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ON STATIONARITY OF LAGRANGIAN OBSERVATIONS OF
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We study the transport of a passive tracer particle in a steady strongly
mixing flow with a nonzero mean velocity. We show that there exists a
probability measureinder which the particle Lagrangian velocity process
is stationary. This measure is absolutely continuous with respect to the
underlying probattity measure for the Eulerian flow.

1. Introduction. One of the simplest models of the passive tracer motion in a
turbulent flow is given by the 1t6 stochastic equation

dx(t) = u(X(t)) dt + /kdw(t), t>0,
x(0) =0.

Hereu = (u1, ..., uq) :R? x @ — R? is theEulerian velocity field of the flow. It

is assumed to be a stationadydimensional random vector field given over a cer-
tain probability spacé2, V, P), andw(-) is a standard-dimensional Brownian
motion defined over another probability spadg 4, Q). Parametek, called the
molecular diffusivity of the medium, is assumed to be nonnegative. The resulting
processx(-) is considered over the product probability spagex X,V ® A,

P ® Q). A question that generates considerable interest in statistical hydrody-
namics is to provide the description of the long-time, large-scale asymptotics
of X(-). Possible types of the trajectory behavior that may occur in the limit include
Newtonian motions, diffusions, fractional diffusions and possibly Lévy flights;
see [2, 6, 7,18].

An important insight in understanding the asymptotic behavior of solutions
to (1.1) can be gained if one is able to establish the existence of a probability
measureu defined overV ® 4 under which thelLagrangian process, that is,
u(x()), t > 0, is stationary and ergodic. The above process corresponds to the
observations of the velocity from the vantage point of the moving trajectory. If such
a measure exists, then one can conclude that

X(1)

1.2 Vi :=t%|21007 _/u(O)d,u

(1.1)
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existsu-a.s. ands, is deterministicy, is sometimes called th&okes drift of the
medium. If, in addition to st@onarity and ergodicityu is absolutely continuous
w.r.t. the product measuie® Q and the limit in(1.2) holdsP ® Q-a.s., we shall
call u aregular, invariant measure for the Lagrangian process.

In the present paper we consider the case of strongly mixing, steady (i.e., time-
independent) velocity fields. The main result we set out to prove can be stated
informally as follows; see Theorem 2.2 for the precise statement.

THEOREM 1.1. Suppose that the molecular diffusivity « is strictly positive,
and that the velocity field u is stationary with the mean that is larger than the
amplitude of its fluctuations[see condition (A)] and decorrelatesat finite distances
[condition (DR)]. Then, assuming also some topological and measure-theoretic
regularity properties of the field [condition (R)], there exists a regular invariant
measure u for the Lagrangian process u(x(t)), ¢ > 0.

The standard results, for example, those obtained in the framework of the
homogenization theory (see [13]), concern the drifts that are either gradients of
stationary scalar potentials (i.e1,= Vx¢, where¢ is a certain stationary scalar
field), or are incompressible (i.€Vy - U := Z;”Zl dy,u; = 0). The gradient case
corresponds to the motion of a tracer particle in a medium (e.g., gas) that remains
in an equilibrium, while the incompressible fields describe turbulent flows of
fluids. In both of these cases, regular invariant measureasn be identified
explicitly. In the gradient casg is given byPy ® Q, wherePy the is Gibbs
equilibrium measure relative to the potentigl, while in the incompressible case
the invariant measure is actually equalt® Q; see [12-14].

In many interesting situations, however, the motion of a tracer takes place in
a compressible environment that is far from being in equilibrium, for example,
floating of a particle on a fluid surface; see [5]. Due to the infinite-dimensional
character of the problem, the existence of a regular invariant measure is, in
general, hard to prove and very few results concerning the problem are known.
For a review of the existing literature on the subject, a reader is advised to
consult [19]. It is generally believed, however, that strong mixing properties
of the Eulerian flow should guarantee the existence of a regular invariant
measure for Lagrangian observations [5, 19]. Recently, a number of rigorous
results substantiating that point of view have been obtained for nonsteady (time-
dependent) flows; see [8-10]. A generic situation considered in those papers
concerns fields that have strong temporal decorrelation properties; for example,
in [8, 9] the Eulerian velocity field is of finite time dependence range, while in [10]
itis Gaussian, Markovian and sufficiently strongly mixing in the temporal variable.
Under any of these assumptions, it can be shown that there exists then a regular
(w.r.t.P® Q) invariant measurg, provided the molecular diffusivity is positive.

It is worthwhile to point out that under some additional assumptions on the spatial
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structure of the velocity field (i.e., the compact support of the spatial power-energy
spectrum), the results of [10] deal also with the case of the vanishing molecular
diffusivity x = 0.

Let us discuss briefly the principal ideas of the proof of Theorem 1.1. First,
we use the factorization property of thealgebra corresponding to the Eulerian
velocity field. More specifically, looking in the directionpointed by the mean
drift of the flow at any given time instant, say= 0, we can decompose the future
history of the velocity field into the part that is determined by the tracer particle
history up tor = 0 and, independent of it, the renewal part. This decomposition
forms the base for the definition of the so-calteshsport operator; see Section 4.
Informally speaking, it describes the change of the statistics of the field, as
observed from the moving particle, within the time spameeded for the particle
to travel from the initial position at = 0 the spatial distance required for the
complete renewal of the Eulerian velocity. In addition, after this time the particle
does not revisit the half-space containing the initial position of the trajectory and
bounded by the hyperplane orthogonal to the drift passing by the point which is
unit to the left in the directiorv from the position of the particle at. Because
of this property, we calk the nonretraction time; see Section 3 for its precise
definition. It is obviously a non-Markovian random time. The definitionras
modelled on the notion of the nonretraction times, introduced by Sznitman and
Zerner in [17], in the case of random walks on a random integer lattice with
independent sites. As we show in Section 4, see (4.3), the transport operator acts
on a certain space of density functions with respe&t tAn important property of
this operator is the fact that it admits an invariant density; see Proposition 4.7. This
density is subsequently used, see formula (5.33), to define the invariant mgasure
see Theorem 1.1.

A result, that corresponds to our main theorem has been proved for the nearest-
neighbor random walks on integer latti@ with i.i.d. transition probabilities
having a uniform local drift property (the so-called nonnestling condition) in [3].

2. Notation and formulation of themain result. To simplify the notation we
assume, throughout the remainder of the papersthatl in (1.1). The proof can
be trivially generalized to the case of an arbitrary positive molecular diffusivity.
The casec = 0 is substantially different and we know of no results concerning
the steady fields in that situation. (As mentioned earlier, some results concerning
time-dependent, Gaussian, Markovian fields can be found in [10].)

For any L > 0, we denoteX; := C([0, L]; R?) and ¥ := C([0, +00); RY).
These spaces are equipped with the standard topology of uniform convergence on
compact sets. For amy> 0, we denote byl (r) : X — R? the canonical projection
) (7)) :=n(t), 7 € X. Let M; := o{Il(s):s <1t}, t > 0, be the canonical
filtration onX. We let M :=\/,-og M;. By # and#;, we denote the spaces of all
Borel probability measures ab and X, respectively. ByW andW; we denote
the standard Wiener measure(@h M) and its restriction to\( ;. , respectively. For
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anyh > 0, we define the shift operatéy : X — X given by6, (7)) :=n(t + h)
forallt>0,7 € X.

Let (2,d) be a Polish space. We denote B(2) the o-algebra of Borel
subsets of2. We suppose thak is a Borel probability measure arfit]-] denotes
the corresponding expectation. L&t be theo-ring of P-null sets of 8(),
the P-completion of B(£2). Unless otherwise stated, we will assume that any
subo-algebra of 8(2) under consideration containg. For brevity we write
L? .= LP(T7), p € [1, +o0], whereT7 := (2, B(£2), P). We assume further the
property of spatial homogeneity of measiitel he above means that there exists
a group of transformation®y, x € R?, acting onQ such that, for any € R¢,

A € B(Q), we havely(A) € B(Q) andP(Tx(A)) = P(A).
We assume that: 2 — R is a random vector over; satisfying

(A) V| > ||T|| Lo, Wwherev :=Eu andli=u —v.

The spatially homogeneous Eulerian velocity field is defineduas w) :=
u(Tx(w)). Assumption (A) guarantees that the mean drift dominates its fluctuations
and therefore there exisis> 0 such that

(2.1) ux)-v>48>0, P-a.s.

for all x e R4. HereV :=v/|v|. We shall also assume that\l(|v|/4) > é > 0.
ForanyR > 0, we denote by, ¢ theo -algebras generated biyx), [X| < R,
andu(x), [x| > R, correspondingly. We assume that

(DR) (finite dependence range) there existso > 0 such that, for any > 0, the
o-algebrasF,’ and ¥’ are independent.

Finally, we suppose that the field possesses certain regularity both in the
topological and the measure-theoretic sense. Namely, we assume that

(R) for anyw € Q, the fieldu(-; w) is of C* class of regularity and there exists
a deterministic constarlf > 0 such that|l(-; ®) |l y1.cgay < U. The norm
taken here is the usual one corresponding to the classical Sobolev space
Wl’oo(Rd).
In addition, we suppose that, for any > 1 and x1,...,Xy € R¢
such thatx; # x; for i # j € {1,..., N}, the probability distribution of
(U(X1), ..., u(xy)) in the space&R4)" is absolutely continuous with respect
to the N - d-dimensional Lebesgue measure.

REMARK 2.1. Letus briefly discuss some important, from our point of view,
consequences of assumption (R). LetR andV, be the subr-algebra ofB(£2)
generated bwy(x), x - V < ¢t. We note that obviously

(V) S Viyo  V(,X) €R xRY,

Thanks to the assumption (R) (see page 66 of [15], or the Appendix of [9]), the
filtration (V;);>0 admits afactorization with respect tdVo, that is, for anyr > 0,
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there exists a-algebraR’ such thatVy and R’ are P-independent and; is
generated bW andR’. Let R :=\/,-o R'.

Note that (R');>0 form a filtration of o-algebras. Indeed, any random
variable H(-) that is R’-measurable isV,-measurable for any > r and one
can find (from the factorizatio property) a random variabl& (-, ) that is
Vo ® R*-measurable andll (w) = G(w, w). From the fact thaH is independent
of Vo, we immediately conclude thdi (-) = [ G(¢/, -)P(dw’), P-a.s., thusH is
R*-measurable.

The previous argument also shows that, thanks to condition (DR), any random
vectoru(x), with 7 := x - V > rg andrg as in (DR), isR’-measurable.

Let Ox.» € # be the law of the solution to (1.1) for a fixed realization.o€ 2
and subject to the initial conditior(0) = x. We denoteTy o, := (X, M, Ox.»)
and byMy ,, the respective mathematical expectation. In the particular case when
x = 0, we shall suppress the subscript

The process

(2.2) W, (t; ) =1 (t) — /: u(r(s); w)ds, t>0,

is ad-dimensional standard Brownian motion startingcatver 7 ., for any .
We denote byp® : R, x R? x R? — R, the transition probability densities of the
diffusion given by (1.1).

Define a measurgy on (2 x X, B(2) ® M) as the semiproduct

Py(A x B) ::/;‘ 00 (B)P(dw) VAeB(), BeM,

and a stochastic process
(2.3) V(t;w, ) :=u(n(t); w), t>0,

over(2 x X, B(Q2) ® M, Pp).
Theorem 1.1 can be stated more precisely in the following way.

THEOREM 2.2. Suppose that u is a velocity field satisfying the assumptions
(A), (DR) and (R).Then, there exists a probability measure . on (2 x X, B(Q) ®
M) that is absolutely continuous w.r.t. Py and such that the process V(-) is
stationary and ergodic w.r.t. . In addition, the law of large numbers holds w.r.t.
Py, that is,

.om() _ i
(2.4) tmqooT _/u(O)dM, Po-a.s.

In Theorem 2.2, ergodicity of the relevant measure is understood as the absence
of shift-invariant nontrivial sets. More precisely, any Borelian subset X such
that

/|19/1(A)(V(')) —14(V()|dp=0  forallh>0,
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must beu-trivial, that is

(2.5) ullw, 7):V(;w,m)e A]=00r1

3. Nonretractiontimes. In this section we introduce a family of random vari-
ables that, for reasons which become obvious later on, we shafiaraiitraction
times. They are not stopping times and describe subsequent times after which no
retraction of the diffusion can occur in the direction pointed by the mean velocity.
This notion is based on a discrete analogue introduced for random walks on a ran-
dom lattice in [17]. Since the results contained in this section are modifications of
the corresponding results of [17], we postpone their proofs to Appendix A.

Foranyr € X,1 € [0, +00), we let

(3.1) DU;m):=min[t >0:V-7() < —-1+1].
For brevity sake we writd := D(V - £(0)). Let

U,(@) :=min[t >0:V-7(t) > u],

(3.2) s
U,@):=min[t >0:V-7(¢) <u]
and
(3.3) M, () :=sudV- (z(t) —7(0)):0<r < D(x)].

The last random variable is defined for thasegor which D () < +o0.
For anyr > 0, we define also

(3.4) At = |:7'r inf (n(s) -V —m(0)-V) > —1].
s€[0,¢]
We introduce the sequence 0O#(,)-stopping times(Si)x>0, (Rk)x>0 and the
sequence of maxim@y)x=o letting
So:=0, Ro:=0, Mgy :=V-7(0),
(3.5) 81 :=Upmgtrg+1 < +00, R1:=Do0s, + 81 < 400,
My :=maxV-n(t),0<t < R1] < +o0,

whererg > 0 is as in (DR).
By induction we set, for ani > 1,

(3.6) Sk+1 = UMy+ro+1, Riy1:=D o0, , + Sk+1,
' Miy1:=max¥ - 7(1),0<t < Reyal.

The following lemmas hold.
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LEMMA 3.1. There exist deterministic constants y, y1, 2 > 0 such that, for
each x € R?, we have

(3.7) OxwlD=+00]l>y,  P-as,
(3.8)  OxolUxig—m < Uxorml <€Xp—1M} VM >0, P-as,
(3.9 My .w[My, D < 400] < y2, P-as.

LEMMA 3.2. With the notation of Lemma 3.1, for each x € R, we have

. U 1

(3.10) lim supMX,w[—m} <, P-a.s.
mt+00 m )

and

(3.11) Ox.olRi <400l <(1—p)*  Vk>1, Pas.

Let K :=inf[k > 1: Ry, = +o0], or K = +oo if the set of which we take the
infimum is empty.

COROLLARY 3.3. For each x € R?, we have:

() Ox.wlK <+oo]=1,P-as and
(i) Ox.wlSx <+o0]=1,P-as.

We define the first nonretraction time := Sx < +o00, Pg-a.s. The subsequent
times of nonretraction,, n > 2, are defined by induction using the relation

(3.12) Ty41:=Tp + 11067, forn > 1.

Note that the random variableg need not b&M,)-stopping times.

4. The transport operator and its properties. For anya,b € RU {—o0,
+oo}, a < b, weletV, , be thes-algebra generated hyx), wherea < x -V < b.
Consistently with Remark 2.1, we writé, for V_ ,. Let 72 := (2, Vo, P),

OulD = +o0]

Pp(dw) := mp(dw)’

1D (m)=+o0]
Pp(dw,dr):= —————— Pp(dw, dm),
p(dw,dm) PolD = +00] o(dw, d)
and7p := (2, Vo, Pp). Note that in light of (3.7)[Pp is equivalent withP. Also,
for any probability triple7” the symbolD (77) denotes the set of all probability
densities w.r.t. the relevant probabjlimeasure, that is, nonnegative elements
of L1(7") whose integral equals 1.
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In this section we introduce a certain linear operalorLl(7p) — L1(7p)
that preserve® (7p). It is conjugate, in the sense of (4.1), with the spatial shift
by 7 (1), that is,

/ M o [G (T (epy(@)), D = +00] F (0)P(dew)
4.1)
= [ G@AF@)QulD = +o0IP(d)

(recall thatQ,, := Qo0.», M, :=Mg,,) for any F andG that are correspondingly
Vo and Vo +oo-measurable; see Proposition 4.6. We will c4ll a transport
operator.

4.1. Some consequences of the factoring property. Let 73 := (2, R, P) and
let 2 ® T3:= (2 x 2, Vo ® R, PR P). Condition (R) implies (see Appendix B)
the existence of an isometric isomorphi@mL? (71) — LP (T2 ® 73), p € [1, o]
such that:

(Z1) ZF =0for F >0andzl1=1,

(z2) foranyFi, ..., Fy € LP(T1) and®:RY — R bounded and continuous, we
haveZ(®(Fy, ..., FN)) = ®(ZF1,...,ZFy),

(Z3) ZF (w, ') = F(w) for all F € LP(72), ZG(w, ') = G(') for all G €
LP(T3),

(Z4) ZF is Vo ® R'-measurable if is V,-measurable, for any> 0.

REMARK 4.1. From condition (Z2) we conclude immediately the following:

(Z5) ZF has the same law & for all F € L(77).
(Z6) Suppose thaky, F» € L*°(77). ThenZ(F1F2) = Z(F1)Z(F>?).

REMARK 4.2. DenotdJ(x) := Z(u(x)) € L™ (7> ® T3) for any fixedx € R?.
One can find a modification dff defined over7; ® 73 that is of Cl-class of
regularity P ® P-a.s. and such thafU(:; w, )|l y1eogey < U [here U is as
in the statement of condition (R)] fd? ® P-a.s. (w, ®'), whereU(-; w, o) :=
UG o, o) —V.

4.2. The definition of operator £. We start with some auxiliary notation. Let

Tw = (X, M, W), where, as we recally is the standard Wiener measure. By
we denote the law ilR? of random vectorr (Sy) over Ty . Let

L L
v (T w) = exp{/o u((s); w)dm(s) — %/0 |u(rr(s);a))|2ds}

be the Radon—Nikodym derivati\%. HereQ,, 1, W, is the restriction oD,,,
W to My for a givenL > 0. fé u((s); w)dm(s), t > 0, is the stochastic integral
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with respect to the Wiener process-) over the probability spac&y, (see [16],
page 99). Using the properties (Z1), (Z2) and (Z6) of the opefatone can prove
that

4.2) Z(vp (7)) (w, o) = V(75 0, &),

where

L L
DL(n;w,w’)::exp{/o U(n(s);a),a)/)dn(s)—%/o |U(n(s);a),a)’)|2ds}
VL >D0.

For x € R4, we defineWy 1 x € #r and My x, the regular conditional
probabilities obtained by conditioning &V, on the event{w (Sy) = X, S; €
[L — 1, L)} and the respective expectations.

The linear operata satisfying (4.1) will be defined as follows. For afythat
is bounded an@p-measurable, define

(4.3) QF (o) :=/J{(a),w/)F(a))IP’(da)),
where
400
(4.4) K, o)=Y / deMk,L,X(w,T_Xw/)Fk(dx)
kr—1"R
and

(4.5) My x(w, o) =M x[Vs (75 0,0), A(SK), L —1< S < L].
Let
te(m) =V -7 (Sp).

Note thatig, is Vo ® R*™)-measurable foW, -a.s.w. HenceMy 1 x(-, T—x-) is
Vo ® Vo-measurable foF;-a.s.X.

REMARK 4.3. The definition of the operate? given by (4.3) and (4.4) may
seem to look a bit technical at the moment. To motivate it we remark here that
£ is constructed in such a way that the property expressed by (4.1) holds; see
part (i) of Proposition 4.5 and Proposition 4.6. This property enables us to reduce
the question of the existence of an absolutely continuous modification of measure
Pp under which the sequence,+1 — 7, 7 (tx+1) — 7 (%)), k > 1, is stationary
to the problem of the existence of an invariant density for see Theorems
4.7 and 5.1. This result together with integrability of the momentg ahd|x (71)|
(see Proposition 5.2) allow us to conclutie assertion of our main Theorem 2.2.
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4.3. Basic properties of the transport operator. The following proposition
holds.

PROPOSITION4.4. For any nonnegative F € L*°(Tp),
(4.6) /QFdIPD :/FdIP’D.

Hence,  can be extended to a density-preserving operator Q:L1(7p) —
LY(Tp).

PrRoOOF The left-hand side of (4.6) equals

1 / ) |
Po[D = 400l / K (@, 0)F(0)Qu[D = +00]P(dw)P(dw)
1
" Po[D =+00]
(4.7)
+00
X Vs, (N;w’w/)lA(S)1[L—1,L)(Sk)
e :

X QT 5 0 [D = +00l F (@)W (dm)P(dw)P(do).

Using properties (Z2) and (Z3) of operatsr we conclude that the right-hand side
of (4.7) equals

1 +o00
mkél// vs; (775 @) Lasp Liz—1.0) (Sk)
X QTn(Sk)a)[D = +OO]F(C())W(dT[)]P(dw)
1
"~ Po[D = +o0]

+00
x Y / Mo[ Q7,5 0l D = 001, A(Sk), Sk < +00] F (@) P(dw)
k=1

1
~ PolD = +o0] f Qu[D = +00, 11 < +00]F (0)P(dw).

Sincer; < +00, Q,-a.s. we conclude that the last expression is equal to the right-
hand side of (4.6). O

Suppose thatF: (R x R x RH)N — R and G:© — R are bounded and,
respectively, Borel andg-measurable. Let, N be positive integers, 8 1 <
<o <t,,andFy,...,F,:RY >R, H: (R xR x RH)N - R be arbitrary bounded
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and measurable functions.

Define
4.8) £ = / T Fo ey + ) ds
T p=1
and
(4.9) Ec = (Ek, Tkt — T 7 (Thg1) — ().

Heretg := 0. Let alsog be a positive integer and@) (s) = (s A T4)s
n
(4.10) £@ . / o ]‘[ Fy(u(xD(t, +5))) ds

and deflnq(‘” accordingly.

PROPOSITION4.5. Letn > 1 be an arbitrary integer. Suppose that 0 <71 <
- <t, arearbitrary and &, &, k > 1, are defined by formulas (4.8) and (4.9).
Under the assumptionson F, G specified above, we have:
(i)
|| FlGien6@) Podo, dx)
(4.11)
= [ [ F(E0=026 @) Po(do,dn).

(i) Inaddition, supposethat ¢ > gog > N are certain integers, function H and

random variables s(‘” 5,5‘1), k > 1, are specified as in the foregoing. Then, there
existsa randomvariable Y € L°°(7p) such that

f f F(Grrio) HED, .. 599)G(w) Pp(do, dr)
(4.12)

=//F((ék)kzl)ﬂq_qu(a))PD(da),drr).

Y isnonnegativewhen G, H are nonnegative and

(4.13) // Y () Pp(do, dn)_//H E“ . E9)G(w) Pp(dw, dn).

PROOFR For any sequena® := (my, ..., my) € Zi, we define a sequence of
Markovian times

(4.14) og":=0 and o ;:=0"+ Sy, ., 00m, r=0,....,qg - 1L
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The sequence is defined on the set of paths satisfying

B(m) := |:71 . all random times appearing in (4.14) are finite and

inf (n(t)-\7—71(0,””)-\7)2—1,\7’r=0,...,q—1}.

ZE[O‘r /+l]

r P=l
r = 0, g — 1’
and
o =< . [T Fpu @ (1), +5)))ds, 011 — o], 7 (0]} — (0 ))
oM p=1
r = 0’ e g — 1
We have
BN — Lo (90) £(q0)
Po[D = +oo] // (Eragi=1)H(ET, ... ENO)
X G(@)1[p(x)=toc1 Po(dw, d7)
1
(4.15) .
Po[D = +0o0]

A3 [ M (o b)) HET . . V)

L=1m
D0965n=+oo,B(m),L—1§aqrn<L]

X G(w)P(dw).

Using the strong Markov property and stationarity of the environment, we can
recast the right-hand side of (4.15) in the form

1 -
(4.16) m//F((5k+q—qo)k>1)Y(w)l[D(n)=+oo]PO(dw’d”)’

whereY (w) is a certairfVg-measurable random variable. Note thatan be chosen
so that it is nonnegative wheli and G are nonnegative. Choosing= 1 in the
argument above, we conclude also thiadatisfies (4.13).
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In the special case when= 1, g9 = 0 andH = 1, we can rewrite the right-hand
side of (4. 15) in the form

Po[D +00] Z _/M (G0 Bs)iz1).

m,L

D065, =+00, A(Sp), L — 1< Sy < L]

x G(w)P(dw)
(4.17)
m Z /IVI Mz (5.0 F ((Eik=1), D = +00],

ASy), L —1<S, < L]

X G(w)P(dw).

Using Girsanov’'s theorem and subsequently conditioning-o$,,) = X, Sx €
[L —1, L)], we deduce that the right-hand side of (4.17) equals

1 00
B~ M cw), A(S,,), L —1<§, L
Po[D = +00] mél'/‘é@ m,L,X[VSm(JT ), A(Sn) m < ]

(4.18) x M TXw[F((ék)kzl), D = +oq]

X G(w)P(dw)F,,(dX).
Since the second and third factors of the integrand appearing in (4.18) are,

respectively R and Vg-measurable, we can rewrite the entire expression, using
property (Z3) of operatoZ in the following form [cf. (4.5)]

PO[D +00] Z/// My, 1 x(@, )

x M 1,0 [F ((Ek=1), D = +00]
(4.19)
X G(w)IP(dw)IP’(a’w/)IE‘m (dX)

= / M, [F((E)i=1), D = +00]QG (0)P(dw).
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We have proved therefore (4.11). To obtain (4.12), thus finishing the proof of the
proposition, it suffices onlyotapply (4.17) to (4.19) — go times. O

Suppose thair,n>1,0<7 <---<t,,0<s1 <--- <s,, andF : (RY)" — R,
G:(RY)™ - R. Let

Ui := F(u(m(t1 + ), ..., u(mw (t, + )))
and
g(qo) — G(u(n(q(’)(sl)), o U(?T(qO)(Sm))).

The proof of the proposition formulated below is analogous to the one used to
show Proposition 4.5.

PROPOSITION4.6. Suppose that we are given g > go. Then, there exists a
randomvariable Y suchthat Y € L*°(7p) and

// Uy (0, 71)49° (w, 7) Pp(dw, dr)
(4.20)

=// Uo(w, m)QIPY (w) Pp(dw, dr).
Y is nonnegative when 4,99 is nonnegative and

(4.21) // Y(a))PD(da),dn):// 699 (4, 1) Pp (dw, d).

4.4. The existence of an invariant density. The following result is of crucial
importance for us in the sequel.

THEOREM4.7. Thereexistsa unique H, € D (7p) suchthat QH, = H, and
H, > 0,Pp-as. (thus also P-a.s.). In addition, there exist deterministic constants
va € (0, 1), y5 > 0, such that

(4.22) /|Q”F—H*|dIP>D§y5y1 VFeD(Tp).n=>1

The existence and uniqueness of a positive invariant density is a consequence
of Theorem 5.6.2 of [11] and the following lemma.

LEMMA 4.8. Thereexistsadeterministic constant y3 > 0 suchthat Q F > y3,
Pp-as.forall F e D(Tp).
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PROOF Suppose thatt € Vg. We have

1
FdPp= ——
/AQ dFp Po[D = o0]

+00
X Z// Mw,w’[Qn(Sk),a)’[D = +OO]
(4.23) k=1
X 14 (Tr(sp@"), A(Sk), Sk < +00]

x F(0)P(dw)P(dw).

Here M, s is the expectation operator corresponding @9, ,,—the unique
solution of the martingale problem

dx(t) =U(X(1); o, @) dt + dw(t),
(4.24)

x(0) =0.
Using Lemma 3.1, we can estimag®; s, ./[D = +oc] > y, while A(S1) [no
backtracking may occur beforg; cf. (3.4)] is clearly implied by the event
[S1 < D]. Hence the right-hand side of (4.23) is bound from below by

(4.25) y / / Moo/ [14(Tr(sp@). S1 < D, S1 < +00] F(@)P(dw)P(dw).

Let G be a certain bounded subregion of the lagee RY: —1 < x - ¥ < rg + 1]
containing0, with a C°*°-smooth boundarygG. We assume further that part &€
of positive surface measuseis contained in the hyperplafi@:= [x e R?:x - ¥ =
ro + 1]. The expression in (4.25) can be further estimated from below by

(4.26) y / / Moo [0 (7 (6): @) F (@)P(dw)P(da).

Here 75 denotes the exit time fron@, ¢(X; o) := 15 (Txw') for X € G N H

and ¢(x; @) := 0, if x € G \ H. Using absolute continuity of the harmonic
measure and the standard lower bounds for Green’s function corresponding to the
generator of (4.24) and the regia@h (see, e.g., [4], Theorem 3.1, page 616), we
can bound (4.26) from below by

C// [/aan lA(Tya)/)S(dy)]F(a))]P’(da))]P’(dw/)

=Cl0G NH|P[A] / F(w)P(dw)
(4.27)
> CPo[D = +00]|0G NHI|P[A] / F(0)Pp(dw)

= CPo[D = +o0]|0G NH|P[A],
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where C > 0 is a certain deterministic, positive constant gt denotes the
surface measure of a Lebesgue measurable siibsetl. Here we used the fact
thatF € D(7p). O

5. The construction of an invariant measure. Let H, be the invariant
density forQ, see Theorem 4.7. We set

Py, (dw,dn) = Hy(w)Pp(dw, d).
Note thatPp, is a probability measure off2 x X, B(Q2) ® M).

THEOREM5.1. Letn > 1beaninteger and 0 <1 <--- <1, bearbitrary.
We supposethat Fy, ..., F,:R? — R are any bounded measurable functions and
the sequence (£;)x=o0 iS given by (4.8) and (4.9). Then (£,)x=0 is Stationary and
ergodic over the probability space (2 x X, B(Q2) @ M, Py,).

PROOF  Stationarity is a direct consequence of part (i) of Proposition 4.5 and
the definition ofH,. To prove ergodicity, we show that any bounded measurable
function F: (R x R x RN — R, for which

(5.1) F(Ern)iay) = F(Gr=1)  Yn=1, Py,-as,

satisfiesF((ék)kzl) = const,Py,-a.s. Lete > 0, N > 1, be arbitrary. We can find
FM: (R xR x RY)N — R bounded, continuous and such that

f f F(Gors1) — FN G, ... Ex)|d Py, <e.
Then,
(5.2) / / |F(E)iz1)[F(Eiz1) — FN(E1, ..., En)]|d Py, < esuplF|.

On the other hand, for any> ¢, we have, from (5.1),

// F(Es1) FV(ED, .. £ dpy,
(5.3)

=//F((§k+q)k31)F(N)(§1(q°),---,51(\?0))611"}1*.

By virtue of Proposition 4.5, we conclude that the right-hand side of (5.3) equals

[ [ F@onar-nyary,

for a certainVg-measurablg’ such that

/ YdPH*:// F(N)(gl(qO),---,gjiqu))dPH*-
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First lettingg 1 +o00 and theryg 1 +o00, we conclude that
[[ F@oenF ™, .. e dpa,
= [[ PGy aru, [[ FVG.....&vdPa.
which, in light of (5.2), yields
‘//[F((ék)kzl)]zdPH* - [// F((ék)kzl)dPH*]z‘ < 2e sup|F|.

Since ¢ > 0 was chosen arbitrarily, we conclude thEi((%k)kzl) = const,
Pp,-a.s. U

(5.4)

The following proposition holds.

PROPOSITIONS.2. \Wehave

(5.5) f/ 71d Py, < 400
and
(5.6) f/ |7 (t1)|d Pu, < +00.

PROOF  First we show the following.

LEMMA 5.3.
(5.7 Wy i= f/\?-n(rl)dPH* < +00.
PRoOOE We can write that
K—1
Vom(r) =) 0 (m(Seg1) — 7 (Sp))
k=0

with random variable&k defined before the statement of Corollary 3.3. Hence,

K-1
(5.8) Veom(r) <ro+1+ ) (ro+1+ M — - 7(S).
k=1

and in consequence,

f/\?-n(rl)dPH* <ro+1+ Zk//(ro+1+Mk’—\7'7T(Sk’))

1<k/<

(59) X 1[Sk <+00, Doblg; =+0o] dPH*
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§ro+1+ Z //(r0+l+Mk/—\7n(Sk/))

1<k/<k

X L Ry_1<+00,Dobis, =+00] d PH, .

Since Ry_1 = D o 05, , + Sk—1, we obtain, upon a multiple application of the
strong Markov property foQ,, and (3.7), that the right-hand side of (5.9) is less
than or equal to

ro+1+ Y (1-ph Ttk
1<k’<k

x [ [(ro+ 14 My =9 7 (Si0) iy <1 0P

1 /
5.10 <ro+1+—— 1- )k_l_k
520 PolD = +00] 1<kZ:<k ’

% [ Ho@Mo[Mas,p olro+ 14+ M., D < +oo],

Sp < +0o]P(dw).

By virtue of (3.9), we conclude that the right-hand side of (5.10) is less than or
equal to

ro+14+y2
Flp——
"0 PolD = +o0]
(5.11) x 3 @—yyH / Ha () Qo[ Sy < +00lP(dw)
1<k’<k
(3.1D) Too
< ro+14CY k(d—p)f <400,
k=1

for some constar@ > 0, and (5.7) follows. We have used here the fact that

Lemga 31 Po[D = +o0

/ H,(0)P(dw) ] / H.(@)Ppdw) <+o0.

Continuing with the proof of the proposition, we |ét,),,>1 be a random
sequence of integers defined by

(5.12) Ty < Un < Tk 41
Recall the convention that := 0. ThenPy, -a.s. we have

V-m(t,) <m<V-m(tk,+1)-



1684 T. KOMOROWSKI AND G. KRUPA

By virtue of Theorem 5.1 and the individual ergodic theorem, we conclude that

.-
im 7 (Tx) —w, LemQaSS Lo, Pi-as.
kt+o00 k
But
Vem(tg,) m V-7 (tk,+1)
- S o < 77
km km km
therefore
.k 1
lim =2 =—, Py, -a.s.
mt+oo m Wy
Let
(5.13) f = // r1dPy,.
Trivially, we conclude that, € (0, +o0]. We also have
U k
(5.14) RTINS
m ki m

Inequality (3.10) of Lemma 3.2 implies in particular that

5.15) liminf ﬁ < 400, Py -a.s.
( \

m—4+00 m
On the other hand, an application of the ergodic theorem to the sequence—
7,))n>1 implies that the right-hand side of (5.14) ten®lg, -a.s. tor,. /w., which by
virtue of Lemma 5.3 and (5.15) belongs @ +o0). Consequently, we conclude
thatz, < +o0 and (5.5) holds.
Additionally, we have

6.18) [ [InelaPu, <lule= [ [ wapu + [ [ weoldpa..

Denoting X := Supy,1 [W(®)|, ¥ := sup.q [w(®)|t =4, we can estimate the
second term on the right-hand side of (5.16) by

// X1jz,<1d Py, +/f yr./tdp
1/4 3/4
5/ XdPy, + (// Y4dPH*) (// rldPH*) < +o0.

Here we used the fact tha®,[Y > u] < cleXp{—czuz} for some constants
c1, c2 > 0 independent of» and allu > 0. This can easily be concluded from,
for example, [1], Theorem 5.2, page 12Q]

As a consequence of Projiien 5.2, Theoren®.1 and the individual ergodic
theorem, we obtain the following.
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COROLLARY 5.4. Wehave
1 N-1

1 N
N kg(:)fk — //UO Ele(U(Tr(t,, +s)))dsi|PH*(da),dn)

as N — +oo.

(5.17)

The convergencein (5.17) holds both Py, -a.s. andin the Ll(PH*)-sense.

Suppose thaDy ., ; is the probability measure of; obtained by restricting

Ox. 10 M. LetalsoQy”, M’ denote, respectively, the probability measure and
the respective expectation obtained by conditioning, ; on the eventr (r) =y.
Recall(from Section 2) thap®(-, -; -, -) denotes the transition probability density
of the diffusion given by (1.1). We set

me (X7 sa Cl), JT)
= 1 pxt)=+00] (1) PV (5, X, 0) Q%0 A(s), S < 5 < Spr11Hi(Tyxw).

LEMMA 5.5. Letn>1,Fy,...,F, e Cph(RY) and0<t <--- <t,. Then,

+00 to n
- mX::l/o /Rd // Ele(u(n(tp)))me(X,s,a),rr)dsdx Po(dw, dr)

= / Mw|:/ofl l_[ Fy(u(m(ty)+s)))ds, D= +ooi|H*(a))IP’(a’a)).
p=1

REMARK 5.6. Note that in light of Proposition 5.2, the right-hand side of
(5.18) is finite.

PrRoOF OoF LEMMA 5.5. Before proceeding with the proof, we introduce
two additional renewal structures via a slight modification of the titi#$>1.
These structures allow us to describe momesitsthat occur after certain
deterministically fixed time; see (5.26).

Let/,m € R. Recall thatD (/) is defined as in (3.1). LeMo(l) := max{n (¢) -
Vv:0 <1t < D(l)]. We define the stopping timﬁail) (I, m) as follows. On the event
D(l) < 400, we let

SV, m) :=min[t = D)7 (t) -9 = (Mo(l) v m) + ro+1]
and

RYU,m)y:=Dob )+s§1)(z,m),

sPam

MP A, m) :=max{z () -v:0<1 < RP A, m)].
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We set
SPUmy:=RP(Um) =400  if D) =+00.

The subsequenttime@,ﬁ (I,m), S,El) (I,m) and maxime,El) (I, m) are defined as
follows:

1
(5.19) Ser1(lom) == Ungymy+ro-+1s

@ @
(5.20) Rif1(m) = 8§ 4 (L,m) + D obg SO’
521 M mmake) 9021 = K0 m]

Similarly for > 7 (0) - U, we define
SOy :==min[t: (1) -V > 1 +ro+ 1]
and
@7y . (2)
Ri”():=Do 959(1) 0,

MP () :=maz () -v:0<1 < RP1)].

The subsequent timdsgz) 0, S,EZ) (1) and maximaM,Ez) (1) are defined by means of
(5.19)—(5.21) with the obvious replacement of superscripts and arguriiemts
byl. Let

) il <D _
KD m) = minfk: 5,7 (. m) < +00, Dol = +00]

and

K@) :=min[k: S (1) < +00, D oo o =+l
k

Note that the definitions cﬂ‘,ﬁl)(-, -), k > 1, differ from the respective definitions
of S, k > 1, only through the designation of the first tin§ 1)(-, ). The same
remark extends also tﬁ,gz)(-), k > 1. Therefore, a straightforward adaptation of
the argument used to prove Corollary 3.3 allows us to conclude that, for each
I,meR,xeR?, we have

(5.22) Qxu[KPU,m) <+00, Sl (Ism) <+o00] =1, P-as,

(5.23) Ox.o[KP(l) < +00,5P, (1) < +o0] =1, P-a.s.

K@)

To explain the meaning 08‘,9)(-, D, Skz)(-), k > 1, consider the case wheris a
certain fixed deterministic timei1 < m» are two positive integers and(.) is a
path that satisfiese [S,,,, Rin;), Sm, < +00. Then, we can write

(5.24) S (1) = 5 + Sy (7T (Smy) - ¥, Ny (5)) 0 65 ().
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Here N,,(s) := maX{x(t) - Vit € [Sy, A s,s]]. If, on the other hands ¢
[lea Sm1+l)1 sz < +o00, we have

(5.25) Sma (1) = 5 + Sy s (Mo, (7)) 0 65 ().

Recall thatM,,, is defined in (3.5) and (3.6).
For brevity let us denote

F(s) =[] Fpu(®s(m)(tp)))

p=1
andB,, :=[D o 65, =+o00, D = +o0]. The right-hand side of (5.18) equals

+00 Sin
> /Mw[/o F(s)ds, Sy < +00, Bm}H*(a))]P’(dw)

m=1

= T [T MalFots, ),

O<mi<my—1

(5.26) Smy < 400, BmZ]H*(a))]P’(da))} ds

+00
X [T Ml PO, 506

0<mi1<mpy—1

Smy < 00, Bmz]H*(a))IP’(da))} ds.

Using the Markov property, the definition of stopping tin@@ (I,m) and (5.24)
we can recast the first term on the right-hand side of (5.26) as being equal to
[cf. (3.4)]

2 f;w{ [ Maltis,y.r,®)

O<mi<my—1

(5.27) X 8my—my (77(8), 77 (Smy) -V, Ny (5)), A(s)]

X H*(a))IP’(da))} ds,

where

g (X, 1, m) :=My o,[F(0), S (1, m) < +00, D06 , = +00, D(0) = +00].

sV d,m
Using (5.22), we conclude that the expression in (5.27) equals

+00 +oo
Zo/O {/ Mo[11s,,,, Ry () A(S)] Hi ()
mi=

(5.28)
X M (5.0l F(0), D(0) = +oo]]P’(da))} ds.
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Conditioning on the event(s) = X, we obtain that the expression in (5.28) equals

—+00 +o00
Z // _/d pw(s, 0, X)M(Ot;,);[l[sml»le)(S)s A(s)]
ml:O 0 R

(5.29)
X My »[F(0), D(0) = +o0]Hy(w)P(dw) ds dX.

Using the homogeneity & and changing variables:= —x, we conclude that the
expression in (5.29) equals

+00 +o0
mX_:O/ / /o Rd Lipxt)=+00) (T) P (5. X, 0)
-

(5.30) x MSOTAGS), Sy <5 < Runy ]

X Hy(Txw) F (0) Po(dw, dm) ds dX.

Note that thanks to the definition df(s), the integration over variabbe extends
only over the regionix: x - v < 1].

Repeating the same type of calculations for the second term on the right-hand
side of (5.26) [using stopping timefsfz)(l) instead ofS,El)(l, m) and (5.25)], we
conclude that it equals

+00 +o0
X_:O // /0 /Rd 1D x-t)=+001 () P (s, X, 0)
mi1=

(5.31) x M*O[A(s), Rpyy <5 < Spys1l

,8

X Hy(Tyw) F (0) Po(dw, dm) ds dX,

and (5.18) follows. [

Applying Lemma 5.5t = 1,11 = 1 andF; = 1, we conclude immediately the
following.

COROLLARY 5.7.
PolD = +00 [ [ 11, dw, dm)

(5.32)
T oo
:Z/ / / Hu(X, s, 0, 7)dsdX Po(dw, dr).
m=1"0 R4
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Let
1 01 rto0
(5.33) udw,dm):= 7 Z |:/ /d Hpy (X, 5, 0, n)dst]Po(da), dm),
0 R
m=1

where the constarft, by definition, equals the right-hand side of (5.32). Thanks
to (5.5), we haveZ < +o00. By virtue of Corollary 5.7 is a probability measure.

PROPOSITIONS5.8. The process V() given over (2 x X, B(RQ) ® M, u) by
formula (2.3) is stationary and ergodic.

PROOF The proof of stationarity. Letn > 1, Fy,..., F, € Cp(R%) and 0<
t1 <--- <t,. Then, for anyz > 0, we can write

// [1 Fo(u(zt, + W) u(dow. dx)
p=1

Lemma 55 Po[D = +00] "
me =] [/o }]fp<“<ﬂ<fp+h+s>))ds}

x Py, (dw,dm)
(5.34)

Corollary 54 Po[D = +0o0]
N Z
i 1 w M . N J
o L f s
x Py, (dw,dm).

Since the integration over an interval of lengdtldoes not influence the value of
the expression on the utmost right-hand side of (5.34), we conclude that it is in fact
equal to

Po[D = +o00] . 1 w
#N'{TOON//[/O Ele(u(n(tp+s)))ds:|PH*(da),dn)

:// Ele(u(n(tp))),u(a’a),dn).

Proof of ergodicity. Proving ergodicity is tantamount to showing that, for any
bounded and Borel measuratfie X — R that satisfies

(5.35) Fob,(V()=F(V()) Yt >0, pu-a.s.,
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we haveF (V(-)) = const,u-a.s. Similarly to what we have done in the proof
of Theorem 5.1, for any > 0, we can findN >1, 0<# <.-- <ty and
FM - (RY)N — R bounded, continuous such that

(5.36) // ‘F(V(-)) —FM(V (..., V) dp <.

Let ¢ > go be arbitrary andv@(¢) := V(t A 7,,), t > 0. Using (5.35), we
conclude that

// F(V(-))F(N)(V(QO)(tl), o V(QO)(IN)) du
(5.37)
://F(@,q(V(-)))F(N)(V(QO)(tl),..., V30 (1)) d .

Using Proposition 4.6 and an argument analogous to the one applied in the proof
of Theorem 5.1 [see in particular the argument leading up to (5.4)], we conclude,
upon the subsequent passages to the limit in (5.37), firgt-as+o0, then as

qo — +o00, that

ff FWVO)YFM(V(),...,V(n))du
(5.38)

=[| FOv()dux | | FVWV@),...,Vin))du.
/] /]

From (5.36) and (5.38), we conclude that

< 2e SUP| F|.

] [[irventan-[ [ F(V(-))du]z

Hence, upon the application of the fact that- 0 has been chosen arbitrarily,

we get
[[rrvenran= [ /] F(V(-))du]z

SOF(V(-)) =constu-a.s. [

6. The proof of the law of large numbers. From (2.2) andProposition 5.8,

we immediately conclude that
0 . 1t

(6.1) t—llToo - = t_llrpoo A /0 V(s)ds = vy, u-a.s.,
with v, given by (1.2).

We show that the limit in (6.1) holdBp-a.s. To demonstrate this fact, it suffices
only to show thatr (¢)/t convergesPp-a.s., as — +oo, to a deterministic limit,
which, as a consequence of the absolute continuity @fr.t. P, must be equal
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to v,. In fact it suffices only to show thé&p-a.s. convergence of the sequence
(w(n)/n),>1. Indeed, we have
() m(n)
t n

=0.

(6.2) lim sup

”_’+°On<t<n+l

The latter is a consequence of the following estimate, that is an immediate
consequence of (1.1):

(6.3) Po[sup sup Mze}gw[ upm @l € ]
t>N 2

n>N n<t<n+1 n (7]
Inequality (6.3) holds for any > 0 andN > 2(U + |v|)/e, with U the constant
from condition (R). The right-hand side of (6.3) is as small as we wish, provided
that NV is chosen sufficiently large.
Let s, be defined by (5.13). We also denote

W, 1= //n(rl)dPH*.

Note that, in consequence of Corollary 5.4 and Lemma 5.5 we have the following.

. T . 7 (t,)
(6.4) lim =2 =z, lim (@ =Ww,, Py -a.s.
n——+o0o n n—400 n *

Let us consider a nondecreasing sequahpg-1, that tends to infinityPy, -a.s.,
defined by

(6-5) T, =N <T[41.

We have

(6.6) anlTooi = s, Py, -a.s.
Writing

(6.7) ) _wm) b m) -7 (m,)

n I, n n

we conclude, by virtue of the individual ergodic theorem, that

. W.
(6.8) im =% _ Y py-as.
nt4oo n ty
Let
X w
E = (Xna tn)n>l E (Rd X R)N Zrn 1 m 7L) _*’
- m= 1tm 1

n
or Zm=1tm A t, asn 4 —l—oo}
n
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From (6.4), it follows that

(6.9) [ 16 s = 7 @) 41— ), 20) AP =0,
hence

/ Mo[1e (77 (tht1) — 7 (), Tyl — Tn)nzl)’ D = +00|Hy(w)P(dw) = 0.
SinceH, > 0, P-a.s., we conclude that

(6.10) My [1e((7w (tht1) — 7 (Th), Tht1 — Tn)nzl)’ D = +o00] =0, P-a.s.
However, repeating the calculation made in (4.15) through (4.19), we obtain

/ 1e(((tnt2) — 7 (Tat1)s T2 — Tnt1),21) d Po

= [ H@IM[Le((r (@) = (5, T2 = 7)),
(6.11)
D = +00]P(dw)

(GéO) 0,
with

+o0
H):= ) f f M. x(@, T_x@)Fi(dX)dP(w).
Rd

k,L=1
From the definition of the s&f, we conclude therefore
. W .
lim () _ W and lim & =1, Py-a.s.
nt4+oo Ty Ty nt+oo n

Repeating the argument used in (6.5)—(6.6), this time with meakume place
of Py,, we conclude that the limit in (6.8) hold%-a.s. O

APPENDIX A

Proofs of Lemmas 3.1, 3.2 and Corollary 3.3. Recall our standing assump-
tion thatx = 1. Additionally, since all the estimates obtained below, as it becomes
apparent in the course of the proofs, are independent of the choice of the starting
point of the diffusion, we shall set= 0 throughout this section.

A.l. Proof of (3.7). ForanyM > 0, we denote
(A1) Sh =xeR:-1<0.-x<M]
andT;: the exit time from the strip. Since

) =M],

+
M

(A2) QoD =+ool= lim Q,Ty; <-+oo.¥-7(Ty
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inequality (3.7) will be proven once we show that there exists a constand,
which bounds the right-hand side of (A.2). Recall that, for any 2, the process
Wy (+), given by (2.2), is an(.M,) nonanticipative standard Brownian motion,
underQ,,. Take any connected and bounded®etV C 51‘7 A simple argument
involving the optional stopping theorem for martingales implies that

nATy
(A.3) Mw[n(nATv)-V]—Mw[/() u(rr(s))-\?ds}zo Vn>1.

Note that—1 <7 (n A Ty) - V < M. On the other hand, with the choice &f
as in (2.1) we can writM , Ty < (M + 1)/8 and in consequencMwT% <
(M +1)/8, hence in particular

(A.4) Qw[T% <+4o0]=1

To finish the proof of (A.2), we chooséy > 0 so thatdy < §/2 and let
0 € (0, 6p]. Then, using the Markov property of,[-] we get

Mo [eXR{—6V - 7 (1)}| M;]

— exp(—6¥ - 7(s))
(A.5)

+/, M o {eXp(—0 - 77 (u)}[—69 - u(rr () + 21| M, } du

<exp—ov-m(s)}

for + > 5. The above calculation shows that €x@V - = (-)} is an (M;)-super-
martingale. The optional sampling theorem for supermartingales and (A.4) yield

M, [exp(—60¥ - 7 (85)}] < 1.
Thus, in consequence of the above estimate, we conclude that
& Qu[V-n(Ty1)=-1] =<1,
therefore
Qu[V-7(Ty+)=M]>1-€e VYM>0,
and (3.7) is proven.

+
M

A.2. Proof of (3.8). We can write that the left hand-side of (3.8) is less than
or equal to

(A.6) QulTsy > tm] + Qu[Tsy, <tm, V- 7(Ts,,) =—M].

Herery :=2M8 1, 8y =[x eRY:—M <V -x < M] andTy,, denotes the exit
time from the strip8,,. § is defined in (2.1). Using the notation of (2.2), we can
write that, on the evenfs,, > ],

M
We(t31)] = ‘n(w) - /0 UG (s))ds| = M.
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Hence,

M
0u[Tsy, > 1] < QullWa(tar)| = M1 < EXp{ ‘T}'

On the other hand,

(A7) Qa)[TJMSfM7\7‘7T(TJM):—M]SQw|: sup Iww(t)le].

0<t<ty
Using elementary estimates on the law of the maximum of a Brownian motion,
we bound the right-hand side of (A.7) from above by{exﬁg} and (3.8) follows.
A.3. Proof of (3.9). Forany integem > 1, we have
Q,[2" < My < 2", D < 400]

2m+1|v|:|
>_

A8 < Qw[m(Uzm) _2m

om+1 V|

+ Q| IT(WUzn) - 279 < O00 0z < Upnin 000 |

Let
V-X
C:= [xeRd:|x—(\7-x)0|§T].

C is a cone containing the support of the law ofx), x € R¢. Therefore
fé u(m(s))ds € C, for all t > 0. On the other hand, there exists> 0 such that,
foranym > 1, if

2m+l|V|

X —2™0| > and v-x<2™,

then distx, C) > ¢12™. The first term on the right-hand side of (A.8) can be
therefore estimated by [sin€e 7 (Uon) = 2]

2m+l|V| U < 2m+l
9 Zm J—

2m+l]

(A.9) Qw|:|7T(U2”') — 2" = ] + Qw[Uzm >

The expression in (A.9) can be therefore estimated by

2m+1
Qw[IWw(Uzm)IZqu,Uzms ]+Qw[ sup |ww<r>|zzm}
8 ZE[O,Z”H'l/(S]

m—+1
(A.10) < Qw|: Sup Wy (1) = 12", Upn < }
1€[0,27+1 /5] 8

+Qw[ sup |ww<r>|zz'"].
te[0,2m+1/8]
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Using once more the estimates on the law of the supremum of the Brownian
motion, we bound the right-hand side of (A.10) from abovecbexp{—c32"}
for some deterministic constants, c¢3 > 0 independent of:.

The second term on the right-hand side of (A.8) equals

2m+1|V|

Mw[QﬂUzm),w[Uo < U], 7 (Uan) — 274 < ] < expl—y2"},

by virtue of (the already proven) (3.8). We have therefore shown that
(A.11) 0,[2" <M, <2"*1 D < +00] < caexp{—c52"}

for some deterministic constants, cs > 0 independent ofz, and (3.9) follows.

A.4. Proof of Lemma3.2. Foranyn > 1, we obtain
(A.12) 0=My[V-w,mn AU, <m—8M,(nAUy,),

and (3.10) follows.
On the other hand,

QulRk < +0o0] = Qw[Sk +Dofbs < +oo]

strong Markov prop.M
= ol

Or(sp).0lD < 400], Sk < +00]

Lemma 3.1

< 1=y)QulSk < +00] = (1= y)QulRk-1 < +00]
and (3.11) follows by induction.

A.5. Proof of Corollary 3.3. Part (i) is an immediate conclusion from (3.11)
and the Borel-Cantelli lemma. To show patrt (ii), note that

Ox.0lSk < +0o0]
+00

= Z vaw[Rk_l < 400, UMk—l+"0+1 o eRkil < 400, Ko eRk—l = 1]
k=1

+00
= Z —/]R MX,w[Qn(Rk_l),a)[Un1+ro+l <400, K =1],
k=1

(A.13)

Ri—1 < 400, My_1 € [m,m +dm)].

However, using (A.12), we can easily conclude tbgt,[U,, < +oo] =1 for all
y e R?, m € R, P-a.s.; hence the utmost right-hand side of (A.13) equals

+00
> [ Mxo[Qn(ks 01K =11, Ria < +00, Miy € [, + dm)]
k=1

= Ox.olK <400l =1
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APPENDIX B

The existence of the isometric isomorphism Z. Suppose thatn > 1
is a positive integerA1,..., A, € Vo, B1,..., B, € R are such thatdA; x
Bi,..., A, x B, are pairwise disjointand, ..., ¢, € R. We let

n n
u(z cplApX3p> = cpla,lp,.

p=1 p=1

Sinceo -algebrasyy andR arelP-independent, the mapping is well defined and
extends to a positivity-preserving isometry of ah{(7> ® 73) into L?(77) for

any p € [1, +o0]. Thanks to the factorization property stated in the remark after
condition (R), we conclude thatl is in fact an isometric isomorphism between
the relevant spaces. Defile= U L. Itis clear from the definition that properties
(Z1) and (Z3) hold. Sinc#®; is generated bP-independens -algebrasyy andR?,

we can also immediately conclude (Z4). To prove condition (Z2,) we assume
firstthat allGq, ..., Gy € L*° (72 ® 73). From the definition ofu, we conclude
that UW(GT* - GY") = [U(G]™ - [U(G y)]™N for any nonnegative integers
ma,...,my > 0. Hence, using, for example, the Weierstrass approximation
theorem, we conclude that® (G4, ..., Gy) = ®(U(G), ..., U(Gy)) for any

® c C,(RY). We can remove the restriction on boundedness ¢$ by using a
standard truncation argument.
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