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Pierre et Marie Curie, Paris VI

We provide explicit sufficient conditions for absolute continuity and
equivalence between the distributions of two jump-diffusion processes that
can explode and be killed by a potential.

1. Introduction. The purpose of this paper is to give explicit, easy-to-check
sufficient conditions for the distributions of two jump-diffusion processes to be
equivalent or absolutely continuous. We consider jump-diffusions that can explode
and be killed by a potential. These processes are, in general, not semimartingales.
We characterize them by their infinitesimal generators.

The structure of the paper is as follows. In Section 2 we introduce the
notation and state the paper’s main result, which gives sufficient conditions for
the distributions of two jump-diffusions to be equivalent or absolutely continuous.
The conditions consist of local bounds on the transformation of one generator
into the other one and the assumption that the martingale problem for the second
generator has for all initial distributions a unique solution. The formulation of the
main theorem involves two sequences of stopping times. Stopping times of the first
sequence stop the process before it explodes. The second sequence consists of exit
times of the process from regions in the state space where the transformation of
the first generator into the second one can be controlled. Our main result applies
also in situations where the generalized Novikov condition ([19], Théorème IV.3)
or Kazamaki-like criteria (e.g., [14–16]) are not satisfied. In Section 3 we show
howX can be turned into a semimartingale by embedding it in a larger state space
and stopping it before it explodes. The results of Section 3 are needed in the proof
of the paper’s main theorem, which is given in Section 4. In Section 5 we prove
a stronger version of the result of Section 2 for a particular set-up, involving the
carré-du-champ operator. In Section 6 we illustrate the main result by showing how
the characteristics of a Cox–Ingersoll–Ross [3] short rate process with additional
jumps and a potential can be altered by an absolutely continuous or equivalent
change of measure.
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There exists a vast literature on the absolute continuity of stochastic processes,
and below we quote some related publications. In contrast to many of those works,
the primary goal of this paper is to provide results that are based on explicit
assumptions which are easy to verify in typical applications. For two applications
in finance, see [2] and [1], which contain measure changes for multi-dimensional
diffusion models and multi-dimensional jump-diffusion models with explosion
and potential, respectively.

Itô and Watanabe [10], Kunita [18] and Palmowski and Rolski [24] discuss
absolute continuity for general classes of Markov processes.

Kunita [17] characterizes the class of all absolutely continuous Markov
processes with respect to a given Markov process. A special discussion for Lévy
processes can be found in Sato [29], Section 33.

Dawson [4], Liptser and Shiryaev [21] Kabanov, Liptser and Shiryaev [12],
Rydberg [28] and Hobson and Rogers [9] discuss absolute continuity of solutions
to stochastic differential equations. They are similar in spirit to Kadota and
Shepp [13], which contains sufficient conditions for the distribution of a Brownian
motion with stochastic drift to be absolutely continuous with respect to the Wiener
measure.

Pitman and Yor [25] and Yor [33] study mutual absolute continuity of (squared)
Bessel processes.

Lepingle and Mémin [19] and Kallsen and Shiryaev [14] provide conditions
for the uniform integrability of exponential local martingales in a general
semimartingale framework (see also Remark 2.7 below), extending the classical
results by Novikov [23] and Kazamaki [15].

Discussions of measure changes in a finance context can be found in Sin [30],
Lewis [20], Delbaen and Shirakawa [5, 6].

Wong and Heyde [32] give necessary and sufficient conditions for the stochastic
exponential of a Brownian motion integral to be a martingale in terms of the
explosion time of an associated process.

Among various excellent text books that discuss changes of measure in varying
degree of generality are, for example, McKean [22], Rogers and Williams [26],
Jacod and Shiryaev [11], Revuz and Yor [27] and Strook [31].

2. Statement of the main result. Let E be a closed subset ofRd andE� =
E ∪ {�} the one-point compactification ofE. If not mentioned otherwise, any
measurable functionf onE is extended toE� by settingf (�) := 0. We let� be
the space of càdlàg functionsω :R+ → E� such thatω(t−) = � or ω(t) = �

impliesω(s) = � for all s ≥ t . (Xt)t≥0 is the coordinate process, given by

Xt(ω) := ω(t), t ≥ 0.

It generates theσ -algebra,

F X := σ(Xs : s ≥ 0),
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and the filtration

F X
t := σ(Xs : 0≤ s ≤ t), t ≥ 0.

It follows from Proposition 2.1.5 (a) in [8] that, for all closed subsets� of E�,

inf{t | Xt− ∈ � or Xt ∈ �} is an(F X
t )-stopping time.

Hence,

T� := inf{t | Xt = �} = inf{t | Xt− = � or Xt = �}
is an(F X

t )-stopping time. Note that

X· = � on [T�,∞)

so thatT� can be viewed as the lifetime ofX. For the handling of explosion, we
introduce the(F X

t )-stopping times

T ′
n := inf{t | ‖Xt−‖ ≥ n or ‖Xt‖ ≥ n}, n ≥ 1,

where‖·‖ denotes the Euclidean norm onRd and‖�‖ := ∞. Clearly,T ′
n ≤ T�, for

all n ≥ 1. A transition to� occurs either by a jump or by explosion. Accordingly,
we define the(F X

t )-stopping times

Tjump :=
{

T�, if T ′
n = T� for somen,

∞, if T ′
n < T� for all n,

Texpl :=
{

T�, if T ′
n < T� for all n,

∞, if T ′
n = T� for somen,

Tn :=
{

T ′
n, if T ′

n < T�,

∞, if T ′
n = T�.

Note that{Tjump < ∞} ∩ {Texpl < ∞} = ∅, limn→∞ Tn = Texpl, andTn < Texpl

on {Texpl < ∞}. Hence,Texpl is predictable with announcing sequenceTn ∧ n

(see [11], I.2.15.a).
Since, by definition,� contains only paths that stay in� after explosion or after

a jump to�, the filtration(F X
t ) has the property stated in Proposition 2.1 below,

whose proof is given in the Appendix.

PROPOSITION2.1. LetT be an arbitrary(F X
t )-stopping time. Then

F X
T = F X

T ∧Texpl
= σ

( ⋃
n≥1

F X
T ∧Tn

)
.
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Fix a bounded and continuous functionχ :Rd → Rd such thatχ(ξ) = ξ on a
neighborhood of 0. Letα,β, γ be measurable mappings onE with values in the
set of positive semi-definite symmetricd × d-matrices,Rd andR+, respectively.
Furthermore, letµ be a transition kernel fromE to Rd and assume that the
functions

α(·), β(·), γ (·) and
∫

Rd
(‖ξ‖2 ∧ 1)µ(·, dξ)

(2.1)
are bounded on every compact subset ofE.

Then,

Af (x) := 1

2

d∑
i,j=1

αij (x)
∂2f (x)

∂xi ∂xj

+
d∑

i=1

βi(x)
∂f (x)

∂xi

− γ (x)f (x)

+
∫

Rd

(
f (x + ξ) − f (x) − 〈∇f (x),χ(ξ)〉)µ(x, dξ)

defines a linear operator from the space ofC2-functions onE with compact
support,C2

c (E), to the space of bounded measurable functions onE, B(E).

DEFINITION 2.2. We say that a probability measureP on (�,F X) is a
solution of the martingale problem forA if, for all f ∈ C2

c (E),

M
f
t := f (Xt) − f (X0) −

∫ t

0
Af (Xs) ds, t ≥ 0,

is a P-martingale with respect to(F X
t ). We say that the martingale problem for

A is well posed if for every probability distributionη on E, there exists a unique
solutionP of the martingale problem forA such thatP ◦ X−1

0 = η.

REMARK 2.3. 1. IfP is a solution of the martingale problem forA, then with
respect toP, X is a possibly nonconservative, time-homogenous jump-diffusion
process. The time-homogeneous case can be included in the above set-up by
identifying one component ofX with time t .

2. If P is a solution of the martingale problem forA, then Mf is, for all
f ∈ C2

c (E), also aP-martingale with respect to(F X
t+). Indeed, since all paths of

Mf are right-continuous, it follows from the backwards martingale convergence
theorem that, for allt, s ∈ R such thatt < s,

EP[Mf
s |F X

t+] = lim
r↘t

EP[Mf
s |F X

r ] = lim
r↘t

Mf
r = M

f
t .

3. It is easy to see that if the martingale problem forA is well posed, then
for every probability distributionη on E�, there exists a unique solutionP of the
martingale problem forA such thatP ◦ X−1

0 = η.
4. Throughout, we make use of the fact that

∫ t
0 f (Xu−) dSu = ∫ t

0 f (Xu)dSu,
for a continuous semimartingaleS and every measurable functionf such that the
integrals are defined.
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Let Ã be a second linear operator fromC2
c (E) to B(E), given by

Ãf (x) := 1

2

d∑
i,j=1

αij (x)
∂2f (x)

∂xi ∂xj

+
d∑

i=1

β̃i(x)
∂f (x)

∂xi

− γ̃ (x)f (x)

(2.2)
+

∫
Rd

(
f (x + ξ) − f (x) − 〈∇f (x),χ(ξ)〉)µ̃(x, dξ),

whereβ̃ andγ̃ are measurable mappings fromE to Rd andR+, respectively, and̃µ
is a transition kernel fromE to Rd such thatβ̃, γ̃ andµ̃ satisfy the condition (2.1).

Let U be an open subset ofE, that is,U = U ′ ∩ E for some open subsetU ′
of Rd . Assume that there exist measurable mappings

φ1 :U → Rd, φ2 :U → (0,∞) and φ3 :U × Rd → (0,∞)

such that, for allx ∈ U ,

β̃(x) = β(x) + α(x)φ1(x) +
∫

Rd

(
φ3(x, ξ) − 1

)
χ(ξ)µ(x, dξ),

γ̃ (x) = φ2(x)γ (x),(2.3)

µ̃(x, dξ) = φ3(x, ξ)µ(x, dξ).

Let U1 ⊂ U2 ⊂ · · · be an increasing sequence of open subsets ofE such that
U = ⋃

n≥1 Un. We denoteU� = U ∪ {�} and Un
� = Un ∪ {�}, n ≥ 1. For all

n ≥ 1, we define

Rn := inf{t | Xt− /∈ Un
� or Xt /∈ Un

�}.
Note that

Rn =
{

R′
n, if R′

n < T�,

∞, if R′
n = T�,

where

R′
n := inf{t | Xt− /∈ Un or Xt /∈ Un}, n ≥ 1.

Since the setsUn are open in the topology ofE�, it follows from Proposi-
tion 2.1.5(a) of [8] that allR′

n, Rn and therefore also,

R∞ := lim
n→∞Rn = inf{t | Xt− /∈ U� or Xt /∈ U�},

Sn := Rn ∧ Tn ∧ n,n ≥ 1,

S∞ := lim
n→∞Sn = R∞ ∧ Texpl

are (F X
t )-stopping times. While the sequenceT1 ≤ T2 ≤ · · · takes care of a

possible explosion ofX, the sequenceS1 ≤ S2 ≤ · · · appropriately localizes the
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stochastic logarithm of the density process for the measure change, see (4.2) below.
In view of (2.1) and the conventionf (�) = 0 for measurable functionsf ,

�n := 1
2

∫ Sn

0
〈α(Xs)φ1(Xs),φ1(Xs)〉ds

+
∫ Sn

0

(
φ2(Xs) logφ2(Xs) − φ2(Xs) + 1

)
γ (Xs) ds

+
∫ Sn

0

∫
Rd

(
φ3(Xs, ξ) logφ3(Xs, ξ) − φ3(Xs, ξ) + 1

)
µ(Xs, dξ) ds

is well defined for alln ≥ 1. With this notation we have the following:

THEOREM 2.4. Let P be a solution of the martingale problem forA and Q

a solution of the martingale problem for̃A such thatQ|F X
0

� P|F X
0

. Assume that
for Ã, the martingale problem is well posed and that

EP[e�n] < ∞,(2.4)

for all n ≥ 1.
Then there exists a nonnegative càdlàgP-supermartingale(Dt)t≥0 such that,

for any(F X
t )-stopping timeT , the following properties hold:

Q|F X
T ∩{T <S∞} = DT · P|F X

T ∩{T <S∞}.(2.5)

If Q[T < S∞] = 1, thenQ|F X
T

= DT · P|F X
T

.(2.6)

If Q|F X
0

∼ P|F X
0

andP[T < S∞] = Q[T < S∞] = 1,

(2.7)
thenQ|F X

T
∼ P|F X

T
.

If Q[T < R∞] = 1 and
(
DT ∧Tn

)
n≥1 is P-uniformly integrable,

(2.8)
thenQ|F X

T
= DT · P|F X

T
.

REMARK 2.5. The following is an easy-to-check sufficient criterion for (2.4):
Assume that for everyn ≥ 1, there exists a finite constantKn such that, for all
x ∈ Un,

〈α(x)φ1(x),φ1(x)〉 ≤ Kn,(2.9) (
φ2(x) logφ2(x) − φ2(x) + 1

)
γ (x) ≤ Kn,(2.10) ∫

Rd

(
φ3(x, ξ) logφ3(x, ξ) − φ3(x, ξ) + 1

)
µ(x, dξ) ≤ Kn.(2.11)

Then (2.4) is satisfied.
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REMARK 2.6. If P[S∞ = ∞] = 1, we obtain from (2.5) the loss of mass of
theP-supermartingale(Dt)t≥0

1− EP[Dt ] = 1− Q[t < S∞] = Q[S∞ ≤ t], t ∈ [0,∞).

REMARK 2.7. Forφ3(x, ξ) = e〈φ1(x),ξ〉, our measure changes are of the same
form as the generalized Esscher transforms discussed in [14] (see Theorem 2.19
in [14] or Theorem III.7.23 in [11]).

3. Turning X into a semimartingale. In this section we show some prelim-
inary results that we will need in the proof of Theorem 2.4. The notation is the
same as in Section 2. For any processY and stopping timeT , we denote byYT

the stopped process given byYT
t := Yt∧T , t ≥ 0.

Assume thatP is a solution of the martingale problem forA. Since the
coordinate process can explode and be killed, it is, in general, not a semimartingale
with respect toP. To turn it into a semimartingale, we stop it before it explodes
and identify the state� with an arbitrary point∂ in Rd \ E. Without loss of
generality, we can assume that such a point exists. IfE = Rd , we embedE
in Rd+1 by the map(x1, . . . , xd) �→ (x1, . . . , xd,0) and adjustα, β, µ and χ

as follows: For allx ∈ E, we extendα(x) to a (d + 1) × (d + 1)-matrix by
settingα(x)i,d+1 = α(x)d+1,i := 0 for all i = 1, . . . , d + 1. β(x) is elongated to
a (d + 1)-dimensional vector byβ(x)d+1 := 0. The measureµ(x, ·) is extended
to Rd+1 by definingµ(x,Rd+1 \ Rd) := 0. Finally, the truncation functionχ
can be extended to a bounded and continuous function fromRd+1 to Rd+1 such
that χ(ξ) = ξ on a neighborhood of 0, or simply by setting it equal to zero
on Rd+1 \ Rd . Then, a probability measureP on (�,F X) is a solution of the
martingale problem forA in the Rd+1-framework if and only if it is in the
Rd -framework.

The process

X̂ := X1[0,T�) + ∂1[T�,∞)

is also(F X
t )-adapted and has right-continuous paths inRd . However,X̂T�− = �

(explosion) is still possible for this process.
Let T be a(F X

t )-stopping time such thatT < Texpl, then⋃
n≥1

{T < Tn} = �,(3.1)

and, therefore, (2.1) implies that the following(F X
t )-predictable processes and

random measure are well defined for allω:

BT
t :=

∫ t∧T

0
β(Xs) + γ (Xs)χ(∂ − Xs)ds,

CT
t :=

∫ t∧T

0
α(Xs) ds,

νT (dt, dξ) := [
µ(Xt, dξ) + γ (Xt)δ∂−Xt (dξ)

]
1{t≤T } dt.
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Condition (2.1) also guarantees thatνT satisfies Condition 2.13 on page 77 of [11].
Note that one can chooseχ with compact support such thatχ(∂ − x) = 0 for
all x ∈ E. In that case, the expression forBT becomes simpler. Forf ∈ C2

b(Rd)

(the space of boundedC2-functions onRd ), define the process

Mf,T := f (X̂T ) − f (X̂T
0 ) − 1

2

d∑
i,j=1

∂2f (X̂T )

∂xi ∂xj

· CT
ij − ∇f (X̂T ) · BT

− (
f (X̂T + ξ) − f (X̂T ) − 〈∇f (X̂T ),χ(ξ)〉) ∗ νT

(“ ·” denotes stochastic integration with respect to a semimartingale and “∗”
stochastic integration with respect to a random measure, for the definition of
stochastic integrals with respect to semimartingales and random measures, see,
e.g., [11]). The restriction of a functionf ∈ C2

c (Rd) to E is in C2
c (E). Recall that

by convention,f (�) = α(�) = β(�) = γ (�) = µ(�, ·) = 0. Thus, it can easily
be checked that

M
f,T
t = M

f,T
t + f (∂)NT

t , t ≥ 0,(3.2)

where

NT
t := 1{0<T�≤t∧T } −

∫ t∧T

0
γ (Xs) ds, t ≥ 0.

LEMMA 3.1. Let T be an (F X
t )-stopping time withT < Texpl. Then the

processNT is an((F X
t+),P)-martingale.

PROOF. Fix n ≥ 1. We first show thatNTn is an ((F X
t+),P)-martingale. Let

(fk) be a sequence inC2
c (Rd) with 0 ≤ fk ≤ 1 andfk = 1 on the ball with center 0

and radiusk, Bk . By Remark 2.3 part 2,Mfk,Tn is an ((F X
t+),P)-martingale for

everyk. Note thatTn = 0 if ‖X0‖ ≥ n. Hence, we have, for allk > n,

M
fk,Tn
t = fk(X

Tn
t ) − fk(X0) −

∫ t∧Tn

0
Afk(Xs) ds

= fk(X
Tn
t ) − fk(X0)

+
∫ t∧Tn

0

(
γ (Xs) −

∫
Rd\Bk−n

(
fk(Xs + ξ) − 1

)
µ(Xs, dξ)

)
ds.

Clearly, for allω,

lim
k→∞fk

(
Xt∧Tn

) = 1{t∧Tn<T�}.

Moreover, it can be deduced from (2.1) and Lebesgue’s dominated convergence
theorem that, for allω,∫ t∧Tn

0

∫
Rd\Bk−n

|fk(Xs + ξ)−1|µ(Xs, dξ) ds ≤
∫ t∧Tn

0
µ(Xs,Rd \Bk−n) ds → 0,
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ask → ∞. Furthermore, it follows from (2.1) that there exists a constantcn such
that

|Mfk,Tn
t | ≤ 1+

∫ t∧Tn

0

(|γ (Xs)| + µ(Xs,Rd \ Bk−n)
)
ds ≤ 1+ cnt,

for all k ≥ n. Hence, it follows from Lebesgue’s dominated convergence theorem
that for all t ≥ 0,

−M
fk,Tn
t → N

Tn
t in L1 ask → ∞,

which shows thatNTn is an((F X
t+),P)-martingale. This and (3.1) imply thatNT is

an((F X
t+),P)-local martingale, and, therefore, by the Doob–Meyer decomposition

theorem ([11], I.3.15),NT is also a uniformly integrable martingale with respect
to ((F X

t+),P). �

Notice that T < Texpl implies {T� ≤ t ∧ T } = {Tjump ≤ t ∧ T }. Hence,
Lemma 3.1 says that

∫ t∧T
0 γ (Xs) ds is the predictable compensator for the time

of a jump of the stopped processXT to �. As a consequence, we obtain that
Tjump = ∞ P-almost surely on{X0 �= �} if and only if γ (Xt) = 0 P-almost surely
for all t .

PROPOSITION 3.2. Assume thatP is a solution of the martingale problem
for A and T is an (F X

t )-stopping time such thatT < Texpl. Then for all
f ∈ C2

b(Rd), Mf,T is a local martingale on(�, (F X
t+)t≥0,P) and X̂T is

a semimartingale on(�, (F X
t+)t≥0,P) with characteristics(BT ,CT , νT ) with

respect to the truncation functionχ .

PROOF. Fix n ≥ 1. In view of (3.2), Remark 2.3 part 2 and Lemma 3.1,
Mf,Tn is an((F X

t+),P)-martingale for allf ∈ C2
c (Rd).

Now letf ∈ C2
b(Rd). Thenffk ∈ C2

c (Rd), where thefk ∈ C2
c (Rd) are as in the

proof of Lemma 3.1, and for allk ≥ n,

|Mf,Tn
t − M

ffk,Tn
t |

≤ |f (X̂
Tn
t ) − ffk(X̂

Tn
t )|

+
∫ t∧Tn

0

∫
Rd\Bk−n

|f (Xs + ξ) − ffk(Xs + ξ)|νTn(ds, dξ)

≤ ∣∣f (
X̂t∧Tn

) − ffk

(
X̂t∧Tn

)∣∣ + ‖f ‖∞
∫ t∧Tn

0
νTn(ds,Rd \ Bk−n).

Obviously, ∣∣f (
X̂t∧Tn

) − ffk

(
X̂t∧Tn

)∣∣ → 0 in L1 ask → ∞,
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and as in the proof of Lemma 3.1, it can be deduced from (2.1) that∫ t∧Tn

0
νTn(ds,Rd \ Bk−n) → 0 in L1 ask → ∞.

Hence,Mf,Tn is an((F X
t+),P)-martingale, for alln ≥ 1. This, together with (3.1),

implies thatMf,T is an ((F X
t+),P)-local martingale. Thus, it follows from [11],

II.2.42, thatX̂T is an((F X
t+),P)-semimartingale with the claimed characteristics.

�

4. Proof of Theorem 2.4. There exists a nonnegative,F X
0 -measurable

random variableD0 such that

Q|F X
0

= D0 · P|F X
0

.

For eachn ≥ 1, letµ̂Sn denote the integer-valued random measure associated to the
jumps ofX̂Sn (see [11], II.1.16). By Proposition 3.2, its((F X

t+),P)-compensator
is νSn . It can easily be checked that

1

3
≤ y logy − y + 1

(y − 1)2 ≤ 1 for y ∈ (0,2]
and

1

3
≤ y logy − y + 1

y − 1
for y ≥ 2.

(Notice however that limy→∞ y logy−y+1
y−1 = ∞.) Hence, it follows from (2.4) that

EP

[([ψ(X, ξ) − 1]2 ∧ |ψ(X, ξ) − 1|) ∗ νSn
]
< ∞

for the nonnegative measurable functionψ :U × Rd → R+ defined by

ψ(x, ξ) := φ2(x)1{x+ξ=∂} + φ3(x, ξ)1{x+ξ∈E}.
Consequently, by [11], II.1.33 c,[(

ψ(X−, ξ) − 1
)] ∗ (µ̂Sn − νSn)

is a well defined((F X
t+),P)-local martingale. Moreover, it follows from (2.4) that

EP

[∫ Sn

0
〈α(Xs)φ1(Xs),φ1(Xs)〉ds

]
< ∞.

Hence, by [11], III.4.5,

φ1(X) · X̂Sn,c

is a well-defined continuous((F X
t+),P)-local martingale, wherêXSn,c denotes the

continuous martingale part of̂XSn , relative to the measureP. In summary,

Ln := φ1(X) · X̂Sn,c + [(
ψ(X−, ξ) − 1

)] ∗ (µ̂Sn − νSn)(4.1)
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is a well-defined((F X
t+),P)-local martingale with

〈Ln,c,Ln,c〉∞ = 〈Ln,c,Ln,c〉Sn =
∫ Sn

0
〈α(Xs)φ1(Xs),φ1(Xs)〉ds

and

�Ln
t = [ψ(Xt−,�X̂t ) − 1]1{�X̂

Sn
t �=0} > −1.

This latter property assures that the stochastic exponentialE(Ln) is a strictly posi-
tive ((F X

t+),P)-local martingale. Moreover, it follows from Théorème IV.3 of [19],
together with (2.4), thatE(Ln) is a uniformly integrable((F X

t+),P)-martingale,
which implies that

Dn := D0E(Ln)(4.2)

is a nonnegative, uniformly integrable((F X
t+),P)-martingale.

Obviously, forn ≥ m,

Dn
t = Dm

t for all t ≤ Sm.

Therefore, fort < S∞(ω), and also fort = S∞(ω) if S∞(ω) = Sm(ω) for some
m ≥ 1, one can define

D∞
t (ω) := lim

n→∞Dn
t (ω) ≥ 0.

Note that, for alln ≥ 1, E(Ln) is strictly positive. Hence,

D∞
t > 0 for all t ∈ [0, S∞) on {D0 > 0}.(4.3)

Since(D∞
Sn

)n≥1 = (Dn
Sn

)n≥1 is a nonnegative martingale, the limit

D∞
S∞ := lim

n→∞D∞
Sn

≥ 0

existsP-almost surely, and

Dt := D∞
t 1{t<S∞} + D∞

S∞1{S∞≤t}, t ∈ [0,∞],
is a nonnegative càdlàg process. It follows from Fatou’s lemma that, for allt ≥ 0
and every(F X

t+)-stopping timeS,

EP[DS |F X
t+] ≤ lim

n→∞EP[DS∧Sn |F X
t+] = lim

n→∞Dt∧S∧Sn = Dt∧S.

In particular,D is a supermartingale and

EP[DT ] ≤ 1.(4.4)

Now, let f ∈ C2
c (E) and setf (∂) = f (�) = 0. Then, it follows from (3.2) that

Mf,Sn = Mf,Sn . By Remark 2.3 part 2,Mf,Sn is an ((F X
t+),P)-martingale, and

obviously, it has bounded jumps. Therefore, it follows from Lemma III.3.14 in [11]
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that 〈Mf,Sn,Ln〉 and 〈Mf,Sn,DSn〉 exist and〈Mf,Sn,DSn〉 = D
Sn− · 〈Mf,Sn,Ln〉.

It can be seen from II.2.36, II.2.43 and the proof of II.2.42 in [11] that

Mf,Sn = Mf,Sn = ∇f (X) · X̂Sn,c + [f (X− + ξ) − f (X−)] ∗ (µ̂Sn − νSn)(4.5)

is the decomposition ofMf,Sn into a continuous and a purely discontinuous
((F X

t+),P)-local martingale part. Hence,

〈Mf,Sn,Ln〉t =
∫ t

0
〈∇f (Xs),α(Xs)φ1(Xs)〉ds

+ ([f (X + ξ) − f (X)][ψ(X, ξ) − 1]) ∗ ν
Sn
t ,

which shows that, for allt ≥ 0,

M̃
f,Sn
t := f (Xt) − f (X0) −

∫ t

0
Ãf (Xs) ds

= M
f,Sn
t − 〈Mf,Sn,Ln〉t = M

f,Sn
t −

∫ t

0

1

D
Sn
s−

d〈Mf,Sn,DSn〉s .

Thus, it follows from Girsanov’s theorem for local martingales in the form of [11],
III.3.11, that M̃f,Sn is an ((F X

t+),DSn · P)-martingale. By the definition ofQ
and the optional sampling theorem,M̃f,Sn is also an((F X

t ),Q)-martingale. By
Remark 2.3, part 3, we can apply Theorem 4.6.1 of [8] (observe that for the proof
of [8], Theorem 4.6.1, it is only needed thatSn is an (F X

t )-stopping time, see
also [8], Lemma 4.5.16) to conclude that

DSn · P = Q onF X
Sn

.

Now, letA ∈ F X
T . It can easily be checked that, for alln ≥ 1,

A ∩ {T < Sn} ∈ F X
Sn∧T .

Thus,

Q[A ∩ {T < S∞}] = lim
n→∞ Q[A ∩ {T < Sn}] = lim

n→∞ EP

[
DSn∧T 1{T <Sn}1A

]
(4.6)

= lim
n→∞ EP

[
DT 1{T <Sn}1A

] = EP

[
DT 1{T <S∞}1A

]
,

where the first and the last equality follow from the monotone convergence
theorem. This proves (2.5).

Equation (4.6) applied toA = � yields

Q[T < S∞] = EP

[
DT 1{T <S∞}

]
.

Hence, ifQ[T < S∞] = 1, then (4.4) shows that

EP[DT ] = 1 andDT = 0 on{T ≥ S∞} P-a.s.,(4.7)

which proves (2.6).
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If, in addition,Q|F X
0

∼ P|F X
0

, thenD0 > 0 P-a.s. and it follows from (4.3) that
DT > 0 on{T < S∞} P-a.s., which together with (4.7) implies that

{T ≥ S∞} = {DT = 0} P-a.s.(4.8)

Property (2.7) is now a consequence of (4.8) and (2.6).
If Q[T < R∞] = 1, then Q[T ∧ Tn < S∞] = 1, for all n ≥ 1. Therefore,

it follows from (2.6) that

Q|F X
T ∧Tn

= DT ∧Tn · P|F X
T ∧Tn

.

Moreover, since limn→∞ Tn = Texpl ≥ S∞, we have limn→∞ DT ∧Tn = DT P-a.s.
Hence, if (DT ∧Tn)n≥1 is uniformly integrable, thenDT ∧Tn → DT in L1(P).
Therefore,

Q|F X
T ∧Tn

= DT · P|F X
T ∧Tn

,

for all n ≥ 1, which, by Proposition 2.1, implies (2.8), and the theorem is proved.

5. Carré-du-champ operator. Part (2.8) of Theorem 2.4 yields absolute
continuity of Q|F X

T
with respect toP|F X

T
, also on{T ≥ Texpl}. In this section

we consider a special choice ofφ1, φ2 andφ3, which even provides equivalence
beyond explosion. This is an extension of [27], Section VIII.3, and involves the
carré-du-champ operator� :C2

c (E) × C2
c (E) → B(E) defined by

�(f,g) := A(fg) − f Ag − gAf.

In contrast to above, we now first introduce a probability measureQ such that
Q ∼ P on F X

t+ for all t ≥ 0, and then find the appropriate generatorÃ for which
Q solves the martingale problem.

Fix h ∈ C2
c (E). ThenH := eh − 1∈ C2

c (E), and we can define

Dt := eh(Xt )−h(X0) exp
(
−

∫ t

0

AH(Xs)

eh(Xs)
ds

)
.

Integration by parts, usingd(eh(X)) = dMH + AH(X)dt , yields

dDt = e−h(X0) exp
(
−

∫ t

0

AH(Xs)

eh(Xs)
ds

)
dMH

t = Dt−e−h(Xt−) dMH
t .(5.1)

SinceD is uniformly bounded on compact time intervals, we conclude thatD

is a strictly positive((F X
t+),P)-martingale. As in [26], Theorem IV.38.9, it can

be deduced from the Daniell–Kolmogorov extension theorem that there exists a
probability measureQ onF X such thatQ = Dt · P onF X

t+ for all t ≥ 0.
In view of (3.2) [we setH(∂) = 0] and (4.5), we have

MH,Sn = MH,Sn = ∇eh(X) · X̂Sn,c + (
eh(X−+ξ) − eh(X−)

) ∗ (µ̂Sn − νSn),
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so that, together with (5.1), we obtain

DSn = E
(∇h(X) · X̂Sn,c + (

eh(X−+ξ)−h(X−) − 1
) ∗ (µ̂Sn − νSn)

)
,

for all n ≥ 1. Comparing this to (4.1) suggests that we are in the situation of
Theorem 2.4 with

φ1(x) = ∇h(x), φ2(x) = e−h(x) and φ3(x, ξ) = eh(x+ξ)−h(x),(5.2)

which clearly satisfy (2.9)–(2.11) for allx ∈ E and a fixed constantK > 0.

THEOREM 5.1. Q is a solution of the martingale problem for̃A :C2
c (E) →

B(E) given by

Ãf := Af + �(H,f )

eh
,(5.3)

which equals(2.2)with (2.3)and (5.2).

PROOF. A straightforward calculation yields

�(f,g)(x) = 〈α(x)∇f (x),∇g(x)〉 + γ (x)f (x)g(x)

+
∫

Rd

(
f (x + ξ) − f (x)

)(
g(x + ξ) − g(x)

)
µ(x, dξ),

which makes it easy to see that (5.3) equals (2.2) with (2.3) and (5.2).
Let f ∈ C2

c (E). Lemma 5.2 below shows that

〈Mf ,MH 〉t =
∫ t

0
�(f,H)(Xs) ds, t ≥ 0.

Therefore,

M̃
f
t := f (Xt) − f (X0) −

∫ t

0
Ãf (Xs) ds

= f (Xt) − f (X0) −
∫ t

0
Af (Xs) ds −

∫ t

0
e−h(Xs) d〈Mf ,MH 〉s

= M
f
t −

∫ t

0

1

Ds−
d〈Mf ,D〉s,

and it follows from Girsanov’s theorem for local martingales [11], III.3.11, that
M̃f is an((F X

t+),Q)-martingale, which proves the theorem.�

LEMMA 5.2. If f,g ∈ C2
c (E), then

〈Mf ,Mg〉t =
∫ t

0
�(f,g)(Xs) ds.

PROOF. Literally the same as the proof of Proposition VIII.3.3 in [27].�
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6. Example. We here apply Theorem 2.4 to a one-dimensional diffusion with
compound Poisson jumps and a constant killing rate. In [2], it is applied to a multi-
dimensional diffusion, and in [1] to a multi-dimensional jump-diffusion model.

Let (�′,F ′,P′) be a probability space that carries the following three inde-
pendent random objects: a one-dimensional standard Brownian motion(Wt)t≥0;
a compound Poisson process(Nt )t≥0 with jump arrival rateλ > 0 and positive
jumps that are distributed according to a probability measurem on (0,∞); and an
exponentially distributed random variableτ with mean1

γ
> 0. Letb0 ≥ 0, b1 ∈ R

andσ > 0. It is well known that the SDE

dVt = (b0 + b1Vt) dt + σ
√

Vt dWt , V0 = v > 0,(6.1)

has a unique strong solution,V stays nonnegative, and

V never reaches zero ifb0 ≥ σ 2

2
.(6.2)

(Cox, Ingersoll and Ross [3] model the short term interest rates by the solution of
an SDE of the form (6.1).) It follows from a comparison argument that the same is
true for the equation

dYt = (b0 + b1Yt ) dt + σ
√

Yt dWt + dNt , Y0 = y > 0.(6.3)

The process

Z := Y1[0,τ ) + �1[τ,∞)

takes values inE�, for E = R+, and its distributionP is a probability measure on
the measurable space(�,F X) introduced in Section 2. It can be checked thatP is
a solution of the martingale problem for

Af (x) = 1
2σ 2xf ′′(x) + (b0 + b1x)f ′(x) − γf (x)

+
∫ ∞

0
[f (x + ξ) − f (x)]λm(dξ).

Let

Ãf (x) = 1
2σ 2xf ′′(x) + (b̃0 + b̃1x)f ′(x) − γ̃ (x)f (x)

+
∫ ∞

0
[f (x + ξ) − f (x)]µ̃(x, dξ),

where b̃0 ≥ σ2

2 , b̃1 ∈ R, γ̃ (x) = γ̃0 + γ̃1x, for some(γ̃0, γ̃1) ∈ R2+ \ {(0,0)},
andµ̃(x, ·) is, for allx > 0, a measure on(0,∞) of the formµ̃(x, dξ) = [m0(ξ)+
m1(ξ)x]λm(dξ), for nonnegative measurable functionsm0,m1 : (0,∞) → R+,
such that(m0(ξ),m1(ξ)) ∈ R2+ \ {(0,0)} for all ξ > 0 and∫ ∞

0
l
(
m0(ξ) + m1(ξ)x

)
m(dξ) < ∞ for all x > 0,
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wherel(u) = u logu−u+1. It follows from Theorem 2.7 in [7] that the martingale
problem forÃ is well posed. LetQ be the solution of the martingale problem
for Ã with initial distribution δy . It can be deduced from (6.2) and a comparison
argument that

Q[there exists at ≥ 0 such thatXt = 0 orXt− = 0] = 0.(6.4)

We setU = (0,∞) and Un = (1/n,n), n ≥ 1. Since we have no explosion,
(6.4) implies thatQ[S∞ = ∞] = 1. Furthermore, the measurable mappings

φ1(x) = b̃0 − b0

σ 2x
+ b̃1 − b1

σ 2 , x ∈ U,

φ2(x) = 1

γ
(γ̃0 + γ̃1x), x ∈ U,

φ3(x, ξ) =
{

m0(ξ) + m1(ξ)x, if ξ > 0,

1, if ξ ≤ 0,
x ∈ U,

satisfy the conditions (2.9)–(2.11), and for allx ∈ U ,

b̃0 + b̃1x = b0 + b1x + σ 2xφ1(x),

γ̃ (x) = φ2(x)γ,

µ̃(x, dξ) = φ3(x, ξ)λm(dξ).

Therefore, Theorem 2.4 applies, and we obtain that

Q|F X
T

� P|F X
T

for all (F X
t )-stopping timesT < ∞. Moreover, ifb0 ≥ σ2

2 , then

P[S∞ = ∞] = 1− P[there exists at ≥ 0 such thatXt = 0 orXt− = 0] = 1,

and Theorem 2.4 yields that

Q|F X
T

∼ P|F X
T

for all (F X
t )-stopping timesT < ∞. If we identify � with −1, the processZ

becomes the semimartingale

Ẑ := Y1[0,τ ) − 1[τ,∞).

It can be seen from (6.3) thatdẐc
t = 1{0≤t<τ }σ

√
Yt dWt . The random measurêµ

associated to the jumps of̂Z is an integer-valued random measure onR2+ with
compensator

ν(dt, dξ) = 1{0≤t<τ } dt × (
λm(dξ) + γ δ−1−Zt (dξ)

)
.
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Since the distribution of

ψ(Zt−, ξ) = φ2(Zt−)1{Zt−+ξ=−1} + φ3(Zt−, ξ)1{Zt−+ξ≥0},
and the stochastic exponential

D′ = E
(
φ1(Z) · Ẑc + (

ψ(Z−, ξ) − 1
) ∗ (µ̂ − ν)

)
only depend on the distribution ofZ, it follows from (4.7) that

EP′ [D′
t ] = EP[Dt ] = 1.

Hence,D′ is a P′-martingale, and for allt ≥ 0, D′
t · P′ is a probability measure

on (�′,F ′) under which the distribution of the stopped processZt is equal
to Q|F X

t
. If b0 ≥ σ2

2 , thenD′
t > 0 P′-almost surely for allt ∈ R+, andD′

t · P′
is equivalent toP′.

APPENDIX

PROOF OFPROPOSITION2.1. It is clear that

F X
T ⊃ F X

T ∧Texpl
⊃ σ

( ⋃
n≥1

F X
T ∧Tn

)
.(A.1)

To show the reverse inclusions, we first prove that

F X ⊂ σ

( ⋃
n≥1

F X
Tn

)
.(A.2)

Note that for allt ≥ 0, and all Borel subsetsB of E,

{Xt ∈ B} = {Xt ∈ B} ∩ {Texpl > t} = ⋃
n≥1

({Xt ∈ B} ∩ {Tn > t}),

and for alln ≥ 1,

{Xt ∈ B} ∩ {Tn > t} ∈ F X
Tn

.

Hence,

{Xt ∈ B} ∈ σ

( ⋃
n≥1

F X
Tn

)
.(A.3)

Moreover, for allt ≥ 0,

{Xt = �} = {Texpl ≤ t} ∪ {Tjump ≤ t}

=
( ⋂

n≥1

{Tn ≤ t}
)

∪ ({Tjump ≤ t} ∩ {Texpl > t})

=
( ⋂

n≥1

{Tn ≤ t}
)

∪ ⋃
n≥1

({Tjump ≤ t} ∩ {Tn > t}).
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It can easily be checked that, for alln ≥ 1,

{Tn ≤ t} and {Tjump ≤ t} ∩ {Tn > t} belong toF X
Tn

.

Hence,

{Xt = �} ∈ σ

( ⋃
n≥1

F X
Tn

)
,

which, together with (A.3), implies (A.2).
For every setA ∈ F X

T , we write

A = [A ∩ {T < Texpl}] ∪ [A ∩ {T ≥ Texpl}]
(A.4)

=
[ ⋃

n≥1

A ∩ {T < Tn}
]

∪ [A ∩ {T ≥ Texpl}].

Observe that, for alln ≥ 1,

A ∩ {T < Tn} ∈ F X
T ∧Tn

.(A.5)

For every class of subsetG of �, we define

G ∩ {T ≥ Texpl} := {G ∩ {T ≥ Texpl} | G ∈ G}.
It follows from (A.2) that

A ∩ {T ≥ Texpl} ∈ σ

( ⋃
n≥1

F X
Tn

)
∩ {T ≥ Texpl},(A.6)

and it can easily be checked that

σ

( ⋃
n≥1

F X
Tn

)
∩ {T ≥ Texpl} ⊂ σ

( ⋃
n≥1

F X
Tn

∩ {T ≥ Texpl}
)

⊂ σ

( ⋃
n≥1

F X
T ∧Tn

)
.

Hence, (A.4), (A.5) and (A.6) imply that

F X
T ⊂ σ

( ⋃
n≥1

F X
T ∧Tn

)
,

which, together with (A.1), proves the proposition.�
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[2] CHERIDITO, P., FILIPOVI Ć, D. and KIMMEL , R. L. (2003). Market price of risk specification
for affine models: Theory and evidence. Working paper, Princeton Univ.

[3] COX, J., INGERSOLL, J. and ROSS, S. (1985). A theory of the term structure of interest rates.
Econometrica53 385–408.

[4] DAWSON, D. (1968). Equivalence of Markov processes.Trans. Amer. Math. Soc.131 1–31.
[5] DELBAEN, F. and SHIRAKAWA , H. (2002). A note on option pricing under the constant

elasticity of variance model.Asia–Pacific Financial Markets9 85–99.
[6] DELBAEN, F. and SHIRAKAWA , H. (2002). No arbitrage condition for positive diffusion price

processes.Asia–Pacific Financial Markets9 159–168.
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