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THE MOTION OF A SECOND CLASS PARTICLE
FOR THE TASEP STARTING FROM A

DECREASING SHOCK PROFILE

BY THOMAS MOUNTFORD AND HERVÉ GUIOL

École Polytechnique Fédérale de Lausanne and Institut National
Polytechnique de Grenoble

We prove a strong law of large numbers for the location of the second
class particle in a totally asymmetric exclusion process when the process is
started initially from a decreasing shock. This completes a study initiated
in Ferrari and Kipnis [Ann. Inst. H. Poincaré Probab. Statist.13 (1995)
143–154].

1. Introduction. The totally asymmetric exclusion process (or TASEP) is an
interacting system of indistinguishable particles on the one-dimensional latticeZ.
Each element of the lattice is called asite. Initially particles are distributed onZ
according to theexclusion rulethat prohibits multi-occupancy of sites (i.e., each
site is at most occupied by one particle). Particles attempt to move one step (to
their neighboring site) in a unique given direction (say to the right) independently
at random times (exponential law with mean 1) provided this does not violate the
exclusion rule. Two classic physical interpretations of the TASEP are in use: (i) as
a moving interface on the plane (space–time); and (ii) as a toy model for traffic
on a single-lane highway. The former gives a powerful tool to analyze the process
in terms of a last passage percolation. This approach will be fully commented
and developed throughout the paper. However, we postpone this to the following
sections since we believe the second interpretation gives a more pleasant way to
understand the result for the nonspecialist. We will thus begin to expose the results
in this setting in an intuitive way.

1.1. The traffic model. We interpret particles as cars on a single-lane high-
way (Z) with no possibility of passing (exclusion rule). For each car moving times
are modeled by independent Poisson processes with mean 1. Due to the nonpass-
ing rule, a car at positionx that attempts to move needs free space in front of it to
occupy positionx + 1; otherwise the car just stays atx beginning to jam, and so
on. . . .

Now suppose we look to this highway from far away, say from a helicopter
(macroscopic level). As the mean velocity (jump rate of the process) is the same
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1228 T. MOUNTFORD AND H. GUIOL

for all cars, the classical results about exclusion processes (see [9]) show that any
given traffic density on the full highway is preserved over time.

Now typically if one starts with two different densities (which we call an initial
shock condition), sayλ to the left of the origin andρ to the right, then two kinds of
situations are possible. Ifλ < ρ, cars from the left are entering in a more jammed
zone with densityρ. And what we see from our helicopter is that the jam front
is moving to the left (which is called thepropagation of the shock). Whenλ > ρ,
then the jammed zone is to the left and what we observe in between is a resorption
(i.e., rarefaction fanor rarefaction wave) of this jam into the (more) fluid region.
Those facts are rigorously proved by the study of thehydrodynamicbehavior of
the TASEP (see, e.g., [12]).

Some natural questions then arise:

(a) In the first caseλ < ρ: Is the shock sharp? That is, is there a microscopic
identifier of the shock? The answer is yes. It has been proved by Ferrari, Kipnis
and Saada [5] and then by Ferrari [3] that thesecond class particleidentifies the
shock (we refer to the previous articles for a rigorous statement of these facts). At
the intuitive level the description of a second class particle is the following: It is a
special particle that obeys all the rules described before except that other particles
are insensitive to it; that is, if it stands just in front of a (regular) particle that tries
to move, then it has to exchange its position with the moving particle. As one can
see, a second class particle might move back, which is impossible for the other
particles in this totally asymmetric context.

(b) In the second caseλ > ρ: What is the microscopical counterpart of the
resorption of the jam (rarefaction fan)? Ferrari and Kipnis [4] proved, first, that the
position of the second class particle converges in distribution to a uniform law in
the rarefaction fan, and second, that the second class particle, once having chosen
an allowable velocity in the wedge (the rarefaction fan), remains close to it forever
in probability. It was an open question to prove whether or not the above mentioned
convergence holds more strongly. We prove indeed in the following that it is the
case as a strong law of large numbers.

From now on we will abandon the traffic interpretation and switch to the
interface model. To do so we start with the formal statement of the result and
the mathematical description of the TASEP. We will then make the connection
between the TASEP and the interface model and discuss some key ideas of the
proof. We postpone the plan of the paper to the end of the next section.

1.2. The interface settings.

1.2.1. The result. We consider the positionX(t) at timet ≥ 0 of a second class
particle initially at the origin, that is,X0 = 0, for a TASEP(ηt )t≥0 for which at
time 0, particles are independently present at sitesx, x ∈ Z\{0}, with probabilityλ

for x < 0 and probabilityρ for x > 0.



MOTION OF A SECOND CLASS PARTICLE 1229

We address (following [4]) the caseλ > ρ, that is to say, an initial decreasing
shock. The caseλ < ρ has already been completely resolved by the above
mentioned papers [3] and [5]; see also [11] and [16] for similar results for more
general processes.

The starting point is the result of Ferrari and Kipnis [4] that

ast → ∞ X(t)

t

D→ U([1− 2λ,1− 2ρ]),(1)

whereU(I) denotes the uniform distribution on intervalI ; and

for 0< s < t fixed asε → 0
X(t/ε)

t/ε
− X(s/ε)

s/ε

pr→ 0.(2)

Given this result it is natural to conjecture the following result, which will be
proven in Section 4.

THEOREM 1. For (X(t))t≥0 as above there exists a uniform random vari-
ableU on [1− 2λ,1− 2ρ] so that

as t → ∞ X(t)

t

a.s.→ U.

For us the key ingredients areSeppäläinen’s variational formulafor TASEP
(see [14] and (7) below) andconcentration inequalitiesoriginating with Talagrand;
see, for example, [1]. We do not need to use the exciting new results on last passage
percolation of Johansson [6].

1.2.2. The TASEP and its hydrodynamics.The TASEP is an interacting
particle system on{0,1}Z with generator on cylinder functionsf

Lf (η) = ∑
x∈Z

η(x)[1− η(x + 1)](f (ηx,x+1) − f (η)
)

where

ηx,x+1(y) = η(y) for y �= x or x + 1,

ηx,x+1(x) = η(x + 1) and ηx,x+1(x + 1) = η(x).

We interpretηt (x) = 1 to mean that for the configurationηt there is a particle at
site x [or for the process(ηs)s≥0 there is a particle at sitex at time t ]. Particles
try to move at exponential times to the site one to the right of their present site but
moves to sites already occupied by another particle are suppressed. For details of
more general exclusion processes see [9]; for details on Seppäläinen’s description
see [14, 15].
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It is well known (see [10] and [12]) that the TASEP has the following scaling
property. Let(ηN

t )t≥0 for N ∈ N be a sequence of TASEPs such that for any finite
intervalI ⊂ R ∣∣∣∣∣ 1

N

∑
x/N∈I

ηN
0 (x) −

∫
I
u0(r) dr

∣∣∣∣∣ pr→ 0,

whereu0 is a measurable function onR such that 0≤ u0(x) ≤ 1. Then for allt ≥ 0∣∣∣∣∣ 1

N

∑
x/N∈I

ηN
Nt (x) −

∫
I
ut (r) dr

∣∣∣∣∣ pr→ 0,

whereut(r) is theentropy solution(see, e.g., [8]) of the scalar conservation law
∂u

∂t
+ ∂G(u)

∂r
= 0(3)

with flux functionG(u) = u(1− u) and initial conditionu0.
In particular, whenu0(x) = λ1x≤0 + ρ1x>0 with λ > ρ the entropy solution

produces a rarefaction fan

ut(x) =



λ, if x ≤ (1− 2λ)t ,

(t − x)/2t, if (1− 2λ)t < x ≤ (1− 2ρ)t ,

ρ, if x > (1− 2ρ)t .
Another way of having a look at this is to consider the (integrated)Hamilton–
Jacobi problem(see, e.g., [2])

∂U

∂t
+ G

(
∂U

∂r

)
= 0

with U0 satisfying, for allx < y,

U0(y) − U0(x) =
∫ y

x
u0(r) dr.

Then the unique viscosity solutionUt(x) of this problem is given by theHopf–Lax
formula

Ut(x) = sup
y∈R

{
U0(y) − tg

(
x − y

t

)}
,(4)

whereg is the nonincreasing, nonnegative convex function such that foru ∈ [0,1]
G(u) = inf

r
{ur + g(r)},

that is,g is the Legendre convex conjugate of the fluxG. Note that the supremum
in (4) is indeed achieved at somey ∈ [x − t, x + t].

The solutionUt is related to the entropy solution to the original equation (3) by
the relation

∀ t ≥ 0, ∀x < y ∈ R Ut(y) − Ut(x) =
∫ y

x
ut (w)dw.

Here and subsequentlyg(x) = (1− x)2/4.



MOTION OF A SECOND CLASS PARTICLE 1231

1.2.3. Seppäläinen’s variational formula. Seppäläinen’s formula gives a mi-
croscopic equivalent of (4) for the TASEP. We will now describe that formula; all
the details can be found in [14].

We need first to introduce atool processfrom which the TASEP can easily be
retrieved. Let(zt )t≥0 be a server process onZ

Z, wherezt (i) represents the position
of theith server of a system at timet . We impose the following exclusion rule:

0≤ zt (i + 1) − zt (i) ≤ 1,(5)

that is, two consecutive servers cannot overpass each other nor be too far (two sites
or more apart).

The construction of thezt process is achieved by a system of independent
Poisson processes. Let{(Pi (t))t≥0}i∈Z be a collection of mutually independent
Poisson processes with rate 1 on]0,∞[ , and call it aHarris system. At any epochτ
of (Pi(t))t≥0, zτ (i) will be reduced by one unit provided this does not violate (5),
in which case nothing happens to the system.

Given such a Harris system and an (independent) initial distributionz0 ∈ Z
Z

that satisfies (5) on the same probability space we can construct thezt process at
any timet ≥ 0. The exclusion process is then retrieved via

ηt (x) = zt (x) − zt (x − 1).

So the condition (5) is seen to be simply equivalent to the condition thatηt (x) ∈
{0,1}.

Now we need to define a family{(wk
t )t≥0 : k ∈ Z} of auxiliary processes, on

the same probability space, such that each(wk
t )t≥0 is a server process like(zt )t≥0

satisfying the exclusion rule (5). Initially we define

wk
0(i) =

{
z0(k), if i ≥ 0,

z0(k) + i, if i < 0,

that is, all the servers with nonnegative label occupy the same positionz0(k) and
the others are put at distance 1 from their neighbors; dynamically

wk(i) attempts to jump towk(i) − 1 at the epochs of
(
Pi+k(t)

)
t≥0.

The utility of the wk
t processes comes from the followingvariational coupling

formula:

LEMMA 2 ([14], Lemma 4.1). For all i ∈ Z and t ≥ 0,

zt (i) = sup
k∈Z

wk
t (i − k) a.s.(6)

The r.v.’s{wk
t (i)}{−∞<i<∞} can be visualized as the height of an interface over

the sitesi. In order to start initially from level zero and obtain a growing surface,
the family of interface processes{(ξk

t )t≥0 : k ∈ Z} is defined by

ξk
t (i) = z0(k) − wk

t (i) for i ∈ Z, t ≥ 0;
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then

ξk
0 (i) =

{
0, if i ≥ 0,

−i, if i < 0,

and the variational formula (6) gives Seppäläinen’s variational formula

zt (i) = sup
k∈Z

{z0(k) − ξk
t (i − k)}.(7)

Observe that as the processξk does not depend on the initialz0(k), and depends
on k only through a translation of the indexing of{(Pi (t))t≥0}, dynamically

ξk(i) jumps toξk(i) + 1 at epochs ofPi+k

provided the inequalitiesξk(i) ≤ ξk(i − 1) and ξk(i) ≤ ξk(i + 1) + 1 are not
violated. Seppäläinen’s variational formula is our key tool in the sense that it
permits us to (see especially the proof of Proposition 19) trace the position of
the second class particle.

1.2.4. Strategy of the proof. Loosely speaking, the strategy of the proof is
the following: Keeping in mind Ferrari–Kipnis weak law (1), we want to take
advantage of the idea contained in their other result (2), that is, once chosen a
given velocity in the rarefaction fan the second class particle keeps following it.

To do so we analyze the trajectory of the second class particle by chopping it
off into a sequence of increasing time intervals of order(2n)n∈N. On each of these
intervals we control the deviations from the original direction taken by the second
class particle. This analysis is performed in Section 4 thanks to:

(a) Large deviation bounds obtained from a related last passage percolation
problem described below (see Corollary 12 in Section 2), where the key tools are
the above mentioned concentration inequalities and a trick from [7].

(b) A nice approximation of the server process by the solution of the Hamilton–
Jacobi problem related with the hydrodynamic limit of the TASEP (Proposition 16
in Section 3). For this part the key tools are Hopf–Lax and Seppäläinen formulas.

Once obtained the almost sure convergence ofX(t)/t the weak law (1) suffices
to conclude.

1.2.5. The last passage percolation problem.Following Seppäläinen [15] we
now recall how formula (7) can be analyzed in terms of a last passage percolation
problem.

We need first to introduce some notation. Define thewedgeof admissible lattice
paths denoted by

L = {(i, j) ∈ Z
2 : j ≥ 1, i ≥ −j + 1},

with boundary∂L = {(i,0) : i ≥ 0} ∪ {(i,−i) : i < 0}.
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For (i, j) ∈ L ∪ ∂L let

�k(i, j) = inf{t ≥ 0 :ξk
t (i) ≥ j}

be the first time the interfaceξk reaches levelj at sitei. The previous rules give

�k(i, j) = 0 for (i, j) ∈ ∂L

and for(i, j) ∈ L

�k(i, j) = max{�k(i − 1, j),�k(i, j − 1),�k(i + 1, j − 1)} + βk
i,j ,

whereβk
i,j is an exponential, mean 1, waiting time independent of the otherβk

i′,j ′ .
Now consider the following last passage model: Let{ti,j : (i, j) ∈ L} be a

collection of i.i.d. exponential rate 1 random variables. Define thepassage times
{T (i, j)} by

T (i, j) = 0 for (i, j) ∈ ∂L

and

T (i, j) = max
π∈�(i,j)

∑
(m,�)∈π

tm,� for (i, j) ∈ L(8)

where�(i, j) is the set ofadmissible lattice paths

π = {(0,1) = (i1, j1), (i2, j2), . . . , (ip, jp) = (i, j)}
such that(im, jm) − (im−1, jm−1) = (1,0) or (−1,1).

Let

ξt (i) = min{j : (i, j + 1) ∈ L, T (i, j + 1) > t},
with ξ0(j) = 0 for j ≥ 0 andξ0(j) = −j for j < 0. Then from [14],the process
ξ·(·) has the same distribution as the processξk· (·) of (7).

Furthermore, Seppäläinen [13] obtained

1

n
ξnt ([nx]) pr→ tg(x/t) ≡ t

(1− x/t)2

4
for − t ≤ x ≤ t,

lim
n→∞

1

n
T ([nx], [ny]) = (x, y) ≡ (√

y + √
x + y

)2;
(9)

here and in the sequel[u] denotes the integer part ofu ∈ R. The limiting “shape”g
for ξ·(·) satisfies(x,g(x)) = 1 for all |x| ≤ 1, meaning it is a curve level of.
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1.3. Organization of the paper.The paper is organized as follows: in Section 2
we use a last passage percolation argument to obtain some simple, nonoptimal,
large deviation bounds. In Section 3 these bounds are employed to show that for
all t ∈ [2n/2,2 · 2n], ηt will be 2nα “close” to the hydrodynamic limit outside
probability exp(−2n(1−α)) for α close to 1 but strictly below it. In the final section
an argument is given to show that a.s.X(t)/t converges.

In the sequel we will use the following notation:N = {1,2, . . .} denotes the set
of positive integers,Z+ = N∪{0} denotes the set of nonnegative integers and]u, v[
(resp.[u, v[ or ]u, v]) will denote the open interval (resp. semi-open intervals) with
endpointsu andv.

2. Large deviation bounds. In analyzing{T (i, j + 1) < t} or the a.s. equal
event thatξt (i) > j we consider the “longest” admissible path,π [in the sense of
the passage times of (8)] from(0,0) to (i, j + 1) that passes through the lattice
point (0,1) where(i, j + 1) ∈ L = {(k, �) ∈ Z

2 : k + � ≥ 1, � ≥ 1}.
In this section we will consider a collection{τi,j : (i, j) ∈ Z

+ × Z
+} of i.i.d.,

exponential mean 1, random variables and last passage timeT (i, j) for (i, j) ∈
Z

+ × Z
+ will be redefined as

T (i, j) = max
π∈�(i,j)

i+j−1∑
v=0

τπ(v) for (i, j) ∈ Z
+ × Z

+,(10)

where�(i, j) is the set ofup-right admissible pathsfrom (0,0) to (i, j) [starting
at (0,0)]; that is, if π ∈ �(i, j), then

π = (
π(0) = (0,0),π(1), . . . , π(i + j) = (i, j)

)
whereπ(v + 1) − π(v) ∈ {(1,0), (0,1)} for v ≥ 1.

To relate this to the previous section [and indeed the previous definition of
T (i, j)], we are just making use of the isomorphism(x, y) ∈ L → (x + y −
1, y − 1) ∈ Z

+ × Z
+. It will be easy to obtain results for the originalT (i, j) and

therefore the objectsξy
t (x − y) from bounds on the redefinedT (i, j)’s. From (9)

for θ ∈ (0,1) fixed,

lim
n→∞

T ([nθ ], [n(1− θ)])
n

= (√
θ + √

1− θ
)2

.

Let Vn := {(i, j) ∈ Z
+ × Z

+ : i + j = n}. The object of this section is to prove

PROPOSITION3. There existsε > 0 so that for alln large and(i, j) ∈ Vn,

P
(∣∣T (i, j) − n

(√
θ + √

1− θ
)2∣∣ ≥ n1−ε) ≤ exp(−nε),

wherei = [nθ ] (and soj = n − [nθ ]).
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Our approach is to first obtain via concentration inequalities bounds on
T (i, j) − ET (i, j) and then to considerET (i, j) − n(

√
θ + √

1− θ )2, for n =
i + j large. Our first result is:

PROPOSITION4. Let (i, j) ∈ Vn. For anyx ≥ 4

P
(|T (i, j) − ET (i, j)| ≥ 3

√
n log(n2)x

)
≤ 2

(
2exp

(
−(x − 4)2

4

)
+ e exp

(−2
√

n log(n2)x
))

.

PROOF. First, following Kesten [7], consider the quantity

Vn = ∑
(k,�)∈[0,n[2∩Z2

(
τk,� − log(n2)

)+
.

Sinceτk,� are i.i.d.Exp(1) random variables we have fort < 1

Eexp(tVn) =
(

1+ 1

n2

t

1− t

)n2

≤ exp
(

t

1− t

)
.

And so for anyy > 0,

P(Vn ≥ y) ≤ inf
0<t<1

exp
(

t

1− t
− ty

)
= e1−y.

Now considerT ′(i, j) derived fromT (i, j) with τπ(i) replaced by the bounded
r.v. τπ(i) ∧ 2 logn.

ObviouslyT ′(i, j) ≤ T (i, j) ≤ T ′(i, j) + Vn.
We analyzeT ′(i, j) using pages 62–64 of [1]. LetM ′

n be the median ofT ′(i, j).
Let A = {ω :T ′(i, j)(ω) ≤ M ′

n}. Suppose� is such that

T ′(i, j)(�) ≥ M ′
n + log(n2)

√
nx;

then there exists an admissible up-right pathπ from (1,1) to (i, j) [starting
at (0,0)] such that

n−1∑
i=0

τπ(i)(�) ∧ log(n2) ≥ M ′
n + log(n2)

√
nx.

Then for anyω ∈ A we have

√
nx ≤

n−1∑
i=0

∣∣∣∣
(

τπ(i)(�)

log(n2)
∧ 1

)
−

(
τπ(i)(ω)

log(n2)
∧ 1

)∣∣∣∣

≤
n−1∑
i=0

1τπ(i)(�) �=τπ(i)(ω).
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Then withβk = 1/
√

n, k = 0, . . . , n − 1, it follows that

g(A,�) := sup
{β : ‖β‖2≤1}

inf
ω∈A

n−1∑
k=0

βk1τπ(i)(�) �=τπ(i)(ω) ≥ x,

where‖β‖2 means the Euclidean norm ofβ ∈ R
n. Thus applying Corollary 2.4.31

of [1] to R(A) = P(T ′(i, j) ≤ M ′
n) ≥ 1/2, whereR is the restriction ofP on

� = [0,2 logn]n2
, while

P
(
T ′(i, j) ≥ M ′

n + log(n2)
√

nx
) ≤ R

({� :g(A,�) ≥ x})
we get

P
(
T ′(i, j) ≥ M ′

n + log(n2)
√

nx
) ≤ 2exp

(
−x2

4

)
.

Similarly

P
(
T ′(i, j) ≤ M ′

n − log(n2)
√

nx
) ≤ 2exp

(
−x2

4

)
.

Thus

ET ′(i, j) ≤ M ′
n + √

n log(n2)2
∫ ∞

0
exp

(
−x2

4

)
dx

≤ M ′
n + 2

√
πn log(n2).

And similarly

ET ′(i, j) ≥ M ′
n − 2

√
πn log(n2).

Thus we have

P
(
T ′(i, j) ≥ ET ′(i, j) + √

n log(n2)x
)

≤ P
(
T ′(i, j) ≥ M ′

n + √
n log(n2)

(
x − 2

√
π

))
and since

√
π ≤ 2, for x ≥ 4, ≤ 2exp(− (x−4)2

4 ).
Thus sinceET ′(i, j) ≤ ET (i, j) ≤ ET ′(i, j) + e, we have

P
(
T (i, j) ≥ ET (i, j) + 3

√
n log(n2)x

)
≤ P

(
T ′(i, j) ≥ ET (i, j) + √

n log(n2)x
) + P

(
Vn ≥ 2

√
n log(n2)x

)
≤ 2exp

(
−(x − 4)2

4

)
+ exp

(
1− 2

√
n log(n2)x

)
and get a similar bound forP(T (i, j) ≤ ET (i, j) − 3

√
n log(n2)x). �

Next we concentrate on getting a useful bound for|ET (i, j) − (
√

i + √
j )2|.

We first assemble some elementary lemmas.
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LEMMA 5. Consider the random variable

W = sup
(i,j)∈Vn

T (i, j).

There exists a finiteK so that for anyc > K and all n sufficiently large, for an
event, A, of probabilityexp(−cn/(logn)2)

P(W ≥ cn|A) ≤ exp
(
−cn

4

)
.

PROOF. For an up-right path of lengthn starting at(0,0) there are 2n possible
choices. For such a path, sayπ , the probability that

n−1∑
i=0

τπ(i) ≥ cn

is ≤ exp(−cn/2)V n whereV := Eexp(X/2) andX ∼ Exp(1) so

P(W ≥ cn|A) ≤ exp
(

cn

(logn)2

)
2nV n exp

(
−cn

2

)
≤ exp

(
−cn

4

)

for c sufficiently large. �

LEMMA 6. For all positivex, y and positive integern,

ET ([nx], [ny]) ≤ n
(√

x + √
y

)2
.

PROOF. SupposeET ([nx], [ny]) > n(
√

x + √
y )2. For each integerL

[Lnx] ≥ L[nx] and [Lny] ≥ L[ny];
and soT ([Lnx], [Lny]) ≥ T (L[nx],L[ny]).

But the longest path from(0,0) to (L[nx],L[ny]) is longer than the longest
path from(0,0) to (L[nx],L[ny]) which goes through points(�[nx], �[ny]) for
0≤ � ≤ L. This second quantity is equal to

L∑
�=1

Z�

whereZ�, are i.i.d. r.v.’s with

EZ� = ET ([nx], [ny]).
Thus by the strong law of large numbers we have a.s.

lim inf
L→∞

T ([Lnx], [Lny])
nL

≥ EZ1 >
(√

x + √
y

)2
.
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But we have from [13]

T ([Lnx], [Lny])
nL

→ (√
x + √

y
)2

whenL → ∞ and this gives a contradiction and the lemma follows.�

We also record a simple result that will be needed later.

LEMMA 7. For all θ ∈]0,1/2[ , θ > δ > 0, if xi ∈]θ − δ, θ + δ[ c for i =
1,2, . . . , n and for

∑
αi = 1, αi ≥ 0,

∑
αixi = θ , then∑

αi

(√
xi + √

1− xi

)2 ≤ (√
θ + √

1− θ
) − 2δ2.

PROOF. Forf (x) = (
√

x + √
1− x )2

f ′′(x) = − 1√
x
√

1− x
− 1

2

√
1− x

x3 − 1

2

√
x

(1− x)3 ≤ −4,

so

f (x) ≤ f (θ) + f ′(θ)(x − θ) − 2(x − θ)2. �

PROPOSITION 8. If ε > 0 is sufficiently small, then for all n sufficiently
large it is the case that for eachθ ∈ [0,1] there exist(x, y) ∈ Vn such that
‖(x, y) − (nθ, n(1− θ))‖ ≤ n4/5 and

ET (x, y) ≥ n
(√

θ + √
1− θ

)2 − n1−ε.

PROOF. First if θ ≤ n−1/10 (or by symmetryθ ≥ 1 − n−1/10), then we can
consider any deterministic pathπ : (0,0) → ([nθ ], n − [nθ ]). Thus we can take,
for example,x = [nθ ]. We have

ET ([nθ ], n − [nθ ]) ≥ E

n−1∑
i=0

τπ(i) = n

= n
(√

θ + √
1− θ

)2 − 2n
√

θ
√

1− θ

≥ n
(√

θ + √
1− θ

)2 − n1−ε

for ε < 1/20 andn large enough. Hence it is enough to considerθ ∈]n−1/10,1−
n−1/10[ . We fix ε to be small. We assume there exists aθ and ann for which the
condition fails and obtain a contradiction ifn is sufficiently large (andε has been
fixed to be sufficiently small).

Fix a relevant “direction”θ . We suppose thatθ ≥ 1/2 without loss of generality
and that for all(x, y) ∈ Vn such that‖(x, y) − (nθ, n(1− θ))‖ ≤ n4/5, we have

ET (x, y) < n
(√

θ + √
1− θ

)2 − n1−ε.(11)



MOTION OF A SECOND CLASS PARTICLE 1239

Now by Proposition 4 we have if (11) holds, then for all(x, y) ∈ Vn

P
(
T (x, y) ≥ n

(√
θ + √

1− θ
)2 − n1−ε/2

)
≤ 2exp

(
− n2(1−ε)

288n(logn)2

)
:= 1

M(n)
≡ 1

M

(12)

and, also by Proposition 4 and Lemma 6, for all(x, y) ∈ Vn [not necessarily
“close” to (nθ, n(1− θ))] we have

P
(
T (x, y) ≥ (√

x + √
y

)2 + nK) ≤ 2exp
(
− n2K

288n(logn)2

)

:= 1

N(n)
≡ 1

N

(13)

for K > 1/2.
A suitable value forK will be chosen later but for the moment we assume that

1/2 < K < 1− ε and thatn is sufficiently large to ensure thatM � N .
For each(m, r) ∈ Z × Z

+ we say the blockB(m, r) := {(u, v) ∈ Vrn :u ∈
[nr/2 + n(m − 1/2), nr/2 + n(m + 1/2)[} is bad (otherwise we say it isgood)
if there exists(u, v) ∈ B(m, r) such that (at least) one large deviation event of type
(12) or (13) holds for the system translated by(u, v).

The probability that a block is good is at least

1− 2
n2

N
.

We are now in a position to sketch our approach to the proof.
For any pathπ from (0,0) to V

√
(N/2)(θ,1 − θ), we will consider it

in subsegments of lengthn. Without loss of generality we may assume that√
(N/2)/n is an integer. We follow [7] and use the concentration inequalities to

show that over all pathsπ the contribution to the “length” ofπ from n-segments
of the path with great deviations is very small. This is summarized in Lemma 10
below. This will leave us two sorts ofn-length path segments: those (type 2: see
Figure 1) whose increment is “within”n4/5 of n(θ,1−θ) and those (type 1) which
are not. For the first collection and our assumption on the relevant expectations
the average contribution should be less thann(

√
θ + √

1− θ )2. For the latter
segments we will only have Lemma 6 as a bound on the expectations but Lemma 7
will enable us again to conclude that the average contribution will fall short. The
limit (9) will then be invoked to give a contradiction.

For calculation purposes let us by randomization have r.v.’s

ψi,j =
{

1, with probability 2n2/N ,

0, with probability 1− 2n2/N ,

so that {B(i, j) is not good} ⊆ {ψi,j = 1} and for (i1, j1), (i2, j2), . . . , (ir , jr),
i1 < i2 < · · · < ir , {ψik,jk

}1≤k≤r are independent.



1240 T. MOUNTFORD AND H. GUIOL

FIG. 1. Representation of a pathπ from (0,0) to V
√

(N/2)(θ,1− θ).

Now we renormalize by considering hyperblocksG(i, j) [see Figure 2 where
we have chosenN = 8n2 for illustration purpose; note that in the sequel we will
takeN of order exp(nα), with α > 0] which are the union of

⋃
i
√

(N/2)/n ≤ � < (i + 1)
√

(N/2)/n

j
√

(N/2)/n ≤ r < (j + 1)
√

(N/2)/n

B(�, r).

The r.v.XG(i, j) is ∑
i
√

(N/2)/n ≤ � < (i + 1)
√

(N/2)/n

j
√

(N/2)/n ≤ r < (j + 1)
√

(N/2)/n

W�,rψ�,r

where

W�,r = sup

{
n−1∑
i=0

τπ(i) : over pathsπ starting inB(�, r)

}
.

Then we have by independence and Lemma 5 that:
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FIG. 2. BlocksB(�, r) and hyperblocksG(i, j) (hereN = 8n2).

LEMMA 9. For all i, j

Eexp
(

XG(i, j)

9n

)
≤ H

for constantH not depending oni, j or n.

PROOF. We writeXG(i, j) as the sumXG
o (i, j) + XG

e (i, j) where

XG
o (i, j) = ∑

i
√

(N/2)/n ≤ � < (i + 1)
√

(N/2)/n

j
√

(N/2)/n ≤ r < (j + 1)
√

(N/2)/n

� odd

W�,r ψ�,r .
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The reason for the introduction of these supplementary random variables is that
all the terms in the sum definingXG

o (i, j) or XG
e (i, j) are independent, which is

not the case forXG(i, j). By Cauchy–Schwarz one has

Eexp
(

XG(i, j)

9n

)
= Eexp

(
XG

o (i, j) + XG
e (i, j)

9n

)

≤
(

Eexp
(

2XG
o (i, j)

9n

))1/2(
Eexp

(
2XG

e (i, j)

9n

))1/2

.

The lemma now follows from the claimed independence and Lemma 5.�

Thus for any pathπ from (0,0) to v1 + v2 = V
√

(N/2)(θ,1 − θ) there is
a correspondingG-level pathπG : (0,0) → (1, j1) → (2, j2) → ·· · → (V , jV ).
There are 2V such paths and for all pathπG we have an r.v.

Z(πG) =
V −1∑
i=0

XG(i, ji).

By independence and the previous result

Eexp
(

Z(πG)

9n

)
≤ HV

so

P
(
Z(πG) ≥ n3V

) ≤ HV exp
(
−V n2

9

)
,

and so

P

(
sup
πG

Z(πG) ≥ n3V

)
≤ HV 2V exp

(
−V n2

9

)

which is≤ 2−V if V ≥ V0.
We can in a similar (and easier) way redo this analysis with random variable

XG(i, j) replaced by ∑
i
√

(N/2)/n ≤ � < (i + 1)
√

(N/2)/n

j
√

(N/2)/n ≤ r < (j + 1)
√

(N/2)/n

ψ�,r .

We have shown more than the following.

LEMMA 10. With probability tending to1, as V → ∞ for all paths π

from (0,0) to V
√

(N/2)(θ,1− θ)

V
√

(N/2)/n−1∑
i=0

I{π(in) is in a bad block}
(i+1)n−1∑

k=in

τπ(k) ≤ V n3
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and the number of bad blocks covered occurring in such a path is similarly
bounded.

PROOF. Let us denote byA = A(V ) the event that for all paths from (0, 0) to
V

√
(N/2)(θ,1− θ) the above mentioned bounds hold.

Now fix a pathπ and let vectorse(i) = (e(i)1, e(i)2) := π(in) − π((i − 1)n),
i = 1,2, . . . , V

√
(N/2)/n. Let V1 = collection of i so thatπ((i − 1)n) is in a

good block and‖e(i) − (nθ, n(1 − θ))‖ > n4/5. Let V2 = collection of i so that
π((i − 1)n) is in a good block and‖e(i) − (nθ, n(1− θ))‖ ≤ n4/5.

By definition on the eventA for every pathπ ,∑
(r,s)∈π

τr,s I{(r,s) is in a bad block} ≤ V n3,

thus

V
√

(N/2)−1∑
i=0

τπ(i) ≤ V n3 + ∑
i∈V1

in∑
k=(i−1)n+1

τπ(k) + ∑
i∈V2

in∑
k=(i−1)n+1

τπ(k).(14)

The sum overV2 is bounded above by

|V2|
(
n
(√

θ + √
1− θ

)2 − n1−ε

2

)
= |V2|

(
nf (θ) − n1−ε

2

)
(15)

by definition ofV2 andgoodness, wheref (x) = (
√

x + √
1− x )2, while, again

using the definition ofV1 andgoodness, the sum overV1 is bounded above by∑
i∈V1

(
nf (vi) + nK)

(16)

wherevi = n−1e(i)1.
Since the sum ofe(i) over all i must equalV

√
(N/2)(θ,1− θ) we have, from

the second part of Lemma 10, that the sum of the termsn−1e(i) overV1 andV2

must be withinV n3 of n−1V
√

(N/2)(θ,1 − θ) on eventA. Furthermore by
definition, the average of the sum ofn−1e(i) over V2 must be withinn−1/5 of
(θ, (1 − θ)). From these two facts we have that the average of thevi for i ∈ V1

must equalθ + r where, first,

|r| ≤ n4
√

(N/2) − n4
+ |V2|

|V1|
(

1

n1/5 +
√

(N/2)√
(N/2) − n4

)

and, second, forn large enough and|V1| ≥ |V2|, it must be the case that

|r| ≤ 1

2n1/10.(17)
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We also note that under our hypothesis forn large andi ∈ V2, providedε was
picked sufficiently small

nf (vi) ≥ nf (θ) − n1−ε

6
.(18)

From (14), (15), (16) and (18) the sum over variables associated to pathπ satisfies

V
√

(N/2)−1∑
i=0

τπ(i) ≤ V n3 + ∑
i∈V1

nf (vi) + |V1|nK

+ ∑
i∈V2

nf (vi) − |V2|n
1−ε

3

= V n3 + ∑
i∈V1∪V2

nf (vi) + |V1|nK − |V2|n
1−ε

3
.

(19)

But under eventA(V ) the average,(|V1| + |V2|)−1 ∑
i∈V1∪V2

nvi , is within
n3/

√
(N/2) of θ and so by concavity off and elementary bounds on functionf ,

∑
i∈V1∪V2

nf (vi) ≤ (|V1| + |V2|)
(
nf (θ) + L

n3/2

(N/2)1/4

)
,

whereL does not depend onn,N andθ . Therefore using (19) the sum over pathπ

satisfies
V

√
(N/2)−1∑
i=0

τπ(i) ≤ V n3 + V
√

(N/2)f (θ)

+ Ln1/2(N/2)1/4 + |V1|nK − |V2|n
1−ε

3

≤ V
√

(N/2)f (θ) − V
√

(N/2)
nK

n

(20)

provided |V2|/|V1| ≥ 4nK/n1−ε, 1/2 < K < 1 − ε and n is sufficiently large
uniformly onπ .

It remains to deal withπ so that|V2|/|V1| < 4nK/n1−ε. In this case the average
of the vi over i ∈ V1 must be withinn4/5/(2n) of θ and we have by Lemma 7
(with δ = n−1/5/2) and using (17) and the inequalityf (θ +r) ≤ f (θ)+Cn1/10|r|,
whereC does not depend onN,n or θ , that

∑
i∈V1

nf (vi) ≤ −|V1|n
2(4/5−1)+1

4
+ C|V1| |V2|

|V1|n
9/10 + n|V1|f (θ)

= −|V1|n
3/5

4
+ C|V2|n9/10 + n|V1|f (θ).
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From this and, once more (14), (15) and (16), we have

V
√

(N/2)−1∑
i=0

τπ(i) ≤ V n3 + V
√

(N/2)f (θ)

+ |V1|
(−n3/5

4
+ nK

)
+ |V2|

(−n1−ε

2
+ Cn9/10

)

which is≤ V
√

(N/2)f (θ)−V
√

(N/2)n−ε/5 if 3/5 > K > 1/2 and 1−ε > 9/10
andn is sufficiently large. In either of these two cases we have, on eventA (whose
probability tends to 1 asV tends to infinity), for all admissible pathsπ

1

V
√

(N/2)

V
√

(N/2)−1∑
i=0

τπ(i) ≤ f (θ) − n−ε

5
.

That is, on eventA

T ([V √
(N/2)θ ], [V √

(N/2)(1− θ)])
V

√
(N/2)

≤ (√
θ + √

1− θ
)2 − n−ε

5

and so T ([V √
(N/2)θ ], [V √

(N/2)(1 − θ)])/(V √
(N/2) ) does not tend in

probability to(
√

θ + √
1− θ )2. This contradiction establishes the desired result.

�

The proof of Proposition 8 is now complete.�

The next result extends the preceding technical result to a more useful one.

COROLLARY 11. There exists0< ε0 < 1/8 so that forn sufficiently large and
for all x, y ∈ N such thatx + y = n,

ET (x, y) ≥ (√
x + √

y
)2 − n1−ε0.

PROOF. Fix ε1 so small that Proposition 8 applies for allm ≥ n0 with ε = ε1.
Furthermore suppose that

√
n ≥ n0 + 2.

There are two cases to consider:x ∧ y ≤ n1−ε1 andx ∧ y > n1−ε1.
We start with the second hypothesis:x∧y > n1−ε1 (sincex+y = n, this implies

thatε1 > 2/ logn, but this will not be a problem for large enoughn); without loss
of generality we suppose thatε1 < 1/50. Takex1 = [x/

√
n ] andy1 = [y/

√
n ];

then obviously
√

n − 2≤ x1 + y1 ≤ √
n. As

θ := x1

x1 + y1
>

n1−ε1

n
− 1√

n
= n−ε1 − n−1/2,
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thus > n−1/10 in the chosen range forε1 provided n0 was fixed sufficiently
large. By Proposition 8 there exist(x2, y2) ∈ N × N with x2 + y2 = x1 + y1 and
‖(x2, y2) − (x1, y1)‖ ≤ (x1 + y1)

4/5 ≤ n2/5 such that

ET (x2, y2) ≥ (x1 + y1)

(√
x1

x1 + y1
+

√
y1

x1 + y1

)2

− (x1 + y1)
1−ε1

≥ (√
x1 + √

y1
)2 − n(1−ε1)/2.

Now consider the set of paths from(0,0) to (x, y) that pass through

(x2, y2), (2x2,2y2), . . . ,
([√

n
(
1− n−(ε1−1/5)/2)]x2,[√

n
(
1− n−(ε1−1/5)/2)]y2

) ≤ (x, y).

The expectation of the maximum of such paths is at least
√

n
(
1− n−(1/10−ε1/2))

ET (x2, y2)

≥ √
n
(
1− n−(1/10−ε1/2))(√x1 + √

y1
)2 − n(1−ε1)/2

≥ (√
x + √

y
)2 − n1−ε0

if ε0 was fixed sufficiently small.
We now treat the second casex ∧ y ≤ n1−ε1. We suppose without loss of

generality thatx ≤ n1−ε1. In this case(
√

x + √
y )2 ≤ (

√
n1−ε1 + √

y )2 ≤ y +
2n1−ε1. We now consider the path from(0,0) to (0, y) and reason as in the start of
Lemma 10. �

This result together with Lemma 6 through Proposition 4 gives Proposition 3.
We finish the section by making the link to Seppäläinen’s representation

explicit.

COROLLARY 12. For ε < ε0, given in Corollary 11, and (x, y) ∈ L =
{(i, j) ∈ Z

2 : j ≥ 1, i ≥ −j + 1} with t = (
√

x + y + √
y )2 (i.e., in our notation

y = tg(x/t) andx ∈ [−t, t]),
P

(|ξnt ([nx]) − [ny]| > [tn]1−ε) ≤ 3exp
(−(nt)ε

)
.

PROOF. Without loss of generality we suppose that(nt)1−ε is an integer.
The event{ξnt ([nx]) > [ny] + (nt)1−ε} is equal to the event{T ([nx] + [ny] +
(nt)1−ε − 1, [ny] + (nt)1−ε − 1) ≤ nt}. Therefore

P
(
ξnt ([nx]) > [ny] + n1−ε)

= P
(
T

([nx] + [ny] + (nt)1−ε − 1, [ny] + (nt)1−ε − 1
) ≤ nt

)
.

Observe that the longest path from(0,0) to (z + k,w + k), k,w, z ∈ N, would be
bigger than the sum of the longest path from(0,0) to (z,w) and the passage time
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of the given pathγ = ((z,w), (z + 1,w), . . . , (z + k,w), (z + k,w + 1), . . . , (z +
k,w + k)). Thus

P
(
ξnt ([nx]) > [ny] + n1−ε)

≤ P
(
T ([nx] + [ny], [ny]) ≤ nt − (nt)1−ε)

+ P

(
(nt)1−ε−1∑

i=1

τ[nx]+[ny]+i,[ny]

+
(nt)1−ε−1∑

j=1

τ[nx]+[ny]+(nt)1−ε+1,[ny]+j ≤ (nt)1−ε

)
.

By Proposition 3, forn sufficiently large the first probability is bounded by
exp(−(tn)ε), while by elementary large deviation bounds the second is bounded
by

K exp
(−c(tn)1−ε) <

exp(−(tn)ε)

2

for n large.
Arguing similarly

P
(
ξnt ([nx]) < [ny] − (nt)1−ε)

≤ P
(
T

([nx] + [ny] − (nt)1−ε − 1, [ny] − (nt)1−ε − 1
) ≥ nt

)
≤ P

(
T ([nx] + [ny], [ny]) ≥ nt + (nt)1−ε)

+ P

(
(nt)1−ε−1∑

i=1

τ[nx]+[ny]−(nt)1−ε+i,[ny]−(nt)1−ε

+
(nt)1−ε−1∑

j=1

τ[nx]+[ny],[ny]−(nt)1−ε+j ≤ (nt)1−ε

)
.

And we obtain similar bounds for the probability of a large value ofξnt ([nx]). �

REMARK. Given t , the above result immediately gives a probabilistic bound
on ξnt ([nx]) for x where there existsy such thatt = (

√
x + y + √

y )2, that is, for
x ∈ [−t, t]. The usual bounds on Poisson processes allow us to deal with deviations
of ξnt ([nx]) for otherx. For instance, ifx < −t one has

P
(|ξnt ([nx]) + [nx]| ≥ n1−ε) ≤ P

(
ξnt ([−nt − n1−ε]) ≥ 1+ [−nt − n1−ε])

which can be bounded by the probability that a Poisson random variable of
parameternt exceeds[nt + n1−ε].



1248 T. MOUNTFORD AND H. GUIOL

3. Hydrodynamic consequences at particle level. For a configurationηn ∈
{0,1}Z indexed by integern and a measurable functionu0 taking values in[0,1],
we say

ηn M,v∼ u0

if for everyx ∈ [−Mn,Mn],∣∣∣∣∣
x∑

y=−Mn

ηn(y) − n

∫ x/n

M
u0(r) dr

∣∣∣∣∣ ≤ v.

The main result of this section is:

PROPOSITION 13. Let M ≥ 8, t ∈]1/4,4[ and ε < ε0, the constant of

Corollary 11.For (ηt )t≥0 an exclusion process withηn
0

M,n1−ε∼ u0 andn sufficiently
large outside probabilityexp(−(nt)ε/2),

ηn
nt

M/2,6n1−ε

∼ ut

where(us)s≥0 is the unique entropic solution to the scalar conservation law(3)
with initial datau0.

Before beginning the proof of this result we give a simple lemma which enables
us to reduce the analysis of general exclusion processes to that of finite systems.

LEMMA 14. Let (ηt )t≥0 be an exclusion process and fork ∈ Z+ let (ηk
t )t≥0

be the exclusion process generated by the same Harris system as(ηt )t≥0 and
satisfyingηk

0(x) = η0(x)I|x|≤k , ∀x ∈ Z. For M > 2,∃ c = c(M) > 0 so that

P
(
ηMn

s (x) = ηs(x) ∀ |x| ≤ Mn/2,0≤ s ≤ n
) ≥ 1− e−cn.

PROOF. Let (ηL
t )t≥0 [resp. (ηR

t )t≥0] be exclusion processes (resp. reversed
dynamics exclusion processes, i.e., 1− p = 1: total asymmetry to the left) run
by the same Harris system as(ηt )t≥0 so that a pointt ∈ Px represents a potential
jump from sitex + 1 tox for process(ηR

t )t≥0 and with initial configurations given
by ηL

0 (x) = δx,−([Mn]+1) andηR
0 (x) = δx,[Mn]+1, where as before[·] denotes the

integer part andδ is the Kronecker delta function. Then the event

{ηMn
s (x) = ηs(x) ∀ |x| ≤ Mn/2,0≤ s ≤ n}c

is contained in the event{ ∑
x≥−Mn/2

ηL
n (x) > 0

}
∪

{ ∑
x≤Mn/2

ηR
n (x) > 0

}
.

But the probability of these latter two events is simply equal to that of a Poisson
random variable of parametern exceeding[Mn] + 1 − [Mn/2] and the lemma
follows. �
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REMARK. This corresponds to a property of entropy solutions.

PROOF OFPROPOSITION13. We first assume thatu0 ≡ 0 outside[−M,M]
and thatηn

0(x) = 0 for x /∈ [−Mn,Mn]. Our condition gives that forzn
0(x) =∑x

y=−Mn ηn
0(y) = ∑x

y=−∞ ηn
0(y) andU0(x) = ∫ x

−M u0(r) dr = ∫ x
−∞ u0(r) dr ,

∀x

∣∣∣∣zn
0(x) − nU0

(
x

n

)∣∣∣∣ ≤ n1−ε.(21)

We have by the Hopf–Lax formula thatUt(s) = ∫ s
−∞ ut (r) dr satisfies

Ut(s) = sup
r∈R

{
U0(r) − tg

(
s − r

t

)}
,

and by Seppäläinen’s formula forx ∈ Z,

zt (x) = sup
y∈Z

{z0(y) − ξ
y
x−y(t)}.

Let us for the moment fixx ∈ [−Mn/2,Mn/2]. From the observation after (4) we
can chooser∗ ∈ [−(M + 8)/2, (M + 8)/2] so that

Ut

(
x

n

)
= sup

r∈R

{
U0(r) − tg

(
x − nr

nt

)}
= U0(r

∗) − tg

(
x − nr∗

nt

)
.

Takey to be the integer part ofnr∗. It is immediate from Seppäläinen’s formula
and (21) that

znt (x) ≥ z0(y) − ξ
y
nt (x − y) ≥ nU0

(
y

n

)
− n1−ε − ξ

y
nt (x − y).

By Corollary 12 outside of probability 3exp−(nt)ε for n large, we have that

ξ
y
nt (x − y) ≤ ntg

(
x − y

nt

)
+ n1−ε

and so

znt (x) ≥ nU0

(
y

n

)
− 2n1−ε − ntg

(
x − y

nt

)

≥ nU0(r
∗) − 3n1−ε − ntg

(
x − nr∗

nt

)

= nUt

(
x

n

)
− 3n1−ε

by the Lipschitz properties ofU0 and g and our choice ofr∗. Thus for all
x ∈ [−Mn/2,Mn/2]

P

(
znt (x) < nUt

(
x

n

)
− 3n1−ε

)
≤ 3exp−(nt)ε.(22)
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The argument for the converse is similar: By the finiteness assumption onηn
0

znt (x) = sup
y∈Z

{z0(y) − ξ
y
nt (x − y)} = sup

|y|≤Mn

{z0(y) − ξ
y
nt (x − y)}.

So the event{znt (x) > nUt(x/n) + 3n1−ε} is the union
⋃

|y|≤Mn{z0(y) − ξ
y
nt (x −

y) > nUt(x/n) + 3n1−ε} and consequently

P

(
znt (x) > nUt

(
x

n

)
+ 3n1−ε

)

≤ ∑
|y|≤Mn

P

(
z0(y) − ξ

y
nt (x − y) > nUt

(
x

n

)
+ 3n1−ε

)
.

We fix integery in the relevant range:

P

(
z0(y) − ξ

y
nt (x − y) > nUt

(
x

n

)
+ 3n1−ε

)

≤ P

(
ξ

y
x−y(nt) < nU0

(
y

n

)
− nUt

(
x

n

)
− 2n1−ε

)

≤ P

(
ξ

y
nt (x − y) < ntg

(
x − y

nt

)
− 2n1−ε

)
,

by the Hopf–Lax identity. But, having recourse once more to Corollary 12 and the
remark following it, we bound this latter probability by 3exp−(nt)ε if n is large.

After summing overy we find that

P

(
znt (x) > nUt

(
x

n

)
+ 3n1−ε

)
≤ (

3exp−(nt)ε
)
(2nM + 1).

Summing this and (22) overx in the relevant range, we have that outside
probability (bounded by) exp−(nt)ε/2, if n is sufficiently large,

∀ |x| ≤ Mn

2

∣∣∣∣znt (x) − nUt

(
x

n

)∣∣∣∣ ≤ 3n1−ε.

The proof of the proposition is completed by appealing to Lemma 14 for the
general case.�

In the following lemma and subsequent proposition letUt(x) be the (integrated)
solution to the Hamilton–Jacobi problem starting from the initial condition

U0(x) =
{

ρx, for x > 0,
λx, for x < 0,

and let(zt (x))x∈Z be the server process associated to(ηt )t≥0, the exclusion process
beginning as product measureρx for x ≥ 0; product measureλx for x < 0 with
z0(0) = 0.
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LEMMA 15. For ε0 < 1/8, z0 andU0 as above outside probabilityexp−2n/4

( for n large) ∣∣∣∣z0(x) − 2nU0

(
x

2n

)∣∣∣∣ ≤ 2n(1−ε0)

10
,

for all |x| ≤ 8 · 2n.

PROOF. We fix x positive and≤ 8 · 2n without loss of generality. Denoting
Bin(n,p) a binomial random variable with parametersn andp

z0(x)
D= Bin(x, ρ) + 1 (resp. 0)

depending on whether we are considering first class particles only or first and
second class together. In either case

P

(∣∣∣∣z0(x) − U0

(
x

2n

)
2n

∣∣∣∣ >
2n(1−ε0)

10

)
≤ P

(
|Bin(x, ρ) − xρ| ≥ 2n(1−ε0)

10
− 1

)

≤ exp
(−2n(1−3ε0)

)
for n large by standard bounds on binomial random variables (and using the bound
ε0 < 1/8). Similar bounds hold forx negative and the result follows by summing.

�

This lemma and Proposition 13 immediately give:

PROPOSITION16. Let (zt (i))i∈Z,t>0 be the server process associated to the
TASEP(ηt )t≥0 defined in the Introduction. Let Ut(x) be the(integrated) solution
to the Hamilton–Jacobi problem starting from the initial conditionU0(x) = ρx for
x > 0; andλx for x < 0. We suppose that

z0(0) = 0, U0(0) = 0;
then forε1 < ε0 as defined in Corollary11or Proposition13and∀ t ∈]2n/2,2·2n]
and eachy ∈ [−4 · 2n,4 · 2n]∣∣∣∣zt (y) − tUt

(
y

t

)∣∣∣∣ ≤ t1−ε1

outside probabilityk exp−tε1/2, providedn is sufficiently large.

4. The a.s. convergence. In this section we wish to assemble the established
results to prove Theorem 1.

Given Ferrari and Kipnis [4] it suffices to show thatX(t)/t converges a.s.,
from (1) the distribution of the limit random variable will follow immediately.
This will be accomplished if we can show that forδ > 0 arbitrarily small

lim sup
t→∞

X(t)

t
− lim inf

t→∞
X(t)

t
≤ δ
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with probability at least 1− δ. We fix δ > 0 and take integerm (a power of 2) so
that 1/m < δ/10. Forn positive andi = 0,1,2, . . .m, we usetni to denote the time
2n(1+ i/m) (so for alln, tnm = tn+1

0 ). The following elementary result will enable
us to restrict attention toX(t) for t equal totni for somen, i.

LEMMA 17. For (X(t))t≥0 and tni as previously defined, a.s.

lim sup
n→∞

sup
0≤i≤m−1

sup
tni ≤t≤tni+1

∣∣∣∣X(t)

t
− X(tni )

tni

∣∣∣∣ ≤ 2

m
<

δ

5
.

PROOF. For the second class particle we associate two rate-1 Poisson
processes:N+ which containst if and only if t ∈ PX(t−) (i.e., t corresponds to
a forward jump time of the second class particle) andN− which containst if
and only if t ∈ PX(t−)−1 (i.e., t corresponds to a backward jump time of the
second class particle). The event{suptni ≤t≤tni+1

X(t) − X(tni ) > (1 + ε)2n/m} is
contained in the event{N+(tni+1) − N+(tni ) > (1+ ε)2n/m} which has probability
bounded byK exp(−c2nε) by elementary large deviations for Poisson random
variables. A similar situation holds for the event{suptni ≤t≤tni+1

X(tni ) − X(t) >

(1+ ε)2n/m}. Thus we have by the Borel–Cantelli lemma that for eachε > 0 a.s.,
suptni ≤t≤tni+1

|X(t) − X(tni )| ≤ (1 + ε)2n/m for all n large and anyi. The result
now follows from easy manipulations.�

Fix β andε1 > 0 so that 0< 2(1 − β) < ε1 andε1 < ε0 for ε0 the constant of
Corollary 11 (so that Proposition 16 applies toε1 and to 1− β).

A difficulty in dealing with a second class particle is in keeping track of its
immediate environment. However, in considering how, say, a second class particle
at sitex at timetni behaves in time interval[tni , tni+1], we will be able to deal with
the of-order-2n relevant sites at the same time.

For x/tni ∈]1 − 2λ + δ,1 − 2ρ − δ[ and i = 0,1,2, . . . ,m − 1, let Atni (x) be
the event that at timetni there is no first class particle occupying sitex and that∣∣∣∣X

x,tni (tni+1)

tni+1
− x

tni

∣∣∣∣ ≥ 2−n(1−β)(23)

where (Xx,tni (s))s≥tni
denotes the position at times of a (unique) second class

particle at sitex at timetni .
Before analyzing the deviations of these random processes we need a calculus

result.

LEMMA 18. For 1/m < δ/10, δ < 1/10, x ∈]1 − 2λ + δ,1 − 2ρ − δ[ and
s ∈ [1+ 1/(2m),1+ 1/m] and

(U1)
′(y) =




λ, if y ≤ 1− 2λ,
(1− y)/2, if 1− 2λ ≤ y ≤ 1− 2ρ,
ρ, if y ≥ 1− 2ρ,
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then the following supremum

Us(xs) = sup
v∈R

{
U1(v) − (s − 1)g

(
xs − v

s − 1

)}

is achieved atv = x and for |v − sx| < 2(s − 1),

U1(v) − (s − 1)g

(
xs − v

s − 1

)
≤ Us(xs) − (v − x)2.

PROOF. For anyx ands as in the statement, by the definition of functiong

and the Lipschitz property ofU ,

Us(xs) = sup
|v−xs|≤(s−1)

{
U1(v) − (s − 1)g

(
xs − v

s − 1

)}

= sup
|w|<(s−1)

{
U1(sx) + w

1− xs

2
− w2

4
− s − 1

4

(
1+ w

s − 1

)2}

= U1(xs) + sup
|w|≤(s−1)

V (w),

where

V (w) = 1

4

((
2(1− xs) − w

)
w − (s − 1)

(
1+ w

s − 1

)2)
,

V ′(w) = 1

4

(
2(1− xs) − 2w − 2

(
1+ w

s − 1

))

= 1

2

(
−xs − w

s

s − 1

)
= − s

2

(
x + w

s − 1

)
.

Thus, as is easily seenV (w) is maximized atw0 = −x(s − 1) or equivalently
U1(v) − (s − 1)g((xs − v)/(s − 1)) is maximized atv0 = xs − x(s − 1) = x.

The second derivative ofV , V ′′(w) = −s/(2(s −1)), which under the condition
on s entails thatV ′′(w) ≤ −m + 1/2 < −2. Thus we obtain [on|w| ≤ 2(s − 1)]

V (w) ≤ V (w0) − (w0 − w)2;
and on|v − sx| < 2(s − 1):

U1(v) − (s − 1)g

(
xs − v

s − 1

)
≤ U1(xs) + V (w0) − (w0 − w)2

= Us(xs) − (x − v)2. �
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PROPOSITION 19. For 0 < ε1 < ε0, eventAtni (x) and tni as in (23) and
x/tni ∈]1− 2λ + δ,1− 2ρ − δ[ ,

P
(
Atni (x)

) ≤ exp
(
−

(
2n

m

)ε1/3)
,

provided thatn is sufficiently large.

PROOF. Considerx, as demanded, fixed and assume without loss of generality
that the sitex is not occupied by a first class particle at timetni . We apply
Proposition 16 first to the motion of first class particles (so that for this motion
at timetni the sitex is vacant). Let the associated server process bezt (x):

ztni+1

(
m + i + 1

m + i
(x − 2nβ)

)
= sup

y∈Z

{
ztni

(y) − ξ
y,tni
tni+1−tni

(
m + i + 1

m + i
(x − 2nβ) − y

)}
,

whereξy,tni (w) is ξ(w) derived from the Poisson processes shifted spatially byy

and temporally bytni . By the definition of supremum we have

ztni+1

(
m + i + 1

m + i
(x − 2nβ)

)
≥ ztni

(x − 2nβ) − ξ
x−2nβ ,tni
2n/m

(
x − 2nβ

m + i

)
.

By Proposition 16, using that 2· 2n(1−ε1) ≥ 2(n+1)(1−ε1) ≥ (tni )1−ε1,

ztni
(x − 2nβ) ≥ tni U1

(
x − 2nβ

tni

)
− 2 · 2n(1−ε1)

[outside of probability k exp(−2nε1/2) ≥ k exp(−(tni )ε1/2)], while by Corol-
lary 12 (with nt = 2n/m and [nx] = (x − 2nβ)/(m + i)) outside of probability
3exp(−(2n/m)nε1)

ξ
x−2nβ ,tni
2n/m

(
x − 2nβ

m + i

)
≤ 2n

m
g

(
x − 2nβ

2n/m

)
+ 2 · 2n(1−ε1)

and so (forn large)

ztni+1

(
m + i + 1

m + i
(x − 2nβ)

)

≥ tni

(
U1

(
x − 2nβ

tni

)
− 1

m + i
g

(
x − 2nβ

tni

))
− 4 · 2n(1−ε1)

= tni U((m+i+1)/(m+i))

(
m + i + 1

m + i

x − 2nβ

tni

)
− 4 · 2n(1−ε1),

where the last equality holds by Lemma 18 applied withx = v = (x −2nβ)/tni and
s = (m + i + 1)/(m + i).
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Now for y ≥ x consider

ztni
(y) − ξ

y,tni
tni+1−tni

(
m + i + 1

m + i
(x − 2nβ) − y

)
.

By Proposition 13 (and Lemma 15), outside probability 4exp(−(tni )ε1/2)

ztni
(y) ≤ tni U1

(
y

tni

)
+ 6 · 2n(1−ε1),

while by Corollary 12, for ally such that∣∣∣∣m + i + 1

m + i
(x − 2nβ) − y

∣∣∣∣ ≤ 2n

m

we have

ξ
y,tni
2n/m

(
m + i + 1

m + i
(x − 2nβ) − y

)

≥ 2n

m
g

(
((m + i + 1)/(m + i))(x − 2nβ) − y

2n/m

)
− 2n(1−ε1)

outside probability 8tni exp(−(2n/m)ε1/2); thus outside probability exp(−22nε1/5)

for n large,

ztni
(y) − ξ

y,tni
2n/m

(
m + i + 1

m + i
(x − 2nβ) − y

)

≤ 7 · 2n(1−ε1)

+ tni

(
U1

(
y

tni

)
− 1

m + i
g

(
((m + i + 1)/(m + i))(x − 2nβ) − y

tni /(m + i)

))
.

But by Lemma 18 [withv = y/tni , s − 1 = 1/m + i and x = (x − 2nβ)/tni so
v − x = (y − x − 2nβ)/tni ≥ 2n(β−1) sincey ≥ x by hypothesis; observe also that
condition|v − sx| < 2(s − 1) is fulfilled] the last term is majorized by

tni

(
U((m+i+1)/(m+i))

(
m + i + 1

m + i

x − 2nβ

tni

)
− (

2n(β−1))2
)
.

Thus we obtain, forn large [outside probability exp(−22nε1/5)+exp(−c2n−1/m)]
that

ztni+1

(
m + i + 1

m + i
(x − 2nβ)

)
> sup

y≥x

{
ztni

(y) − ξ
y1,t

n
i

2n/m

(
m + i + 1

m + i
(x − 2nβ) − y

)}
.

Now consider the exclusion process including the second class particle at sitex.
Let the height process for this process be denotedz′

s so that

z′
tni

(u) =
{

ztni
(u), for u < x,

ztni
(u) + 1, for u ≥ x.
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The above calculations ensure that outside the same probability

z′
tni+1

(
m + i + 1

m + i
(x − 2nβ)

)

= sup
y<x

{
z′
tni

(y) − ξ
y1,t

n
i

2n/m

(
m + i + 1

m + i
(x − 2nβ) − y

)}

= sup
y<x

{
ztni

(y) − ξ
y1,t

n
i

2n/m

(
m + i + 1

m + i
(x − 2nβ) − y

)}

= ztni+1

(
m + i + 1

m + i
(x − 2nβ)

)
.

This implies that the second class particle must be strictly to the right of site
((m + i + 1)/(m + i))(x − 2nβ) at time tni+1. In a similar way we obtain outside
probability 10exp(−22nε1/5)

z′
tni+1

(
m + i + 1

m + i
(x + 2nβ)

)
+ 1

= ztni+1

(
m + i + 1

m + i
(x + 2nβ)

)

= sup
y≥x

{
ztni

(y) − ξ
y,tni
2n/m

(
m + i + 1

m + i
(x + 2nβ) − y

)}

> sup
y>x

{
ztni

(y) − ξ
y,tni
2n/m

(
m + i + 1

m + i
(x + 2nβ) − y

)}

and that the second class particle must be to the left of((m + i + 1)/(m + i))(x +
2nβ) at timetni+1. From this the proposition follows easily.�

PROPOSITION 20. With probability 1 for n sufficiently large and for all
x ∈](1− 2λ + 2δ)2n, (1− 2ρ − 2δ)2n[ which are vacant at time2n for first class
particles, ∣∣∣∣X

x,2n
(tNj )

tNj
− x

2n

∣∣∣∣ ≤ ∑
r≥n

m2−r(1−β) ∀ j andN ≥ n.

PROOF. Let Dr,i be the event{
∃y ∈](1− 2λ + δ)2r , (1− 2ρ − δ)2r [ ,

∣∣∣∣X
y,tri (t ri+1)

tri+1
− y

tri

∣∣∣∣ ≥ 2−r(1−β)

}
;

then we have by Proposition 19 that (forε1 < ε0 andr sufficiently large)

P(Dr,i) ≤ 2 · 2r exp
(
−

(
2r

m

)ε1/3)
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and so

P

( ⋃
r≥n

m−1⋃
i=0

Dr,i

)
≤ 2m

∑
r≥n

2r exp
(
−

(
2r

m

)ε1/3)
,

which tends to zero asn becomes large. So we have a.s. forn sufficiently large

⋃
r≥n

m−1⋃
i=0

Dr,i does not occur

and also ∑
r≥n

m2−r(1−β) ≤ δ.

Now notice that if forr ≥ n andi ∈ {0,1,2, . . . ,m − 1},∣∣∣∣X
x,2n

(tri )

t ri
− x

2n

∣∣∣∣ ≤
r−1∑
k=n

m2−k(1−β) + i2−r(1−β),

then by our choice ofn, (Xx,2n
(tri ))/tri ∈]1 − 2λ + δ,1 − 2ρ − δ[ and so we

may apply Proposition 19 to the process(Xx,2n
(s))s≥t ri

= (XXx,2n
(tri ),tri (s))s≥t ri

and conclude that on event(Dr,i)c,∣∣∣∣X
x,2n

(tri+1)

tri+1
− x

2n

∣∣∣∣ ≤
r−1∑
k=n

m2−k(1−β) + (i + 1)2−r(1−β).

So we have, on the event{⋃r≥n

⋃m−1
i=0 Dr,i}c, by induction onr andi, that∀ r ≥ n

and for eachi ∈ {0,1,2, . . . ,m − 1},∣∣∣∣X
x,2n

(tri )

t ri
− x

2n

∣∣∣∣ ≤
r−1∑
k=n

m2−k(1−β) + i2−r(1−β)

≤
∞∑

k=n

m
(
2−k(1−β)) < δ.

�

PROOF OF THEOREM 1. From the preceding result we have that a.s. forn

large for everyx ∈](1− 2λ + 2δ)2n, (1− 2ρ − 2δ)2n[

lim sup
r→∞

Xx,2n
(trj )

trj
− lim inf

r→∞
Xx,2n

(trj )

trj
≤ 2δ.

From Lemma 17 we conclude that a.s. there is ann so that for everyx ∈
](1− 2λ + 2δ)2n, (1− 2ρ − 2δ)2n[

lim sup
t→∞

Xx,2n
(t)

t
− lim inf

t→∞
Xx,2n

(t)

t
≤ 12

5
δ < 3δ.
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Therefore we conclude that the probability that

lim sup
t→∞

X(t)

t
− lim inf

t→∞
X(t)

t
> 3δ

is bounded by

lim inf
n→∞ P

(
X(2n) /∈](1− 2λ + 2δ)2n, (1− 2ρ − 2δ)2n[ ) ≤ 4δ/(λ − ρ).

Sinceδ is arbitrary, we conclude that

U = lim
t→∞

X(t)

t
exists a.s.

and, sinceX(t)/t converges in distribution toU [0,1], we easily obtainU ∼
U [0,1]. �
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