}. We will obtain, subject to certain
constraints, a global estimate on the probability appearing in Theorem 2.1. In
the second half we will show that this estimate becomes small asN → ∞ when
A = (logN)4 and whenR is chosen as in Theorem 2.1.

The integerm, which will turn out to give the maximum queue length, is of order
log logN/ logd for the values ofA we shall consider. To see this, fixρ ≥ 1 and
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t0 > 0 and assume thatρAd ≤ Nd−1. Setα = (log logN − log log(1/λ))/ logd,
so thatNλdα = 1 andNak = λ1+d+···+dk−1−dα

. If k ≤ α, thenNak ≥ 1, whereas
if k ≥ α + 1, thenNak ≤ 1. Hence, at least for sufficiently largeN , we will have
m ∈ (α − 2, α + 2).

Consider the casex0 ∈ S(ρ, t0). Then Nxm+1
0 ≤ Nρam+1 < Nρad

m ≤ ρAd/

Nd−1 ≤ 1, so xm+1
0 = 0. Set T1 = inf{t ≥ 0 :Xm+1

t �= 0}. Note that, while
Xm+1

t = 0, Xm+1
t increases at rateNλ(Xm

t−)d , whereasXm
t + Xm+1

t increases at
rateNλ(Xm−1

t− )d and decreases at rateNXm
t−. We can therefore find anM/M/∞

queue(Qt)t≥0, starting fromNxm
0 , without arrivals and with service rate 1, and

a Poisson random measureµ(dt, dx, du) on (0,∞)3, independent ofQ and of
intensitye−u dt dx du, such that, fort ≤ T1,

NXm+1
t = µ

({(s, x, u) : s ≤ t < s + u,x ≤ Nλ(Xm
s−)d})

and

N(Xm
t + Xm+1

t ) = Qt + µ
({(s, x, u) : s ≤ t < s + u,x ≤ Nλ(Xm−1

s− )d}).
Here theu variable encodes the exponential service time of the current customer
in each queue.

Define(X̂m
t )t≥0 by

NX̂m
t = Qt + µ

({(s, x, u) : s ≤ t < s + u,x ≤ Nλ(xm−1
s )d})

and setT2 = inf{t ≥ 0 :Xm
t +Xm+1

t �= X̂m
t }. Then(NX̂m

t )t≥0 is anM/M/∞ queue
starting fromNxm

0 , with arrival rateNλ(xm−1
t )d and service rate 1. Fixr > 1 and

setT3 = inf{t ≥ 0 :X̂m
t > ram}. Fix R ≥ 1, set

T4 = inf
{
t ≥ 0 :

√
N |Xk

t − xk
t | > R

√
ak for somek ≤ m − 1

}
,

and setT = T1 ∧ T2 ∧ T3 ∧ T4 ∧ t0. Finally, set

p = p(N,λ, d, x0,A,R, r) = P(T < t0).

PROPOSITION 3.1. Assume that x0 ∈ S(ρ, t0), that A,R,ρ ≥ 1 with
ρAd ≤ Nd−1, that r > ρ and that

2rAt0e
Lt0/N(1/2)(1−1/d) ≤ R ≤ (t0 ∧ 1)

√
A,

where L = 2(dσd−1 + 1) and σ = ρ + 1. Then p ≤ p1 + p2 + p3 + p4, where

p1 = Adrdt0/N
d−1,

p2 = A1−1/(2d)dσ d−1Rt0/N
(1/2)(1−1/d),

p3 = ρdt0/(r − ρ),

p4 = 2mexp
(−R2/(20σdt0e

2Lt0)
)
.
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PROOF. It will suffice to show thatP(T = Ti) ≤ pi for i = 1,2,3,4. Recall
that, for a Poisson random variableY of parameterν > 0 and for a > 0, we
haveP(Y ≥ a) ≤ ν/a. For t < T , we haveNλ(Xm

t )d ≤ Nλ(ram)d ≤ Adrd/Nd−1,
soXm+1

T is dominated by a Poisson random variableY1 of parameterp1, and so

P(T = T1) = P(Xm+1
T = 1) ≤ P(Y1 ≥ 1) ≤ p1.

Sincex0 ∈ S(ρ, t0), we havexk
t ≤ ρak for all k ∈ N and allt ≤ t0. Fork ≤ m − 1,

we haveR
√

ak/N ≤ akR/
√

Nak ≤ akR/
√

A ≤ ak . Hence, fort < T and k ≤
m − 1,

Xk
t ≤ xk

t + R
√

ak/N ≤ σak.(3)

Then, fort < T ,

Nλ|(Xm−1
t )d − (xm−1

t )d | ≤ Nλdσd−1ad−1
m−1|Xm−1

t − xm−1
t |

≤ Nλdσd−1ad−1
m−1R

√
am−1/N

≤ A1−1/(2d)dσ d−1R/N(1/2)(1−1/d),

where the final inequality follows fromam = λad
m−1. Set

	 = µ
({(t, x, u) : t ≤ T ,Nλ(xm−1

t ∧ Xm−1
t− )d < x ≤ Nλ(xm−1

t ∨ Xm−1
t− )d}).

Then	 is dominated by a Poisson random variableY2 of parameterp2. Hence,

P(T = T2) = P(	 = 1) ≤ P(Y2 ≥ 1) ≤ p2.

Note thatλ(xm−1
t )d ≤ λρdad

m−1 = ρdam for all t ≤ t0. Thus,NX̂m
T ≤ Nxm

0 + Y3

for a Poisson random variableY3 of parameterNρdamt0 and so

P(T = T3) = P(X̂m
T ≥ ram) ≤ P

(
Y3 ≥ N(r − ρ)am

) ≤ p3.

It remains to estimateP(T = T4). For this, we write

Xk
t = xk

0 + Mk
t +

∫ t

0
bk(Xs) ds(4)

so that

Xk
t − xk

t = Mk
t +

∫ t

0

(
bk(Xs) − bk(xs)

)
ds.

Then we use a combination of exponential martingale inequalities and Gronwall’s
lemma to obtain the desired estimate. First we investigate how smallM will need
to be to obtain the required bound on|Xk

t − xk
t | for k ≤ m − 1. Note that

|λk+(x)−λk+(y)| ≤ λd(xk−1 ∨ yk−1)d−1|xk−1 − yk−1|+λd(xk ∨ yk)d−1|xk − yk|
so, provided thatxk ∨ yk ≤ σak andxk−1 ∨ yk−1 ≤ σak−1,

|λk+(x) − λk+(y)| ≤ dσd−1{(ak/ak−1)|xk−1 − yk−1| + |xk − yk|}.(5)
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Also,

|λk−(x) − λk−(y)| ≤ |xk − yk| + |xk+1 − yk+1|.(6)

Hence, provided thatxk ∨ yk ≤ σak andxk−1 ∨ yk−1 ≤ σak−1, we have

|bk(x) − bk(y)|/√ak ≤ L sup
j=k−1,k,k+1

|xj − yj |/√aj .

We note that the definitions ofT2 andT3 forceXm
t ≤ ram for all t < T . Set

f (t) = sup
k≤m−1

sup
s≤t

|Xk
s − xk

s |/√ak.

Then, fort < T andk ≤ m − 2,

|bk(Xt) − bk(xt )|/√ak ≤ Lf (t)

and

|bm−1(Xt) − bm−1(xt )|/√am−1 ≤ Lf (t) + ram/
√

am−1.

Hence, fort ≤ T ,

f (t) ≤ (
M∗

t + ramt/
√

am−1
) + L

∫ t

0
f (s) ds,

where

M∗
t = sup

k≤m−1
sup
s≤t

|Mk
s |/√ak.

Setαk = 1
2e−Lt0R

√
ak/N and consider, fork ≤ m − 1, the stopping timesT k =

T k− ∧ T k+, where

T k± = inf{t ≥ 0 :±Mk
t > αk}.

Suppose thatT < T 1∧· · ·∧T m−1. ThenM∗
T ≤ 1

2e−Lt0R/
√

N . On the other hand,

ramt0/
√

am−1 = λ1/(2d)ra1−1/(2d)
m t0

≤ rA1−1/(2d)t0/N
1−1/(2d) ≤ 1

2e−Lt0R/
√

N.

So by Gronwall’s lemma,

f (T ) ≤ eLt0
(
M∗

T + ramt0/
√

am−1
) ≤ R/

√
N.

Hence,

P(T = T4) ≤
m−1∑
k=1

P(T k ≤ T )
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and it remains to estimateP(T k± ≤ T ) for k ≤ m − 1. Fork ∈ N, x ∈ S andθ ∈ R,
set

φk(x, θ) = λk+(x)h(θ) + λk−(x)h(−θ),

whereh(θ) = eθ − 1− θ . For t < T andk ≤ m − 1, we haveXk
t ≤ σak so

φk(Xt , θ) ≤ λσdad
k−1h(θ) + σakh(−θ) ≤ σdakg(θ),(7)

whereg(θ) = eθ − 2+ e−θ . Consider, forθ ≥ 0, the exponential martingale

Zk
t = exp

{
Nθ(Xk

t − Xk
0) −

∫ t

0

∫
RN

(
eNθyk − 1

)
K(Xs, dy) ds

}

= exp
{
NθMk

t − N

∫ t

0
φk(Xs, θ) ds

}

and note that, on the eventT k+ ≤ T , we have

Zk

T k+
≥ exp{Nθαk − Nσdakg(θ)t0}.

By optional stopping,E(Z
k,N

T k
1

) ≤ 1, so

P(T k+ ≤ T ) ≤ exp
(−Nθαk + Nσdakg(θ)t0

)
.

We chooseθ = αk/(2σdakγ t0), where γ = g(1) ≤ 5
4. Using R ≤ t0

√
A it is

straightforward to check thatθ ≤ 1, so from Taylor’s theorem,g(θ) ≤ γ θ2. Hence,

P(T k+ ≤ T ) ≤ exp
(−Nα2

k/(4σdakγ t0)
) = exp

(−R2/(16σdγ t0e
2Lt0)

)
.

The same bound applies toP(T k− ≤ T ). So we have shown thatP(T4 = T ) ≤ p4,
as required. �

PROOF OFTHEOREM 2.1. We will determine conditions on sequencesR(N)

andr(N) so that, forA(N) = (logN)4, asN → ∞, all the constraints of Propo-
sition 3.1 are satisfied and, with an obvious notation,pi(N) → 0 for i = 1,2,3,4.
For p4(N) → 0, it suffices that log logN exp(−R2/(20σdt0e

2Lt0)) → 0 and,
hence, thatR/

√
log log logN → ∞. For p3(n) → 0, it suffices thatr → ∞.

For p2(N) → 0, it suffices thatA2−1/dR2/N1−1/d → 0 and for p1(N) → 0,
it suffices thatAr/N1−1/d → 0. If we can also arrange thatR/

√
A → 0 and

rA/(RN(1/2)(1−1/d)) → 0, then all the constraints of Proposition 3.1 will be sat-
isfied eventually. A possible choice is to taker(N) = N(1/2)(1−1/d)/(logN)4 and
any sequenceR(N) with R(N)/

√
log log logN → ∞ andR(N)/(logN)2 → 0.

This proves the first part of the theorem. For the final assertion, it suffices to note
that, fork ≤ m − 1, R(N)/

√
Nak ≤ R(N)/

√
A(N) → 0. �

We remark that the choiceR(N) = logN leads to a bound of the form
p(N) ≤ CN−(1/2)(1−1/d) up to logarithmic corrections. This is the best rate of
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decay of probabilities we have found. We remark also that a marginally shorter
proof can be had by replacing the exponential martingale inequality by Doob’s
L2-inequality, at the small cost of requiring thatR(N)/

√
log logN → ∞.

4. A refinement of the fluid limit. This section leads to a proof of Theo-
rem 2.2. The deterministic limit (for componentsk ≤ m − 1) just discussed will
be refined by approximating the martingaleM in (4) by another martingale whose
characteristics are determined by the limit path, and at the same time lineariz-
ing around the limit path. The accuracy of the approximation is thereby improved
from N−1/2 to N−3/4 at the cost of moving to an approximating process which is
not deterministic but has a simple random structure, being a linear function of a
Poisson random measure.

Define a measurẽν on R
N × (0, t0] by

ν̃(dy, dt) = K(xt , dy) dt.

We will takeµ̃ to be a Poisson random measure with intensityν̃ coupled, in a way
to be specified, with the processX. DefineM̃ = (M̃k

t : k ∈ N, t ≤ t0) by

M̃k
t =

∫
RN×(0,t]

yk(µ̃ − ν̃)(dy, ds)

and defineγ̃ = (γ̃ k
t : k ∈ N, t ≤ t0) by

γ̃t = √
NM̃t +

∫ t

0
∇b(xs)γ̃s ds.

We show in Section 6 that we can writeγ̃ as an explicit linear function of̃µ − ν̃,

γ̃t = √
N

∫
RN×(0,t]

�t,sy(µ̃ − ν̃)(dy, ds),(8)

where(�t,s : s ≤ t ≤ t0) is theN × N matrix-valued process given by

∂

∂t
�t,s = ∇b(xt )�t,s, �s,s = I.

Thus, γ̃ has a simpler stochastic structure thanX. In particular, we can write
the characteristic function of any finite-dimensional distribution ofγ̃ in terms
of (xt )t≤t0 and(�t,s : s ≤ t ≤ t0).

Recall that

Xt = x0 + Mt +
∫ t

0
b(Xs) ds.

On the other hand, if we set̃Xt = xt + N−1/2γ̃t , then

X̃t = x0 + M̃t +
∫ t

0
b(xs) ds +

∫ t

0
∇b(xs)(X̃s − xs) ds.
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SetỸ = X − X̃, D̃ = M − M̃ and

At =
∫ t

0

(
b(Xs) − b(xs) − ∇b(xs)(Xs − xs)

)
ds.(9)

Then

Ỹt = D̃t + At +
∫ t

0
∇b(xs)Ỹs ds.(10)

We will obtain a good approximation if we can coupleM̃ with M to makeD̃ small.
Define kernelsK0,K+,K− on (0, t0] × E × R

N by

K0(t, x, dy) = K(x, dy) ∧ K(xt , dy),

K±(t, x, dy) = (
K(x, dy) − K(xt , dy)

)±
,

and letK∗(t, x,w,dx′, dw′) be the image of the measure

K0(t, x, dy0) ⊗ K+(t, x, dy+) ⊗ K−(t, x, dy−)

by the map(x′,w′) = (y0 + y+, y0 + y−). Let (Xt ,Wt)t≥0 be a Markov chain,
starting from(x0,0), with time-dependent Lévy kernelK∗. Set

µ̃t = ∑
	Wt �=0

δ(t,	Wt ).

Then(Xt)t≥0 is a Markov chain with Lévy kernelK andµ̃ is a Poisson random
measure with intensitỹν. We have coupledX andW so that, as far as possible,
they have the same jumps. SetT5 = inf{t ≥ 0 :|γ̃ m

t | > r
√

am }, wherer is as in the
previous section. Fix̃R > 0 and set

T6 = inf{t ≥ 0 :N3/4|Xk
t − X̃k

t | > R̃a
1/4
k for somek ≤ m − 1}.

Finally, setT̃ = T ∧ T5 ∧ T6 andp̃ = P(T̃ < t0).

PROPOSITION 4.1. Assume that the conditions of Proposition 3.1 hold. Set
H = 1

2d(d − 1)σ d−2 and assume, in addition, that rA ≤ N(1/2)(1−1/d) and

4HR2t0e
Lt0/N1/4 + 4rAt0e

Lt0/N(1/4)(1−1/d) ≤ R̃ ≤ 4RLt0e
Lt0A1/4.

Then p̃ ≤ p1 + p2 + p3 + p4 + p5 + p6, where p1,p2,p3,p4 are defined in
Proposition 3.1and

p5 = 8(ρd + 1)t0e
2Lt2

0 /r2, p6 = 2mexp{−R̃2/(20RLt0e
2Lt0)}.

PROOF. Given Proposition 3.1, it will suffice to show thatP(T̃ = Ti) ≤ pi for
i = 5,6. By Proposition 6.1,

E

(
sup
t≤t0

|γ̃ m
t |2

)
≤ 8(ρd + 1)t0e

2Lt2
0 am.
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SoP(T̃ = T5) ≤ p5 by Chebyshev’s inequality.
We now follow an argument similar to the proof thatP(T = T4) ≤ p4 in

Proposition 3.1. Set

f̃ (t) = sup
k≤m−1

sup
s≤t

|Ỹ k
s |/a1/4

k ,

Ã∗
t = sup

k≤m−1
sup
s≤t

|Ak
s |/a1/4

k +
∫ t

0
|Ỹ m

s |ds/a
1/4
m−1,

D̃∗
t = sup

k≤m−1
sup
s≤t

|D̃k
s |/a1/4

k .

We recall that

∇bk(x)y = λd(xk−1)d−1yk−1 − λd(xk)d−1yk − yk + yk+1

so, provided thatxk ≤ σak andxk−1 ≤ σak−1,

|∇bk(x)y|/a1/4
k ≤ L sup

j=k−1,k,k+1
|yj |/a1/4

j .

For t ≤ t0, we havexk
t ≤ ρak ≤ σak for all k, so, fork ≤ m − 1,

|∇bk(xt )Ỹt |/a1/4
k ≤ Lf̃ (t) + δk,m−1|Ỹ m

t |/a1/4
m−1.

Then, from (10), we get

f̃ (t) ≤ D̃∗
t + Ã∗

t + L

∫ t

0
f̃ (s) ds,

so, by Gronwall’s lemma,f̃ (t) ≤ eLt (Ã∗
t + D̃∗

t ) for all t ≤ t0. Note that, for
k ≤ m − 1,

bk(y) − bk(x) − ∇bk(x)(y − x)

= λ
(
(yk−1)d − (xk−1)d − d(xk−1)d−1(yk−1 − xk−1)

)
− λ

(
(yk)d − (xk)d − d(xk)d−1(yk − xk)

)
,

so, provided thatxk, yk ≤ σak andxk−1, yk−1 ≤ σak−1,

|bk(y) − bk(x) − ∇bk(x)(y − x)|
≤ Hλ(ad−2

k−1 |yk−1 − xk−1|2 + ad−2
k |yk − xk|2).

For t < T̃ andk ≤ m−1, we have|Xk
t −xk

t | ≤ R
√

ak/N ; moreover, as we showed
at (3), this implies thatXk

t ≤ σak . Hence,

|bk(Xt) − bk(xt ) − ∇bk(xt )(Xt − xt )|/a1/4
k

≤ HλR2(ad−1
k−1 + ad−1

k )/(Na
1/4
k ) ≤ 2CR2/N.
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Also, |Ỹ m
t | ≤ |Xm

t − xm
t | + N−1/2|γ̃ m

t |, so, for t < T̃ , |Ỹ m
t |/a1/4

m−1 ≤ (ram +
N−1/2r

√
am )/a

1/4
m−1 ≤ 2r(A/N)1−1/(4d). It follows that

Ã∗
T̃

≤ 2HR2t0/N + 2rt0(A/N)1−1/(4d) ≤ 1
2e−Lt0R̃/N3/4.

Setα̃k = 1
2e−Lt0R̃a

1/4
k /N3/4 and consider the stopping timesT̃ k = T̃ k+∧ T̃ k−, where

T̃ k± = inf{t ≥ 0 :±D̃k
t > α̃k}.

Suppose that̃T < T̃ 1∧· · ·∧ T̃ m−1. ThenD̃∗
T̃

≤ 1
2e−Lt0R̃/N3/4 sof̃ (T̃ ) ≤ R̃/N3/4

andT̃ < T6. Hence,

P(T̃ = T6) ≤
m−1∑
k=1

P(T̃ k ≤ T̃ )

and it remains to estimateP(T̃ k± ≤ T̃ ) for k ≤ m − 1.
For k ≤ m − 1, set

ψk(t, x, θ) = (
λk+(x) − λk+(xt )

)+
h(θ) + (

λk−(x) − λk−(xt )
)+

h(−θ)

+ (
λk+(x) − λk+(xt )

)−
h(−θ) + (

λk−(x) − λk−(xt )
)−

h(θ).

Fix θ ≥ 0 and consider, fork ≤ m − 1, the exponential martingale

Z̃k
t = exp

{
Nθ(Xk

t − Xk
0 − Wk

t ) −
∫ t

0

∫
RN

(
eNθyk − 1

)
K+(s,Xs, dy) ds

−
∫ t

0

∫
RN

(
e−Nθyk − 1

)
K−(s,Xs, dy) ds

}

= exp
{
NθD̃k

t − N

∫ t

0
ψk(s,Xs, θ) ds

}
.

For k ≤ m − 2 andt ≤ t0, for xk ≤ σak andxk−1 ≤ σak−1, we can estimate as
at (5), (6) and (7) to obtain

ψk(t, x, θ)/
√

ak ≤ g(θ)
(|λk+(x) − λk+(xt )| + |λk−(x) − λk−(xt )|)/√ak

≤ Lg(θ) sup
j=k−1,k,k+1

|xj − x
j
t |/√aj ,

so, fort < T̃ andk ≤ m − 2,

ψk(t,Xt , θ) ≤ Lg(θ)R
√

ak/N.(11)

Similarly, since we assumeR ≥ 1, rA ≤ N(1/2)(1−1/d) andNam ≤ A, we have,
for t < T̃ , Xm

t ≤ ram ≤ R
√

am−1/N and we can show that (11) remains true for
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k = m − 1. By optional stopping we haveE(Z̃k

T̃ k+
) ≤ 1 for all k ≤ m − 1. But on

the eventT̃ k+ ≤ T̃ , we have

Z̃k

T̃ k+
≥ exp

{
Nθα̃k − Lg(θ)Rt0

√
Nak

}
.

We chooseθ = 2
√

Nα̃k/(5LRt0
√

ak ), checking thatθ ≤ 1, so thatg(θ) ≤ 5θ2/4,
and deduce

P(T̃ k+ ≤ T̃ ) ≤ exp
{−N3/2α̃2

k/
(
5LRt0

√
ak

)}
= exp{−R̃2/(20LRt0e

2Lt0)}.
The same bound applies toP(T̃ k− ≤ T̃ ). So we have shown thatP(T̃ = T6) ≤ p6,
as required. �

PROOF OFTHEOREM 2.2. Chooser(N) as in the proof of Theorem 2.1, so
thatr(N) → ∞ and sop5(N) → 0. AssumeR̃(N)/(logN)2 → 0, and sets(N) =
R̃(N)/(log log logN)3/4. Then s(N) → ∞. SetR(N) = s(N)(log log logN)1/2

and r(N) = N(1/4)(1−1/d)/(logN)4. It is straightforward to check that all the
constraints in Propositions 3.1 and 4.1 are satisfied eventually. Moreover, as
in the proof of Theorem 2.1, we havepi(N) → 0 for i = 1,2,3,4. Finally,
R̃(N)2/R log log logN → ∞, so alsop6(N) → 0, which proves the theorem.�

5. Diffusion approximation. In this section we prove Theorem 2.3. The
method follows the lines set out in [4], Chapter 11. As we have already seen,
our processX has around log logN active components, which have a wide range
of scales. This will require special consideration in the implementation of the
general method. We also have to deal with the fact that the variance of the diffusion
approximation has degeneracies. The diffusion coefficient, obtained as the square
root of the variance, then fails to be Lipschitz and some special care is needed to
arrive at the desired convergence.

Let (Xk
t : k ∈ N, t ≥ 0) be the supermarket process starting fromx0 and recall

equation (4)

Xk
t = xk

0 + Mk
t +

∫ t

0
bk(Xs) ds.

Recall also that we set̄Xt = xt + N−1/2γt , where(γ k
t : k ∈ N, t ≤ t0) is defined by

the linear equations (2)

γ k
t = √

NM̄k
t +

∫ t

0
∇bk(xs)γs ds

and
√

NM̄k
t =

∫ t

0
σk+(xs) dBk+(s) −

∫ t

0
σk−(xs) dBk−(s).
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SetY = X − X̄ andD = M − M̄ . Then

Yt = Dt + At +
∫ t

0
∇bk(xs)Ys ds,

whereAt is defined at (9). We will obtain a good approximation if we can couple
M̄ with M to makeD small.

The coupling relies on the following approximation result of [8]: there exists a
constantc ∈ (0,∞) and a probability space on which are defined a compensated
Poisson processZ of rate 1 and a standard Brownian motionW such that, for all
t ≥ 0 andx ∈ R,

P

(
sup
s≤t

|Z(s) − W(s)| ≥ c log t + x

)
≤ ce−x/c.(12)

See [13] for a recent review of developments and clarifications in connection with
this result.

Given independent compensated Poisson processesZk+,Zk−, k ∈ N of rate 1, we
can constructX by the equations (4) and

Mk
t = N−1

{
Zk+

(
N

∫ t

0
λk+(Xs) ds

)
− Zk−

(
N

∫ t

0
λk−(Xs) ds

)}
.

On the other hand, by a theorem of Knight, see, for example, [15], there exist
independent Brownian motionsWk+,Wk−, k ∈ N, such that, for allk ∈ N andt ≤ t0,

Wk±
(
N

∫ t

0
λk±(X̄s) ds

)
= √

N

∫ t

0
σk±(X̄s) dBk±(s).

The law of (Bk+,Bk− : k ∈ N), given (Wk+,Wk− : k ∈ N), is given by a measurable
kernel. So we may assume that these processes are defined on the same probability
space as(Zk+,Zk− : k ∈ N) and that(Zk+,Wk+), (Zk−,Wk−), k ∈ N, are independent
copies of(Z,W).

SetT7 = inf{t ≥ 0 :|γ m
t | > r

√
am }. Fix R̄ > 0 and set

T8 = inf{t ≥ 0 :N |Xk
t − X̄k

t | > R̄ log(Nak) for somek ≤ m − 1}.
Finally, setT̄ = T ∧ T7 ∧ T8 andp̄ = P(T̄ < t0).

PROPOSITION5.1. Assume that the conditions of Proposition 3.1 hold, and
assume, moreover, that A ≥ e2 and R ≤ √

A/2. There is a constant C < ∞,
depending only on d,λ,ρ and t0, such that, if

C + C(R2 + rA)/ logN ≤ R̄ ≤ A/(2 logA),

then p̄ ≤ p1 + p2 + p3 + p4 + p7 + p8, where p1,p2,p3,p4 are defined in
Proposition 3.1and

p7 = C/r2, p8 = Cm
(
A−1 + (R̄ logA)−2).
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PROOF. Given Proposition 3.1, it will suffice to show thatP(T̄ = Ti) ≤ pi for
i = 7,8. By Proposition 6.1,

E

(
sup
t≤t0

|γ m
t |2

)
≤ 8(ρd + 1)t0e

2Lt2
0 am.

SoP(T̄ = T7) ≤ p7 for a suitably largeC by Chebyshev’s inequality. Set

f̄ (t) = sup
k≤m−1

sup
s≤t

|Y k
s |/ log(Nak),

A∗
t = sup

k≤m−1
sup
s≤t

|Ak
s |/ log(Nak) +

∫ t

0
|Ym

s |ds/ log(Nam−1),

D∗
t = sup

k≤m−1
sup
s≤t

|Dk
s |/ log(Nak).

SinceNam−1 > A ≥ e, we haveNak/ log(Nak) ≤ Nak−1/ log(Nak−1) for all
k ≤ m − 1. So we can use an argument from the proof of Proposition 4.1 to obtain
f̄ (t) ≤ eLt (A∗

t + D∗
t ) for all t ≤ t0.

The functionF(s) = logs/(N1−dλsd) is decreasing whens > e ande < A <

Nam−1 ≤ (ANd−1/λ)1/d , so

log(Nam−1)/(Nam) = F(Nam−1) ≥ F
(
(ANd−1/λ)1/d) ≥ logN/(2A).

Similarly, log(Nam−1)/
√

Nam ≥ logN/(2
√

A). Hence,

r
(
Nam + √

Nam

)
/ log(Nam−1) ≤ 4rA/ logN.

We estimate as in the proof of Proposition 4.1 to obtain, fort < T̄ andk ≤ m − 1,

|bk(Xt) − bk(xt ) − ∇bk(xt )(Xt − xt )|/ log(Nak)

≤ HλR2(ad−1
k−1 + ad−1

k )/N log(Nak) ≤ 2HR2/(N logN)

and

|Ym
t |/ log(Nam−1) ≤ (

ram + N−1/2r
√

am

)
/ log(Nam−1) ≤ 4rA/(N logN).

So A∗̄
T

≤ 2t0(HR2 + 2rA)/(N logN) ≤ 1
2e−Lt0R̄/N , provided C is chosen

suitably large. Fork ≤ m − 1, setαk = 1
2e−Lt0R̄ log(Nak)/N and consider the

event �k = {supt≤T̄ |Dk
t | > αk}. On �0 = � \ (�1 ∪ · · · ∪ �m−1), we have

D∗̄
T

≤ 1
2e−Lt0R̄/N , sof̄ (T̄ ) ≤ R̄/N andT̄ < T8. Hence,

P(T̄ = T8) ≤
m−1∑
k=1

P(�k)
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and it will suffice to estimateP(�k) for eachk ≤ m − 1. Fix k ≤ m − 1. We can
write Dk

t = D+(t) − D−(t), whereD±(t) = D1±(t) + D2±(t) + D3±(t) and

D1±(t) = N−1(Zk± − Wk±)

(
N

∫ t

0
λk±(Xs) ds

)
,

D2±(t) = N−1
{
Wk±

(
N

∫ t

0
λk±(Xs) ds

)
− Wk±

(
N

∫ t

0
λk±(X̄s) ds

)}
,

D3±(t) = N−1/2
∫ t

0
{σk±(X̄s) − σk±(xs)}dBk±(s).

Hence, P(�k) ≤ q1+ + q1− + q2+ + q2− + q3+ + q3−, where, for j = 1,2,3,

q
j
± = P(�

j
±) and�

j
± = {supt≤T̄ |Dj

±(t)| > αk/6}.
For t < T̄ , we haveλk±(Xt) ≤ σdak , so, takingt = Nσdakt0 andx = Nαk/6−

c logt in (12), we obtain

q1± ≤ P

(
sup

t≤Nσdakt0

|Z(t) − W(t)| > Nαk/6
)

≤ cσdt0Nake
−Nαk/(6c) = cσdt0Nake

−R̄ log(Nak)/(12ceLt0)

= cσdt0(Nak)
1−R̄/(12ceLt0) ≤ cσdt0A

1−R̄/(12ceLt0) ≤ C/(4A),

for a suitable choice ofC.
We turn to estimateq2±. This will rely on the following continuity estimate for

Brownian motion: forτ,h, δ > 0, settingn = �τ/h�,

P

(
sup

s,t≤τ,|s−t |≤h

|W(t) − W(s)| > δ

)

≤ P

(
sup

k∈{0,1,...,n−1},t≤2h

|W(kh + t) − W(kh)| > δ/2
)

≤ 2nP

(
sup
t≤2h

W(t) > δ/2
)

≤ (2τ/h)e−δ2/(16h).

For t < T̄ , we have

X̄k
t ≤ xk

t + |Xk
t − xk

t | + |X̄k
t − Xk

t | ≤ ρak + R
√

ak/N + R̄ log(Nak)/N

≤ (
ρ + R/

√
A + R̄ logA/A

)
ak ≤ σak,

so

N

∫ t

0
λk±(X̄s) ds ≤ σdt0Nak.



ASYMPTOTICS OF SUPERMARKET MODEL 2055

Also, using (5) and (6), fort < T̄ ,∣∣∣∣N
∫ t

0

(
λk+(Xs) − λk+(X̄s)

)
ds

∣∣∣∣
≤ Ndσd−1t0R̄ak{log(Nak−1)/(Nak−1) + log(Nak)/(Nak)}
≤ 2dσd−1t0R̄ log(Nak)

and∣∣∣∣N
∫ t

0

(
λk−(Xs) − λk−(X̄s)

)
ds

∣∣∣∣
≤ R̄t0{log(Nak) + log(Nak+1)1k≤m−2} + rt0

(
Nam + √

Nam

)
δk,m−1

≤ 2t0R̄ log(Nak),

provided thatC is sufficiently large. We takeτ = σdt0Nak , h = 2dσd−1t0 ×
R̄ log(Nak) and

δ = Nαk/6 = R̄ log(Nak)/(12eLt0)

to obtain

q2± ≤ σNak

dR̄ log(Nak)
exp

{
− R̄ log(Nak)

4608dσd−1t0e2Lt0

}
≤ C/(4A)

for a suitable choice ofC.
It remains to estimateq3±. We shall show below that there exists a constantC0

such that, fort ≤ t0 and allk ∈ N,

E(|γ k
t |2) ≤ C0(x

k−1
t − xk

t ) ∧ (xk
t − xk+1

t ).

Then, fort < T̄ ,
√

N |σk−(X̄t ) − σk−(xt )| = √
N

∣∣√(
(X̄k

t )
+ − (X̄k+1

t )+
)+ −

√
xk
t − xk+1

t

∣∣
=

√
N |((X̄k

t )
+ − (X̄k+1

t )+)+ − (xk
t − xk+1

t )|√
((X̄k

t )
+ − (X̄k+1

t )+)+ +
√

xk
t − xk+1

t

≤ (|γ k
t | + |γ k+1

t |)/
√

xk
t − xk+1

t ,

so, by Doob’sL2-inequality,

E

(
sup
t≤T̄

|D3−(t)|2
)

≤ 4E

∫ t0

0
N−1|σk−(X̄s) − σk−(xs)|2 ds ≤ 16t0C0/N

2.

Hence,

q3− = P

(
sup
t≤T̄

|D3−(t)| > αk/6
)

≤ 2304t0e
2Lt0C0/

(
R̄ log(Nak)

)2 ≤ C(R̄ logA)−2/2
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for a suitable choice ofC.
The argument forq3+ is similar. Fort < T̄ ,

√
N |σk+(X̄t ) − σk+(xt )|

= √
N

∣∣√(
λ
(
(X̄k−1

t )+
)d − λ

(
(X̄k

t )
+)d)+ −

√
λ(xk−1

t )d − λ(xk
t )d

∣∣
≤ λd{(xk−1

t ∨ X̄k−1
t )d−1|γ k−1

t | + (xk
t ∨ X̄k

t )
d−1|γ k

t |}/
√

λ(xk−1
t )d − λ(xk

t )d

≤ λd2d−1

× (
(xk−1

t )d−1 + (N−1/2|γ k−1
t |)d−1)|γ k−1

t |/
√

λ(xk−1
t − xk

t )(xk−1
t )d−1

+ λd2d−1((xk
t )d−1 + (N−1/2|γ k

t |)d−1)|γ k
t |/

√
λ(xk−1

t − xk
t )(xk−1

t )d−1,

so, by Doob’sL2-inequality,

E

(
sup
t≤T̄

|D3+(t)|2
)

≤ 4E

∫ t0

0
N−1|σk+(X̄s) − σk+(xs)|2 ds

≤ 8d222(d−1)t0
(
1+ N(d−1)/2C(d)

)
C0/N

2,

whereC(d) = E(W(1)2d). Hence,

q3+ = P

(
sup
t≤T̄

|D3+(t)| > αk/6
)

≤ 2152d222(d−1)t0
(
1+ N(d−1)/2C(d)

)
C0e

2Lt0/
(
R̄ log(Nak)

)2

≤ C(R̄ logA)−2/2

for a suitable choice ofC. On combining this with the bounds forq1± and q2±
already found, we obtain the desired bound forp8. �

PROOF OF THEOREM 2.3. Set A(N) = r(N) = (logN)1/2 and define
m̄(N) = inf{k ∈ N :Nak ≤ A(N)}. SetR(N) = (logN)1/4(1∧ t0)/2. It is straight-
forward to check that, ifC is the constant appearing in Proposition 5.1 and if
R̄ = 3C, then all the constraints in Propositions 3.1 and 5.1 are satisfied eventually
and, moreover, thatpi(N) → 0 for i = 1,2,3,4,7,8. Sincem̄(N) ≥ m(N), this
proves the theorem.�

6. Fluctuation variance estimates. We have deferred from other sections
the analysis of certain linear equations associated with our processes. The basic
questions of existence and uniqueness in suitable spaces may be resolved by
standard methods, so we review this only briefly. The more delicate result,
Proposition 6.1, which is needed for the diffusion approximation, relies on the
particular structure of our model.
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We recall theN × N matrix-valued equation

∂

∂t
�t,s = ∇b(xt )�t,s, �s,s = I,

to be solved for 0≤ s ≤ t ≤ t0. Note that, forx0 ∈ S(ρ, t0) and t ∈ [0, t0], we
have‖∇b(xt )‖ ≤ L, where‖ · ‖ is the operator norm corresponding to‖x‖ =
supk |xk|/ak . Hence, it is standard that this equation has a unique continuous
solution with‖�t,s‖ ≤ eL(t−s) for all s, t .

The other relevant equations may be considered as stochastic perturbations of
the preceding equation. In Theorem 2.2 we used (1)

γ̃ k
t = √

NM̃k
t +

∫ t

0
∇bk(xs)γ̃s ds, t ≤ t0,

and in Theorem 2.3 we used (2)

γ k
t = √

NM̄k
t +

∫ t

0
∇bk(xs)γs ds, t ≤ t0.(13)

Here

M̃k
t =

∫
RN×(0,t]

yk(µ̃ − ν̃)(dy, ds)

and
√

NM̄k
t =

∫ t

0
σk+(xs) dBk+(s) −

∫ t

0
σk−(xs) dBk−(s).

Note that

NE(|M̃k
t |2) = N

∫ t

0

∫
RN

(yk)2K(xs, dy) ds

=
∫ t

0

(
λk+(xs) + λk−(xs)

)
ds = NE(|Mk

t |2)
andλk+(xt ) + λk−(xt ) ≤ (ρd + 1)ak for t ≤ t0. Hence, a standard type of iteration
argument, using Doob’sL2-inequality, shows that these equations have unique
measurable solutions with, respectively,

E

(
sup
t≤t0

|γ̃ k
t |2

)
≤ 8(ρd + 1)t0e

2Lt2
0 ak

and

E

(
sup
t≤t0

|γ k
t |2

)
≤ 8(ρd + 1)t0e

2Lt2
0 ak.

The details for (1) follow below; (2) may be treated in the same way. Note that, for
any vectory and for allk ∈ N,

|∇bk(xs)y
k|√

ak

≤ L
∑

j=k−1,k,k+1

|yj |√
aj

.
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Now let

γ̃
(0)
t = √

NM̃t ,

and forn ∈ N,

γ̃
(n)
t = √

NM̃t +
∫ t

0
∇bk(xs)γ̃

(n−1)
s ds.

Then for eachk,

|γ̃ (n+1),k
t − γ̃

(n),k
t |2

ak

≤ L2

(∫ t

0

∑
j=k−1,k,k+1

|γ̃ (n),j
s − γ̃

(n−1),j
s |√

aj

ds

)2

≤ 3L2
∑

j=k−1,k,k+1

(∫ t

0

|γ̃ (n),j
s − γ̃

(n−1),j
s |√

aj

ds

)2

,

so, using Cauchy–Schwarz,

|γ̃ (n+1),k
t − γ̃

(n),k
t |2

ak

≤ 3L2t
∑

j=k−1,k,k+1

∫ t

0

|γ̃ (n),j
s − γ̃

(n−1),j
s |2

aj

ds.

Then for all 0≤ s ≤ t ,

sup
s≤t

|γ̃ (n+1),k
s − γ̃

(n),k
s |2

ak

≤ 3L2t
∑

j=k−1,k,k+1

∫ t

0
sup
u≤s

|γ̃ (n),j
u − γ̃

(n−1),j
u |2

aj

ds.

Let h(n)(t) = supk E(sups≤t |γ̃ (n+1),k
s − γ̃

(n),k
s |2/ak); then fort ≤ t0,

h(n)(t) ≤ 9L2t0

∫ t

0
h(n−1)(s) ds.

Hence,

h(n)(t) ≤ 2nn!(3Lt0)
2n

(2n)! M̃(t0),

where

M̃(t) = sup
k

E

(
sup
s≤t

|M̃k
s |2/ak

)

≤ 4sup
k

sup
s≤t

E(|M̃k
s |2/ak) ≤ 4t (ρd + 1).

We deduce that̃γ (n)
t converges to a process̃γt uniformly on [0, t0], and thatγ̃t

satisfies (1). The uniqueness part of the proof is similar. Let

g(t) = sup
k

E

(
sup
s≤t

|γ̃ k
s |2

)/
ak.
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Then it follows from the above estimates that, fort ≤ t0,

g(t) ≤ M̃(t0)e
9L2t2

0 .

It may be verified by substitution that (8) gives an explicit representation of the
solution of (1).

PROPOSITION6.1. The solution (γ k
t : k ∈ N, t ≤ t0) to (2) satisfies

sup
k∈N

sup
t≤t0

E(|γ k
t |2)/min{xk−1

t − xk
t , xk

t − xk+1
t } < ∞.

PROOF. Note thatλk+(xt ) ≤ d(xk−1
t − xk

t ), so

ẋk
t − ẋk+1

t = λk+(xt ) − λk+1+ (xt ) − (xk
t − xk+1

t ) + (xk+1
t − xk+2

t )

≥ λk+(xt ) − (d + 1)(xk
t − xk+1

t ) + (xk+1
t − xk+2

t ).

Hence, ∫ t

0
λk+(xs) ds +

∫ t

0
(xk+1

s − xk+2
s ) ds ≤ e(d+1)t (xk

t − xk+1
t )

and ∫ t

0
(xk

s − xk+1
s ) ds ≤ te(d+1)t (xk

t − xk+1
t ).

Also, ∫ t

0
λk+(xs) ds ≤ d

∫ t

0
(xk−1

s − xk
s ) ds ≤ dte(d+1)t (xk−1

t − xk
t ).

Fix ε > 0 and set

f (t) = sup
k∈N

sup
s≤t

E(|γ k
s |2)/δk

s ,

whereδk
t = min{xk−1

t − xk
t , xk

t − xk+1
t } + ε. Thenf (t0) < ∞. Note that

E

(∣∣∣∣
∫ t

0
σk+(xs) dBk+(s) −

∫ t

0
σk−(xs) dBk−(s)

∣∣∣∣
2)

=
∫ t

0
λk+(xs) ds +

∫ t

0
(xk

s − xk+1
s ) ds ≤ (dt + 1)e(d+1)t δk

t .

We have

∇bk(x)γ = λd(xk−1)d−1γ k−1 − (
λd(xk)d−1 + 1

)
γ k + γ k+1.
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We will make use of the following estimates:

E

(∣∣∣∣
∫ t

0
λd(xk−1

s )d−1γ k−1
s ds

∣∣∣∣
2)

≤
∫ t

0
λ2d2(xk−1

s )2(d−1)δk−1
s ds

∫ t

0
E(|γ k−1

s |2)/δk−1
s ds

≤ d2
∫ t

0
λk+(xs) ds

∫ t

0
f (s) ds ≤ (d2 + d3t)e(d+1)t δk

t

∫ t

0
f (s) ds

and

E

(∣∣∣∣
∫ t

0

(
λd(xk

s )d−1 + 1
)
γ k
s ds

∣∣∣∣
2)

≤
∫ t

0

(
λd(xk

s )d−1 + 1
)2

δk
s ds

∫ t

0
E(|γ k

s |2)/δk
s ds

≤ (d + 1)2te(d+1)t δk
t

∫ t

0
f (s) ds

and

E

(∣∣∣∣
∫ t

0
γ k+1
s ds

∣∣∣∣
2)

≤
∫ t

0
δk+1
s ds

∫ t

0
E(|γ k+1

s |2)/δk+1
s ds ≤ e(d+1)t δk

t

∫ t

0
f (s) ds.

Now, from (13), for allt ≤ t0,

E(|γ k
t |2) ≤ Aδk

t + Bδk
t

∫ t

0
f (s) ds,

whereA = 4(dt + 1)e(d+1)t andB = 8d(d + 1)(dt + 1)e(d+1)t . Sof (t) ≤ AeBt

by Gronwall’s lemma. This bound does not depend onε, so the proposition follows
by lettingε → 0. �
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