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We investigate the tail asymptotics of the supremuri ¢f) + Y (¢) — ct,
where X = {X(¢),r > 0} and Y = {Y(¢),r > O} are two independent
stochastic processes. Wassume that the proceds has subexponential
characteristics and that the proce¥sis more regular in a certain sense
thanY. A key issue examined in eantistudies is under what conditions
the processX contributes to large values of the supremum only through its
average behavior. The present paper studies various scenarios where the latter
is not the case, and the proceXsshows some form of “atypical” behavior
as well. In particular, we consider a fluid model fed by a Gaussian protess
and an (integrated) On-Off proceBsWe show that, depending on the model
parameters, the Gaussian process may contribute to the tail asymptotics by its
moderate deviations, large deviations, or oscillatory behavior.

1. Introduction. Consider two independent stochastic procedses{X (z),
t >0} andY = {Y(),t > 0}. In the present paper we investigate the tail
asymptotics of the supremum of the superpositioXaindY with an additional
linear drift term, that is, we are interested in the behavior of

(1.1 ]P’{squ(t)+Y(t) — ct] >u}, u— 00.
t>0

The latter probability may be interpreted as an overflow probability in queueing
theory, but also as a ruin probability. Motivated by applications in both queueing
and ruin problems, we are especially interested in the case where at least one of
the processeX¥ andY hassubexponentiatharacteristics.

A key problem which has received a lot of attention is under what conditions
the proces¥ in (1.1) can be replaced by its mean, that is, under what conditions

(1.2) P{sup{X(z) +Y(@) —ct] > u} ~ P{squ(t) —ct] > u}, U — 00,
>0 >0

when E{X (r)} = 0. Such an asymptotic equivalence is commonly termed a

“reduced-load” equivalence. Results of the form (1.2) have been shown to hold

under various assumptions; see, for instance, [2, 8, 18-21, 23, 24].
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The goal of the present paper is to examine various scenarios that may arise
when (1.2) doesothold, and the process contributes to the asymptotics in (1.1)
by behaving in some “atypical” manner as well. Throughout the papes
assumed to be an (integrated) On-Off process: during On-pefadsincreases
at rater, while Y () remains constant during Off-periods. The “noise” procEss
is assumed to be Gaussian with zero mean; precise definitions and assumptions
concerningX andY are given in Section 2. The value of the raterelative to
the negative drific, has a crucial effect on the qualitative behavior of (1.1). All
references listed above consider sufficient conditiongfdk) in the case > c.

In the opposite case< c, the right-hand side of (1.2) is 0 sin@d&r) < rt, so that
(1.2) cannot hold.

After a more detailed model description in Section 2, we will state the main
result of the paper in Section 3 which considers the gasec. In this case,
(1.2) may or may not hold, depending on the tail behavior of the On-p&ied
If X is a Brownian motion, then (1.2) holds #{Ton > u} ~ P{Ton > u — /u}
asu — oo; see Theorem 3.1 in [19]. Here, we investigate what happens when
this isnot the case, and show that may then contribute to the tail behavior of
Viiy = SUpsolX (1) + Y(¢) — ct] in a quite complicated fashion. Informally
speaking,X contributes to large values ofy_ , by its moderatedeviations.

The first part of Section 3 considers the strongly related problem of sampling a
Brownian motion at a subexponential time. This part relies on recent work of Foss
and Korshunov [14]. In Sections 4 and 5 we turn to the oasec, which, as
mentioned above, implies that the right-hand side of (1.2) is 0. In this case, the
typical way forVy _ , to reach a large value is fundamentally different, depending
on whether < ¢ or r = ¢ (obviously, both cases differ from the case- ¢). In

the case = ¢, which is treated in Section 4, a large value‘qf” is associated
with a single long On-period df and oscillatory behavior of . In the case < ¢,
which is studied in Section 5, the tail behaviorldf, , is determined by the large-
deviations behavior oKX, which needs to occur during a single long On-period
generated by the procegs

2. Model description and preliminaries. We consider the supremum
Viiy =SUpsolX () + Y () — ct] of the superposition of two independent sto-
chastic processes = {X (¢),t > 0} andY = {Y (¢), ¢t > 0} with an additional drift
term. We assume that{ X (1) + Y (1)} < c to ensure that’y_ , is finite a.s.

Note thatVy  , may be interpreted as the “buffer content” in steady state
in a fluid queue with “drain ratet, with X(z) and Y (t) denoting the amount
of traffic generated by the process¥sandY during the time interva[—¢, 0].

We will frequently make comparisons with the buffer content for each of the
two processes in isolation. For> E{X (1)} and D C [0, oo), defineVg (D) :=
SURcplX () — ct], and letVy := V¢ ([0, oo)) be a random variable representing
the steady-state workload in a buffer with drain rated by the procesX only;

Vy (D) andVy are defined similarly.
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Before specifying the processEsandY in more detail, we first introduce some
useful notational conventions and conceptq. i a honnegative random variable
with finite mean, thel'” is a random variable with densi{7T > x}/E{T}. For
any two real functions(-) andg(-), we usef (u) ~ g(u) to denote thatf (u) =
gw)(1+ o(1)) asu — oo, that is, lim,_,o f(u)/gu) = 1. We further write
fu) < g(u) to indicate that limsup, ., f(u)/g(u) < 1. We use various classes
of distributions. In particular, we consider the clag®f long-tailed distributions,
the classs of subexponential distributions and the cla®sof regularly varying
distributions. We also consider the subcl&gsof 8. For definitions and further
background on these classes, we refer to [13].

Throughout the paper, the proceXg:) is a centered [i.e.E{X(¢)} = 0]
Gaussian process with stationary increments, a.s. continuous sample paths,
X (0) =0 a.s., and variance function \{&f(z)} = a)% (1). We impose the following
conditions in Sections 4 and 5:

Cl. 62(t) € C ([0, 00)) is increasing;
C2. o2(¢) is regularly varying at O with indeg € (0,2] ando2(z) is regularly
varying atoo with indexa € (0, 2).

Two important examples satisfying C1 and C2 are (i) fractional Brownian
motion with Hurst parametel € (0, 1) [in this paper denoted bBy (), t > 0]
and (i) the class ofintegrated Gaussian processeghich has been studied
extensively in [10].

The proces¥ () is an (integrated) On-Off process with stationary increments.
For future use we give an explicit construction of such a process, following [16]:
Let {Tonm, m > 0} be a sequence of i.i.d. random variables representing the On-
periods of the source. Similarly, |1 ,,, m > 0} be the Off-periods; generic
On- and Off-periods are denoted By, and Tp. Define further an independent
random variabld such that

p=P{I=1= EtTon) —1-P{I =0}.
E{Ton} + E{Tos}
To obtain a stationary alternating renewal process, we define the delay random
variable Dg by

Do =ITy o+ (1 — 1) (Tt 0+ Tono)-
Then the delayed renewal sequence

n
{Zm n= 0} =1 Dg, Do+ Z (Toff,m + Ton,m), n= 1

m=1

is stationary.
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Next, we define the proce$g(¢), t+ > 0} as follows.J (¢) is the indicator of the
event that the source is On at time~ormally, we have
o0
J@) =11yorr g+ Q= DLz (<i<1s o +Tono) + D UZut Tonia=t<Zusa)-
n=0
The On-Off proces$J(¢),t > 0} is strictly stationary, see Theorem 2.1 of [16].
The proces$Y (1), t > 0} is then defined by

Y (1) ::r/ot J(s)ds.

Note that the mean rate &f(z) is p = pr. We assume < c to ensure thavy_ ,
is finite a.s.

For the distribution of the On-periofl,, we impose the following condition in
Section 3 (a similar condition has been introduced by Borovkov [6] in a related
problem):

T1. The tail of the random variabl& has the formP{T > u} = e~L@*  with
0< B <1, andL(u) slowly varying and twice differentiable. Moreover,
L'(t) = o(L(t)/1) andL" (1) = o(L(t)/t?).

The next result shows that a random varialileis subexponential if it
satisfies T1. In fact, one can derive a slightly stronger result:

LEMMA 2.1. If T satisfiesT1,thenT € §*. In particular, T, T" € 8.

PrRooE The hazard functio® and hazard ratge of T are given byQ () =
L(u)u® and

q) = BLw)uP+uPL (u).

Hence, we have(u) — 0,uqg(u) — oo andug (u)/ Q) — B € (0, 1). According
to Corollary 3.9 of [15], this implies that € 8*, which in turn impliesT’, T" € $.
O

3. Moderately heavy tails and moderate deviations. In this section we
assume that (¢), ¢ > 0, is an integrated On-Off process with peak rate ¢ and
that X () = W(),r > 0, is a standard Brownian motion. Under this condition,
following Theorem 3.2 in [19], the reduced-load equivalence (1.2) then holds if

(3.1) P{Ton > u} ~ P{Ton > u — u}.

If Ton has a Weibullian tail of the forna=", then (3.1) and (1.2) both hold if

B < 1/2. Moreover, neither (3.1) nor (1.2) holds gf > 1/2. If (3.1) does not

hold, then we callly, moderately heavy-tailedollowing [3]. This section aims to

obtain the tail asymptotics dfy_ , in the moderately heavy-tailed case.
DefineW, (t) = W(t) 4+ ut, t > 0. Our main result is the following:
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THEOREM 3.1. If X(#r) = W(¢) is a standard Brownian motigrand Y (¢) is
an integrated On-Off process with peak rate ¢, with Ty, satisfyingT1, then

c r—p ,
P{Vx y >u}~ me{Wr—c(Ton) > u}.

To prove Theorem 3.1, we can exploit the fact th#t has independent
increments. This naturally leads to the framework of Asmussen, Schmidli and
Schmidt [4]: the increment process 8fr) := W(r) + Y (¢r) — ct is regenerative,
with regeneration points being the ends of On-periods. Thus, the analysis consists
of two steps, which are carried out in Sections 3.1 and 3.2. In Section 3.1 we
investigate the tail behavior d¥,_.(T), with T an independent subexponential
random variable. We believe that the results in this section are of independent
interest. After that, we apply the results of the first step to obtain the tail behavior
of V¢ in Section 3.2, culminating in a proof of Theorem 3.1.

3.1. Sampling a Brownian motion at a subexponential timeet 7" be a
random variable which is long-tailed and independentWsf, (), > 0}. Define
the running maximumV/, (1) = sug_,_, W, (s). The goal of this section is to
determine the tail behavior ¥, (T') for u > 0. As the first step towards that
goal, we show thaw,(T') and M, (T) are tail-equivalent. The following lemma
establishes this tail equivalence under minimal assumptions.

LEMMA 3.1. If T € £, then W, (T), M,(T) € &£, and P{W,(T) > u} ~
P{M,(T) > u}.

ProoFk Define forx > 0, t(x) :=inf{r: W, () = x} and fixy > 0. Note that

T(x +y) 4 T(x) + 7(y), with the latter two random variables distributedzds)
andz (y), but mutually independent. Write, for som¢ and K,

P{M,(T)>x+y} P{T>7(x)+7(y)}
P{M,(T) > x} P{T > 7(x)}
P{T > t(x) + M}
P{T > t(x)}
S PT >z+ M}

> P{z(y) < M} p de{f(x) <z}.

> P{z(y) < M}

Note that, sincel’ € £, we can choose (for each> 0, M < oco) an appropriate
constantk = K(M, ¢) such that

P(T >z + M) _

1_
P(T >z - °



SUBEXPONENTIAL ASYMPTOTICS 505

whenz > K. Combining these observations gives the lower bound
P{M,(T) > x + y}
P{M, (T) > x}

Noting thatz(x) — oo a.s. asx — oo, we obtain the property, (T) € L by
letting firstx — oo in (3.2) and therr — 0, M — oo.
Next, observe that

P{M,(T) > x}
<SPW(T)=zx =y} +P{W(T) <x —y; M,(T) > x}
SPW(T)zx =y} +P{t(x) <T; W (T) — Wy (t(x)) < —y}

(3.2) >(1A—-¢e)P{r(y) < M}P{r(x) > K}.

< B{W,(T) = x — ] +1P>{r<x> < T inf (W0 = W (e < —y}

=P{W,(T) > x — y} + P{M,(T) > x}P{Vy >y},
where the last equality follows from the strong Markov property Woy(z). We
conclude that
P{W,.(T) > x — y} = P{M,(T) > x}P{Vy < y}.
From this inequality, the obvious property
P{W,(T) > x — y} <P{M,(T) > x — y},

and the fact thatM,(T) € £, one obtains the tail equivalence &f,(7) and
M, (T), and, in particular, the property,(T) e L. O

We now examine the tail behavior &{W,(T) > u} asu — oo in the
moderately heavy-tailed regime. A related problem has been investigated by Foss
and Korshunov [14]: they consider the random variab{@), with N (-) a renewal
process. As their analysis shows, the computations in the moderately heavy-tailed
regime are very technical. We could apply a similar approach here (using explicit
formulas for Brownian motion and the Laplace method), but we will follow a
different approach: we construct a renewal prodés§) with the property

(3.3) M, (t) —L< N, (1) <M, (1),

which, in view of Lemma 3.1, reduces the problem to the one studied in [14]. This
approach avoids a lot of tedious computations and may be of independent interest.

We construct the renewal procesg, (r) as follows. Define a sequence of
stopping timeg;, i > 1, by

T c=inf{r: W, (1) =i}.
Then, define

N, (1) :=maX{n:t, <t}.
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Itis obvious that (3.3) holds. Moreovey,, (1) is a renewal process, since-7;_1,
i >1,isani.i.d. sequence. Define

A(x) =sudxy — logE{e”™}].
y

Let A(x) be the optimizing point in the above supremum. Since
E{e?™) = e~ M2—2y’

we have

2

1
A(x)=%x—“+g and A(x)=

We now state the main result of this section.

n? 1
2 2

PROPOSITION3.1. If T satisfiesT1,then
P{W,(T) > u} ~P{M,(T) > u}
~P{N,(T) > u} ~ e—H(t(u),u)’
with H(t,u) = Q(t) + uA(t/u) andz (u) a solution of Q' () = —A(t/u).

PROOF Assumption T1 implies thaQ(u) = —logP{T > u} is twice dif-
ferentiable and that Q”(u) — 0. This allows us to apply Theorem 5.1 of [14]
to obtain the tail behavior ofv, (7). The remaining assertions follow from
Lemma 3.1, (3.3) and the fact thAte £. [

If T has a Weibullian tail, that isQ(u) = u?, 0 < B < 1, then Lemma 6.3
of [14] implies

(3.4) ufp—t@w) ~uQ' /) = pufut=*.

This indicates that a large value ¥, (T') is caused by a realization @f which is
aboutu/u — Buf u'=#, which implies that,, (u) — nu must be of the order?.
Hence, if ¥2 < B < 1 [in which case the asymptotic equivaler®@Vv, (T') >
u} ~P{uT > u} does not hold], themV,, (u) — pu contributes to the asymptotics
by means of itsnoderate deviationsf g < 1/2, then the deviation o, (x) from
its mean falls within the fluctuations at the CLT level, in which cB&¢® ,(T') >
u} ~P{uT > u}. This can be shown using Proposition 3.1 (see [14]) or, directly,
by invoking results from [19].
We conclude this section with two results which are of crucial importance in
the next section. The first result concerns the question whether or not the tail
distribution of W,,(T') is subexponential.

PrROPOSITION3.2. |If T satisfiesT1,thenW,(T) € §*.
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PrOOF Define an auxiliary random variabl& such thatP{Z > u} =
e~ Hw.w) First, we show thaZ e 8*. Since$* is closed under tail equivalence,
this implies thatw, (T') and M, (T') are in8* as well. According to Corollary 3.9
in [15], it suffices to show that the hazard rate(u) of Z is regularly varying of
indexv € (—1,0). In fact, we will prove thatyz (u) = ;’—MH(t(u), u) is regularly
varying of indexg — 1. From the expression fd# (¢ (), u) we obtain

u 1 u?
+t(u) 2t(u)2

2
qzw) =1 (u)Q'(t(w)) + %l/(u) - t'(u),

wheret’ (1) satisfies

u2

0" (tt' (w)) = O t'(u).

u
tw)?  t(u
From this equation, it can be shown, using T1, that there exists a corstach
that

1
') ==+ (k + o(1))Lw)uf 1.
o’
Using a similar calculation (see also [14]), one can show that
u
t(u) = ﬁ — ﬂ,ul_ﬁuﬁL(u)(l + 0(1)).

Combining the above equations, one obtains, after a tedious but straightforward
computation, thag 7 (1) is, indeed, regularly varying of indek — 1.
Thus, we conclude thaf € 8*. By Proposition 5.1W,,(T) and Z are tail-
equivalent. Since§* is closed under tail equivalence, it follows tH&}, (7) € 8*.
O

A second question in the next section concerns the tail behavior of both
M, (T") andM,(T)", with T_an On-period. Clearly, these random variables have
different distributions in general. Maever, the next proposition shows that they
are tail-equivalent ifl" is long-tailed:

PropPOSITION3.3. If T € £, then

E{M (T
P{Mu(T") > u} ~ %P{Mﬂmr > u).

PROOE Write

[:=P{M,(T") > u}

1
=P{T" > t(u)} = mE{( — 1) L7}
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and
Il :=P{M,(T) > u}

1

=~ R{(M(T) — )L ).
(M, ()] {(M(T) = u)Lir=cuy}

Now consider the following linear combination of the expectationsamdll :
P(u) == pE{(T — 1)) Lr>ray} — B{(Mu(T) = u)Lirscy}
= B{[w(T — 7)) = (Mu(T) — ) [ 17>z} }-

Conditioning onT andzt (1), we obtain
Pu)= /:d]P’{T < y}/ziod]P’{f(u) <2 E{u(y —2) = (Mu(y) —u)|t(w) =z}.

To simplify this expression, we investigate the distributiod®f(y) —u|r (u) =z,
with 0 < z < y. Note that

(3.5) M, (y) =sup M, (z), W, (z) + sup[W,(s) — Wp,(z)]}-

z<s<y
Since the conditiorr (1) = z is a.s. equivalent toV, (z) = M, (z) = u, we get
from (3.5) that, ift (u) = z,

(3.6) M (y) —u= sup [Wy(s) = W.(2)].

I=s=y

Using the strong Markov propery and the fact tWt(z),r > 0, has stationary
increments, we can conclude from (3.6) that (y) — u|zr (1) = z is distributed as
M, (y — z). Thus, we have

00 y
P(u)= / BT <) / dP(E() S 2E(R(y —2) = M (y = ).
SinceE{M, (t)} > ut, we obtain

Pl = [B{[1(T — 7)) = (M (T) = ) 17}
&) —/OodP{R V[ dPlea < aBM 0 -2 — p - 2)
=/ <y - T(u) <z ply —2) = ply —2)j.

Using the definition of\/,, (r) and the self-similarity of Brownian motion, we have

E{(M,(t) — pnt)} < ﬁE{ sup W(s)} =W/t

O<s<1
Inserting this in (3.7) and integrating ovelandz, we obtain

(3.8) |P(u)| < WE{VT — 1) L(T>r () }-
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Noting that/r < 1/e + et for anye > 0 and any > 0, we deduce from (3.8)
1. -
|P(u)| < EWIP{T >t(u)}+ SWE{(T — t(u))]l{r>f(u)}}.

SinceT is long-tailed,T” is long-tailed as well. Thus, we haveas> oo, because
t(u) »> oo a.s.P{T > t(u)}/P{T" > t(u)} — 0. We conclude that for any> 0,

lim sup& < eWE(T)}
Uu— 00 ]P{Tr > r(u)} - ’
that is,|P(u)| = o(P{T" > t(u)}). Using the definitions of, Il and P(u), we
conclude that
_E{M(T))

P(M,(T") > u) B (T]

P{M,(T)" > u},
which completes the proof..

3.2. Workload asymptotics.In this section, we apply the results of the
previous section to obtain the tail asymptotics of the workldad, . As
mentioned earlier, we will follow the framework of Asmussen, Schmidli and
Schmidt [4]. Recall that the increment process associated $iith= X (¢) +
Y(t) — ct [with X(r) = W(1)] is regenerative w.r.t. the delayed renewal process
{Z,,n > 0} defined in Section 2. Thus, we consider the embedded process

Sni=X(Zw)+Y(Zy) —cZy=:Up+ U1+ -+ Up.
Note thatS, — So, n > 1, is a random walk. Furthermore, define

Mo:= sup S(),

O<t<Z

M, = sup [S()—Sp-1]

Zy_1<t<Zy,

In order to obtain the asymptotics & _ ,,, we apply the results of Section 3.2
of [4]. To check the assumptions stated there, we need the asymptotic behavior of
the random variablelg, Uy, Mg andM1. This is covered by the following lemma.

LEMMA 3.2. (i) If Ton satisfiesT1, thenUp, Mg € 4§, and
P{Ug > u} ~ P{Mo > u} ~ pP{W,_(T¢,) > u}.
(i) If Ty, satisfiesT1,thenUy, M1 € 8*, and

P{U1 > u} ~ P{M1 > u} ~ P{W,_c(Ton) > u}.
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PROOF We only prove the statement f6iy and My (the proof forU; and My
is similar, but easier). Recall the construction of the On-Off process given in
Section 2. With a slight abuse of notation, we can write
d
Uo= IWr—c(Torn) +(1- I)(W—C(Torff) + Wr—c(Ton))-

In this expression, all components are independent. Becausg7/)s) <
sup. o W_.(z), this random variable is light-tailed. Second, siffgge £, we have
P{Ton > u} = o(P{T3,,> u}). This implies, using Lemma 3.1,
P{W,—c(Ton) > u} ~ P{M,_(Ton) > u}
= P{Ton > t(u)}
= o(P{T5, > t(u)})
= o(P{M,_(T},) > u})
= 0(P{Wy—_c(Tgy) > u}).
By a straightforward application of Propositions 3.1-3.3, it follows Mat . (75,)

is subexponential iy, satisfies T1. Thus, using standard properties of subexpo-
nential distributions, we conclude that

P{Uo > u} = pP{W, _(Tgp) > u} + (L — p)P{W_c(Tgg) + Wy—c(Ton) > u}
~ pP{W,_(Ty,) > u}.

Moving now to the tail behavior o#fp, note that (with a slight abuse of notation)

Mo = IM,o(Tg) + (L= 1) (SUPBo (1) + My—(Ten) ).

t>0

Hence, using a similar argument as above, we obtain
P{Mo > u} ,SPP{M,_C(TJH) > u}~ pP{Wr—c(Tgn) > u}.

The asymptotic lower bound is trivial, sindéy > Ug. O

PROOF OFTHEOREM 3.1. Lemma 3.2 allows us to apply Corollary 3.2(ii)
of [4], which yields

(3.9) P{Vy .,y >u}~]P’{Uo>u}+]P’{SupSn—So>u}.
n>1

The first term is covered by Lemma 3.2. To deal with the second term, note that
in view of Lemma 3.2(ii)[U; 1" € 8. Using Veraverbeke’s theorem [22], we then
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obtain
IP’{supS,, —So > u}
n>1
~ 1
—[E{W; _(Ton)} + E{W_.(Tot)}]

x / T P{W,_o(Ton) + Wo(To) > v} dv

1 00

~ —[E{W,_e(Ton)} + E{W_.(Tom)}] /u P{M,_.(Ton) > v}dv
1

T —[(r — ¢)E{Ton} — cE{Tof}]

Finally, noting that

E{Mr—c(Ton)}P{M:_c(Ton) > uj.

BT
E{Ton} + E{Tos}’

p=rp,

we conclude that

]P’{supSn —So>u

n>1

}N p E{M,_(Ton)}

c—p E{Ton) P{M;_ (Ton) > u}.

Thus, by (3.9) and Proposition 3.3, we obtain
c r—p r
P{Vx.y >u}~ meP’{M,_C(Ton) > uj.
Applying Lemma 3.1 completes the proof.]

4. Oscillatory behavior. In this section we assume that(z) is Gaussian
satisfying C1 and C2 and th&i{¢) is an integrated On-Off process with peak rate
The main difference from the previous section is that we now assume that
Under this critical condition, the processr) = X (¢) + Y (¢) — ct will oscillate
during the On-periods df. The next theorem gives the main result of this section.

THEOREM 4.1. If X(¢) has stationary increments and satisfies conditions
ClandC2,andY (¢) is an integrated On-Off process wifly, regularly varying of
index—v < —1 such thatP{7], > u} = L(x)ul™ with L(-) slowly varyingthen

P{Vy,y >u}~ pE{Bi " DYPlox (T > u},

with H = «/2andBy = SURy<s<1 Bu (s). In particular, Vi ., is regularly varying
of index(1—v)/H.
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Theorem 4.1 shows that the heaviness of the tail;of, is a combined effect of
the heaviness dfj},, and the degree of dependenceininformally, a large value
of Vx.,y is most likely caused by a single long On-period which started at time 0.
During this long On-period, the net input process has zero drift. This implies that
the net input process at timeis O (ox (¢)). Hence, in order to reach leve| the
length of the On-period has to h@(o;l(u)).

In the proof of Theorem 4.1, we make these heuristics precise. Before we give
a proof, we first present some auxiliary results. The following lemma is taken
from [11].

LEMMA 4.1. Under the conditions of Theorefnl,we have

]P’{ sup X(1) > u} ~E(BAC N Plox (T > u}.

0<1<T¥,

The main idea of the proof of Theorem 4.1 is to separate the procEsszegdY
by adding and subtracting nonlinear perturbations. To handle such perturbations,
we need a further auxiliary lemma, which is Proposition 1 of [12].

LEMMA 4.2. Let X(¢) be a centered Gaussian process satisfying conditions
ClandC2.I1f n > a/2,then

—a/ 2 2
IOQ]P’{SUF{X(t)—dt"]>u}N—%da/n( o ) n( 2n ) u

>0 21—« 2n—a) oZl/n’

PRoOOF OFTHEOREM4.1. The lower bound is trivial, in view of Lemma 4.1
and the construction of the proces&) given in Section 2.
For the upper bound, write for somec (0, 1),

]P’{supS(t) > u} < ]P’{ supS@) > (1— y)u} +]P’{ supS() — S(Zog) > yu}.
>0 1<Zg 1>7Zg

We need to show that the second term can be asymptotically neglected. Using
sample-path arguments, we have

IP’{ supS(@) — S(Zo) > yu}

t>Zo

= P{ SUpLX (1) — X(Zo) + Y (1) — Y (Zo) — r(t — Zo)] > Vu}
t>Zo

< IP’{ suplY (@) —Y(Zo) —r(t — Zo) +d(t — Zp)"] > yu/z}

t>Zo

+ P{ SUPLX (1) — X (Zo) — d(i — Zo)"] > yu/Z}

t>Zo
=1+,
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where we take + n > «/2 andd small.
We first deal with termY. Observe that

d(Zy—Z0)" <d ) (Zi — Zi—1)",
i=1

from which it follows that

I< IP’{SUpS,, > yu/Z},
n>1
wheres, is a random walk with generic step sitle= d Ton + d T — r Toft-
We can choosé@ small enough such thdf has negative mean. Noting that
chfﬁ — rTof is bounded from above, we conclude that the right taillbfis
regularly varying. This allows us to apply Veraverbeke’s theorem [22], yielding

1 o)
I§IP’{SUS> MZ}’\‘ P{U > y}dy,
e T TR e TP
which is regularly varying of index *+ vn. We can choose such that - vy >
(1-v)H (i.e.,n < H+ 1),

We now turn to termll . This term is somewhat easier: sink¢) has stationary
increments, we have

Il :]P’{squ(t) —dt'"] > x}.
t>0

This probability is decayig faster than any polynomial, in view of Lemma 4.2.
Thus, we can conclude that, for apy> 0,

4.1) P{supS(r) > u} EIP{ supS@) > (1— y)u}.
t>0 t<Zp

We finally evaluate the probability on the right-hand side by conditioning upon the
state of the On-Off proceskat time 0

IP’{ supS@) > (1 - y)u}

1<Zp

= pIP’{ sup X(t) > (1— y)u}

1=,

+ (11— p)IP’{ sup [Y@)+X(@) —rt]>A-— y)u}.
t<Tgs~+Ton

Using similar methods as above, it is straightforward to show that the second
term is regularly varying of indexv/H. From the proof of the lower bound, we
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already know that the first term is regularly varying of indéx v)/H. Hence,
we conclude from (4.1) and Lemma 4.1,
. P{sup~q S(t) > u}
limsup D).

u=oo pE{By" TIYP{T§,> ox(u)}

forally >0. O

<= @-y i

We conclude this section by noting that the pre-fadmég(”_l)} can be
computed explicitly wherl = 1/2, or, equivalently, wheo = 1:

COROLLARY 4.1. Inaddition to the assumptions of Theordrh,assume that
X (r) satisfies condition€1andC2,with o« = 1. Then

1
N

PrROOF The result follows in a straightforward manner from Theorem 4.1,
combined with Proposition 2.1 in [11].[]

r 1+v 1 r
P{Vx.y>u}l~p 2°7'r v—i—é P{ox(Ty,) > u}.

5. Largedeviations: reduced-peak equivalence. In this section we consider
the case thak is Gaussian andl is an integrated On-Off process with peak rate
r < c. We assume that the tail M;’, p <d <r,is heavier than that dfy.

Under these conditions, it is clear that a reduced-load equivalence cannot hold.
Informally, one can observe th& cannot be replaced by its mean (0), since
Vy =0, nor canY be replaced by its mean, since it has heavier tails tiam
fact, the next theorem shows thaith X andY need to show atypical behavior in
order for the procesS(¢) = X (t) + Y (¢) — ct to reach a large value.

THEOREMD5.1. Suppose that the proceX&sr) has stationary increments and
satisfies condition€1 and C2. Furthermore let Y (¢) be an integrated On-Off
processwith 73, regularly varying andr < c. Then

1 o
C ~ c—r r
P{Vx.y >u}~ pP{Vy >u}]P’{Ton>—c_r2_au}.

Theorem 5.1 may be combined with results in [10] or [17] to obtain an explicit
expression for the asymptotic behaviotgly , , > u}. A similar “reduced-peak”
equivalence result has been proved in Theorem 3.1 of [7] for the case where

X is not a Gaussian process, but a general light-tailed process satisfying a large-
deviations principle.

PROOF OFTHEOREM5.1. Lett, = %ﬁu To let Theorem 3.1 of [7] carry
over to the setting of the present paper, it is sufficient to prove analogues of



SUBEXPONENTIAL ASYMPTOTICS 515

Propositions 2.1 and 2.2 of [7]. In our setyi, these propositions state that, for
everyd > 0, asu — o0,

uﬂ]P’{V)‘(H‘s > u}

5.1 0
5.) Pvisw o P
B d _
52 uIP{VX([O,(dl O >ul o L 0.p <00l
P{Vyg > u}
d
(5.3) PVx©.A+ond >ub g
P{VZ > u}

Thus, it is sufficient to prove (5.1)—(5.3). To prove (5.1), note that Lemma 4.2 with
n = 1 implies that, for some consta@it=C,; s > O,

d+4d
PV " >u} _ —carom?/odw)
P{V{ > u) ’

which implies (5.1).

To prove (5.3), we define(u) :=inf{¢: X (#) —dt = u} and note that Theorem 1
in [12] implies thatt (u) /1, — 1 iInP{-|t(u) < oo}-probability.

It remains to prove (5.2). For this, defidg, (r) = X (t)/(u + dt). Using the
Borell inequality ([1], page 43), we obtain, for all> 0,

P{V{([0, (1 — &)1,]) > u}

:IP’{ sup Xu(t)>1}
1€[0,(1—¢)1,]

2 2
§2exp<—<1—E{supXu(t)}) min M)
1=0 t=(1-e)te  20%(t)

Since lim, . o E{sup.¢ X, (1)} =0, by Lemma 2.2 in [9], we have
(u + dt)?
1=(-ot, 202(1)
Using the uniform-convergence theorem for regularly varying functions, we obtain

log(P{VZ([0, (1 — &)t,]) > u}) < —

im ox (u)? " w—+dn? im in (1+ds)?
u=oo  y? i<(-en, 202(f)  47Os<(l-ea/(dR-a) 202 (su)/o2(u)
(14 ds)?

= min
s<(l-e)a/(d2—a))  25%

A+ A-ea/R—-a)?( a \*
2(1—¢g)* <2—a>

2_ a—2
> 2d°‘7( %)

a2

=d“*

’
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where the last inequality is valid for all> 0.
Now note that, in view of Lemma 4.2,

_ =2
log(P{V§ > u}) ~ —Zd“%uz/ag(m.
o

Putting everything together, we conclude that, for every 0, there exists a
constantk, such that
P{VE(I0, (1 — &)t ]) > u)
IP’{V)’(’! > u}
This implies (5.2). O

< ¢~ Keto@pu?/of ).
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