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ASYMPTOTIC BEHAVIOR OF A METAPOPULATION MODEL

BY A. D. BARBOUR1 AND A. PUGLIESE2

Universität Zürich and Universitá di Trento

We study the behavior of an infinite system of ordinary differential
equations modeling the dynamics of a metapopulation, a set of (discrete)
populations subject to local catastrophes and connected via migration under
a mean field rule; the local population dynamics follow a generalized
logistic law. We find a threshold below which all the solutions tend to total
extinction of the metapopulation, which is then the only equilibrium; above
the threshold, there exists a unique equilibrium with positive population,
which, under an additional assumption, is globally attractive. The proofs
employ tools from the theories of Markov processes and of dynamical
systems.

1. Introduction. The simplest models of population growth and regulation
are formulated in terms of a more or less isolated population in a single habitat.
However, the importance of the spatial dimension has been recognized in a
number of ecological processes, resulting in one of the most active topics in
theoretical ecology: see, for instance, the two recent collections [26] and [8] and
the review article by Neuhauser [22]. These ideas have stimulated the development
of spatially structured stochastic populations models, as in [23] and [10], whose
mathematical analysis is generally very hard.

A very simple model recognizing the spatial dimension of ecological processes
was introduced by Levins [19] in 1969. He envisaged a metapopulation consisting
of many distinct habitat patches, within each of which the population behaves
much as in the single population models, but which are linked to one another by
migration. In his highly simplified model, patches are designated as occupied or
not, and all occupied patches are taken to be equivalent, irrespective of the number
of individuals present. With these simplifications, he obtained a single differential
equation,

dp

dt
= cLp(1− p) − νLp,(1.1)

describing the behavior of the system: here,p = p(t) represents the proportion
of occupied patches,νL is the extinction rate andcL is the colonization rate per
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occupied patch. Hence, an equilibrium exists only ifcL > νL, and, in that case,
the proportion of empty patches at equilibrium isνL/cL. His ideas have been
widely used, both in theoretical papers and in wildlife management problems (see,
e.g., [15]).

Levins’ metapopulation model has two major weaknesses: on the one hand,
it is based on a mean field assumption (the colonization rate in a patch depends
only on the overall proportion of patches occupied); on the other hand, all patches
are assumed to be equal and described simply as empty or occupied, disregarding
local population dynamics. Addressing the first issue requires the consideration of
spatial stochastic processes as mentioned above. For the second, some authors have
generalized Levins’ model by taking into account the numbers of individuals in the
occupied patches, giving rise to the so-called structured metapopulation models
[12]: they consist either of a finite [21] or infinite number of ordinary differential
equations [5], or of a partial differential equation [12, 13], where the structuring
variable x represents the number of individuals per patch. However, very few
analytical results are available for models of complexity comparable to ours, and
the behavior of these models has mainly been explored through simulation.

In this paper we investigate the deterministic approximation to the metapopula-
tion model discussed in [1]. This is a stochastic mean field metapopulation model,
in which the number of individuals in a patch is governed by a birth, death and
catastrophe process, with the same transition rates in each patch, together with
migration between the patches with a uniform transition rateγ per individual, des-
tinations being chosen uniformly at random among all patches. This last, mean
field assumption is probably the least biologically realistic, but has been used in
several papers [15], and may make very good sense for metapopulations of par-
asites in which the patches represent host animals. At all events, it makes the
mathematical treatment substantially simpler.

As is shown in [1], when the number of patches becomes very large, one can
approximate the stochastic model with the following infinite system of differential
equations:

p′
i (t) = −

[
(bi + di + γ )i + ν + ργ

∞∑
j=0

jpj (t)

]
pi(t)

+
[
bi−1(i − 1) + ργ

∞∑
j=0

jpj (t)

]
pi−1(t)

(1.2)
+ [di+1 + γ ](i + 1)pi+1(t), i ≥ 1,

p′
0(t) = ν

( ∞∑
j=0

pj (t) − p0(t)

)
+ (d1 + γ )p1(t) − ργ

( ∞∑
j=0

jpj (t)

)
p0(t),

p(0) = p0,
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in whichpi(t) denotes the proportion of patches that are occupied byi individuals,
i ≥ 0. The parametersbi and di represent the per capita birth and death rates
in a patch occupied byi individuals, the catastrophe rate isν in each patch, the
migration rate isγ per individual, andρ is the probability of a migrant successfully
reaching another patch. Note that this model is very similar to those studied by
Metz and Gyllenberg [21] as structured metapopulation models with finite patch
size, and by Casagrandi and Gatto [5].

We also assume the following:

(H1) ibi is concave and nondecreasing;idi is convex and nondecreasing.

It can easily be seen that (H1) implies thatbi is nonincreasing anddi non-
decreasing. Hence, there existb∞ = limi→∞ bi andd∞ = limi→∞ di , for which
we further assume that

(H2) b∞ < d∞ + γ (1− ρ) + ν.

Generally, in logistic demography, the existence of a carrying capacity is assumed:
that is, there is a valueK such thatbK = dK , which automatically implies that
b∞ < d∞. (H2) is weaker than that, and is, in fact, the natural condition: if
b∞ ≥ d∞ + γ (1 − ρ) + ν, there can be no nontrivial equilibrium, as is proved
in Proposition 3.4.

The assumptions of concavity ofibi and convexity ofidi are satisfied in
many examples, but not in all; for instance, a Ricker-type birth functionbi =
b0 exp{−βi} is not allowed. However, they are mathematically convenient assump-
tions, if the uniqueness of any nontrivial equilibrium solution to equations (1.2) is
to be guaranteed, and we make use of them in several steps of our proofs; they
could certainly be relaxed, but it is not easy to see what general conditions would
better replace them.

The existence and uniqueness of the solutions to (1.2) are established in [1],
and a summary of those of her results relevant to this paper is given at the end
of the section. In this paper we consider the possible equilibriaπ of (1.2), using
stochastic coupling arguments that are developed in Section 2. There is always
the “extinction” equilibrium, withπ(0) = 1 andπ(i) = 0, i ≥ 1; this is also the
eventual limit of all finite patch stochastic systems, and makes the theory of quasi-
equilibria of essential importance for such models. In addition, if a threshold
condition is satisfied, we show in Section 3 that there is a unique nonnegative
equilibrium havingπ(0) < 1 (Theorem 3.1). This distribution is shown to be the
equilibrium distribution for the single patch dynamics, in which immigration from
outside is fixed at a constant “effective” rate, determined by the nonzero solution
of a fixed point equation (3.3). In Theorem 4.5 of Section 4, we proveglobal
convergence to this equilibrium when the threshold condition is satisfied, under
the additional assumption thatd∞ < +∞. The proof of convergence requires a
lemma (Lemma 4.2) which is of some difficulty, because the system (1.2) is infinite
dimensional. Its proof is the content of Section 5.
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The results of our paper give a rather complete description of this infinite
system (1.2) of ordinary differential equations. Similar problems have recently
been studied in other contexts, such as coagulation–fragmentation equations
[2, 18], although for systems of equations of rather different structure. It is possible
that our methods could be useful in other contexts as well.

We conclude the introduction by outlining the results that we need from [1].
First, note that the system (1.2) can be written in a more compact way as

p′
i = −(λi + µi)pi + λi−1pi−1 + µi+1pi+1

(1.3)
+ ργ

( ∞∑
j=0

jpj

)
(pi−1 − pi) + ν

(
δi0

∞∑
j=0

pj − pi

)
,

where

p−1(t) := 0 for all t, µ0 := 0 and λ0 := 0;
λi := bii and µi := (di + γ )i for all i ≥ 1.

It is proved in [1] that (1.3) is a well-posed problem in the spacem1 defined by

m1 =
{
x = (x0, x1, . . .)

T ∈ �1,
∑
j

j |xj | < ∞
}
,

equipped with the norm

‖x‖m = |x0| +
∞∑
i=0

i|xi |.

More precisely, ifQ is the infinite matrix

(Q)ij = qij =



bii, if i + 1= j > 0,

−((
bi + (di + γ )

)
i + ν

)
, if i = j,

(di + γ )i, if i − 1= j > 0,

ν(1− δi0) + (d1 + γ )δi1, if j = 0,

0, otherwise,

andqj = −qjj , we define the operatorA by

D(A) =
{
u ∈ m1 :

∑
k

qk|uk| < ∞
}
;

(1.4)
Au = uQ; (Au)i = ∑

k

qkiuk.

Then it turns out that the closurēA of A is the generator of aC0-semigroup onm1

(see also [24]).
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We then define the mapF :m1 → m1 by

F(p) = ργ

( ∞∑
j=0

jpj

)(
T−1(p) − I (p)

)
,(1.5)

where(T−1(p))i := pi−1 andI is the identity.F is Lipschitz and, in this notation,
the system (1.3) can be written as

p′ = Ap + F(p);
(1.6)

p(0) = p0.

The following theorem is proved in [1].

THEOREM A. For everyp0 ≥ 0∈ D(Ā) and anyT > 0, there exists a unique

p(t) ≥ 0 ∈ C([0, T ];D(Ā)) ∩ C1([0, T ];m1) satisfying(1.6). Clearly, p(t) will
also satisfy(1.3)componentwise.

Moreover, if p0 ∈ C = {p ∈ m1 :p ≥ 0,
∑∞

j=0 pj = 1}, thenp(t) ∈ C for all
t ≥ 0.

Since thepi(t) represent the frequencies of sites withi individuals, the
conditionp(t) ∈ C is quite natural, and most of the following results relate only to
that case.

2. Immigration, birth, death and catastrophe processes. The analysis of
the differential equations system (1.2) is accomplished indirectly, using the
properties of a number of associated birth and death processes. We make several
comparisons based on couplings of such processes, which exploit the fact that
birth and death processes cannot cross without meeting. A good general reference
is [20]; in particular, see pages 3 and 4. We begin with a simple lemma.

LEMMA 2.1. Fix a positive integerJ , and letV = (Vt , t ≥ 0) be the birth
and death process on the integersj ≥ J with transition rates

j → j + 1 at rate jφ, j ≥ J ;
(2.1)

j → j − 1 at rate jµ, j ≥ J + 1,

for someφ,µ > 0. Then, if E
(m) denotes expectation conditional onV0 = m, for

anyj ′ ≥ J , we have the following:

1. If φ < µ, thenE
(j ′){V 2

t } ≤ {j ′µ/(µ − φ)}2.

2. If φ > µ, thenE
(j ′){V 2

t } ≤ {2j ′φe(φ−µ)t/(φ − µ)}2.
3. If φ = µ, then, for anyε > 0, E

(j ′){V 2
t } ≤ {2j ′(φ + ε)eεt /ε}2.
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PROOF. It is enough to conduct the proof forj ′ = J : for j ′ > J , theV -process
is stochastically smaller than aV -process defined withJ replaced byj ′.

Suppose first thatφ < µ, in which caseV is positive recurrent. Observe that
a monotone coupling of two realizations ofV -processes, one with initial stateJ
and the other starting with its equilibrium distributionπ , shows thatE(J )(V 2

t ) ≤
E

π(V 2
0 ) for all t . Now π satisfies the detailed balance equation

jφπ(j) = (j + 1)µπ(j + 1), j ≥ J ;
hence,jπ(j) ≤ J (φ/µ)j−J for all j ≥ J , from which it follows that

E
(J )(V 2

t ) ≤ E
π(V 2

0 ) ≤ J
∑
j≥J

j (φ/µ)j−J

= Jφµ(µ − φ)−2 + J 2µ(µ − φ)−1;
this proves part 1.

If φ > µ, we have

EVt = E(VtI [τ1 ≤ t]) + E(VtI [τ1 > t]),(2.2)

where

τ1 = inf
{
t > 0; Vt = J, max

0≤s≤t
Vs ≥ J + 1

}
≤ ∞.

Note thatP(J )[τ1 < ∞] = µ/φ and thatE(J )(V 2
t I [τ1 > t]) ≤ E

(J )(Ṽ 2
t ), where

Ṽ is a birth and death process onZ+ with rates as in (2.1), but now for allj ≥ 0;
this latter bound implies that

E
(J )(V 2

t I [τ1 > t]) ≤ {
E

(J )Ṽt

}2 + Var(J ) Ṽt

≤ {
Je(φ−µ)t}2 + J Var(1) Ṽt(2.3)

≤ J 2e2(φ−µ)t + Je2(φ−µ)t {2(φ + µ)/(φ − µ) − 1}.
Also, again by a monotone coupling of twoV -processes,

E
(J )(V 2

t I [τ1 ≤ t]) ≤ P
(J )[τ1 ≤ t]E(J )(V 2

t ) = (µ/φ)E(J )(V 2
t ),

and hence, from (2.2) and (2.3),

E
(J )(V 2

t ) ≤ {φ/(φ − µ)}J 2e2(φ−µ)t {2(φ + µ)/(φ − µ)},
proving part 2, and also, once more by stochastic comparison, part 3.�

Now let X := (Xt , t ≥ 0) be an immigration, birth and death process with per
capita birth and death ratesβj andδj , respectively,j ≥ 1, and with immigration
rateλ. Suppose that the functionnβn is concave and increasing inn ≥ 0, and that
nδn is convex and increasing. Then it follows, in particular, thatβn is decreasing
andδn is increasing inn ≥ 1; we define

c := lim
n→∞βn − lim

n→∞ δn.(2.4)
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THEOREM 2.2. LetX andc be as above. Then:
1. There exist constantsC1 andC1(ε), ε > 0, such that

E
(j)(X2

t ) ≤
{

C1(1+ j2), if c < 0,

C1(ε)e
2(c+ε)t (1+ j2), for anyε > 0, if c ≥ 0.

2. There exist constantsC2 andC2(ε), ε > 0, such that, for all m ≥ 0,

0≤ E
(m+1)Xt − E

(m)Xt ≤
{

C2, if c < 0,

C2(ε)e
(c+ε)t , for anyε > 0, if c ≥ 0.

3. In either case, for all m ≥ 0,

E
(m+1)Xt − E

(m)Xt > E
(m+2)Xt − E

(m+1)Xt .

PROOF. Let β ′
j := βj + j−1λ for j ≥ 1. Then note that, for any positive

integerJ , a simple monotone coupling of two birth and death processes shows
that, if X0 ≤ J , thenX is stochastically smaller than a birth and death processV

as in Lemma 2.1, havingφ = β ′
J and µ = δJ and starting withV0 = J , since

V0 ≥ X0 and the sequencesβ ′
j andδj are nonincreasing and nondecreasing inj ,

respectively. Ifc < 0, chooseJ so thatβ ′
J < δJ , and use Lemma 2.1 part 1 to give

E
(j)(X2

t ) ≤ E
(J )(V 2

t ) ≤ {JδJ /(δJ − β ′
J )}2, j ≤ J,

(2.5)
E

(j)(X2
t ) ≤ E

(j)(V 2
t ) ≤ {jδJ /(δJ − β ′

J )}2, j > J.

If c ≥ 0, chooseJ so that

δJ < β ′
J < δJ + c + ε,

if this can be done, and use Lemma 2.1 part 2 as above to give

E
(j)(X2

t ) ≤ E
(j)(V 2

t ) ≤ {
2max{J, j}β ′

J e(c+ε)t /(β ′
J − δJ )

}2
.(2.6)

The only remaining case occurs whenλ = 0 and the sequencesβj andδj are both
constant for allj ≥ J for someJ , in which case Lemma 2.1 part 2 or 3 can be
applied directly. Combining this observation with (2.5) and (2.6), part 1 is proved.

We now turn to part 2. Let(Y,W) := ((Yt ,Wt), t ≥ 0) be a two-dimensional
pure jump Markov process with transition rates given by

(i, j) → (i + 1, j) at rate iβi + λ,

(i, j) → (i − 1, j) at rate iδi,
(2.7)

(i, j) → (i, j + 1) at rate (i + j)βi+j − iβi,

(i, j) → (i, j − 1) at rate (i + j)δi+j − iδi,

for all i, j ≥ 0. All the transition rates are nonnegative, because bothnβn andnδn

are increasing. Then the processesY andY + W are also Markovian, both having
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the same generator as the immigration, birth and death processX. Thus, we can
couple realizationsX1 andX2 of X with X1

0 = m andX2
0 = m + 1 by realizing

(Y,W) with Y0 = m andW0 = 1, and settingX1 = Y andX2 = Y + W . Then it is
immediate thatX2

t − X1
t = Wt ≥ 0 for all t ; the next step is to boundEWt .

However, just as before, a simple monotone coupling shows thatW is
stochastically smaller than a birth and death processV as in Lemma 2.1, having
φ = β ′

J andµ = δJ and starting withV0 = J , sinceV0 ≥ W0 and, for anyi ≥ 0,

(i + j)βi+j − iβi ≤ jβj ≤ jβ ′
J , j ≥ J,

and

(i + j)δi+j − iδi ≥ jδj ≥ jδJ , j ≥ J + 1,

by the concavity ofnβn and the convexity ofnδn. Thus, in particular,EWt ≤
E

(J )Vt , and the bounds onE(J )(V 2
t ) obtained in part 1 can be invoked, completing

the proof of part 2.
For part 3, we extend(Y,W) to a four-dimensional pure jump Markov process

((Yt ,Wt ,Ut ,Vt ), t ≥ 0) with transition rates

n → n + ε(1) at rate iβi + λ,

n → n − ε(1) at rate iδi,

n → n + ε(2) at rate (i + j)βi+j − iβi,

n → n − ε(2) at rate (i + j)δi+j − iδi,

n → n + ε(3) at rate (i + k)βi+k − iβi,

n → n − ε(3) at rate (i + k)δi+k − iδi,

n → n + ε(4) at rate (i + j + l)βi+j+l − (i + j)βi+j ,

n → n − ε(4) at rate (i + j + l)δi+j+l − (i + j)δi+j ,

whenn = (i, j, k, l) is such thatk 	= l, the last four transitions being replaced by

n → n + ε(3) + ε(4) at rate (i + j + k)βi+j+k − (i + j)βi+j ,

n → n − ε(3) − ε(4) at rate (i + k)δi+k − iδi,

n → n + ε(3) at rate (i + k)βi+k − iβi − (i + j + k)βi+j + (i + j)βi+j ,

n → n − ε(4) at rate (i + j + k)δi+j+k − (i + j)δi+j − (i + k)δi+k + iδi,

when n = (i, j, k, k), all transition rates being nonnegative because of the
assumptions onnbn andndn; here,ε(m) denotes themth coordinate vector. The
four processesY , Y + W , Y + U andY + W + V are Markov, and each has the
same generator as the immigration, birth and death processX. Thus, realizations
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X1, X2, X3 andX4 of X with X1
0 = m, X2

0 = X3
0 = m + 1 andX4

0 = m + 2 can
be obtained from(Y,W,U,V ) by settingX1 = Y , X2 = Y + U , X3 = Y + W

andX4 = Y + W + V and takingY0 = m, W0 = U0 = V0 = 1. Thus,E(m+1)Xt −
E

mXt = EUt andE
(m+2)Xt −E

(m+1)Xt = EVt . Initially, U0 = V0 = 1. Thereafter,
bothU andV make only unit jumps, and at any time at whichU andV are equal,
either they can jump together, orU can increase by 1 orV can decrease by 1.
Thus,U is always greater than or equal toV , and, for eacht > 0, Ut > Vt with
positive probability. Hence, for allt > 0,

E
(m+1)Xt − E

mXt = EUt > EVt = E
(m+2)Xt − E

(m+1)Xt ,

proving part 3. �

The theorem above is used in the study of our main object of interest,
a family of immigration, birth, death and catastrophe processesZ(s), indexed by
an immigration parameters. The pure jump Markov processZ(s) has transition
rates

j → j + 1 at rate qj,j+1 := jbj + ργ s,

j → j − 1 at rate qj,j−1 := j (dj + γ ),(2.8)

j → 0 at rate qj,0 := ν,

and nbn is assumed to be increasing and concave,ndn to be increasing and
convex. The processZ(s) starting with any initial distributionψ can be constructed
as follows from a sequence ofindependentrealizationsX(0),X(1), . . . of an
X-process with parametersβi = bi , λ = ργ s andδi = di + γ , and withX

(0)
0 ∼ ψ

and X
(n)
0 = 0, n ≥ 1. Let the times(Tn, n ≥ 1) of the catastrophes be the

partial sums of independent negative exponentially distributed random variables
(En, n ≥ 1) with mean 1/ν, which are also independent of(X(n), n ≥ 0). Set
N(t) := min{n ≥ 0 :Tn ≤ t}, whereT0 := 0; then define

Z
(s)
t := X(N(t))(t − TN(t)

)
.(2.9)

A pair of Z(s)-processesZ(s,1) andZ(s,2) with different initial statesk > l can then
always be coupled by using the same sequence ofX-processes(X(n), n ≥ 1) and
taking X(0,1) = Y + W , X(0,2) = Y , where(Y,W) is as in (2.7) and hasY0 = l

andW0 = k − l. With this construction, it is clear thatZ(s,1)
t ≥ Z

(s,2)
t for all t , that

P[Z(s,1)
t > Z

(s,2)
t ] ≤ e−νt and that

0≤ E
(
Z

(s,1)
t − Z

(s,2)
t

) = e−νt
EWt = e−νt (

E
(k)Xt − E

(l)Xt

)
.(2.10)

Defining

c := lim
n→∞bn − lim

n→∞dn − γ,(2.11)
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and assuming thatc < ν, it thus follows from Theorem 2.2 part 2 that, fork > l,

0 ≤ E
(k)Z

(s)
t − E

(l)Z
(s)
t

(2.12) ≤
{

(k − l)C2e
−νt , if c < 0,

(k − l)C2
(1

2(ν − c)
)
exp

{−1
2(ν − c)t

}
, if c ≥ 0.

Thus, iff :Z+ → R is Lipschitz with constantK(f ), then∣∣E(k)f
(
Z

(s)
t

) − E
(l)f

(
Z

(s)
t

)∣∣ ≤ C(k − l)K(f )e−αt(2.13)

for someC,α > 0. Furthermore, from (2.10) and Theorem 2.2 part 3, we have

E
(m+1)Z

(s)
t − E

(m)Z
(s)
t > E

(m+2)Z
(s)
t − E

(m+1)Z
(s)
t ,(2.14)

for all m, t ≥ 0.

THEOREM 2.3. Let Z(s) be as defined in(2.8), with nbn increasing and
concave, ndn increasing and convex. Suppose thatc < ν, wherec is as defined
in (2.11). Then, for s > 0, Z(s) is positive recurrent, and its equilibrium
distribution π(s) has finite mean equal tolimt→∞ E

(0)Z
(s)
t ; furthermore, for any

0≤ δ ≤ 1 for whichc(1+ δ) < ν, we can findK1(δ) < ∞ such that

E
(j){(Z(s)

t

)(1+δ)} ≤ K1(δ)
{
1+ j (1+δ)},(2.15)

for all t ≥ 0 andj ≥ 0.
If s = 0, the state0 is absorbing forZ(s), and the only stationary distribution is

π(0) = �{0}, giving probability one to0.

PROOF. The cases = 0 is immediate, so we now suppose thats > 0.
If ν = 0 andc < 0, the detailed balance equations

(jbj + ργ s)πj = (j + 1)(dj+1 + γ )πj+1, j ≥ 0,(2.16)

are satisfied with

πj+1 ≤ bj + ργ sj−1

dj+1 + γ
πj ≤ (1− ε)πj ,

for someε > 0 and for allj large enough, becausec < 0. Hence, (2.16) have a
nonnegative solution with geometrically decreasing tail, and the conclusion of the
theorem follows.

If ν > 0, positive recurrence is immediate. ConstructZ(s) with Z
(s)
0 = 0 from a

sequence ofX-processes as above. Then, ifm(t) := m(s)(t) := EZ
(s)
t , we have the

renewal equation

m(t) = e−νt
E{Xt |X0 = 0} +

∫ t

0
νe−νum(t − u)du.
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Now, by Lemma 2.1 part 1,

E
(0)Xt ≤

{
C1, if c < 0,

C2
(
(ν − c)/2

)
exp

{1
2(ν + c)t

}
, if c ≥ 0,

for suitable constantsC1 and C2. Furthermore, a monotone coupling of two
X-processes with different initial conditions shows thatE

(0)Xt increases witht .
Hence, the key renewal theorem ([11], page 363) can be applied to conclude that

m(s)(∞) := lim
t→∞EZ

(s)
t = ν

∫ ∞
0

e−νt
E{Xt |X0 = 0}dt(2.17)

exists and is finite. But now, becauseZ(s) is nonnegative and positive recurrent, it
follows from (2.17) thatπ(s) has finite mean, satisfying

π(s)(e) = E
π(s)(

Z
(s)
0

) ≤ m(s)(∞),

wheree(j) := j for all j ≥ 0 andπ(s)(f ) := ∑
k≥0 π

(s)
k f (k).

Finally, for any 0< δ ≤ 1 for whichc(1 + δ) < ν, a similar renewal argument
can be employed, again appealing to Lemma 2.1 part 1, to show that

m
(s)
δ (t) := E

(0){(Z(s)
t

)(1+δ)}
is uniformly bounded for allt ; hence, the sequence of random variablesZ

(s)
t is

uniformly integrable, and thus, in fact,

π(s)(e) = m(s)(∞),(2.18)

proving the first two claims of the theorem. Noting also that, for anyε > 0,

E
(j){(Z(s)

t

)(1+δ)}
= e−νt

E
(j){X(1+δ)

t

} +
∫ t

0
νe−νum

(s)
δ (t − u)du(2.19)

≤ m
(s)
δ (t) + (

1+ j (1+δ))C(1+δ)/2
1 (ε)exp{(1+ δ)(c + ε)t − νt},

from Theorem 2.2 part 1, the remaining claim is also proved.�

With these preparations, we can now prove the main result of the section. The
assumptions of Theorem 2.3 are still in force.

THEOREM 2.4. Let π(s) denote the equilibrium distribution of the pro-
cess Z(s); then π(s)(f ) is continuous in s for any Lipschitz functionf .
Furthermore, if e(j) := j for all j ≥ 0, then π(s)(e) is an increasing, strictly
concave function ofs.
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PROOF. Let A(s) be the generator of the processZ(s), so that(
A(s)h

)
(j) := ∑

l 	=j

qjl{h(l) − h(j)}

= (jbj + ργ s){h(j + 1) − h(j)}(2.20)

+ j (dj + γ ){h(j − 1) − h(j)} + ν{h(0) − h(j)},
and, for any Lipschitz functionf with constantK(f ), let θ(s)(f ) be defined by

θ(s)(f )(j) := −
∫ ∞

0

{
E

(j)f
(
Z

(s)
t

) − π(s)(f )
}
dt.(2.21)

We begin by showing thatθ(s)(f ) is a solutionh to the equation(
A(s)h

)
(j) = f (j) − π(s)(f ), j ≥ 0.(2.22)

First, realizingπ(s)(f ) = E
π(s)

f (Z
(s)
t ), it follows from (2.13) that∣∣E(j)f

(
Z

(s)
t

) − π(s)(f )
∣∣

=
∣∣∣∣∣∑
k≥0

π
(s)
k

{
E

(j)f
(
Z

(s)
t

) − E
(k)f

(
Z

(s)
t

)}∣∣∣∣∣(2.23)

≤ CK(f )e−αt
∑
k≥0

π
(s)
k |k − j | ≤ CK(f )e−αt{m(s)(∞) + j

}
.

Hence,θ(s)(f ) given in (2.21) is well defined. Now set

θ
(s)
T (f )(j) := −

∫ T

0

{
E

(j)f
(
Z

(s)
t

) − π(s)(f )
}
dt,

noting that limT →∞ θ
(s)
T (f )(j) = θ(s)(f )(j) by (2.23). Conditioning on the first

jump gives

θ
(s)
T (f )(j) = −E

(j)

{∫ T

0

{
f

(
Z

(s)
t

) − π(s)(f )
}
dt

}
= −e−qj T T

{
f (j) − π(s)(f )

}
−

∫ T

0
e−qj u

∑
l 	=j

qjl

{
E

(l)

(∫ T −u

0

{
f

(
Z

(s)
t

) − π(s)(f )
}
dt

)
(2.24)

+ u
{
f (j) − π(s)(f )

}}
du

= −q−1
j (1− e−qj T )

{
f (j) − π(s)(f )

}
+

∫ T

0
e−qj u

∑
l 	=j

qjlθ
(s)
T −u(f )(l) du.
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Now, by (2.23),∣∣θ(s)
T −u(f )(l)1{u≤T }

∣∣ ≤ CK(f )α−1(m(s)(∞) + l
)

for all T andu, andqjl > 0 only for l = 0, j − 1, j + 1. Thus, lettingT → ∞
in (2.24) and using dominated convergence, it follows that

θ(s)(f )(j) = −q−1
j

{
f (j) − π(s)(f )

} + ∑
l 	=j

qjl

∫ ∞
0

e−qj uθ(s)(f )(l) du,

or

f (j) − π(s)(f ) = ∑
l 	=j

qjl

{
θ(s)(f )(l) − θ(s)(f )(j)

}
.

Thus,θ(s)(f ) solves (2.22).
Furthermore, again using (2.23),

θ(s)(f )(j + 1) − θ(s)(f )(j) =
∫ ∞

0

{
E

(j)f
(
Z

(s)
t

) − E
(j+1)f

(
Z

(s)
t

)}
dt(2.25)

and (2.13) immediately gives∣∣θ(s)(f )(j + 1) − θ(s)(f )(j)
∣∣ ≤ CK(f )/α;(2.26)

thus,�θ(s)(f ) is bounded and, hence, also Lipschitz, with constant

K
(
�θ(s)(f )

) ≤ 2CK(f )/α.(2.27)

Now, by Dynkin’s formula ([14], Theorem 2), it follows thatπ(s)(A(s)h) = 0 for
all s, for any Lipschitz functionh. In particular, for anyt > −s, using (2.20),

0 = π(s+t)(A(s+t)θ (s)(f )
) = E

π(s+t)(
A(s+t)θ (s)(f )

)(
Z

(s)
0

)
= E

π(s+t){(
A(s)θ (s)(f )

)(
Z

(s)
0

) + ργ t
(
�θ(s)(f )

)(
Z

(s)
0

)}
(2.28)

= E
π(s+t){

f
(
Z

(s)
0

) − π(s)(f ) + ργ t
(
�θ(s)(f )

)(
Z

(s)
0

)}
.

Thus, from (2.28) and (2.26), it follows that∣∣π(s+t)(f ) − π(s)(f )
∣∣ ≤ ργ t

∥∥�θ(s)(f )
∥∥ ≤ ργ |t |CK(f )/α(2.29)

for any Lipschitz functionf , so thatπ(s)(f ) is continuous ins, proving the first
part of the theorem.

It then also follows that∣∣π(s+t)(f ) − π(s)(f ) + ργ tπ(s)(�θ(s)(f )
)∣∣

≤ ργ |t |∣∣π(s+t)(�θ(s)(f )
) − π(s)(�θ(s)(f )

)∣∣
and, hence, that

d

ds
π(s)(f ) = −ργπ(s)(�θ(s)(f )

)
.(2.30)



A METAPOPULATION MODEL 1319

Takingf = e, this last can be re-expressed using (2.21) as

d

ds
π(s)(e) = ργ E

π(s)
∫ ∞

0

{
g
(
Z

(s)
0 + 1, t

) − g
(
Z

(s)
0 , t

)}
dt,(2.31)

whereg(j, t) := E
(j)Z

(s)
t . Hence, from Theorem 2.2 part 2, it follows thatπ(s)(e)

is increasing ins, proving the next part of the theorem.
Now, from (2.28) withu and 2u for t ,

π(s+u)(f ) − π(s)(f ) = −ργuπ(s+u)(�θ(s)(f )
)

and

π(s+2u)(f ) − π(s)(f ) = −2ργuπ(s+2u)(�θ(s)(f )
)

giving, again from (2.28),

π(s+2u)(f ) − 2π(s+u)(f ) + π(s)(f )

= −2ργu
{
π(s+2u)(�θ(s)(f )

) − π(s+u)(�θ(s)(f )
)}

= −2ργu
{
π(s)(�θ(s)(f )

) − 2ργuπ(s+2u)(�θ(s)(�θ(s)(f )
))

− π(s)(�θ(s)(f )
) + ργuπ(s+u)(�θ(s)(�θ(s)(f )

))}
= 2(ργ u)2π(s)(�θ(s)(�θ(s)(f )

)) + η,

where

|η| ≤ 10(ργ |u|)3CK
(
�θ(s)(�θ(s)(f )

))
/a ≤ 40(Cργ |u|/α)3K(f ),

this last by (2.29) and (2.27). Hence,π(s)(f ) is twice differentiable, and

d2

ds2π(s)(f ) = 2ρ2γ 2π(s)(�θ(s)(�θ(s)(f )
))

.(2.32)

Now, using the formula given in (2.25), it follows that

�θ(s)(�θ(s)(f )
)
(m)

= −
∫ ∞

0

{
E

(m+1)�θ(s)(f )
(
Z

(s)
t

) − E
(m)�θ(s)(f )

(
Z

(s)
t

)}
dt

(2.33)
=

∫ ∞
0

{
E

(m+1)
∫ ∞

0

{
gf

(
Z

(s)
t + 1,w

) − gf

(
Z

(s)
t ,w

)}
dw

− E
(m)

∫ ∞
0

{
gf

(
Z

(s)
t + 1,w

) − gf

(
Z

(s)
t ,w

)}
dw

}
dt,

wheregf (l,w) := E
(l)f (Z

(s)
w ). To evaluate (2.33), realizeZ(s,1) with Z

(s,1)
0 =

j + 1 andZ(s,2) with Z
(s,2)
0 = j as before, using the Markov process(Y,W)

of (2.7), withY0 = j andW0 = 1, so that

Zt
(s,1) = Zt

(s,2) + WtI [E1 > t],
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whereE1 is an independent negative exponential random variable with mean 1/ν.
Thus,

�θ(s)(�θ(s)(f )
)
(j)

= E
(j)

∫ ∞
0

∫ ∞
0

e−νt {gf (Yt + Wt + 1,w) − gf (Yt + Wt,w)(2.34)

− gf (Yt + 1,w) + gf (Yt ,w)}dw dt.

In order to use (2.32) to investigate the curvature ofπ(s)(e), we takef = e

in (2.34). Then, for anyk ≥ l,

ge(k + 1,w) − ge(k,w) − ge(l + 1,w) + ge(l,w)

= {
E

(k+1)Z(s)
w − E

(k)Z(s)
w

} − {
E

(l+1)Z(s)
w − E

(l)Z(s)
w

}
< 0,

from (2.14), for allw > 0, so that the integrand is always negative. Hence, from
(2.34), it follows that�θ(s)(�θ(s)(e))(j) < 0 for all j ands, and thus, from (2.32),

d2

ds2π(s)(e) < 0, s ≥ 0.

This completes the proof of the theorem.�

3. Equilibria. We now investigate the equilibrium solutions of (1.3). For the
sake of simplicity, we shall assume here and in all that follows thatρ = 1. There
is no real loss of generality in this, since one could setd ′

i = di + γ (1 − ρ) and
γ ′ = γρ, and write (1.2) usingd ′ andγ ′ in place ofd andγ . In biological terms,
unsuccessful migration is just one cause of death.

If π ∈ m1 is such a solution, and

s :=
∞∑

j=0

jπj ,

thenπ must solve

0 = −[(bi + di + γ )i + ν + γ s]πi

+ [bi−1(i − 1) + γ s]πi−1 + [di+1 + γ ](i + 1)πi+1, i ≥ 1;(3.1)

0 = ν(1− π0) + (d1 + γ )π1 − γ sπ0.

Hence,π must be the equilibrium distribution of the immigration, birth, death
and catastrophe processZ(s)

t , which we studied in detail in Section 2. From
Theorem 2.3, and using (H1) and (H2), we know thatZ(s) has a unique stationary
distributionπ(s), which has finite mean denoted by

G(s) := π(s)(e) = ∑
j≥1

jπ
(s)
j .(3.2)
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In order to have an equilibrium solution of (1.3),s must be equal toπ(s)(e); in
other words, we look for a solution to the equation

s = G(s),(3.3)

a fixed point of the functionG.

THEOREM 3.1. Suppose that(H1) and (H2) are satisfied. If G′(0) > 1, then
there exists a unique positive fixed points∗ of G; if G′(0) ≤ 1, thenG(s) < s for
all s > 0.

REMARK 3.2. Note thats = 0 is always a fixed point ofG; the corresponding
equilibrium distributionπ(0) is the vectore0 = (1,0,0, . . . )T , which can be
interpreted as the extinction equilibrium.

For the proof, we need a technical point.

LEMMA 3.3. Let

m2 =
{
x ∈ �1,

∑
j

j2|xj | < ∞
}
,

with norm

‖x‖m2 = |x0| +
∞∑
i=0

i2|xi |,

and letA2 be the part ofĀ in m2, that is,

D(A2) = {x ∈ D(Ā) : Āx ∈ m2}; A2x = Āx.

Then, if p(0) ∈ D(A2), p(t) satisfies
∞∑

j=1

j2djpj (t) < ∞.(3.4)

PROOF. We first note that the restriction ofeĀt to m2 is again aC0-semigroup.
This can be established following, with obvious changes, the proofs in [1]. In fact,
repeating step by step the proof of Proposition 6.5 of [1], one sees thatA2 − ω is
dissipative, as long asω ≥ 3maxi bi . The density of the range is then established
exactly as in Proposition 6.6 of [1].

Moreover, repeating the proofs of Lemmas 6.8 and 6.9 of [1], one sees that the
domain of the restricted semigroup is contained in the set{

x ∈ �1,
∑
j

j2dj |xj | < ∞
}
,
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and (3.4) follows. �

PROOF OFTHEOREM 3.1. First of all, it is proved in Theorem 2.4 thatG is
an increasing, strictly concave function ins ≥ 0. We now establish two further
properties ofG:

G(0) = 0 and lim
s→∞G(s)/s < 1.(3.5)

The first of these follows because, whens = 0, the equilibrium distribution is
concentrated at 0, so that its mean is 0.

For the limit ass → ∞, we letm(t) = m(s)(t) = E(Z
(s)
t ), with Z

(s)
t as defined

in (2.8), noting thatG(s) = limt→∞ m(s)(t) as shown in (2.18). Lettingpj (t) =
P(Z

(s)
t = j), we can writem(t) = ∑

j jpj (t).
The forward equations satisfied byp(t) can be written asp′(t) = Asp(t), where

As :D(Ā) → m1, (Asp)i =
{

(Āp)i + γ s(pi−1 − pi), i ≥ 1,

(Āp)0 − γ sp0, i = 0,

is a bounded perturbation of the operatorĀ defined in (1.4).
Hence, if the initial valuep(0) is in D(Ā), thenp(t) = eAstp(0) is differen-

tiable as a function fromR to m1 and we have

m′(t) =
∞∑

j=1

jp′
j (t)

=
∞∑

j=1

j
{(

(j − 1)bj−1 + γ s
)
pj−1(t)(3.6)

− ((
bj + (dj + γ )

)
j + γ s + ν

)
pj (t)

+ (j + 1)(dj−1 + γ )pj+1(t)
}
.

If p(0) ∈ D(A2), the condition (3.4) allows the order of the sums in (3.6) to be
interchanged, and, with some manipulations, we obtain

m′(t) = ∑
j

j (bj − dj )pj (t) − (γ + ν)m(t) + γ s.(3.7)

Using the concavity ofxb(x) and the convexity ofxd(x), we obtain∑
j

jbjpj (t) ≤ m(t)b(m(t)) and
∑
j

jdjpj (t) ≥ m(t)d(m(t)).(3.8)

Hence, from (3.7), it follows that

m′(t) ≤ m(t)[b(m(t)) − d(m(t)) − γ − ν] + γ s,(3.9)
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so thatm(t) ≤ x(s)(t), wherex := x(s)(t) is the solution of the Cauchy problem

x′ = x[b(x) − d(x) − γ − ν] + γ s,
(3.10)

x(0) = m(0).

SinceD(A2) is dense inD(A), it follows thatm(t) ≤ x(s)(t) for all p(0) ∈ D(A).
Set

a = ν + d∞ − b∞ > 0(3.11)

because of (H2), and choosem̄ such that

b(m̄) − d(m̄) − ν = −a/2,

if this is possible; otherwise, set̄m = 0. In any case, we have

b(m) − d(m) − ν ≤ −a/2 for m ≥ m̄.(3.12)

Take s̄ such thatγ s̄ = m̄(a
2 + γ ). Then for alls > s̄, there existsτ (s) such that

x(τ (s)) = m̄ andx(t) > m̄ for t > τ (s). Then, using (3.12), we have

x′(t) ≤ γ s − x(t)
(1

2a + γ
)

for t > τ (s).

Hence,

x(t) ≤ m̄e−(a/2+γ )(t−τ (s)) + γ s

∫ t

τ (s)
e−(a/2+γ )(t−σ) dσ

= γ s

γ + a/2
−

(
γ s

γ + a/2
− m̄

)
e−(a/2+γ )(t−τ (s)) ≤ γ s

γ + a/2
,

so that, using (2.18),

G(s) = lim
t→∞m(t) ≤ lim

t→∞x(t) ≤ γ s

γ + a/2

and, hence,

lim
s→∞G(s)/s ≤ γ

γ + a/2
< 1,

as stated above.
Turning now to the fixed points ofG, note thatG(0) = 0 andG is strictly

concave; hence,G(s) = s has, at most, one other solution ins ≥ 0. Since
also lims→∞ G(s)/s < 1, it follows that there is a unique positive solution of
G(s)/s = 1 if G′(0) > 1; otherwise, ifG′(0) ≤ 1, we haveG(s)/s < 1 for all
s > 0. �

The next result shows that assuming condition (H2) to be satisfied is not
restrictive, when looking for positive equilibria of (1.2).
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PROPOSITION 3.4. If (H2) is violated, there are no nontrivial equilibrium
solutions to(1.2).

PROOF. If γ = 0, the proposition follows immediately from thep0-equation
in (1.2). Otherwise, the processZ(s) is stochastically larger than a processẐ(s)

which hasb̂j = b∞ and d̂j = d∞ for all j , and the same is true if̂bj = b∞ − b∗
for any 0≤ b∗ < b∞. Letting m̂ := E

1Ẑ
(s)
t , note that, as for (3.6),

m̂′(t) = m̂(t){b∞ − b∗ − d∞ − γ − ν} + γ s = −m̂(t)(a′ + γ ) + γ s,(3.13)

wherea′ = a + b∗ anda is as in (3.11). Suppose now thata < 0, so that (H2) is
violated. Ifa ≤ −γ , chooseb∗ so thata′ = −1

2γ ; otherwise, takeb∗ = 0. Then it
follows from (3.13) that

G(s) = lim
t→∞EZ

(s)
t ≥ lim

t→∞ m̂(t) = s{γ /(γ + a′)} > s,

for all s > 0, and there can be nos > 0 for whichG(s) = s.
Finally, if a = 0 andγ > 0, then the conditionc < ν of Theorem 2.3 is satisfied,

so that, from Theorem 2.4, the functionG is strictly concave andG(0) = 0.
The argument above then givesG(s) ≥ s for all s, which therefore precludes the
existence of anys > 0 with G(s) = s. This completes the proof.�

REMARK 3.5. From (2.31), we see that

G′(0) = γ

∫ ∞
0

E
(1)Z

(0)
t dt.(3.14)

Thus,G′(0) is the average number of successful propagules produced in a patch
colonized by a single immigrant, before population extinction in that patch,
disregarding other colonizations. This number may be considered a reproduction
number for colonizers of an empty habitat, as used in epidemic models [9],
thus,G′(0) > 1 is the natural condition to ensure (meta)population persistence.
Indeed, a similar condition has been presented by Chesson [7] and Casagrandi and
Gatto [6]. See also [21], in which an analogous quantity is used as the invasion
fitness of a mutant; a discussion along their lines is, however, rather beyond the
scope of this paper.

Comparing the processZ(0)
t with a procesŝZ(0)

t which hasb̂j = b0 andd̂j = d0,
one immediately obtains

E
(1)Z

(0)
t ≤ e−νt e(b0−d0−γ )t .

Hence, if

b0 − d0 − ν ≤ 0,

one hasG′(0) ≤ 1.
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4. Convergence to equilibrium. In this section we prove the convergence
of the solutions of (1.2) to the unique positive equilibrium, when it exists, or
otherwise to the extinction equilibrium given bye0 = (1,0,0, . . . )T . Conditions
(H1) and (H2) are assumed to hold throughout the section. We begin with two
natural bounds on the mean patch size, the first of which boundss(t) away from
infinity.

LEMMA 4.1. Letp0 ≥ 0 and let

s(t) =
∞∑

j=0

jpj (t).

Then

lim sup
t→∞

s(t) < +∞.

PROOF. Multiplying both sides of (1.2) byi and summing fori from 1 to∞,
we obtain

s′(t) =
∞∑

j=0

jbjpj (t) −
∞∑

j=0

jdjpj (t) − νs(t).(4.1)

Note that, as in the previous section, the interchange of derivatives and sums
is justified, ifp0 ∈ D(A2), by the fact that the solutionp(t) ∈ C1([0, T ];m1) and
satisfies (3.4). By density, (4.1) then holds for allp0 ∈ D(A).

Now, using the concavity ofxb(x) and the convexity ofxd(x) as in (3.8), we
have, from (4.1),

s′(t) ≤ {b(s(t)) − d(s(t)) − ν}s(t).(4.2)

By standard comparison arguments, we easily obtain

lim sup
t→∞

s(t) ≤ s̃,

where

s̃ = inf{s > 0 :b(s) < d(s) + ν}.
The set is not empty because of (H2).�

The next lemma gives the complementary comparison result, boundings(t)

away from 0 whenG′(0) > 1 andp0 	= e0. Its proof is very much more difficult,
and is the subject of Section 5.

LEMMA 4.2. LetG′(0) > 1 andd∞ < +∞. If p0 ∈ C, p0 	= e0, then

lim inf
t→∞ s(t) > 0.
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Now, if G′(0) > 1, let s∗ be the unique positive fixed point ofG, as in
Theorem 3.1; ifG′(0) ≤ 1, let s∗ = 0. In the next two lemmas, we show thats(t)

converges tos∗.

LEMMA 4.3. Under the same assumptions as in Lemma4.1,we have

lim sup
t→∞

s(t) ≤ s∗.

PROOF. Assume, if possible, that

lim sup
t→∞

s(t) = s̄ > s∗.

From the proof of Theorem 3.1, we then haveG(s̄) < s̄. Chooseε such that
G(s̄ + ε) < s̄, and then chooset0 such thats(t) ≤ s̄ + ε for all t ≥ t0.

If we takes(t) as a fixed given function, we see that the solution of (1.2) can
be interpreted as the distribution of an immigration, birth, death and catastrophe
processZ(t) with time varying immigration rates(t), starting at timet0 with
distribution p(t0). By an easy stochastic comparison (see [3]), that process is
dominated int ≥ t0 by a processZ(s̄+ε) with constant immigration ratēs + ε

and with the same initial conditionp(t0). In Theorem 2.3, it is shown thatZ(s̄+ε)

is positive recurrent and that its equilibrium distribution has finite meanG(s̄ + ε)

as in (3.2); furthermore, from Theorem 2.3 and from (2.19) withδ = 0, it follows
that

lim
t→∞EZ(s̄+ε)(t) = G(s̄ + ε)(4.3)

if
∑

j≥1 jpj (t0) < ∞, true for allp0 ∈ D(A) because of Theorem A.
Hence, ifp(t) is the distribution ofZ(t), we have, using also (2.18),

lim sup
t→∞

∞∑
j=1

jpj (t) ≤ G(s̄ + ε) < s̄.

On the other hand,p(t) is the solution of (1.2) ands(t) was defined as∑∞
j=0 jpj (t). The previous inequality thus reads

lim sup
t→∞

s(t) = lim sup
t→∞

∞∑
j=1

jpj (t) < s̄,

contradictings̄ = lim supt→∞ s(t). �

The companion result is as follows.

LEMMA 4.4. LetG′(0) > 1 andd∞ < +∞. If p0 ∈ C, p0 	= e0, then

lim inf
t→∞ s(t) ≥ s∗.
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PROOF. Assume, if possible, that

lim inf
t→∞ s(t) = s̄ < s∗.

Then, from Lemma 4.2, we have 0< s̄ < s∗. SinceG(s̄) > s̄, as seen in the proof
of Theorem 3.1, we can chooseε such thatG(s̄ − ε) > s̄.

As in the proof of Lemma 4.3, choosingt0 such thats(t) ≥ s̄ − ε for all
t ≥ t0, we can compare the process with immigration rates(t) to the process with
immigration ratēs − ε. In this way, we obtain

lim inf
t→∞ s(t) = lim inf

t→∞
∞∑

j=1

jpj (t) ≥ G(s̄ − ε) > s̄,

reaching a contradiction.�

Combining these lemmas, we can prove the following theorem.

THEOREM 4.5. Let (H1) and (H2) hold, and let p0 ∈ C \ {e0}. Then the
solution of (1.2) converges to the unique positive equilibrium, if G′(0) > 1 and
d∞ < +∞, and toe0 if G′(0) ≤ 1.

PROOF. The previous lemmas together yield

lim
t→∞ s(t) = s∗.

Now, the interpretation ofp(t) as the distribution at timet of an immigration, birth,
death and catastrophe processZ with immigration rateγ s(t) shows, as in the proof
of Lemma 4.3, thatp(t) is asymptotically bounded between the distributions of the
processesZ(s∗−ε) andZ(s∗+ε) for anyε > 0; that is, for anyl ≥ 0,∑

j≥l

π
(s∗−ε)
j ≤ lim inf

t→∞
∑
j≥l

pj (t) ≤ lim sup
t→∞

∑
j≥l

pj (t) ≤ ∑
j≥l

π
(s∗+ε)
j .

But Theorem 2.4 implies the continuity ins of π(s)(f ) with f = 1[l,∞), proving
the theorem. �

REMARK 4.6. The conditiond∞ < +∞ is used in the proof of Lemma 4.2.
There is no reason to suppose that it is necessary for Theorem 4.5 to be true, but
our proof makes essential use of it.

5. Repulsion from the extinction equilibrium. The aim of this section is to
prove Lemma 4.2. To do so, we employ a result from the theory of persistence,
which we now recall.

Let X be a metric space (with metricd) which is the disjoint union of two sets
X1 andX2, and suppose that� is a continuous semiflow onX1. Thieme [25] gives
the following definitions:
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• X2 is aweak repellerfor X1 if

lim sup
t→∞

d
(
�t(x1),X2

)
> 0 ∀x1 ∈ X1.

• X2 is auniform weak repellerfor X1 if there existsε > 0 such that

lim sup
t→∞

d
(
�t(x1),X2

)
> ε ∀x1 ∈ X1.

• X2 is astrong repellerfor X1 if

lim inf
t→∞ d

(
�t(x1),X2

)
> 0 ∀x1 ∈ X1.

• X2 is auniform strong repellerfor X1 if there existsε > 0 such that

lim inf
t→∞ d

(
�t(x1),X2

)
> ε ∀x1 ∈ X1.

In our application, the spaceX will be the convex set

C =
{
p ∈ m1 :p ≥ 0,

∞∑
j=0

pj = 1

}

with

d(p, q) = |p0 − q0| +
∞∑

j=1

j |pj − qj |,

and the continuous semiflow�t(p) = �(t,p) is given by the solutionp(t) of (1.6)
with p(0) = p. We takeX2 to be{e0} andX1 := C \ {e0}; with these definitions,
the thesis of Lemma 4.2 is thatX2 is a strong repeller forX1.

To prove the lemma, we use Theorem 6.2 of [25], which we state in a form
simplified to our present needs.

THEOREM B ([25]). LetX be a metric space which is the disjoint union of the
two setsX1 (open inX) andX2; let � be a continuous semiflow onX1. Assume
the following:

(A) There exists a subsetY1 ⊂ X1 such that, for all x ∈ X1, there existst (x) > 0
such that�t(x) ∈ Y1 for all t > t (x).

(C6,1) For anyy ∈ Y1, the orbit�([0,∞) × {y}) has compact closure.
(C6,2)

⋃
y∈Y1

ω(y) has compact closure, where, as usual, ω(y) is theω-limit set.
(R) The setY1 ∩ {x ∈ X; d(x,X2) = ε} is bounded.

ThenX2 is a uniform strong repeller whenever it is a uniform weak repeller.

We prove thatX2 is a uniform weak repeller, and then Theorem B lets us
conclude thatX2 is a (uniform) strong repeller, which is the thesis of Lemma 4.2.
To start with, we show that the assumptions of Theorem B are satisfied.
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Lemma 4.1 shows that, if we choose

Y1 =
{
y :

∑
i

iyi ≤ s̃

}
,

then assumption (A) holds. Indeed, the proof of Lemma 4.1 shows that, if
y ∈ Y1, then �t(y) ∈ Y1 for all t ≥ 0. Assumption (R) is immediate, because
X2 is bounded. The following lemma establishes the other two assumptions of
Theorem B. For its proof, note that a setE ⊂ m1 has compact closure if (and only
if ) lim N→∞

∑∞
n=N i|xi | = 0 uniformly forx ∈ E; that is, if, given anyε > 0, there

existsN = N(ε) ≥ 1 such that
∑∞

n=N i|xi | < ε for all x ∈ E.

LEMMA 5.1. If the continuous semi-flow� is given by the solutionsp(t)

of (1.6) and C, X1 and X2 are the sets defined above, then assumptions
(C6,1) and(C6,2) hold.

PROOF. As in Section 4, observe thatp(t) = �t(y) is the distribution of an
immigration, birth, death and catastrophe processZt with immigration rates(t)
starting at time 0 with distributiony. If y ∈ Y1, this is dominated by an
immigration, birth, death and catastrophe processZt

(s̃) with constant immigration
rate s̃ (because of the previous remark), whose transition probabilities we denote
by

p̃ij (t) = P
(
Zt

(s̃) = j |Z0
(s̃) = i

)
.

Stochastic comparison then gives
∞∑

n=N

npn(t) ≤
∞∑

n=N

n

∞∑
i=0

yip̃in(t) =
∞∑
i=0

yi

∞∑
n=N

np̃in(t).(5.1)

To estimate the right-hand side, we use (2.15) in Theorem 2.3; choosingδ such
thatc(1+ δ) < ν, we obtain

∞∑
n=N

np̃in(t) ≤ 1

Nδ

∞∑
n=N

n1+δp̃in(t) ≤ 1

Nδ
E

(i)(Zt
(s̃))1+δ ≤ Ci

Nδ
,

uniformly for all t ≥ 0, whereCi is a constant depending only oni. Note also that,
for δ = 0, (2.15) implies that

∞∑
n=0

np̃jn(t) = E
(j)(Zt

(s̃)) ≤ K1(j + 1).(5.2)

To prove(C6,1), takey ∈ Y1; chooseε > 0. FindN1 such that

∞∑
i=N1

iyi ≤ ε

4K1
,
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and pickN2 such thatN2 > (2Ci

ε
)1/δ for i = 0, . . . ,N1; thenN2 is the required

constant. In fact, using (5.2), we obtain

∞∑
i=0

yi

∞∑
n=N2

np̃in(t) =
N1∑
i=0

yi

∞∑
n=N2

np̃in(t) +
∞∑

i=N1

yi

∞∑
n=N2

np̃in(t)

≤
N1∑
i=0

yi

Ci

Nδ
2

+
∞∑

i=N1

yi(i + 1)K1 ≤ ε

2

N1∑
i=0

yi + 2K1

∞∑
i=N1

iyi ≤ ε.

In order to prove(C6,2), we prove that, for anyε > 0, there existsN = N(ε) ≥ 1
such that, for ally ∈ Y1, there existst0 = t0(y) such that

∞∑
n=N

n

∞∑
i=0

yip̃in(t) < ε for all t ≥ t0.

Indeed, assume that this is true, and takeq ∈ ω(y) for somey ∈ Y1. Then there
exists a sequence{tk} with tk → ∞ such that

∞∑
n=0

n|pn(tk) − qn| → 0 ask → ∞.(5.3)

Takek such thattk > t0(y) and that the difference in (5.3) is less thanε. Then
∞∑

n=N

nqn ≤
∞∑

n=N

n|pn(tk) − qn| +
∞∑

n=N

pn(tk)

≤
∞∑

n=0

n|pn(tk) − qn| +
∞∑

n=N

n

∞∑
i=0

yip̃in(t) < 2ε,

using also (5.1), so that(C6,2) is proved.
Now chooseδ > 0 such thatc(1 + δ) < ν, and recall as above that, for eachi,

there existsCi < ∞ such that lim supt→∞ E
(i)(Zt

(s̃))1+δ ≤ Ci . Hence, for eachi,
there existst0(i) such thatE(i)(Zt

(s̃))1+δ ≤ 2Ci for all t ≥ t0 and, hence, that
∞∑

n=N

np̃in(t) ≤ 2CiN
−δ for all t ≥ t0(i).

Fix ε > 0. Choosey ∈ Y1 and findN1 = N1(ε, y) such that
∞∑

i=N1

iyi <
ε

4K1
,

whereK1 is as in (5.2); sett0(y) = maxi=0,...,N1 t0(i), and choose

N =
{

4ε−1 max
1≤i≤N1

Ci

}
.
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Then, fort ≥ t0(y), we have

∞∑
i=0

yi

∞∑
n=N

np̃in(t) =
N1∑
i=0

yi

∞∑
n=N

np̃in(t) +
∞∑

i=N1+1

yi

∞∑
n=N

np̃in(t)

≤
N1∑
i=0

yi

ε

2
+

∞∑
i=N1+1

yi(i + 1)K1 ≤ ε,

proving (5.3). �

Now we prove that{e0} is a weak repeller through linearization. Since we
restrict our considerations to vectorsp(t) in the convex setC, we havep0(t) =
1 − ∑∞

j=1 pj (t). Hence, we need only examine the vector(p1,p2, . . . )
T . With a

slight abuse of notation, we now set

X =
{
x = (x1, x2, . . . )

T ∈ �1 :
∞∑

j=1

j |xj | < +∞
}

with norm‖x‖ = ∑∞
j=1 j |xj |, noting thate0 now translates into the point 0 ofX,

and we denote here byA andF the operators defined in (1.4)–(1.5) but restricted
to X, and usingp0 = 1 − ∑∞

j=1 pj in the definition ofF . We then defineX+ to
be the nonnegative cone inX; note thatX+ is the counterpart of the convex setC

defined above.
Equation

p′ = Ap + F(p)(5.4)

corresponding to (1.6) now has 0 as the equilibrium, corresponding to the
extinction equilibriume0 of (1.2). We again use�t(u

0) to denote the solution
of (5.4) satisfyingu(0) = u0. This corresponds to the semi-flow of Lemma 5.1,
except that we now neglect the 0th component. Note that the metric in the convex
setC is equivalent to the norm inX, since

d(u, v) = |u0 − v0| +
∞∑
i=1

i|ui − vi |

=
∣∣∣∣∣
(

1−
∞∑
i=1

ui

)
−

(
1−

∞∑
i=1

vi

)∣∣∣∣∣ +
∞∑
i=1

i|ui − vi |

≤ 2
∞∑
i=1

i|ui − vi | = 2‖u − v‖X,

while obviously‖u − v‖X ≤ d(u, v).
Note also thatA is the generator of a defective Markov process, the processZ

(0)
t

of Section 2 restricted to the state spaceN \ {0}. In the rest of this section, we only
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consider processes with zero immigration rate; thus, when there is no ambiguity,
we drop the superscript(0) and denote byZt the process with zero immigration
rate.

From the results of Section 2, one immediately sees thatZt is exponentially
absorbed at 0; more precisely, (2.13) withf = e and l = s = 0 implies, in the
present notation, that

‖eAt‖ ≤ Ce−αt(5.5)

for some positive constantsC andα. This implies that

{Rλ > −α} ⊂ ρ(A);
moreover, we have the representation(

(λ − A)−1v
)
i = ∑

j

vj P̂ji(λ),(5.6)

where “̂ ” denotes the Laplace transform andPji(t) is P(Zt = i|Z0 = j).
We now discuss the stability of the 0 equilibrium of (5.4) using the linearization

principle. We first note that

F ′(0)u = ϕ(u)e1 ∀u ∈ X,(5.7)

where

ϕ(u) = γ
∑
j

juj(5.8)

and e1 = (1,0,0, . . . )T . Since F ′(0) is one-dimensional, hence, compact, the
essential spectrum [27] ofA + F ′(0) coincides with that ofA, which, from (5.5),
is less or equal than−α. The type of the semigroupe(A+F ′(0))t can then be
understood from the spectrum ofA + F ′(0).

Using (5.7), we can establish, through direct computation, the following result.

LEMMA 5.2. If λ is in ρ(A), thenλ belongs toρ(A + F ′(0)) if and only if
ϕ((λ − A)−1e1) 	= 1. In that case,(

λ − A − F ′(0)
)−1

v = (λ − A)−1v + ϕ((λ − A)−1v)

1− ϕ((λ − A)−1e1)
(λ − A)−1e1.(5.9)

On the other hand, if

ϕ
(
(λ − A)−1e1) = 1,(5.10)

thenλ is an eigenvalue with corresponding eigenvectorv = (λ − A)−1e1.

From this lemma, we see that an important role is played by the roots of (5.10)
in the half-plane{Rλ > −α}. Using the representation (5.6) and standard results
on the Laplace transform, as used, for instance, in the theory of age-dependent
populations [16], we have the following:
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LEMMA 5.3. There exists, at most, one real rootλ0 > −α of (5.10). If
λ0 exists, all the other rootsλ satisfyRλ < λ0; if there is no real root, there are no
complex roots in{Rλ > −α}. In any strip{a ≤ Rλ ≤ b}, there are, at most, finitely
many roots.

Finally, if

R0 := ∑
i

iP̂1i(0) = ∑
i

i

∫ ∞
0

P1i (t) dt > [=]1,

thenλ0 > [=]0; on the other hand, if R0 < 1, if there is a real rootλ0, it satisfies
λ0 < 0.

REMARK 5.4. Note that

R0 = ∑
i

i

∫ ∞
0

P1i (t) dt = G′(0),

with G as given in (3.2).

From here on we assume thatR0 > 1. Hence, the real eigenvalueλ0 is positive.
We denote byλ1, . . . , λk (with k ≥ 0) the other roots of (5.10) such thatRλj >

0, and byλk+1, . . . , λn (with n ≥ k) the roots such thatRλj = 0. Since the
continuous spectrum (if it exists) ofA + F ′(0) is contained in{Rλ ≤ −α}, we
can split the spectrum ofA + F ′(0) in three spectral setsσu = {λ0, λ1, . . . , λk},
σc = {λk+1, . . . , λn} andσ s = {λ ∈ σ(A + F ′(0)) :Rλ < 0}.

By standard results (see Theorem III.6.17 in [17]),X can be split into the direct
sum of three subspacesXu, Xc andXs , all invariant underA + F ′(0). Moreover,
Xu and Xc are finite-dimensional (Xu includes at leastv0, the eigenvector
corresponding toλ0, while Xc may well consist only of 0). This would be enough
to establish the instability of the 0 equilibrium. However, we wish to prove that all
initial datau ≥ 0, u 	= 0, are repelled away from 0, and this requires further work.

The following lemma uses the results of Bates and Jones [4] to establish the
existence of unstable and centre stable manifoldsWu andWcs for equation (5.4)
at 0. The conditions of their Theorem 1.2 are satisfied in view of Arrigoni’s results,
as summarized at the end of Section 1, together with (5.5) and the properties of the
eigenspaces discussed following Lemma 5.3.

Defining Xcs = Xc ⊕ Xs , and lettingP u and P cs denote the corresponding
projections, [4], Theorem 1.2 and its consequence (P3) yield the following result.

LEMMA 5.5. There exist a neighborhoodU � 0 and Lipschitz functions
hu :P u(U) → Xcs and hcs :P cs(U) → Xu with hu(0) = (hu)′(0) = hcs(0) =
(hcs)′(0) = 0 such that

Wu = {uu + hu(uu) :uu ∈ P u(U)}
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is the unstable manifold(in U ) of 0, and

Wcs = {ucs + hcs(ucs) :ucs ∈ P cs(U)}
is a centre-stable manifold.

Furthermore, there exists a neighborhoodV ⊂ U of 0 such that, if u0 ∈ V \Wcs ,
then there existsτ > 0 such that�τ(u

0) /∈ V .

The final statement of the lemma shows that, if a solution comes close enough
to 0 to be in the neighborhoodV , and if it is then at a point not inWcs , then it
has to leaveV at some later time. Hence, the limes superior of any solution curve
is necessarily positive, if it can be established that, for someε > 0, no points of
X+ ∩ Bε except for 0 are inWcs , whereBε denotes the ball of radiusε centred
at 0. If this is the case, then{0} is a uniform weak repeller forX+ \ {0} in the
system (5.4), which is equivalent to{e0} being a weak repeller forC \ {e0} in (1.6).
Applying Theorem B, Lemma 4.2 would then follow.

To show that indeedWcs ∩ X+ ∩ Bε = {0} for someε > 0, we begin by writing
the eigenprojections explicitly.

LEMMA 5.6. The projectionP0 on the eigenspace corresponding toλ0 is

P0v = − ϕ((λ0 − A)−1v)

ϕ′((λ0 − A)−1e1)
(λ0 − A)−1e1.

The projectionP u onXu is given by

P uv = P0v +
k∑

j=1

1

2π

∮
�j

ϕ((λ − A)−1v)

1− ϕ((λ − A)−1e1)
(λ − A)−1e1 dλ,

where �j is a circle aroundλj that does not include other elements of the
spectrum.

PROOF. It follows from the construction of the projection operators as in
formula (III.6.19) of [17] and from (5.9). �

Note that

ϕ′((λ0 − A)−1e1) = −
∫ ∞

0
te−λ0t

∞∑
i=1

iP1i (t) dt < 0.

On the other hand, it may well beϕ′((λj − A)−1e1) = 0 when 1≤ j ≤ n, so that
the other projections may have a more complex form.

As a consequence, we immediately have the following result.

LEMMA 5.7. If v ∈ Xcs , thenϕ((λ0 − A)−1v) = 0.
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PROOF. The explicit representation ofP0 shows that ifϕ((λ0 − A)−1v) 	= 0,
thenP0v 	= 0. However,v ∈ Xcs implies thatP0v = 0. �

This lemma implies thatXcs ∩ X+ = {0}, because ifv ≥ 0 andv 	= 0, then
(λ0 − A)−1v > 0 by (5.6); hence, it follows from (5.8) thatϕ((λ0 − A)−1v) > 0
also. This is almost what we need, sinceWcs andXcs are close to one another
near 0, and we are thus close to showing thatWcs ∩ X+ ∩ Bε = {0} for some
ε > 0. To make the transition fromXcs to Wcs , we first show that, forv ≥ 0,
ϕ((λ0 − A)−1v) is large enough.

LEMMA 5.8. Assume thatd∞ < ∞, and takev ≥ 0. Then

ϕ
(
(λ0 − A)−1v

) ≥ ‖v‖
d∞ + γ + ν + λ0

.(5.11)

PROOF. We start from the identity∑
i

iP̂j i(λ0) =
∫ ∞

0
e−λ0tE

(j)(Zt ) dt.

An easy coupling argument shows thatZt is stochastically larger than a death-and-
catastrophe process with death rated∞ + γ . Hence,∫ ∞

0
e−λ0tEj (Zt ) dt ≥ j

∫ ∞
0

e−(λ0+γ+d∞+ν)t dt = j

λ0 + γ + d∞ + ν
.

Now, if v ≥ 0, we have

ϕ
(
(λ0 − A)−1v

) = ∑
i,j

ivj P̂ji(λ0)

≥ ∑
j

vj

j

λ0 + γ + d∞ + ν
= ‖v‖

d∞ + γ + ν + λ0
.

�

Using the above lemma together with Lemma 5.7, we can now show that the
norm ofv− is quite large, wheneverv ∈ Xcs . Here,v− denotes the negative part
of v: v = v+ − v−, with (v+)i = max{0, vi} and(v−)i = max{0,−vi}.

LEMMA 5.9. Assume thatd∞ < ∞. If v ∈ Xcs , there existsη > 0 such that
‖v−‖ ≥ η‖v‖.

PROOF. From Lemma 5.7, we have

0 = ϕ
(
(λ0 − A)−1v

) = ϕ
(
(λ0 − A)−1v+) − ϕ

(
(λ0 − A)−1v−)

≥ ‖v+‖
d∞ + γ + ν + λ0

− ‖(λ0 − A)−1‖‖v−‖,
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using Lemma 5.8 and the obvious identity‖ϕ‖ = 1. Hence, using‖v+‖ =
‖v‖ − ‖v−‖,(

‖(λ0 − A)−1‖ + 1

d∞ + γ + ν + λ0

)
‖v−‖ ≥ 1

d∞ + γ + ν + λ0
‖v‖,

which yields the thesis.�

We now use this result, together with the closeness ofXcs andWcs , to conclude
thatWcs ∩ X+ ∩ Bε = {0} for someε > 0.

LEMMA 5.10. Assume thatd∞ < ∞. Then there existsε > 0 such thatv ≥ 0,
v ∈ Bε ∩ Wcs impliesv = 0.

PROOF. First takeδ such that‖vcs‖ ≤ δ implies ‖hcs(vcs)‖ ≤ η
2‖vcs‖. Then

take ε = δ/‖P cs‖. Assume thatv = vcs + hcs(vcs) ≥ 0 with ‖v‖ ≤ ε. Then it
follows that‖vcs‖ = ‖P cs(v)‖ ≤ δ.

Split vcs = (vcs)+ − (vcs)−. Then we have

∑
i : vcs

i <0

ivi = ∑
i : vcs

i <0

i
[
vcs
i + (

hcs(vcs)
)
i

] ≤ −
∞∑
i=1

i(vcs)−i +
∞∑
i=1

i
∣∣(hcs(vcs)

)
i

∣∣
= −‖(vcs)−‖ + ‖hcs(vcs)‖ ≤ −η‖vcs‖ + η

2
‖vcs‖,

using Lemma 5.8 and‖vcs‖ ≤ δ. This contradicts withv ≥ 0 unlessvcs = v = 0.
�

We have now proved what we need to show that{0} is a uniform weak repeller
for X+ \ {0}. The details are as follows. We recall that we haveR0 = G′(0) > 1.

LEMMA 5.11. Assume thatd∞ < ∞. Then there existsε0 such that for all
u0 ≥ 0, u0 	= 0,

lim sup
t→∞

‖�t(u
0)‖ ≥ ε0.

PROOF. Take

ε0 = 1
2 min

{
ε, inf

v∈X\V ‖v‖
}
,

whereε is that of Lemma 5.10, whileV is that of Lemma 5.5.
Assume that‖�t(u

0)‖ < 2ε0 for all t ≥ t0. Sinceu0 ≥ 0, the invariance of
the positive cone under (5.4) gives�t(u

0) ≥ 0; moreover,�t(u
0) 	= 0. Hence,

Lemma 5.10 implies that�t0(u
0) /∈ Wcs . From Lemma 5.5, it then follows that

�τ(u
0) /∈ V for someτ > t0, contradicting‖�t(u

0)‖ < 2ε0 for all t ≥ t0. �



A METAPOPULATION MODEL 1337

PROOF OFLEMMA 4.2. Going back to the semi-flow�t onC, note that

d
(
�t(u0), e

0) = |1− p0(t)| +
∞∑

j=1

i|pi(t)| =
∞∑

j=1

pi(t) +
∞∑

j=1

ipi(t)

≤ 2
∞∑

j=1

ipi(t) = ‖�t(u0)‖,

while obviously

‖�t(u0)‖ ≤ d
(
�t(u0), e

0).
Hence, Lemma 5.11 states that{e0} is a uniform weak repeller forC \ {e0}. But
now Theorem B, together with Lemma 5.1, yields Lemma 4.2.�
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