
The Annals of Applied Probability
2005, Vol. 15, No. 1A, 500–517
DOI 10.1214/105051604000000648
© Institute of Mathematical Statistics, 2005

SUBEXPONENTIAL ASYMPTOTICS OF
HYBRID FLUID AND RUIN MODELS

BY BERT ZWART, SEM BORST AND KRZYSTOF DȨBICKI

Eindhoven University of Technology, CWI and University of Wrocław

We investigate the tail asymptotics of the supremum ofX(t) + Y(t) − ct ,
where X = {X(t), t ≥ 0} and Y = {Y(t), t ≥ 0} are two independent
stochastic processes. Weassume that the processY has subexponential
characteristics and that the processX is more regular in a certain sense
than Y . A key issue examined in earlier studies is under what conditions
the processX contributes to large values of the supremum only through its
average behavior. The present paper studies various scenarios where the latter
is not the case, and the processX shows some form of “atypical” behavior
as well. In particular, we consider a fluid model fed by a Gaussian processX

and an (integrated) On-Off processY . We show that, depending on the model
parameters, the Gaussian process may contribute to the tail asymptotics by its
moderate deviations, large deviations, or oscillatory behavior.

1. Introduction. Consider two independent stochastic processesX = {X(t),

t ≥ 0} and Y = {Y (t), t ≥ 0}. In the present paper we investigate the tail
asymptotics of the supremum of the superposition ofX andY with an additional
linear drift term, that is, we are interested in the behavior of

P

{
sup
t≥0

[X(t) + Y (t) − ct] > u

}
, u → ∞.(1.1)

The latter probability may be interpreted as an overflow probability in queueing
theory, but also as a ruin probability. Motivated by applications in both queueing
and ruin problems, we are especially interested in the case where at least one of
the processesX andY hassubexponentialcharacteristics.

A key problem which has received a lot of attention is under what conditions
the processX in (1.1) can be replaced by its mean, that is, under what conditions

P

{
sup
t≥0

[X(t) + Y (t) − ct] > u

}
∼ P

{
sup
t≥0

[Y (t) − ct] > u

}
, u → ∞,(1.2)

when E{X(t)} = 0. Such an asymptotic equivalence is commonly termed a
“reduced-load” equivalence. Results of the form (1.2) have been shown to hold
under various assumptions; see, for instance, [2, 8, 18–21, 23, 24].
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The goal of the present paper is to examine various scenarios that may arise
when (1.2) doesnothold, and the processX contributes to the asymptotics in (1.1)
by behaving in some “atypical” manner as well. Throughout the paper,Y is
assumed to be an (integrated) On-Off process: during On-periods,Y (t) increases
at rater , while Y (t) remains constant during Off-periods. The “noise” processX

is assumed to be Gaussian with zero mean; precise definitions and assumptions
concerningX andY are given in Section 2. The value of the rater , relative to
the negative driftc, has a crucial effect on the qualitative behavior of (1.1). All
references listed above consider sufficient conditions for(1.1) in the caser > c.
In the opposite caser ≤ c, the right-hand side of (1.2) is 0 sinceY (t) ≤ rt , so that
(1.2) cannot hold.

After a more detailed model description in Section 2, we will state the main
result of the paper in Section 3 which considers the caser > c. In this case,
(1.2) may or may not hold, depending on the tail behavior of the On-periodTon.
If X is a Brownian motion, then (1.2) holds ifP{Ton > u} ∼ P{Ton > u − √

u}
as u → ∞; see Theorem 3.1 in [19]. Here, we investigate what happens when
this is not the case, and show thatX may then contribute to the tail behavior of
V c

X+Y := supt≥0[X(t) + Y (t) − ct] in a quite complicated fashion. Informally
speaking,X contributes to large values ofV c

X+Y by its moderatedeviations.
The first part of Section 3 considers the strongly related problem of sampling a
Brownian motion at a subexponential time. This part relies on recent work of Foss
and Korshunov [14]. In Sections 4 and 5 we turn to the caser ≤ c, which, as
mentioned above, implies that the right-hand side of (1.2) is 0. In this case, the
typical way forV c

X+Y to reach a large value is fundamentally different, depending
on whetherr < c or r = c (obviously, both cases differ from the caser > c). In
the caser = c, which is treated in Section 4, a large value ofV c

X+Y is associated
with a single long On-period ofY and oscillatory behavior ofX. In the caser < c,
which is studied in Section 5, the tail behavior ofV c

X+Y is determined by the large-
deviations behavior ofX, which needs to occur during a single long On-period
generated by the processY .

2. Model description and preliminaries. We consider the supremum
V c

X+Y = supt≥0[X(t) + Y (t) − ct] of the superposition of two independent sto-
chastic processesX = {X(t), t ≥ 0} andY = {Y (t), t ≥ 0} with an additional drift
term. We assume thatE{X(1) + Y (1)} < c to ensure thatV c

X+Y is finite a.s.
Note thatV c

X+Y may be interpreted as the “buffer content” in steady state
in a fluid queue with “drain rate”c, with X(t) and Y (t) denoting the amount
of traffic generated by the processesX and Y during the time interval[−t,0].
We will frequently make comparisons with the buffer content for each of the
two processes in isolation. Forc > E{X(1)} andD ⊆ [0,∞), defineV c

X(D) :=
supt∈D[X(t) − ct], and letV c

X := V c
X([0,∞)) be a random variable representing

the steady-state workload in a buffer with drain ratec fed by the processX only;
V c

Y (D) andV c
Y are defined similarly.
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Before specifying the processesX andY in more detail, we first introduce some
useful notational conventions and concepts. IfT is a nonnegative random variable
with finite mean, thenT r is a random variable with densityP{T > x}/E{T }. For
any two real functionsf (·) andg(·), we usef (u) ∼ g(u) to denote thatf (u) =
g(u)(1 + o(1)) as u → ∞, that is, limu→∞ f (u)/g(u) = 1. We further write
f (u) � g(u) to indicate that lim supu→∞ f (u)/g(u) ≤ 1. We use various classes
of distributions. In particular, we consider the classL of long-tailed distributions,
the classS of subexponential distributions and the classR of regularly varying
distributions. We also consider the subclassS∗ of S. For definitions and further
background on these classes, we refer to [13].

Throughout the paper, the processX(t) is a centered [i.e.,E{X(t)} = 0]
Gaussian process with stationary increments, a.s. continuous sample paths,
X(0) = 0 a.s., and variance function Var{X(t)} = σ 2

X(t). We impose the following
conditions in Sections 4 and 5:

C1. σ 2
X(t) ∈ C([0,∞)) is increasing;

C2. σ 2
X(t) is regularly varying at 0 with indexβ ∈ (0,2] andσ 2

X(t) is regularly
varying at∞ with indexα ∈ (0,2).

Two important examples satisfying C1 and C2 are (i) fractional Brownian
motion with Hurst parameterH ∈ (0,1) [in this paper denoted byBH(t), t ≥ 0]
and (ii) the class ofintegrated Gaussian processeswhich has been studied
extensively in [10].

The processY (t) is an (integrated) On-Off process with stationary increments.
For future use we give an explicit construction of such a process, following [16]:
Let {Ton,m,m ≥ 0} be a sequence of i.i.d. random variables representing the On-
periods of the source. Similarly, let{Toff,m,m ≥ 0} be the Off-periods; generic
On- and Off-periods are denoted byTon andToff . Define further an independent
random variableI such that

p = P{I = 1} = E{Ton}
E{Ton} + E{Toff} = 1− P{I = 0}.

To obtain a stationary alternating renewal process, we define the delay random
variableD0 by

D0 = IT r
on,0 + (1− I )(T r

off,0 + Ton,0).

Then the delayed renewal sequence

{Zn,n ≥ 0} =
{
D0,D0 +

n∑
m=1

(Toff,m + Ton,m), n ≥ 1

}

is stationary.
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Next, we define the process{J (t), t ≥ 0} as follows.J (t) is the indicator of the
event that the source is On at timet . Formally, we have

J (t) = I1{t<T r
on,0} + (1− I )1{T r

off,0≤t<T r
off,0+Ton,0} +

∞∑
n=0

1{Zn+Toff,n+1≤t<Zn+1}.

The On-Off process{J (t), t ≥ 0} is strictly stationary, see Theorem 2.1 of [16].
The process{Y (t), t ≥ 0} is then defined by

Y (t) := r

∫ t

0
J (s) ds.

Note that the mean rate ofY (t) is ρ = pr . We assumeρ < c to ensure thatV c
X+Y

is finite a.s.
For the distribution of the On-periodTon we impose the following condition in

Section 3 (a similar condition has been introduced by Borovkov [6] in a related
problem):

T1. The tail of the random variableT has the formP{T > u} = e−L(u)uβ
, with

0 < β < 1, andL(u) slowly varying and twice differentiable. Moreover,
L′(t) = o(L(t)/t) andL′′(t) = o(L(t)/t2).

The next result shows that a random variableT is subexponential if it
satisfies T1. In fact, one can derive a slightly stronger result:

LEMMA 2.1. If T satisfiesT1, thenT ∈ S∗. In particular, T,T r ∈ S.

PROOF. The hazard functionQ and hazard rateq of T are given byQ(u) =
L(u)uβ and

q(u) = βL(u)uβ−1 + uβL′(u).

Hence, we haveq(u) → 0,uq(u) → ∞ anduq(u)/Q(u) → β ∈ (0,1). According
to Corollary 3.9 of [15], this implies thatT ∈ S∗, which in turn impliesT,T r ∈ S.

�

3. Moderately heavy tails and moderate deviations. In this section we
assume thatY (t), t ≥ 0, is an integrated On-Off process with peak rater > c and
that X(t) = W(t), t ≥ 0, is a standard Brownian motion. Under this condition,
following Theorem 3.2 in [19], the reduced-load equivalence (1.2) then holds if

P{Ton > u} ∼ P
{
Ton > u − √

u
}
.(3.1)

If Ton has a Weibullian tail of the forme−uβ
, then (3.1) and (1.2) both hold if

β < 1/2. Moreover, neither (3.1) nor (1.2) holds ifβ > 1/2. If (3.1) does not
hold, then we callTon moderately heavy-tailed, following [3]. This section aims to
obtain the tail asymptotics ofV c

X+Y in the moderately heavy-tailed case.
DefineWµ(t) = W(t) + µt, t ≥ 0. Our main result is the following:
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THEOREM 3.1. If X(t) = W(t) is a standard Brownian motion, andY (t) is
an integrated On-Off process with peak rater > c, with Ton satisfyingT1, then

P{V c
X+Y > u} ∼ p

r − ρ

c − ρ
P{Wr−c(T

r
on) > u}.

To prove Theorem 3.1, we can exploit the fact thatW has independent
increments. This naturally leads to the framework of Asmussen, Schmidli and
Schmidt [4]: the increment process ofS(t) := W(t) + Y (t) − ct is regenerative,
with regeneration points being the ends of On-periods. Thus, the analysis consists
of two steps, which are carried out in Sections 3.1 and 3.2. In Section 3.1 we
investigate the tail behavior ofWr−c(T ), with T an independent subexponential
random variable. We believe that the results in this section are of independent
interest. After that, we apply the results of the first step to obtain the tail behavior
of V c

X+Y in Section 3.2, culminating in a proof of Theorem 3.1.

3.1. Sampling a Brownian motion at a subexponential time.Let T be a
random variable which is long-tailed and independent of{Wµ(t), t ≥ 0}. Define
the running maximumMµ(t) = sup0<s<t Wµ(s). The goal of this section is to
determine the tail behavior ofWµ(T ) for µ > 0. As the first step towards that
goal, we show thatWµ(T ) andMµ(T ) are tail-equivalent. The following lemma
establishes this tail equivalence under minimal assumptions.

LEMMA 3.1. If T ∈ L, then Wµ(T ),Mµ(T ) ∈ L, and P{Wµ(T ) > u} ∼
P{Mµ(T ) > u}.

PROOF. Define forx > 0, τ (x) := inf{t :Wµ(t) = x} and fixy > 0. Note that
τ (x + y)

d= τ̄ (x) + τ̄ (y), with the latter two random variables distributed asτ (x)

andτ (y), but mutually independent. Write, for someM andK ,

P{Mµ(T ) > x + y}
P{Mµ(T ) > x} = P{T > τ̄ (x) + τ̄ (y)}

P{T > τ(x)}
≥ P{τ (y) < M}P{T > τ(x) + M}

P{T > τ(x)}
≥ P{τ (y) < M}

∫ ∞
K

P{T > z + M}
P{T > z} dP{τ (x) ≤ z}.

Note that, sinceT ∈ L, we can choose (for eachε > 0,M < ∞) an appropriate
constantK = K(M,ε) such that

P{T > z + M}
P{T > z} ≥ 1− ε
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whenz ≥ K . Combining these observations gives the lower bound

P{Mµ(T ) > x + y}
P{Mµ(T ) > x} ≥ (1− ε)P{τ (y) < M}P{τ (x) > K}.(3.2)

Noting thatτ (x) → ∞ a.s. asx → ∞, we obtain the propertyMµ(T ) ∈ L by
letting firstx → ∞ in (3.2) and thenε → 0, M → ∞.

Next, observe that

P{Mµ(T ) > x}
≤ P{Wµ(T ) ≥ x − y} + P{Wµ(T ) < x − y;Mµ(T ) > x}
≤ P{Wµ(T ) ≥ x − y} + P{τ (x) < T ;Wµ(T ) − Wµ(τ(x)) < −y}

≤ P{Wµ(T ) ≥ x − y} + P

{
τ (x) < T ; inf

t>τ(x)
[Wµ(t) − Wµ(τ(x))] < −y

}

= P{Wµ(T ) > x − y} + P{Mµ(T ) > x}P{
V

µ
W0

> y
}
,

where the last equality follows from the strong Markov property forWµ(t). We
conclude that

P{Wµ(T ) > x − y} ≥ P{Mµ(T ) > x}P{
V

µ
W0

≤ y
}
.

From this inequality, the obvious property

P{Wµ(T ) > x − y} ≤ P{Mµ(T ) > x − y},
and the fact thatMµ(T ) ∈ L, one obtains the tail equivalence ofWµ(T ) and
Mµ(T ), and, in particular, the propertyWµ(T ) ∈ L. �

We now examine the tail behavior ofP{Wµ(T ) > u} as u → ∞ in the
moderately heavy-tailed regime. A related problem has been investigated by Foss
and Korshunov [14]: they consider the random variableN(T ), with N(·) a renewal
process. As their analysis shows, the computations in the moderately heavy-tailed
regime are very technical. We could apply a similar approach here (using explicit
formulas for Brownian motion and the Laplace method), but we will follow a
different approach: we construct a renewal processNµ(t) with the property

Mµ(t) − 1 ≤ Nµ(t) ≤ Mµ(t),(3.3)

which, in view of Lemma 3.1, reduces the problem to the one studied in [14]. This
approach avoids a lot of tedious computations and may be of independent interest.

We construct the renewal processNµ(t) as follows. Define a sequence of
stopping timesτi , i ≥ 1, by

τi := inf{t :Wµ(t) = i}.
Then, define

Nµ(t) := max{n : τn ≤ t}.
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It is obvious that (3.3) holds. Moreover,Nµ(t) is a renewal process, sinceτi −τi−1,
i ≥ 1, is an i.i.d. sequence. Define

�(x) = sup
y

[xy − logE{eyτ1}].

Let λ(x) be the optimizing point in the above supremum. Since

E{eyτ1} = eµ−
√

µ2−2y,

we have

�(x) = µ2

2
x − µ + 1

2x
and λ(x) = µ2

2
− 1

2x2
.

We now state the main result of this section.

PROPOSITION3.1. If T satisfiesT1, then

P{Wµ(T ) > u} ∼ P{Mµ(T ) > u}
∼ P{Nµ(T ) > u} ∼ e−H(t(u),u),

with H(t, u) = Q(t) + u�(t/u) andt (u) a solution ofQ′(t) = −λ(t/u).

PROOF. Assumption T1 implies thatQ(u) = − logP{T > u} is twice dif-
ferentiable and thatuQ′′(u) → 0. This allows us to apply Theorem 5.1 of [14]
to obtain the tail behavior ofNµ(T ). The remaining assertions follow from
Lemma 3.1, (3.3) and the fact thatT ∈ L. �

If T has a Weibullian tail, that is,Q(u) = uβ , 0 < β < 1, then Lemma 6.3
of [14] implies

u/µ − t (u) ∼ uQ′(u/µ) = βuβµ1−β.(3.4)

This indicates that a large value ofWµ(T ) is caused by a realization ofT which is
aboutu/µ − βuβµ1−β , which implies thatWµ(u) − µu must be of the orderuβ .

Hence, if 1/2 < β < 1 [in which case the asymptotic equivalenceP{Wµ(T ) >

u} ∼ P{µT > u} does not hold], thenWµ(u) − µu contributes to the asymptotics
by means of itsmoderate deviations. If β < 1/2, then the deviation ofWµ(u) from
its mean falls within the fluctuations at the CLT level, in which caseP{Wµ(T ) >

u} ∼ P{µT > u}. This can be shown using Proposition 3.1 (see [14]) or, directly,
by invoking results from [19].

We conclude this section with two results which are of crucial importance in
the next section. The first result concerns the question whether or not the tail
distribution ofWµ(T ) is subexponential.

PROPOSITION3.2. If T satisfiesT1, thenWµ(T ) ∈ S∗.
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PROOF. Define an auxiliary random variableZ such thatP{Z > u} =
e−H(t(u),u). First, we show thatZ ∈ S∗. SinceS∗ is closed under tail equivalence,
this implies thatWµ(T ) andMµ(T ) are inS∗ as well. According to Corollary 3.9
in [15], it suffices to show that the hazard rateqZ(u) of Z is regularly varying of
index ν ∈ (−1,0). In fact, we will prove thatqZ(u) = d

du
H(t (u), u) is regularly

varying of indexβ − 1. From the expression forH(t(u), u) we obtain

qZ(u) = t ′(u)Q′(t (u)) + µ2

2
t ′(u) − µ + u

t(u)
− 1

2

u2

t (u)2 t ′(u),

wheret ′(u) satisfies

Q′′(t (u)t ′(u)
) = u

t(u)2
− u2

t (u)3
t ′(u).

From this equation, it can be shown, using T1, that there exists a constantκ such
that

t ′(u) = 1

µ
+ (

κ + o(1)
)
L(u)uβ−1.

Using a similar calculation (see also [14]), one can show that

t (u) = u

µ
− βµ1−βuβL(u)

(
1+ o(1)

)
.

Combining the above equations, one obtains, after a tedious but straightforward
computation, thatqZ(u) is, indeed, regularly varying of indexβ − 1.

Thus, we conclude thatZ ∈ S∗. By Proposition 5.1,Wµ(T ) and Z are tail-
equivalent. SinceS∗ is closed under tail equivalence, it follows thatWµ(T ) ∈ S∗.

�

A second question in the next section concerns the tail behavior of both
Mµ(T r) andMµ(T )r , with T an On-period. Clearly, these random variables have
different distributions in general. However, the next proposition shows that they
are tail-equivalent ifT is long-tailed:

PROPOSITION3.3. If T ∈ L, then

P{Mµ(T r) > u} ∼ E{Mµ(T )}
µE{T } P{Mµ(T )r > u}.

PROOF. Write

I := P{Mµ(T r) > u}
= P{T r > τ(u)} = 1

E{T }E
{(

T − τ (u)
)
1{T >τ(u)}

}
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and

II := P{Mµ(T )r > u}
= 1

E{Mµ(T )}E
{(

M(T ) − u
)
1{T >τ(u)}

}
.

Now consider the following linear combination of the expectations inI andII :

P (u) := µE
{(

T − τ (u)
)
1{T >τ(u)}

} − E
{(

Mµ(T ) − u
)
1{T >τ(u)}

}
= E

{[
µ

(
T − τ (u)

) − (
Mµ(T ) − u

)]
1{T >τ(u)}

}
.

Conditioning onT andτ (u), we obtain

P (u) =
∫ ∞
y=0

dP{T ≤ y}
∫ y

z=0
dP{τ (u) ≤ z}E{

µ(y − z) − (
Mµ(y) − u

)|τ (u) = z
}
.

To simplify this expression, we investigate the distribution ofMµ(y)−u|τ (u) = z,
with 0 < z ≤ y. Note that

Mµ(y) = sup
{
Mµ(z),Wµ(z) + sup

z≤s≤y
[Wµ(s) − Wµ(z)]

}
.(3.5)

Since the conditionτ (u) = z is a.s. equivalent toWµ(z) = Mµ(z) = u, we get
from (3.5) that, ifτ (u) = z,

Mµ(y) − u = sup
z≤s≤y

[Wµ(s) − Wµ(z)].(3.6)

Using the strong Markov propery and the fact thatWµ(t), t ≥ 0, has stationary
increments, we can conclude from (3.6) thatMµ(y) − u|τ (u) = z is distributed as
Mµ(y − z). Thus, we have

P (u) =
∫ ∞
y=0

dP{T ≤ y}
∫ y

z=0
dP{τ (u) ≤ z}E{µ(y − z) − Mµ(y − z)}.

SinceE{Mµ(t)} ≥ µt , we obtain

|P (u)| = ∣∣E{[
µ

(
T − τ (u)

) − (
Mµ(T ) − u

)]
1{T >τ(u)}

}∣∣
(3.7)

=
∫ ∞
y=0

dP{T ≤ y}
∫ y

z=0
dP{τ (u) ≤ z}E{Mµ(y − z) − µ(y − z)}.

Using the definition ofMµ(t) and the self-similarity of Brownian motion, we have

E
{(

Mµ(t) − µt
)} ≤ √

tE

{
sup

0<s<1
W(s)

}
:= W̄

√
t .

Inserting this in (3.7) and integrating overy andz, we obtain

|P (u)| ≤ W̄E
{√

T − τ (u)1{T >τ(u)}
}
.(3.8)
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Noting that
√

t ≤ 1/ε + εt for anyε > 0 and anyt ≥ 0, we deduce from (3.8)

|P (u)| ≤ 1

ε
W̄P{T > τ(u)} + εW̄E

{(
T − τ (u)

)
1{T >τ(u)}

}
.

SinceT is long-tailed,T r is long-tailed as well. Thus, we have, asu → ∞, because
τ (u) → ∞ a.s.,P{T > τ(u)}/P{T r > τ(u)} → 0. We conclude that for anyε > 0,

lim sup
u→∞

|P (u)|
P{T r > τ(u)} ≤ εW̄E{T },

that is, |P (u)| = o(P{T r > τ(u)}). Using the definitions ofI , II andP (u), we
conclude that

P{Mµ(T r) > u} ∼ E{Mµ(T )}
µE{T } P{Mµ(T )r > u},

which completes the proof.�

3.2. Workload asymptotics.In this section, we apply the results of the
previous section to obtain the tail asymptotics of the workloadV c

X+Y . As
mentioned earlier, we will follow the framework of Asmussen, Schmidli and
Schmidt [4]. Recall that the increment process associated withS(t) = X(t) +
Y (t) − ct [with X(t) ≡ W(t)] is regenerative w.r.t. the delayed renewal process
{Zn,n ≥ 0} defined in Section 2. Thus, we consider the embedded process

Sn := X(Zn) + Y (Zn) − cZn =: U0 + U1 + · · · + Un.

Note thatSn − S0, n ≥ 1, is a random walk. Furthermore, define

M0 := sup
0<t<Z0

S(t),

Mn = sup
Zn−1<t<Zn

[S(t) − Sn−1].

In order to obtain the asymptotics ofV c
X+Y , we apply the results of Section 3.2

of [4]. To check the assumptions stated there, we need the asymptotic behavior of
the random variablesU0, U1, M0 andM1. This is covered by the following lemma.

LEMMA 3.2. (i) If Ton satisfiesT1, thenU0,M0 ∈ S, and

P{U0 > u} ∼ P{M0 > u} ∼ pP{Wr−c(T
r
on) > u}.

(ii) If Ton satisfiesT1, thenU1,M1 ∈ S∗, and

P{U1 > u} ∼ P{M1 > u} ∼ P{Wr−c(Ton) > u}.
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PROOF. We only prove the statement forU0 andM0 (the proof forU1 andM1

is similar, but easier). Recall the construction of the On-Off process given in
Section 2. With a slight abuse of notation, we can write

U0
d= IWr−c(T

r
on) + (1− I )

(
W−c(T

r
off) + Wr−c(Ton)

)
.

In this expression, all components are independent. BecauseW−c(T
r
off) ≤

supt>0 W−c(t), this random variable is light-tailed. Second, sinceTon ∈ L, we have
P{Ton > u} = o(P{T r

on > u}). This implies, using Lemma 3.1,

P{Wr−c(Ton) > u} ∼ P{Mr−c(Ton) > u}
= P{Ton > τ(u)}
= o

(
P{T r

on > τ(u)})
= o

(
P{Mr−c(T

r
on) > u})

= o
(
P{Wr−c(T

r
on) > u}).

By a straightforward application of Propositions 3.1–3.3, it follows thatMr−c(T
r
on)

is subexponential ifTon satisfies T1. Thus, using standard properties of subexpo-
nential distributions, we conclude that

P{U0 > u} = pP{Wr−c(T
r
on) > u} + (1− p)P{W−c(T

r
off) + Wr−c(Ton) > u}

∼ pP{Wr−c(T
r
on) > u}.

Moving now to the tail behavior ofM0, note that (with a slight abuse of notation)

M0 ≤ IMr−c(T
r
on) + (1− I )

(
sup
t>0

B−c(t) + Mr−c(Ton)

)
.

Hence, using a similar argument as above, we obtain

P{M0 > u}<∼pP{Mr−c(T
r
on) > u} ∼ pP{Wr−c(T

r
on) > u}.

The asymptotic lower bound is trivial, sinceM0 ≥ U0. �

PROOF OF THEOREM 3.1. Lemma 3.2 allows us to apply Corollary 3.2(ii)
of [4], which yields

P{V c
X+Y > u} ∼ P{U0 > u} + P

{
sup
n≥1

Sn − S0 > u

}
.(3.9)

The first term is covered by Lemma 3.2. To deal with the second term, note that
in view of Lemma 3.2(ii),[U+

1 ]r ∈ S. Using Veraverbeke’s theorem [22], we then
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obtain

P

{
sup
n≥1

Sn − S0 > u

}

∼ 1

−[E{Wr−c(Ton)} + E{W−c(Toff)}]
×

∫ ∞
u

P{Wr−c(Ton) + W−c(Toff) > v}dv

∼ 1

−[E{Wr−c(Ton)} + E{W−c(Toff)}]
∫ ∞
u

P{Mr−c(Ton) > v}dv

= 1

−[(r − c)E{Ton} − cE{Toff}]E{Mr−c(Ton)}P{Mr
r−c(Ton) > u}.

Finally, noting that

p = E{Ton}
E{Ton} + E{Toff} , ρ = rp,

we conclude that

P

{
sup
n≥1

Sn − S0 > u

}
∼ p

c − ρ

E{Mr−c(Ton)}
E{Ton} P{Mr

r−c(Ton) > u}.

Thus, by (3.9) and Proposition 3.3, we obtain

P{V c
X+Y > u} ∼ p

r − ρ

c − ρ
P{Mr−c(T

r
on) > u}.

Applying Lemma 3.1 completes the proof.�

4. Oscillatory behavior. In this section we assume thatX(t) is Gaussian
satisfying C1 and C2 and thatY (t) is an integrated On-Off process with peak rater .
The main difference from the previous section is that we now assume thatr = c.
Under this critical condition, the processS(t) = X(t) + Y (t) − ct will oscillate
during the On-periods ofY . The next theorem gives the main result of this section.

THEOREM 4.1. If X(t) has stationary increments and satisfies conditions
C1andC2,andY (t) is an integrated On-Off process withTon regularly varying of
index−ν < −1 such thatP{T r

on > u} = L(x)u1−ν with L(·) slowly varying, then

P{V r
X+Y > u} ∼ pE

{
B̄

H(ν−1)
H

}
P{σX(T r

on) > u},
with H = α/2 andB̄H = sup0≤s≤1 BH(s). In particular, V r

X+Y is regularly varying
of index(1− ν)/H .
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Theorem 4.1 shows that the heaviness of the tail ofV r
X+Y is a combined effect of

the heaviness ofT r
on and the degree of dependence inX. Informally, a large value

of V c
X+Y is most likely caused by a single long On-period which started at time 0.

During this long On-period, the net input process has zero drift. This implies that
the net input process at timet is O(σX(t)). Hence, in order to reach levelu, the
length of the On-period has to beO(σ−1

X (u)).
In the proof of Theorem 4.1, we make these heuristics precise. Before we give

a proof, we first present some auxiliary results. The following lemma is taken
from [11].

LEMMA 4.1. Under the conditions of Theorem4.1,we have

P

{
sup

0≤t≤T r
on

X(t) > u

}
∼ E

{
B̄

H(ν−1)
H

}
P{σX(T r

on) > u}.

The main idea of the proof of Theorem 4.1 is to separate the processesX andY

by adding and subtracting nonlinear perturbations. To handle such perturbations,
we need a further auxiliary lemma, which is Proposition 1 of [12].

LEMMA 4.2. Let X(t) be a centered Gaussian process satisfying conditions
C1 andC2. If η > α/2, then

logP

{
sup
t≥0

[X(t) − dtη] > u

}
∼ −1

2
dα/η

(
α

2η − α

)−α/η(
2η

2η − α

)2 u2

σ 2
X(u1/η)

.

PROOF OFTHEOREM 4.1. The lower bound is trivial, in view of Lemma 4.1
and the construction of the processY (t) given in Section 2.

For the upper bound, write for someγ ∈ (0,1),

P

{
sup
t≥0

S(t) > u

}
≤ P

{
sup
t≤Z0

S(t) > (1− γ )u

}
+ P

{
sup
t>Z0

S(t) − S(Z0) > γ u

}
.

We need to show that the second term can be asymptotically neglected. Using
sample-path arguments, we have

P

{
sup
t>Z0

S(t) − S(Z0) > γ u

}

= P

{
sup
t>Z0

[X(t) − X(Z0) + Y (t) − Y (Z0) − r(t − Z0)] > γu

}

≤ P

{
sup
t>Z0

[Y (t) − Y (Z0) − r(t − Z0) + d(t − Z0)
η] > γu/2

}

+ P

{
sup
t>Z0

[X(t) − X(Z0) − d(t − Z0)
η] > γu/2

}

= I + II ,
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where we take 1> η > α/2 andd small.
We first deal with termI . Observe that

d(Zn − Z0)
η ≤ d

n∑
i=1

(Zi − Zi−1)
η,

from which it follows that

I ≤ P

{
sup
n≥1

Sn > γu/2
}
,

whereSn is a random walk with generic step sizeU = dT
η
on + dT

η
off − rToff .

We can choosed small enough such thatU has negative mean. Noting that
dT

η
off − rToff is bounded from above, we conclude that the right tail ofU is

regularly varying. This allows us to apply Veraverbeke’s theorem [22], yielding

I ≤ P

{
sup
n≥1

Sn > γu/2
}

∼ 1

−E{U }
∫ ∞
γ u/2

P{U > y}dy,

which is regularly varying of index 1− νη. We can chooseη such that 1− νη >

(1− ν)H (i.e.,η < H + 1−H
ν

).
We now turn to termII . This term is somewhat easier: sinceX(t) has stationary

increments, we have

II = P

{
sup
t≥0

[X(t) − dtη] > x

}
.

This probability is decaying faster than any polynomial, in view of Lemma 4.2.
Thus, we can conclude that, for anyγ > 0,

P

{
sup
t≥0

S(t) > u

}
<∼P

{
sup
t≤Z0

S(t) > (1− γ )u

}
.(4.1)

We finally evaluate the probability on the right-hand side by conditioning upon the
state of the On-Off processJ at time 0

P

{
sup
t≤Z0

S(t) > (1− γ )u

}

= pP

{
sup

t≤T r
on

X(t) > (1− γ )u

}

+ (1− p)P

{
sup

t≤T r
off+Ton

[Y (t) + X(t) − rt] > (1− γ )u

}
.

Using similar methods as above, it is straightforward to show that the second
term is regularly varying of index−ν/H . From the proof of the lower bound, we
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already know that the first term is regularly varying of index(1 − ν)/H . Hence,
we conclude from (4.1) and Lemma 4.1,

lim sup
u→∞

P{supt≥0 S(t) > u}
pE{B̄H(ν−1)

H }P{T r
on > σX(u)} ≤ (1− γ )−(1−ν)/H

for all γ > 0. �

We conclude this section by noting that the pre-factorE{B̄H(ν−1)
H } can be

computed explicitly whenH = 1/2, or, equivalently, whenα = 1:

COROLLARY 4.1. In addition to the assumptions of Theorem4.1,assume that
X(t) satisfies conditionsC1andC2,with α = 1. Then

P{V r
X+Y > u} ∼ p

1√
π

21+ν�

(
ν + 1

2

)
P{σX(T r

on) > u}.

PROOF. The result follows in a straightforward manner from Theorem 4.1,
combined with Proposition 2.1 in [11].�

5. Large deviations: reduced-peak equivalence. In this section we consider
the case thatX is Gaussian andY is an integrated On-Off process with peak rate
r < c. We assume that the tail ofV d

Y , ρ < d < r , is heavier than that ofV c
X.

Under these conditions, it is clear that a reduced-load equivalence cannot hold.
Informally, one can observe thatX cannot be replaced by its mean (0), since
V c

Y ≡ 0, nor canY be replaced by its mean, since it has heavier tails thanX. In
fact, the next theorem shows thatbothX andY need to show atypical behavior in
order for the processS(t) = X(t) + Y (t) − ct to reach a large value.

THEOREM 5.1. Suppose that the processX(t) has stationary increments and
satisfies conditionsC1 and C2. Furthermore, let Y (t) be an integrated On-Off
process, with T r

on regularly varying, andr < c. Then

P{V c
X+Y > u} ∼ pP{V c−r

X > u}P
{
T r

on >
1

c − r

α

2− α
u

}
.

Theorem 5.1 may be combined with results in [10] or [17] to obtain an explicit
expression for the asymptotic behavior ofP{V c

X+Y > u}. A similar “reduced-peak”
equivalence result has been proved in Theorem 3.1 of [7] for the case where
X is not a Gaussian process, but a general light-tailed process satisfying a large-
deviations principle.

PROOF OFTHEOREM 5.1. Lettu = 1
d

α
2−α

u. To let Theorem 3.1 of [7] carry
over to the setting of the present paper, it is sufficient to prove analogues of
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Propositions 2.1 and 2.2 of [7]. In our setting, these propositions state that, for
everyd > 0, asu → ∞,

uβ
P{V d+δ

X > u}
P{V d

X > u} → 0, β < ∞,(5.1)

uβ
P{V d

X([0, (1− ε)tu]) > u}
P{V d

X > u} → 0, ε > 0, β < ∞,(5.2)

P{V d
X([0, (1+ ε)tu]) > u}

P{V d
X > u} → 1, ε > 0.(5.3)

Thus, it is sufficient to prove (5.1)–(5.3). To prove (5.1), note that Lemma 4.2 with
η = 1 implies that, for some constantC = Cd,δ > 0,

P{V d+δ
X > u}

P{V d
X > u} = e−C(1+o(1))u2/σ2

X(u),

which implies (5.1).
To prove (5.3), we defineτ (u) := inf{t :X(t)−dt = u} and note that Theorem 1

in [12] implies thatτ (u)/tu → 1 in P{·|τ (u) < ∞}-probability.
It remains to prove (5.2). For this, defineXu(t) = X(t)/(u + dt). Using the

Borell inequality ([1], page 43), we obtain, for allu > 0,

P
{
V d

X

([0, (1− ε)tu]) > u
}

= P

{
sup

t∈[0,(1−ε)tu]
Xu(t) > 1

}

≤ 2 exp
(
−

(
1− E

{
sup
t≥0

Xu(t)

})2

min
t≤(1−ε)tu

(u + dt)2

2σ 2
X(t)

)
.

Since limu→∞ E{supt≥0 Xu(t)} = 0, by Lemma 2.2 in [9], we have

log
(
P

{
V d

X

([0, (1− ε)tu]) > u
})

<∼ − min
t≤(1−ε)tu

(u + dt)2

2σ 2
X(t)

.

Using the uniform-convergence theorem for regularly varying functions, we obtain

lim
u→∞

σX(u)2

u2 min
t≤(1−ε)tu

(u + dt)2

2σ 2
X(t)

= lim
u→∞ min

s≤(1−ε)α/(d(2−α))

(1+ ds)2

2σ 2
X(su)/σ 2

X(u)

= min
s≤(1−ε)α/(d(2−α))

(1+ ds)2

2sα

= dα (1+ (1− ε)α/(2− α))2

2(1− ε)α

(
α

2− α

)α

> 2dα (2− α)α−2

α2
,
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where the last inequality is valid for allε > 0.
Now note that, in view of Lemma 4.2,

log(P{V d
X > u}) ∼ −2dα (2− α)α−2

α2
u2/σ 2

X(u).

Putting everything together, we conclude that, for everyε > 0, there exists a
constantKε such that

P{V d
X([0, (1− ε)tu]) > u}

P{V d
X > u} ≤ e−Kε(1+o(1))u2/σ2

X(u).

This implies (5.2). �
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