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THE COALESCENT EFFECTIVE SIZE OF
AGE-STRUCTURED POPULATIONS1

BY SERIK SAGITOV AND PETER JAGERS

Chalmers University of Technology

We establish convergence to the Kingman coalescent for a class of age-
structured population models with time-constant population size. Time is
discrete with unit called a year. Offspring numbers in a year may depend
on mother’s age.

1. Introduction. The well-knowncoalescent process describes how family
lines merge in a sample from a large population, when time is traced backward. It
is a continuous time Markov chain which keeps record of branches starting from
n leaves and going throughn − 1 pairwise mergers toward the root of a so-called
ultrametric tree. The number of branches is reduced fromk,2≤ k ≤ n, to k − 1 at
the rate

(k
2

)
. At each reduction, a random pair of branches is replaced by a single

branch.
Initially [9], the coalescent was obtained as an approximation of the genealog-

ical tree of the Wright–Fisher model (WFM) with a large population sizeN and
the unit of coalescent time corresponding toN nonoverlapping generations. Sev-
eral papers (see [7, 8, 10, 12, 15], as well as Section 4 for an overview) have shown
that the coalescent approximation applies more generally. Then the coalescent time
turns intoNe ∼ N/c generations for some positive constantc determined by the
particular features of the population model under consideration. Following [15],
we callNe thecoalescent effective size (CES) of such a population model.

In the terminology of [17], the existence of a CES in the context of population
genetic data is equivalent to a situation in which it is not possible to reject the
basic WFM. This means that the coalescence pattern is indistinguishable from that
of a WFM. The CES is a narrower version of the classical genetical concept of an
inbreeding effective size (IES) designed to compare the rate of genetic drift in a
given model with that of the WFM (see [5]). The existence of a CES implies that
the IES exists as well and takes the same value. The reverse is not true: an IES
may exist while a CES is absent (as in the case of convergence to a coalescent with
multiple mergers [16]).
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This paper looks for a general CES formula in the case of overlapping gener-
ations. The best known constant size genetic population model with overlapping
generations is the Moran model, assuming that each unit of time one individual
is killed and another produces an offspring, so that the population sizeN remains
constant over time. It is straightforward to verify that in this case the coalescent ap-
proximation holds with the coalescent time unit equal toN2/2 units of the Moran
model time. Since the generation time in the Moran model isN , this implies the
existence of a CES withNe ∼ N/2. Here and elsewhere,xN ∼ yN means that
xN/yN → 1 asN → ∞.

An age-structured version of the WFM, introduced in [4], discerns amongA age
groups of constant sizesN(a) = q(a)N,a = 1,2, . . . ,A. In contrast to the basic
WFM, the full backward description of an age-structured ancestral process should
include age-labelling of lineages. In terms of the probabilityp(a) that a randomly
chosen new-born individual has a parent of age 1≤ a ≤ A, p(1)+· · ·+p(A) = 1,
the lineage back of an individual in the age-structured WFM exhibits ages with the
transition probabilities



p(1) p(2) p(3) · · · p(A − 1) p(A)

1 0 0 · · · 0 0

0 1 0 · · · 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 · · · 1 0




,(1)

the subdiagonal ones of course mirroring that an(a +1)-aged individual is viewed
as stemming from ana-aged the preceding year, namely, herself. It is easy to verify
that

γ̄ = (
γ (1), . . . , γ (A)

)
,

with

γ (a) = 1

γ

(
p(a) + · · · + p(A)

)
,

(2)
γ = ∑

ap(a),

is the corresponding stationary distribution of ages (in analogy with the stable
age distribution of branching processes or deterministic age-structured population
models, cf. [6]). Clearly,γ (1) = 1/γ .

According to [4], the IES of the age-structured WFM isNe ∼ N/(cageγ ), where

cage=
A∑

a=1

(
1

q(a)
− 1

q(a − 1)

)
γ 2(a),(3)
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under the convention 1
q(0)

= 0. This IES formula takes into account that the
generation time of the age-structured WFM isγ . In the particular case of constant
fertility across ages,p(a) ≡ q(a). Hence, withγ (A + 1) = 0,

cage=
A∑

a=1

γ 2(a) − γ 2(a + 1)

q(a)

=
A∑

a=1

(q(a)/γ )(2γ (a) − (q(a)/γ ))

q(a)
,

and the effective population size becomesNe ∼ N/(2 − γ −1). This, in turn
transforms to the formula for the Moran model asγ → ∞, though the Moran
model certainly has no fixed age distribution.

Just like the classical WFM, the offspring number of ana-aged individual in a
large (N → ∞) age-structured WFM is asymptotically Poisson with the mean

m(a) = p(a)q(1)/q(a).(4)

In Section 2 we introduce an age-structured model allowing an arbitrary marginal
reproduction law compatible with the constant population size assumption. The
subject of our interest, the ancestral process of the age-structured population,
is described at the end of Section 2. Our coalescent approximation result,
Theorem 3.1, stated in Section 3, gives a CES formula for populations with
exchangeable reproduction, which extends the CES formulaNe ∼ N/(cageγ ) for
the age-structured WFM.

In Section 4 we interpret our CES formula in terms of earlier known formulae
for geographically-structured WFMs with strong migration and for exchangeable
populations with rapidly fluctuating sizes. Special attention is paid to the question
whetherNe is smaller thanN . The final part of the paper is devoted to the proof of
Theorem 3.1.

2. An age-structured population model. Time is considered discrete with a
unit to be called a year, for convenience. Leta = 1, . . . ,A stand for the age of an
individual, whereA < ∞ is the maximal possible age. Each year the population
has the same sizeN and the age-composition also remains fixed,

�N = (
N(1), . . . ,N(A)

)
,

so that

N = N(1) + · · · + N(A), N(1) ≥ · · · ≥ N(A).

Individuals are assumed similar/exchangeable at least in the weak sense that all
individuals of the same age have the same probabilities of surviving a year and
have the same offspring number distribution. By the assumption of a fixed age
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structure, individuals can certainly not be independent of each other: if I survive,
your chances diminish, and, similarly, if you have many kids a year, I tend to
have few. But in some sense individuals should be interchangeable and we shall
impose more of proper exchangeability, where needed. It is a good idea to visualize
entities like the different individuals’ lifespans or reproductions at various ages as
exchangeable throughout, even though this is not always needed for the results.

The age structure determines the age distribution in the population through
q(a,N) := N(a)/N , and even the life span distribution: the probability of
surviving yeara, given that you have survived the preceding year, is

N(a + 1)

N(a)
= q(a + 1,N)

q(a,N)
.

The survival function is the same for all individuals and determined by the products
of yearly survival probabilities. IfL denotes individual life span, thus

P(L ≥ a) = q(a,N)

q(1,N)
, a = 1, . . . ,A,

and

E(L) = 1

q(1,N)
.

We assume that

q(a,N) → q(a) > 0, N → ∞.(5)

The vector of parameters̄q = (q(1), . . . , q(A)) then also describes the asymptotic
life span distribution in large populations,

P(L ≥ a) = q(a)

q(1)
, a = 1, . . . ,A,

and

E(L) = 1

q(1)
.

Denote the one-year offspring numbers of thea-aged individuals by{νl(a)}N(a)
l=1

for a = 1, . . . ,A, assumed to be independent across age classes and exchangeable
within them. Dropping theν-suffix for simplicity, we writem(a,N) := E(ν(a)),
and require that

N(a)∑
l=1

νl(a) = N(a)m(a,N), 1≤ a ≤ A,(6)

so that

N(1) =
A∑

a=1

N(a)m(a,N).
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Again, assume that there is convergence

m(a,N) → m(a), N → ∞,(7)

and, hence, that

q(1) =
A∑

a=1

q(a)m(a).

This means that thep(a) := q(a)
q(1)

m(a), a = 1,2, . . . ,A, sum to one and give
the asymptotic, so-called stable, distribution of age at childbearing in a critical
population (cf. [6], Section 8.4), that is, one where the mean offspring number per
individual equals one. Indeed, for fixedN , the expected yearly number of children
of a-aged mothers isN(a)m(a,N). Since the total number of children born in a
year isN(1), the distribution of age at childbearing is

N(a)m(a,N)

N(1)
= q(a,N)

q(1,N)
m(a,N)

and

E
(
ν(1) + · · · + ν(L)

) = E

(
A∑

l=1

l∑
a=1

ν(a)1{L=l}
)

=
A∑

a=1

E
(
ν(a)1{L≥a}

)

=
A∑

a=1

m(a,N)
q(a,N)

q(1,N)
= 1,

sincem(a,N) is precisely the expected offspring number one year of asurviving
a-aged individual. Of course, matters can not possibly stand otherwise when
population size remains constant.

Having clarified the prospective view, we look backward, at the genealogy
of n individuals sampled out of the population the present year. LetZ0(a)

denote the number of individuals of agea among them, so thatZ0 := Z0(1) +
· · · + Z0(A) = n. The vectorZ̄0 = (Z0(1), . . . ,Z0(A)) is the initial state of
a Markov chain called theancestral process. Its state at timer is given by
the numbersZ̄r = (Zr(1), . . . ,Zr(A)) of ancestors of the sampled individuals
r years ago, sorted by age. The total number of ancestors will be denoted by
Zr := Zr(1) + · · · + Zr(A). The Markov chain is time homogeneous and has a
finite number of states. The class of states, where there is a single individual in one
of the age classes, is absorbing.

Now, consider a situation wherek lines merge into onea-aged individual. If all
the k individuals are newborns, whose mother was of agea, we talk of a merger



EFFECTIVE POPULATION SIZE 1783

FIG. 1. Forward picture.

of type one, and denote it byI (a, k). This situation can only occur if the mother is
not in the sample. If she is, thek merging lines will be those ofk −1 newborns and
that from herself, one year later when she has attained agea +1. Such mergers are
said to be of type two and will be denotedII(a, k).

EXAMPLE. We illustrate the forward and backward views of this age-
structured population model by two figures dealing with the caseN = 16,A = 4,
N(1) = 6, N(2) = 4, N(3) = 3, N(4) = 3. Figure 1 shows the development
one year forward in time, the arrows indicating parent-offspring relationships
and aging. The nonzero offspring sizes areν2(1) = ν4(1) = ν2(4) = ν3(4) = 1;
ν1(2) = 2.

Figure 2 presents the retrospective view of the model by tracingn = 8 ancestral
lines one year back. We see one merger of typeI (2,2) and one merger of
typeII(1,2). Each of the two mergers reduces the number of branches by one.

FIG. 2. Backward picture.
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3. Main result. A first assumption on asymptotics, that age distributions
q(a,N) and expected offspring numbersm(a,N) should converge asN → ∞, has
already been mentioned. In addition, we require that offspring variances stabilize,

E
(
ν2(a)

) → m(a) + V (a), N → ∞, 1≤ a ≤ A,(8)

and that third moments do not grow too quickly,

E
(
ν3(a)

) = o(N), N → ∞, 1≤ a ≤ A.(9)

Here the limitsV (a) = limN→∞ E(ν(a)(ν(a) − 1)) are never negative, since
ν(a)(ν(a) − 1) ≥ 0. [The caseV (a) = 0 is not necessarily without interest, when
there is an age-structure, since in this case individuals either may have given birth
or not, ν(a) = 0 or 1.] Whereas (8) serves to ensure that the time scale leading
to the coalescent approximation isTN = N , condition (9) is aimed at prohibiting
multiple mergers of ancestral lines (cf. [16]).

THEOREM 3.1. Assume (5), (6), (7), (8),and (9)–(6), interpreted to include
the age-wise exchangebility and independence across ages mentioned before the
equation itself.

Then the weak convergence to the Kingman coalescent(
Z�tN/λ	

)
t≥0 → (Rt )t≥0, N → ∞(10)

holds with

λ = 2

γ

A−1∑
a=1

p(a)γ (a + 1)

q(a)
+ 1

γ 2q2(1)

A∑
a=1

V (a)q(a)(11)

implying that a CES exists and satisfies

Ne ∼ N/(λγ ), N → ∞.(12)

Our proof of (11) relies on asymptotics of joint factorial moments of offspring
numbers within an age class. It follows from Section 6 of [7] that the lower
moments satisfy

E
(
ν1(a) · · ·νj (a)

) → mj(a)(13)

and

E
(
ν

(2)
1 (a)ν2(a) · · ·νj (a)

) → V (a)mj−1(a),(14)

while the higher factorial moments are bounded by

E
(
ν

(x1)
1 (a) · · ·ν(xj )

j (a)
) = o(Nδ−1) if δ := x1 + · · · + xj − j ≥ 2,(15)

whereν(x) := ν(ν − 1) · · · (ν − x + 1) denotes the descending factorial power.
These relations amount to a sort of asymptotic independence of offspring numbers
within age classes.
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The result continues to hold if condition (6) is replaced by what is again a form
of asymptotic independence, now between offspring numbers across age groups:
for any 1≤ m ≤ A, and any naturalj1, . . . , jA; k11, . . . , k1j1; . . . ; kA1, . . . , kAjA

,

E

(
A∏

a=1

ja∏
l=1

ν
kal

l (a)

)
≈

A∏
a=1

E

( ja∏
l=1

ν
kal

l (a)

)
, N → ∞.(16)

Here and elsewhere,xN ≈ yN meansxN = yN + o(1) and a product from one to
zero equals one.

Though not necessary, the natural interpretation of the above setup is that, as
N → ∞, offspring numbers converge in distribution and inLp for any p ≥ 0.
The limiting random variablesνl(a) will then satisfy (16) with equality. If they
are bounded, it follows by the Weierstrass approximation theorem, that joint
distribution functions factorize analogously. Hence, in the limit, reproduction of
parents in different age classes is independent.

Such an extended version of Theorem 3.1 implies the existence of the CES of
the age-structured WFM introduced in [4]. Indeed, the reproduction law of the
age-structured WFM is given by the multinomial distribution

Mn

(
N(1);φ(1), . . . , φ(1)︸ ︷︷ ︸

N(1) times

, . . . , φ(A), . . . , φ(A)︸ ︷︷ ︸
N(A) times

)
,

whereφ(a) = p(a)
N(a)

. Taking partial derivatives of the joint generation function

E

(
A∏

a=1

N(a)∏
l=1

s
νl(a)
al

)
=

(
A∑

a=1

N(a)∑
l=1

φ(a)sal

)N(1)

,

we obtain

E

(
A∏

a=1

N(a)∏
l=1

νl(a)(kal)

)
∼

A∏
a=1

N(a)∏
l=1

(
N(1)φ(a)

)kal ∼
A∏

a=1

N(a)∏
l=1

E
(
νl(a)(kal)

)
.

Thus, the offspring numbers are asymptotically independent both across and
within different age classes, ensuring (16).

To see thatλ = cage, as defined by (3), observe that exactly as in the argument
following the definition,

cage=
A∑

a=1

1

q(a)

(
γ 2(a) − γ 2(a + 1)

)

= 1

γ

A∑
a=1

p(a)

q(a)

(
γ (a) + γ (a + 1)

)
(17)

= 2

γ

A−1∑
a=1

p(a)γ (a + 1)

q(a)
+ 1

γ 2

A∑
a=1

p2(a)

q(a)
.
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On the other hand, if the marginal distribution of the offspring number is
asymptotically Poisson with mean (4), thenV (a) = (p(a)q(1)/q(a))2, turning the
second term of (11) into that of the last expression above, so thatλ = cage.

4. The coalescent rates λ, cage, cgeo and cdem. The coalescent rate parameter
λ in (11) is a sum of two terms. From the derivation in Section 8, the first of these
corresponds to aII(a,2) merger, the second to one of typeI (a,2). Notice that the
second term disappears in the caseV (a) = 0, with at most one offspring possible at
the agea. In this section we interpret the two terms using the known CES formulae
for the population models with 1. exchangeable reproduction, 2. strong migration
and 3. fast size fluctuation.

The exchangeable haploid population model of [1, 2] is a flexible extension
of the basic WFM, allowing an arbitrary marginal distribution of the offspring
numberν. According to [10], the CES of the exchangeable population satisfies
Ne ∼ N/Vhap, whereVhap= E(ν(ν − 1)) is the variance of the offspring number
(the WFM corresponds to the symmetrical multinomial reproduction law with
Vhap ≈ 1). For the haploid model,Vhap can be arbitrarily close to zero, so
that no upper bound onNe is obtained. In [13] the last result was extended
to diploid exchangeable models with random mating. If the haploid size of
the diploid population isN , then it is shown thatNe ∼ 4N/Vdip, where again
Vdip = E(ν(ν − 1)) but nowν represents the number of diploid offspring to one
couple. In this caseVdip ≤ 2 andNe ≤ 2N , with the upper bound reached when
one couple produces exactly two children.

An important case of CES due to fast size fluctuations is considered in [7],
where the demographic fluctuations backward in time occur according to a sta-
tionary Markov chain with the possible valuesN(a) = q(a)N,a = 1,2, . . . ,A, the
transition probabilities arebij , i, j = 1,2, . . . ,A, and the stationary distribution is
(γ (1), . . . , γ (A)). For exchangeable reproduction, it is shown thatNe ∼ N/cdem
with

cdem=
A∑

i=1

A∑
j=1

γ (i)bijVij q(j)q−2(i),(18)

where Vij = Eij (ν(ν − 1)) measures variation in offspring numbers when the
offspring generation size isq(i)N and the parent generation size isq(j)N . This
formula can be read as follows: two ancestral lines merge during aq(i)N →
q(j)N backward size change at the rate equal to the rateγ (i)bij of the size change
times the conditional merger rateVijq(j)q−2(i). In the particular case of the WFM
with fast fluctuations, the CES is approximated by the harmonic average of actual
sizes(

∑A
i=1

γ (i)
q(i)N

)−1, always smaller than the arithmetic averageN for nontrivial
fluctuations.

Formula (18) yields the following interpretation of the second term in (11)
corresponding to aI (a,2) merger. For two lines to merge at the age groupa
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as sister lines, they both should enter the age groupa immediately after
visiting the age group 1 which happens at rate(γ (1)b1a)

2 = (p(a)/γ )2. The
corresponding conditional merger rateV (a)q(a)/(m(a)q(a))2 is equal to that of
a m(a)q(a)N → q(a)N backward size change. Multiplying these two rates and
using (4) leads to the second term of (11).

To interpret the first term of (11) corresponding to aII(a,2) merger, we turn to
the geographically structured WFM which is a key example in [15] illustrating the
concept of CES. In this model a haploid population of constant sizeN is split into
A subpopulations of constant sizesN(a) = q(a)N , so thatq(1) + · · · + q(A) = 1.
Followed backward in time, an individual migrates from subpopulationi to
subpopulationj , with probabilitybij , and chooses its parent uniformly at random
among N(j) members of the parental subpopulationindependently of other
individuals. If migration is irreducible and aperiodic and(γ (1), . . . , γ (A)) is the
stationary distribution of the backward migration process, then, according to [15],
the CES of the structured WFM satisfiesNe ∼ N/cgeo, where

cgeo=
A∑

a=1

1

q(a)
γ 2(a).(19)

As a formula for the inbreeding effective size (IES), (19) was discussed in [14],
where it was pointed out thatcgeo≥ 1, with the equalitycgeo= 1 holding if only
γ (a) = q(a) for all a. The meaning of (19) is clear: for two lines to merge at
the subpopulationa, they should be there at the same generation [rateγ 2(a)] and
choose the same parent [rate1

Nq(a)
].

The age-structured WFM is very similar to the geographically structured WFM
with the transition probabilities‖bij‖ given by (1). However, (19) does not directly
apply to the age-structured WFM, since individuals migrating backward in time
from age groupa to age groupa − 1 sample their parents without replacement
(thereby violating the assumption of independent choice of parents). Still, (19)
helps in interpreting the first term of (11) corresponding to aII(a,2) merger. For
two lines to merge at the age groupa as nonsister lines, they must enter the age
groupa along different routes. One of the lines visits the age groupa immediately
after visiting age group 1, which happens at ratep(a)/γ , while the other arrives
through the age groupa +1, which happens at rateγ (a +1). [Notice that (19) also
simplifies understanding of the last term in (17).]

5. Effective versus actual population size. Recall thatq(1) ≥ q(2) ≥ · · · ≥
q(A) andγ (1) = 1/γ to see that the first equality in (17) implies that

γ cage≥ γ

q(1)

A∑
a=1

(
γ 2(a) − γ 2(a + 1)

) = 1

γ q(1)
.(20)
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Therefore, the CES of an age-structured WFM has the upper boundNe ≤ γ q(1)N ,
where the constantγ q(1) = γ /E[L] is the ratio between the average age at child-
bearing and the average life length. Similarly, since

1

γ
= γ

A∑
a=1

(
γ 2(a) − γ 2(a + 1)

) =
A∑

a=1

p(a)
(
p(a) + 2γ (a + 1)

)
,(21)

2
A−1∑
a=1

p(a)γ (a + 1) = 1

γ

(
1−

A∑
a=1

p2(a)

)
,

and we get a weaker upper bound

Ne ≤ γ q(1)

(
1−

A∑
a=1

p2(a)

)−1

N(22)

for the age-structured model with exchangeable reproduction.
These upper bounds could serve as fair estimates of CES in human and similar

populations. For an illustration, we turn to Swedish official statistics for 2002 [18],
yielding Figures 3 and 4, andA = 111,γ = 30.6022, 1/q(1) = 82.6094.

FIG. 3. Observed (solid line) and stationary (dashed line) age group sizes of Swedish female
population versus age.
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FIG. 4. Solid line—p(a), dashed line—q(a), versus age a.

The CES from (12) withV (a) ≡ 0 isNe = 0.3890N . The age-structured WFM
yields Ne = 0.3677N . (Cf. to Felsenstein’sNe = 0.34N for U.S. population
data, [4].) From Figure 4,q(a) ≈ q(1) for thosea whereγ (a) is not too small.
This implies approximate equality in (20) and the above CES being close to the
upper bounds (22),Ne = 0.3919N and (20),Ne = 0.3707N .

6. The transition probability. In this section we derive an asymptotic
formula for the one step transition probability

�ūv̄ := P(Z̄r = v̄|Z̄r−1 = ū)

that a group ofu individuals with age distribution̄u = (u(1), . . . , u(A)) stems from
a possibly smaller group of individuals from the previous year with age distribution
v̄ = (v(1), . . . , v(A)). We treat the parentage of newborns [u(1) individuals of
age 1] at timer − 1 as balls to be allocated amongN boxes (potential mothers)
at timer . Box i in the age groupa contains a random numberνi(a) of slots (see
Figure 2), and each slot can accept one ball. The meaning of such an allocation is,
of course, that one of theu(1) individuals happens to be among theνi(a) children
of theith a-aged indivdual.
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Not newborn individuals, that is, of agea + 1 ≥ 2 at timer − 1, just stem from
themselves one year younger at timer , sov(a) ≥ u(a + 1), writing u(A + 1) = 0.
Those remaining,α(a) = v(a)−u(a +1), must then have given birth to newborns.
Combinatorically, we divide theN(a) potential predecessors intou(a +1) marked
andN(a) − u(a + 1) unmarked boxes, in which balls can be placed to signify
that the individual is among the predecessors. In Figure 2, for example, boxes are
individuals in the previous year: counting from the left, we mark boxes 4 and 5 in
the age group 1, box 3 in the age group 2 and, finally, box 1 in the age group 3.

Given the allocation result̄v, we haveα(a) = v(a) − u(a + 1) unmarked boxes
hosting at least one ball. We write

ᾱ = (
α(1), . . . , α(A)

)
, u =

A∑
a=1

u(a), v =
A∑

a=1

v(a), α =
A∑

a=1

α(a),

φ(ᾱ) =
(

α

α(1), . . . , α(A)

) A∏
a=1

p(a)α(a),

and notice thatα = v − u + u(1).
The next step is to show that

�ūv̄ ∼ (Nq(1))v−uu(1)u−vφ(ᾱ)

(
A∏

a=1

m(a)−α(a)

)
(23)

× ∑
X̄

A∏
a=1

E

(
v(a)∏
l=1

(
νl(a)

xl(a)

))
,

whereX̄ = (X(1), . . . ,X(A)) and the vectorX(a) = (x1(a), . . . , xv(a)(a)) gives
the numbers of balls in thev(a) boxes. Numbersxl(a), with indices 1≤ l ≤ α(a),
correspond to unmarked boxes, while the indicesα(a)+1 ≤ l ≤ v(a) are meant for
the marked boxes, so that summation in (23) is over all distinct arraysX̄ satisfying

A∑
a=1

v(a)∑
l=1

xl(a) = u(1), xl(a) ≥ 1{l≤α(a)}.(24)

To illustrate the notation introduced in this section, we refer to Figure 2, which
follows u = 8 ancestral lines one year back in the caseū = (4,2,1,1), v̄ =
(2,2,1,1), v = 6. Here we havēα = (0,1,0,1) andX(1) = (1,0), X(2) = (2,0),
X(3) = (0), X(4) = (1).

PROOF OF (23). First we calculate the transition probability�ūv̄(Ī ) when
the setĪ of v boxes is fixed. HerēI = (I (1), . . . , I (A)) and the vectorI (a) =
(i1(a), . . . , iv(a)(a)) lists the box positions taken from the set{1, . . . ,N(a)}.
Again, positionsil(a), with indices 1≤ l ≤ α(a), correspond to unmarked boxes,
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while the indicesα(a) + 1 ≤ l ≤ v(a) are meant for the marked boxes. [In the
case of Figure 2 we haveI (1) = (4,5), I (2) = (1,3), I (3) = (1), I (4) = (3).]
According to the allocation rules, we have

�ūv̄(Ī ) = 1(N(1)
u(1)

)∏A−1
a=1

( N(a)
u(a+1)

) ∑
X̄

E

(
A∏

a=1

v(a)∏
l=1

(
νil(a)(a)

xl(a)

))

∼ u(1)!
Nu(1)q(1)u(1)

∏A−1
a=1

( N(a)
u(a+1)

) ∑
X̄

A∏
a=1

E

(
v(a)∏
l=1

(
νl(a)

xl(a)

))
.

The expression becomes independent ofĪ due to the exchangeability assumption.
It remains to multiply the last expression with the number

∏A
a=1

( N(a)
u(a+1)

) ×(N(a)−u(a+1)
α(a)

)
of ways to choose appropriate setsĪ of hosting boxes and do some

simple algebra to obtain (23).
If v ≤ u − 2, then (15) and (23) together imply that�ūv̄ = o(N−1), meaning

that multiple mergers of lineages are impossible in the limiting coalescent.�

7. Transitions with v ≥ u − 1. We embark on a careful asymptotic analysis
of the transition probability (23) with the most common transition type, when no
ancestral lines merge:v = u. In this casexl(a) ≡ 1{l≤α(a)}, which in accordance
with (13) entails�ūv̄ → Aūv̄ , where

Aūv̄ = φ(ᾱ)1{ū→v̄}1{v=u}(25)

and1{ū→v̄} := 1{v(1)≥u(2),...,v(A−1)≥u(A)}. The fact that the asymptotic transition
probability takes the form of a multinomial distribution is easy to explain. As
the setū of ancestral lines traced one year back does not change cardinality,
the following happens. Fora ≥ 2, individuals of agea turn to individuals of age
(a−1), and lines from individuals of age 1 go to ages according to the multinomial
Bernoulli scheme governed by the stationary distributionp̄ = (p(1), . . . , p(A)) of
individual’s age at childbearing.

Let Ak = ‖Aūv̄‖ū : u=k,v̄ : v=k be the transition matrix at the level ofk ancestral
lines. Fork = 1, if the states are ordered as(1,0, . . . ,0,0), (0,1, . . . ,0,0), . . . ,
(0,0, . . . ,0,1), A1 is given by (1) with the stationary distribution (2). It is
intuitively clear that, for an arbitraryk, the stationary distribution of the Markov
chain with transition matrixAk is given by the following multinomial distribution:

πk(ū) =
(

k

u(1), . . . , u(A)

) A∏
a=1

γ (a)u(a) for ū with u = k.(26)

Nevertheless, we give a formal proof of this fact using a computation technique
which will be used later to produce less obvious results. Indeed, for any vectorv̄
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with v = k, we have

∑
ū : u=k

πk(ū)Aūv̄ = ∑
ū : u=k

(
k

u(1), . . . , u(A)

) A∏
a=2

γ (a)u(a)

×
(

u(1)

v(1) − u(2), . . . , v(A)

) A∏
a=1

p(a)v(a)−u(a+1)1{ū→v̄},

which equals

(
k

v(1), . . . , v(A)

) A∏
a=1

p(a)v(a)
∑

ū : u=k

A∏
a=2

(
v(a − 1)

u(a)

)(
γ (a)

p(a − 1)

)u(a)

1{ū→v̄}.

Observe that the summation overū can be replaced by independent summations
over the componentsu(a), since

u(a) ≤ v(a − 1) ≤ u(1) + u(a)

= u − u(2) − · · · − u(a − 1) − u(a + 1) − · · · − u(A)

and the summation indexu(a) is free to run between zero and

min{v(a − 1), u − u(2) − · · · − u(a − 1)} = v(a − 1), a = 2, . . . ,A.

Therefore, the last sum converts to

v(1)∑
u(2)=0

· · ·
v(A−1)∑
u(A)=0

1{u(1)=k−u(2)−···−u(A)}
A∏

a=2

(
v(a − 1)

u(a)

)(
γ (a)

p(a − 1)

)u(a)

and we conlude that

∑
ū : u=k

πk(ū)Aūv̄ =
(

k

v(1), . . . , v(A)

) A∏
a=1

γ (a)v(a) = πk(v̄).

Next we turn to the casev = u − 1 of exactly one pairwise merger and prove
that�ūv̄ ∼ N−1Cūv̄ , where

Cūv̄ = φ(ᾱ)
u(1)

q(1)

A∑
a=1

[
m(a)u(a + 1) + α(a)V (a)

2m(a)

]
1{ū→v̄}1{v=u−1}.(27)

If v = u−1, thenxl(a) = 1{l≤α(b)} +1{a=b,l=j} for someb ∈ {1, . . . ,A} and some

j ∈ {1, . . . , v(b)}, so that summation over̄X in (23) can be replaced by summation
over b and j . Note that indicesj ≤ α(b) correspond to a singleI (b,2) case,
while indicesj > α(b) correspond to a singleII(b,2) merger. The corresponding



EFFECTIVE POPULATION SIZE 1793

components of (23) are computed with help of (13) and (14):

lim
N→∞N�

(1)
ūv̄ = φ(ᾱ)

u(1)

q(1)

A∏
a=1

m(a)−α(a)

× 1

2

A∑
b=1

α(b)∑
j=1

V (b)m(b)α(b)−1
∏
a 
=b

m(a)α(a)

= 1

2
φ(ᾱ)

u(1)

q(1)

A∑
b=1

α(b)

m(b)
V (b)

and

lim
N→∞N�

(2)
ūv̄ = φ(ᾱ)

u(1)

q(1)

A∏
a=1

m(a)−α(a)
A−1∑
b=1

u(b+1)∑
j=1

A∏
a=1

m(a)α(a)m(b)

= φ(ᾱ)
u(1)

q(1)

A−1∑
b=1

m(b)u(b + 1).

These two parts put together confirm (27).

8. Proof of weak convergence toward the coalescent. Theorem 3.1 can be
established following the proof of weak convergence to the coalescent presented in
Section 5 of [15]. The proof is based on Theorem 2.12 of [3] and the next lemma
from [11].

LEMMA 8.1 (Möhle’s lemma). If A is a stochastic matrix such that P =
limk→∞ Ak exists, then

lim
N→∞

(
A + 1

N
C + o

(
1

N

))[Nt]
= P − I + etG,

where I is the identity matrix and G := PCP.

So far we have computed the transition matrix� := ‖�ūv̄‖ decomposition

� = A + 1

N
C + o

(
1

N

)
,

with A := ‖Aūv̄‖, C := ‖Cūv̄‖. The only remaining calculation is to find the
coalescence rate at levelk defined as

ck := ∑
ū:u=k

πk(ū)H(ū),

whereH(ū) is the coalescence rate when the ancestor process is in configurationū

H(ū) = ∑
v̄:v=u−1

Cūv̄.
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According to (27) and (26),

ck = 1

q(1)

∑
ū:u=k

∑
v̄:v=k−1

u(1)!
(v(1) − u(2))! · · ·v(A)!

A∏
b=1

p(b)v(b)−u(b+1)

× k!
u(1)! · · ·u(A)!

A∏
b=1

γ (b)u(b)
A∑

a=1

[
m(a)u(a + 1) + α(a)V (a)

2m(a)

]
1{ū→v̄}.

After switching the order of summation overv̄ and ū, and then regrouping the
terms, we obtain

ck = k

q(1)

∑
v̄ : v=k−1

(
k − 1

v(1), . . . , v(A)

) A∏
b=1

p(b)v(b)

× ∑
ū : u=k

γ −u(1)
A∏

b=2

(
v(b − 1)

u(b)

)(
γ (b)

p(b − 1)

)u(b)

×
A∑

a=1

[
m(a)u(a + 1) + V (a)

2m(a)

(
v(a) − u(a + 1)

)]
1{ū→v̄}.

Opening the square brackets, we split the expression in two termsck = c′
k + c′′

k .
The first term equals (after putting the summation overa in front of other sums
and representing the summation overū as a multiple sum)

c′
k = k

q(1)

A−1∑
a=1

m(a)
∑

v̄ : v=k−1

(
k − 1

v(1), . . . , v(A)

) A∏
b=1

p(b)v(b)

×
v(1)∑

u(2)=0

· · ·
v(A−1)∑
u(A)=0

u(a + 1)

A∏
b=2

(
v(b − 1)

u(b)

)(
γ (b)

p(b − 1)

)u(b)

× γ −u(1)1{u(1)=k−u(2)−···−u(A)}.

Since
n∑

i=0

(
n

i

)(
γ (b)γ

p(b − 1)

)i

=
(

γ (b − 1)γ

p(b − 1)

)n

,(28)

we have

c′
k = k

q(1)γ k

A−1∑
a=1

m(a)
∑

v̄ : v=k−1

(
v

v(1), . . . , v(A)

) ∏
b 
=a

(γ (b)γ )v(b)p(a)v(a)

×
v(a)∑

u(a+1)=0

u(a + 1)

(
v(a)

u(a + 1)

)(
γ (a + 1)γ

p(a)

)u(a+1)

.
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Applying

n∑
i=0

i

(
n

i

)(
γ (a + 1)γ

p(a)

)i

= n

(
γ (a + 1)γ

p(a)

)(
γ (a)γ

p(a)

)n−1

to the last sum yields

c′
k = k

q(1)γ

A−1∑
a=1

m(a)γ (a + 1)

× ∑
v̄ : v=k−1

(
k − 1

v(1), . . . , v(A)

) ∏
b 
=a

γ (b)v(b)v(a)γ (a)v(a)−1,

and the relation ∑
i1+···+iA=n

ia

(
n

i1, . . . , iA

) ∏
b 
=a

γ (b)ibγ (a)ia−1

(29)

= ∂

∂γ (a)

(
γ (1) + · · · + γ (A)

)n = n

implies

c′
k =

(
k

2

)
2

q(1)γ

A−1∑
a=1

m(a)γ (a + 1).

The second term is calculated similarly. From

c′′
k = k(k − 1)

2q(1)

A∑
a=1

V (a)

m(a)

× ∑
v̄ : v=k−1

(
k − 2

v(1), . . . , v(a − 1), v(a) − 1, v(a + 1), . . . , v(A)

) A∏
b=1

p(b)v(b)

×
v(1)∑

u(2)=0

· · ·
v(A−1)∑
u(A)=0

∏
b 
=a

(
v(b)

u(b + 1)

)(
v(a) − 1
u(a + 1)

) A−1∏
b=1

(
γ (b + 1)

p(b)

)u(b+1)

× γ −u(1)1{u(1)=k−u(2)−···−u(A)}
and (28), we derive

c′′
k =

(
k

2

)
1

q(1)γ 2

A∑
a=1

V (a)

m(a)

× ∑
v̄ : v=k−1

(
k − 2

v(1), . . . , v(a) − 1, . . . , v(A)

) ∏
b 
=a

γ (b)v(b)γ (a)v(a)−1p(a).
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This together with (29) yields

c′′
k =

(
k

2

)
1

q(1)γ 2

A∑
a=1

V (a)

m(a)
p(a).

We conclude thatck = (k
2

)
λ, with

λ = 2

q(1)γ

A−1∑
a=1

m(a)γ (a + 1) + 1

q(1)γ 2

A∑
a=1

V (a)

m(a)
p(a).

In view of (4), this leads to (11).
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