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Let I be a compactd-dimensional manifold, letX : I → R be a
Gaussian process with regular paths and letFI (u), u ∈ R, be the probability
distribution function of supt∈I X(t).

We prove that under certain regularity and nondegeneracy conditions,
FI is a C1-function and satisfies a certain implicit equation that permits
to give bounds for its values and to compute its asymptotic behavior as
u → +∞. This is a partial extension of previous results by the authors in
the cased = 1.

Our methods use strongly the so-called Rice formulae for the moments of
the number of roots of an equation of the formZ(t) = x, whereZ : I → Rd

is a random field andx is a fixed point inRd . We also give proofs for this kind
of formulae, which have their own interest beyond the present application.

1. Introduction and notation. Let I be ad-dimensional compact manifold
and letX : I → R be a Gaussian process with regular paths defined on some
probability space(�,A,P). DefineMI = supt∈I X(t) andFI (u) = P{MI ≤ u},
u ∈ R, the probability distribution function of the random variableMI . Our aim is
to study the regularity of the functionFI whend > 1.

There exist a certain number of general results on this subject, starting from the
papers by Ylvisaker (1968) and Tsirelson (1975) [see also Weber (1985), Lifshits
(1995), Diebolt and Posse (1996) and references therein]. The main purpose of this
paper is to extend tod > 1 some of the results about the regularity of the function
u � FI (u) in Azaïs and Wschebor (2001), which concern the cased = 1.

Our main tool here is the Rice formula for the moments of the number of roots
NZ

u (I ) of the equationZ(t) = u on the setI , where{Z(t) : t ∈ I } is anRd -valued
Gaussian field,I is a subset ofRd andu is a given point inRd . Ford > 1, even
though it has been used in various contexts, as far as the authors know, a full proof
of the Rice formula for the moments ofNZ

u (I ) seems to have only been published
by Adler (1981) for the first moment of the number of critical points of a real-
valued stationary Gaussian process with ad-dimensional parameter, and extended
by Azaïs and Delmas (2002) to the case of processes with constant variance.
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Cabaña (1985) contains related formulae for random fields; see also the Ph.D.
thesis of Konakov cited by Piterbarg (1996b). In the next section we give a more
general result which has an interest that goes beyond the application of the present
paper. At the same time the proof appears to be simpler than previous ones. We
have also included the proof of the formula for higher moments, which in fact
follows easily from the first moment. Both extend with no difficulties to certain
classes of non-Gaussian processes.

It should be pointed out that the validity of the Rice formula for Lebesgue-
almost everyu ∈ Rd is easy to prove [Brillinger (1972)] but this is insufficient
for a certain number of standard applications. For example, assumeX : I � R
is a real-valued random process and one is willing to compute the moments of
the number of critical points ofX. Then, we must take forZ the random field
Z(t) = X′(t) and the formula one needs is for the precise valueu = 0 so that a
formula for almost everyu does not solve the problem.

We have added the Rice formula for processes defined on smooth manifolds.
Even though the Rice formula is local, this is convenient for various applications.
We will need a formula of this sort to state and prove the implicit formulae for the
derivatives of the distribution of the maximum (see Section 3).

The results on the differentiation ofFI are partial extensions of Azaïs and
Wschebor (2001). Here, we have only considered the first derivativeF ′

I (u). In
fact, one can push our procedure one step more and prove the existence ofF ′′

I (u)

as well as some implicit formula for it. But we have not included this in the present
paper since formulae become very complicated and it is unclear at present whether
the actual computations can be performed, even in simple examples. The technical
reason for this is that, following the present method, to computeF ′′

I (u), one needs
to differentiate expressions that contain the “helix process” that we introduce
in Section 4, containing singularities with unpleasant behavior [see Azaïs and
Wschebor (2002)].

For Gaussian fields defined on ad-dimensional regular manifold (d > 1) and
possessing regular paths we obtain some improvements with respect to classical
and general results due to Tsirelson (1975) for Gaussian sequences. An example
is Corollary 5.1, which provides an asymptotic formula forF ′

I (u) asu → +∞
which is explicit in terms of the covariance of the process and can be compared
with Theorem 4 in Tsirelson (1975) where an implicit expression depending on
the functionF itself is given.

We use the following notation:
If Z is a smooth functionU � Rd ′

, U a subset ofRd , its successive
derivatives are denotedZ′, Z′′, . . . ,Z(k) and considered, respectively, as lin-
ear, bilinear, . . . , k-linear forms on Rd . For example,X(3)(t)[v1, v2, v3] =∑d

i,j,k=1
∂3X(t)

∂ti ∂tj ∂tk
vi

1v
j
2vk

3. The same notation is used for a derivative on aC∞ man-
ifold.

İ , ∂I and Ī are, respectively, the interior, the boundary and the closure of the
setI . If ξ is a random vector with values inRd , whenever they exist, we denote
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by pξ (x) the value of the density ofξ at the pointx, by E(ξ) its expectation and by
Var(ξ) its variance–covariance matrix.λ is Lebesgue measure. Ifu, v are points
in Rd , 〈u, v〉 denotes their usual scalar product and‖u‖ the Euclidean norm ofu.

ForM ad × d real matrix, we denote‖M‖ = sup‖x‖=1‖Mx‖.
Also for symmetricM , M 	 0 (resp.M ≺ 0) denotes thatM is positive definite

(resp. negative definite).Ac denotes the complement of the setA. For realx,
x+ = sup(x,0), x− = sup(−x,0).

2. Rice formulae. Our main results in this section are the following:

THEOREM 2.1. LetZ : I � Rd , I a compact subset ofRd , be a random field
andu ∈ Rd . Assume that:

(A0) Z is Gaussian.
(A1) t � Z(t) is a.s. of classC1.
(A2) For eacht ∈ I , Z(t) has a nondegenerate distribution[i.e., Var(Z(t)) 	 0].
(A3) P{∃ t ∈ İ ,Z(t) = u,det(Z′(t)) = 0} = 0.
(A4) λ(∂I) = 0.

Then

E
(
NZ

u (I )
) =

∫
I

E
(∣∣ det

(
Z′(t)

)∣∣/Z(t) = u
)
pZ(t)(u) dt,(1)

and both members are finite.

THEOREM 2.2. Letk, k ≥ 2, be an integer. Assume the same hypotheses as in
Theorem2.1except for(A2), which is replaced by:

(A ′2) for t1, . . . , tk ∈ I pairwise different values of the parameter, the distribution
of (Z(t1), . . . ,Z(tk)) does not degenerate in(Rd)k . Then

E
[(

NZ
u (I )

)(
NZ

u (I ) − 1
) · · · (NZ

u (I ) − k + 1
)]

=
∫
I k

E

(
k∏

j=1

∣∣det
(
Z′(tj )

)∣∣/Z(t1) = · · · = Z(tk) = u

)
(2)

× pZ(t1),...,Z(tk)(u, . . . , u) dt1 · · ·dtk,

where both members may be infinite.

REMARK. Note that Theorem 2.1 (resp. Theorem 2.2) remains valid if one
replacesI by İ in (1) or (2) and if hypotheses (A0)–(A2) [resp. (A′2)] and (A3)
are verified. This follows immediately from the above statements. A standard
extension argument shows that (1) holds true if one replacesI by any Borel subset
of İ .
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Sufficient conditions for hypothesis (A3) to hold are given by the next
proposition. Under condition (a) the result is proved in Lemma 5 of Cucker and
Wschebor (2003). Under condition (b) the proof is straightforward.

PROPOSITION2.1. Let Z : I � Rd , I a compact subset ofRd , be a random
field with paths of classC1 andu ∈ Rd . Assume that:

(i) pZ(t)(x) ≤ C for all t ∈ I andx in some neighborhood ofu.
(ii) At least one of the two following hypotheses is satisfied:

(a) a.s. t � Z(t) is of classC2,
(b) α(δ) = supt∈I,x∈V (u) P{|det(Z′(t))| < δ/Z(t) = x} → 0 as δ → 0,

whereV (u) is some neighborhood ofu.

Then(A3) holds true.

The following lemma is easy to prove.

LEMMA 2.1. With the notation of Theorem2.1,suppose that(A1) and (A4)
hold true and thatpZ(t)(x) ≤ C for all t ∈ I and x in some neighborhood ofu.
ThenP{NZ

u (∂I ) = 0} = 0.

LEMMA 2.2. Let Z : I → Rd , I a compact subset ofRd , be aC1 function
andu a point inRd . Assume that:

(a) inft∈Z−1({u})(λmin(Z
′(t))) ≥ � > 0,

(b) ωZ′(η) < �/d ,

where ωZ′ is the continuity modulus ofZ′, defined as the maximum of the
continuity moduli of its entries, λmin(M) is the square root of the smallest
eigenvalue ofMT M andη is a positive number.

Then, if t1, t2 are two distinct roots of the equationZ(t) = u such that the
segment[t1, t2] is contained inI , the Euclidean distance betweent1 and t2 is
greater thanη.

PROOF. Set η̃ = ‖t1 − t2‖, v = t1−t2‖t1−t2‖ . Using the mean value theorem, for
i = 1, . . . , d , there existsξi ∈ [t1, t2] such that(Z′(ξi)v)i = 0. Thus∣∣(Z′(t1)v

)
i

∣∣ = ∣∣(Z′(t1)v
)
i − (

Z′(ξi)v
)
i

∣∣
≤

d∑
k=1

|Z′(t1)ik − Z′(ξi)ik||vk| ≤ ωZ′(η̃)

d∑
k=1

|vk| ≤ ωZ′(η̃)
√

d.

In conclusion,� ≤ λmin(Z
′(t1)) ≤ ‖Z′(t1)v‖ ≤ ωZ′(η̃)d, which implies η̃ > η.

�
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PROOF OFTHEOREM 2.1. Consider a continuous nondecreasing functionF

such thatF(x) = 0 for x ≤ 1/2, F(x) = 1 for x ≥ 1. Let � andη be positive real
numbers. Define the random function

α�,η(u) = F

(
1

2�
inf
s∈I

[
λmin

(
Z′(s)

)+‖Z(s)−u‖])×
(

1−F

(
d

�
ωZ′(η)

))
,(3)

and the setI−η = {t ∈ I :‖t − s‖ ≥ η,∀s /∈ I }. If α�,η(u) > 0 andNZ
u (I−η) does

not vanish, conditions (a) and (b) in Lemma 2.2 are satisfied. Hence, in each
ball with diameterη2 centered at a point inI−η, there is at most one root of the
equationZ(t) = u, and a compactness argument shows thatNZ

u (I−η) is bounded
by a constantC(η, I ), depending only onη and on the setI .

Take now any real-valued nonrandom continuous functionf :Rd → R with
compact support. Because of the coarea formula [Federer (1969), Theorem 3.2.3],
since a.s.Z is Lipschitz andα�,η(u) · f (u) is integrable,∫

Rd
f (u)NZ

u (I−η)α�,η(u) du =
∫
I−η

∣∣ det
(
Z′(t)

)∣∣f (Z(t))α�,η(Z(t)) dt.

Taking expectations in both sides,∫
Rd

f (u)E
(
NZ

u (I−η)α�,η(u)
)
du

=
∫
Rd

f (u) du

∫
I−η

E
(∣∣ det

(
Z′(t)

)∣∣α�,η(u)/Z(t) = u
)
pZ(t)(u) dt.

It follows that the two functions

(i) E(NZ
u (I−η)α�,η(u)),

(ii)
∫
I−η

E(|det(Z′(t))|α�,η(u)/Z(t) = u)pZ(t)(u) dt ,

coincide Lebesgue-almost everywhere as functions ofu.
Let us prove that both functions are continuous, hence they are equal for

everyu ∈ Rd .
Fix u = u0 and let us show that the function in (i) is continuous atu = u0.

Consider the random variable inside the expectation sign in (i). Almost surely,
there is no pointt in Z−1({u0}) such that det(Z′(t)) = 0. By the local inversion
theorem,Z(·) is invertible in some neighborhood of each point belonging to
Z−1({u0}) and the distance fromZ(t) to u0 is bounded below by a positive number
for t ∈ I−η outside of the union of these neighborhoods. This implies that, a.s.,
as a function ofu, NZ

u (I−η) is constant in some (random) neighborhood ofu0.
On the other hand, it is clear from its definition that the functionu � α�,η(u) is
continuous and bounded. We may now apply dominated convergence asu → u0,

sinceNZ
u (I−η)α�,η(u) is bounded by a constant that does not depend onu.

For the continuity of (ii), it is enough to prove that, for eacht ∈ I the conditional
expectation in the integrand is a continuous function ofu. Note that the random
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variable |det(Z′(t))|α�,η(u) is a functional defined on{(Z(s),Z′(s)) : s ∈ I }.
Perform a Gaussian regression of(Z(s),Z′(s)) : s ∈ I with respect to the random
variableZ(t), that is, write

Z(s) = Y t(s) + αt (s)Z(t),

Z′
j (s) = Y t

j (s) + βt
j (s)Z(t), j = 1, . . . , d,

where Z′
j (s), j = 1, . . . , d , denote the columns ofZ′(s), Y t(s) and Y t

j (s)

are Gaussian vectors, independent ofZ(t) for eachs ∈ I , and the regression
matricesαt (s), βt

j (s), j = 1, . . . , d , are continuous functions ofs, t [take into
account (A2)]. Replacing in the conditional expectation, we are now able to get
rid of the conditioning, and using the fact that the moments of the supremum of an
a.s. bounded Gaussian process are finite, the continuity inu follows by dominated
convergence.

So, now we fixu ∈ Rd and makeη ↓ 0, � ↓ 0 in that order, both in (i) and (ii).
For (i) one can use Beppo Levi’s theorem. Note that almost surelyNZ

u (I−η) ↑
NZ

u (İ ) = NZ
u (I ), where the last equality follows from Lemma 2.1. On the other

hand, the same Lemma 2.1 plus (A3) imply together that, almost surely,

inf
s∈I

[
λmin

(
Z′(s)

) + ‖Z(s) − u‖]
> 0

so that the first factor in the right-hand side of (3) increases to 1 as� decreases to
zero. Hence by Beppo Levi’s theorem,

lim
�↓0

lim
η↓0

E
(
NZ

u (I−η)α�,η(u)
) = E

(
NZ

u (I )
)
.

For (ii), one can proceed in a similar way after deconditioning obtaining (1). To
finish the proof, remark that standard Gaussian calculations show the finiteness of
the right-hand side of (1).�

PROOF OFTHEOREM 2.2. For eachδ > 0, define the domain

Dk,δ(I ) = {(t1, . . . , tk) ∈ I k,‖ti − tj‖ ≥ δ if i = j, i, j = 1, . . . , k}
and the process̃Z

(t1, . . . , tk) ∈ Dk,δ(I ) � Z̃(t1, . . . , tk) = (
Z(t1), . . . ,Z(tk)

)
.

It is clear that Z̃ satisfies the hypotheses of Theorem 2.1 for every value
(u, . . . , u) ∈ (Rd)k . So,

E
[
NZ̃

(u,...,u)

(
Dk,δ(I )

)]
=

∫
Dk,δ(I )

E

(
k∏

j=1

∣∣det
(
Z′(tj )

)∣∣/Z(t1) = · · · = Z(tk) = u

)
(4)

× pZ(t1),...,Z(tk)(u, . . . , u) dt1 · · ·dtk.
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To finish, let δ ↓ 0, note that(NZ
u (I ))(NZ

u (I ) − 1) . . . (NZ
u (I ) − k + 1) is

the monotone limit ofNZ̃
(u,...,u)(Dk,δ(I )), and that the diagonalDk(I) = {(t1,

. . . , tk) ∈ I k, ti = tj for some pairi, j, i = j} has zero Lebesgue measure in(Rd)k .
�

REMARK. Even thought we will not use this in the present paper, we point
out that it is easy to adapt the proofs of Theorems 2.1 and 2.2 to certain classes of
non-Gaussian processes.

For example, the statement of Theorem 2.1 remains valid if one replaces
hypotheses (A0) and (A2), respectively, by the following (B0) and (B2):

(B0) Z(t) = H(Y (t)) for t ∈ I , whereY : I → Rn is a Gaussian process with
C1 paths such that for eacht ∈ I, Y (t) has a nondegenerate distribution and
H :Rn → Rd is aC1 function.

(B2) For eacht ∈ I , Z(t) has a densitypZ(t) which is continuous as a function
of (t, u).

Note that (B0) and (B2) together imply thatn ≥ d . The only change to be
introduced in the proof of the theorem is in the continuity of (ii) where the
regression is performed onY (t) instead ofZ(t).

Similarly, the statement of Theorem 2.2 remains valid if we replace (A0) by
(B0) and add the requirement that the joint density ofZ(t1), . . . ,Z(tk) be a
continuous function oft1, . . . , tk, u for pairwise differentt1, . . . , tk .

Now consider a processX from I to Rand define

MX
u,1(I ) = �{t ∈ I,X(·) has a local maximum at the pointt,X(t) > u},

MX
u,2(I ) = �{t ∈ I,X′(t) = 0,X(t) > u}.

The problem of writing Rice formulae for the factorial moments of these random
variables can be considered as a particular case of the previous one and the
proofs are the same, mutatis mutandis. For further use, we state as a theorem the
Rice formula for the expectation. For breavity we do not state the equivalent of
Theorem 2.2, which holds true similarly.

THEOREM 2.3. LetX : I � R, I a compact subset ofRd, be a random field.
Let u ∈ R, defineMX

u,i(I ), i = 1,2, as above. For eachd × d real symmetric

matrixM , we putδ1(M) := |det(M)|1M≺0, δ2(M) := |det(M)|.
Assume:

(A0) X is Gaussian,
(A ′′1) a.s. t � X(t) is of classC2,
(A ′′2) for eacht ∈ I , X(t),X′(t) has a nondegenerate distribution inR1 × Rd ,
(A ′′3) either a.s. t � X(t) is of classC3 or α(δ) = supt∈I,x′∈V (0) P(|det(X′′(t))|<

δ/X′(t) = x′) → 0 asδ → 0, whereV (0) denotes some neighborhood of0,
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(A4) ∂I has zero Lebesgue measure.

Then, for i = 1,2,

E
(
MX

u,i(I )
) =

∫ ∞
u

dx

∫
I

E
(
δi(X′′(t)

)
/X(t) = x,X′(t) = 0

)
pX(t),X′(t)(x,0) dt

and both members are finite.

2.1. Processes defined on a smooth manifold.Let U be a differentiable
manifold (by differentiable we mean infinitely differentiable) of dimensiond .
We suppose thatU is orientable in the sense that there exists a nonvanishing
differentiabled-form � on U . This is equivalent to assuming that there exists
an atlas((Ui,φi); i ∈ I ) such that for any pair of intersecting charts(Ui,φi),
(Uj ,φj ), the Jacobian of the mapφi ◦ φ−1

j is positive.

We consider a Gaussian stochastic process with real values andC2 paths
X = {X(t) : t ∈ U } defined on the manifoldU . In this section we first write Rice
formulae for this kind of processes without further hypotheses onU . WhenU is
equipped with a Riemannian metric, we give, without details and proof, a nicer
form. Other forms exist also whenU is naturally embedded in a Euclidean space,
but we do not need this in the sequel [see Azaïs and Wschebor (2002)].

We will assume that in every chartX(t) andDX(t) have a nondegenerate joint
distribution and that hypothesis (A′′3) is verified. ForS a Borel subset oḟU , the
following quantities are well defined and measurable:MX

u,1(S), the number of
local maxima andMX

u,2(S), the number of critical points.

PROPOSITION2.2. For k = 1,2 the quantity which is expressed in every chart
φ with coordinatess1, . . . , sd as∫ +∞

u
dx E

(
δk(Y ′′(s)

)
/Y (s) = x,Y ′(s) = 0

)
pY(s),Y ′(s)(x,0)

d∧
i=1

dsi,(5)

whereY (s) is the processX written in the chart: Y = X ◦ φ−1, defines ad-form
�k on U̇ and for every Borel setS ⊂ U̇ ,∫

S
�k = E

(
MX

u,k(S)
)
.

PROOF. Note that ad-form is a measure oṅU whose image in each chart
is absolutely continuous with respect to Lebesgue measure

∧d
i=1 dsi . To prove

that (5) defines ad-form, it is sufficient to prove that its density with respect to∧d
i=1 dsi satisfies locally the change-of-variable formula. Let(U1, φ1), (U2, φ2)

be two intersecting charts and set

U3 := U1 ∩ U2; Y1 := X ◦ φ−1
1 ; Y2 := X ◦ φ−1

2 ; H := φ2 ◦ φ−1
1 .
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Denote bys1
i ands2

i , i = i, . . . , d , the coordinates in each chart. We have

∂Y1

∂s1
i

= ∑
i′

∂Y2

∂s2
i′

∂Hi′

∂s1
i

,

∂2Y1

∂s1
i ∂s1

j

= ∑
i′,j ′

∂2Y2

∂s2
i′ ∂s2

j ′

∂Hi′

∂s1
i

∂Hj ′

∂s1
j

+ ∑
i′

∂Y2

∂s2
i′

∂2Hi′

∂s1
i ∂s1

j

.

Thus at every point

Y ′
1(s

1) = (
H ′(s1)

)T
Y ′

2(s
2),

pY1(s
1),Y ′

1(s
1)(x,0) = pY2(s

2),Y ′
2(s

2)(x,0)
∣∣ det

(
H ′(s1)

)∣∣−1
,

and at a singular point,

Y ′′
1 (s1) = (

H ′(s1)
)T

Y ′′
2 (s2)H ′(s1).

On the other hand, by the change-of-variable formula,

d∧
i=1

ds1
i = ∣∣det

(
H ′(s1)

)∣∣−1
d∧

i=1

ds2
i .

Replacing in the integrand in (5), one checks the desired result.
For the second part again it suffices to prove it locally for an open subsetS

included in a unique chart. Let(S,φ) be a chart and let againY (s) be the process
written in this chart. It suffices to check that

E
(
MX

u,k(S)
)

(6)
=

∫
φ(S)

dλ(s)

∫ +∞
u

dx E
(
δk

(
Y ′′(s)

)
/Y (s) = x,Y ′(s) = 0

)
pY(s),Y ′(s)(x,0).

Since MX
u,k(S) is equal toMY

u,k{φ(S)}, we see that the result is a direct
consequence of Theorem 2.3.

Even though in the integrand in (5) the product does not depend on the
parameterization, each factor does. When the manifoldU is equipped with a
Riemannian metric it is possible to rewrite (5) as∫ +∞

u
dx E

(
δk(∇2X(s)

)
/X(s) = x,∇X(s) = 0

)
pX(s),∇X(s)(x,0)Vol,(7)

where∇2X(s) and∇X(s) are respectively the Hessian and the gradient read in an
orthonormal basis. This formula is close to a formula by Taylor and Adler (2002)
for the expected Euler characteristic.

REMARK. One can consider a number of variants of Rice formulae, in which
we may be interested in computing the moments of the number of roots of the
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equationZ(t) = u under some additional conditions. This has been the case in the
statement of Theorem 2.3 in which we have given formulae for the first moment
of the number of zeroes ofX′ in which X is bigger thanu (i = 2) and also the
real-valued processX has a local maximum (i = 1).

We just consider below two additional examples of variants that we state here
for further reference. We limit the statements to random fields defined on subsets
of Rd . Similar statements hold true when the parameter set is a general smooth
manifold. Proofs are essentially the same as the previous ones.

VARIANT 1. Assume thatZ1,Z2 are Rd -valued random fields defined on
compact subsetsI1, I2 of Rd and suppose that(Zi, Ii), i = 1,2, satisfy the
hypotheses of Theorem 2.1 and that for everys ∈ I1 and t ∈ I2, the distribution
of (Z1(s),Z2(t)) does not degenerate. Then, for each pairu1, u2 ∈ Rd ,

E
(
NZ1

u1
(I1)N

Z2
u2

(I2)
)

=
∫
I1×I2

dt1 dt2 E
(∣∣det

(
Z′

1(t1)
)∣∣∣∣det

(
Z′

2(t2)
)∣∣/Z1(t1) = u1,Z2(t2) = u2

)
(8)

× pZ1(t1),Z2(t2)(u1, u2).

VARIANT 2. LetZ, I be as in Theorem 2.1 and letξ be a real-valued bounded
random variable which is measurable with respect to theσ -algebra generated by
the processZ. Assume that for eacht ∈ I , there exists a continuous Gaussian
process{Y t(s) : s ∈ I }, for eachs, t ∈ I a nonrandom functionαt(s) :Rd → Rd

and a Borel-measurable functiong :C → R where C is space of real-valued
continuous functions onI equipped with the supremum norm, such that:

1. ξ = g(Y t (·) + αt (·)Z(t)),
2. Y t(·) andZ(t) are independent,
3. for each u0 ∈ R, almost surely the functionu � g(Y t(·) + αt (·)u) is

continuous atu = u0.

Then the formula

E
(
NZ

u (I )ξ
) =

∫
I

E
(∣∣det

(
Z′(t)

)∣∣ξ/Z(t) = u
)
pZ(t)(u) dt

holds true.
We will be particularly interested in the functionξ = 1MI<v for somev ∈ R.

We will see later on that it satisfies the above conditions under certain hypotheses
on the processZ.

3. First derivative, first form. Our main goals in this and the next section are
to prove existence and regularity of the derivative of the functionu � FI (u) and,
at the same time, that it satisfies some implicit formulae that can be used to provide
bounds on it. In the following we assume thatI is ad-dimensionalC∞ manifold
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embedded inRN , N ≥ d . σ and σ̃ are respectively the geometric measures on
I and∂I . Unless explicit statement of the contrary is made, the topology onI will
be the relative topology.

In this section we prove formula (10) forF ′
I (u)—which we call “first form”—

which is valid forλ-almost everyu, under strong regularity conditions on the paths
of the processX. In fact, the hypothesis thatX is Gaussian is only used in the
Rice formula itself and in Lemma 3.1 which gives a bound for the joint density
pX(s),X(t),X′(s),X′(t). In both places, one can substitute Gaussianity by appropriate
conditions that permit to obtain similar results.

More generally, it is easy to see that inequality (9) is valid under quite general
non-Gaussian conditions and implies that we have the following upper bound for
the density of the distribution of the random variableMI :

F ′
I (u) ≤

∫
I

E
(
δ1(X′′(t)

)
/X(t) = u,X′(t) = 0

)
pX(t),X′(t)(u,0)σ (dt)

(9)
+

∫
∂I

E
(
δ1(X̃′′(t)

)
/X(t) = u, X̃′(t) = 0

)
pX(t),X̃′(t)(u,0)σ̃ (dt),

where the functionδ1 has been defined in the statement of Theorem 2.3 andX̃

denotes the restriction ofX to the boundary∂I .
Even for d = 1 (one-parameter processes) andX Gaussian and stationary,

inequality (9) provides reasonably good upper bounds forF ′
I (u) [see Diebolt and

Posse (1996) and Azaïs and Wschebor (2001)]. We will see an example ford = 2
at the end of this section.

In the next section, we are able to prove thatFI (u) is a C1 function and
that formula (10) can be essentially simplified by getting rid of the conditional
expectation, thus obtaining the “second form” for the derivative. This is done
under weaker regularity conditions but the assumption thatX is Gaussian becomes
essential.

DEFINITION 3.1. LetX : I → R be a real-valued stochastic process defined
on a subset ofRd . We will say thatX satisfies condition(Hk), k a positive integer,
if the following three conditions hold true:

(i) X is Gaussian;
(ii) a.s. the paths ofX are of classCk ;
(iii) for any choice of pairwise different values of the parametert1, . . . , tn,

the joint distribution of the random variablesX(t1), . . . ,X(tn),X
′(t1), . . . ,X′(tn),

. . . ,X(k)(t1), . . . ,X
(k)(tn) has maximum rank.

The next proposition shows that there exist processes that satisfy(Hk).

PROPOSITION3.1. LetX = {X(t) : t ∈ Rd} be a centered stationary Gaussian
process having continuous spectral densityf X. Assume thatf X(x) > 0 for every
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x ∈ Rd and that for anyα > 0 f X(x) ≤ Cα‖x‖−α holds true for some constant
Cα and allx ∈ Rd . Then, X satisfies(Hk) for everyk = 1,2, . . . .

PROOF. The proof is an adaptation of the proof of a related result ford = 1
[Cramér and Leadbetter (1967), page 203]; see Azaïs and Wschebor (2002).�

THEOREM 3.1 (First derivative, first form). Let X : I → R be a Gaussian
process, I a C∞ compactd-dimensional manifold. Assume thatX verifies(Hk)
for everyk = 1,2, . . . .

Then, the functionu � FI (u) is absolutely continuous and its Radon–Nikodym
derivative is given for almost everyu by

F ′
I (u) = (−1)d

∫
I

E
(
det

(
X′′(t)

)
1MI≤u/X(t) = u,X′(t) = 0

)
× pX(t),X′(t)(u,0)σ (dt)

(10)
+ (−1)d−1

∫
∂I

E
(
det

(
X̃′′(t)

)
1MI≤u/X(t) = u, X̃′(t) = 0

)
× pX(t),X̃′(t)(u,0)σ̃ (dt).

PROOF. Foru < v andS (resp.S̃) a subset ofI (resp.∂I ), let us denote

Mu,v(S) = �{t ∈ S :u < X(t) ≤ v,X′(t) = 0,X′′(t) ≺ 0},
M̃u,v(S̃) = �{t ∈ S̃ :u < X(t) ≤ v, X̃′(t) = 0, X̃′′(t) ≺ 0}.

Step1. Leth > 0 and consider the increment

FI (u) − FI (u − h)

= P
({MI ≤ u} ∩ [{Mu−h,u(İ ) ≥ 1} ∪ {M̃u−h,u(∂I ) ≥ 1}]).

Let us prove that

P
(
Mu−h,u(İ ) ≥ 1, M̃u−h,u(∂I ) ≥ 1

) = o(h) ash ↓ 0.(11)

In fact, forδ > 0,

P
(
Mu−h,u(İ ) ≥ 1, M̃u−h,u(∂I ) ≥ 1

)
(12)

≤ E
(
Mu−h,u(I−δ)M̃u−h,u(∂I )

) + E
(
Mu−h,u(I \ I−δ)

)
.

The first term in the right-hand side of (12) can be computed by means of a
Rice-type formula, and it can be expressed as∫

I−δ×∂I
σ (dt)σ̃ (dt̃)

∫ ∫ u

u−h
dx dx̃

× E
(
δ1(X′′(t)

)
δ1(X̃′′(t̃)

)
/X(t) = x, X̃(t̃) = x̃,X′(t) = 0, X̃′(t̃) = 0

)
× pX(t),X̃(t̃ ),X′(t),X̃′(t̃ )(x, x̃,0,0),
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where the functionδ1 has been defined in Theorem 2.3.
Since in this integral‖t − t̃‖ ≥ δ, the integrand is bounded and the integral

is O(h2).
For the second term in (12) we apply the Rice formula again. Taking into

account that the boundary ofI is smooth and compact, we get

E
(
Mu−h,u(I \ I−δ)

)
=

∫
I\I−δ

σ (dt)

∫ u

u−h
E

(
δ1(X′′(t)

)
/X(t) = x,X′(t) = 0

)
pX(t),X′(t)(x,0) dx

≤ (const)hσ (I \ I−δ) ≤ (const)hδ,

where the constant does not depend onh and δ. Since δ > 0 can be chosen
arbitrarily small, (11) follows and we may write ash → 0:

FI (u) − FI (u − h)

= P
(
MI ≤ u,Mu−h,u(İ ) ≥ 1

) + P
(
MI ≤ u, M̃u−h,u(∂I ) ≥ 1

) + o(h).

Note that the foregoing argument also implies thatFI is absolutely continuous
with respect to Lebesgue measure and that the density is bounded above by the
right-hand side of (10). In fact,

FI (u) − FI (u − h) ≤ P
(
Mu−h,u(İ ) ≥ 1

) + P
(
M̃u−h,u(∂I ) ≥ 1

)
≤ E

(
Mu−h,u(İ )

) + E
(
M̃u−h,u(∂I )

)
and it is enough to apply the Rice formula to each one of the expectations on the
right-hand side.

The delicate part of the proof consists in showing that we have equality in (10).

Step 2. For g : I → R we put ‖g‖∞ = supt∈I |g(t)| and if k is a non-
negative integer,‖g‖∞,k = supk1+k2+···+kd≤k ‖∂k1,k2,...,kd

g‖∞. For fixedγ > 0 (to
be chosen later on) andh > 0,we denote byEh = {‖X‖∞,4 ≤ h−γ }. Because of
the Landau–Shepp–Fernique inequality [see Landau and Shepp (1970) or Fernique
(1975)] there exist positive constantsC1,C2 such that

P(EC
h ) ≤ C1 exp[−C2h

−2γ ] = o(h) ash → 0,

so that to have (10) it suffices to show that, ash → 0,

E
([

Mu−h,u(İ ) − 1Mu−h,u(İ )≥1
]
1MI≤u1Eh

) = o(h),(13)

E
([

M̃u−h,u(∂I ) − 1M̃u−h,u(∂I)≥1
]
1MI≤u1Eh

) = o(h).(14)

We prove (13). Equation (14) can be proved in a similar way.
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PutMu−h,u = Mu−h,u(İ ). We have, on applying the Rice formula for the second
factorial moment,

E
([

Mu−h,u − 1Mu−h,u≥1
]
1MI≤u1Eh

)
(15)

≤ E
(
Mu−h,u(Mu−h,u − 1)1Eh

) =
∫ ∫

I×I
As,tσ (ds)σ (dt),

where

As,t =
∫ ∫ u

u−h
dx1dx2

× E
(∣∣ det

(
X′′(s)

)
det

(
X′′(t)

)∣∣1X′′(s)≺0,X′′(t)≺01Eh
/X(s) = x1,

(16)
X(t) = x2,X

′(s) = 0,X′(t) = 0
)

× pX(s),X(t),X′(s),X′(t)(x1,x2,0,0).

Our goal is to prove thatAs,t is o(h) as h ↓ 0 uniformly on s, t . Note that
when s, t vary in a domain of the formDδ := {t, s ∈ I :‖t − s‖ > δ} for
someδ > 0, then the Gaussian distribution in (16) is nondegenerate andAs,t is
bounded by (const)h2, the constant depending on the minimum of the determinant:
detVar(X(s),X(t),X′(s),X′(t)), for s, t ∈ Dδ .

So it is enough to prove thatAs,t = o(h) for ‖t − s‖ small, and we may assume
thats andt are in the same chart(U,φ). Writing the process in this chart, we may
assume thatI is a ball or a half ball inRd . Let s, t be two such points, and define
the processY = Y s,t by Y (τ ) = X(s +τ (t −s)); τ ∈ [0,1]. Under the conditioning
one has

Y (0) = x1, Y (1) = x2, Y ′(0) = Y ′(1) = 0,

Y ′′(0) = X′′(s)[(t − s), (t − s)], Y ′′(1) = X′′(t)[(t − s), (t − s)].
Consider the interpolation polynomialQ of degree 3 such that

Q(0) = x1, Q(1) = x2, Q′(0) = Q′(1) = 0.

Check that

Q(y) = x1 + (x2 − x1)y
2(3− 2y), Q′′(0) = −Q′′(1) = 6(x2 − x1).

DenoteZ(τ) = Y (τ ) − Q(τ),0 ≤ τ ≤ 1. Under the conditioning, one hasZ(0) =
Z(1) = Z′(0) = Z′(1) = 0 and if also the eventEh occurs, an elementary
calculation shows that for 0≤ τ ≤ 1,

|Z′′(τ )| ≤ sup
τ∈[0,1]

|Z(4)(τ )|
2! = sup

τ∈[0,1]
|Y (4)(τ )|

2! ≤ (const)‖t − s‖4h−γ .(17)
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On the other hand, check that ifA is a positive semidefinite symmetricd × d

real matrix andv1 is a vector of Euclidean norm equal to 1, then the inequality

det(A) ≤ 〈Av1, v1〉det(B)(18)

holds true, whereB is the(d −1)× (d −1) matrixB = ((〈Avj , vk〉))j,k=2,...,d and
{v1, v2, . . . , vd} is an orthonormal basis ofRd containingv1.

AssumeX′′(s) is negative definite, and that the eventEh occurs. We can
apply (18) to the matrixA = −X′′(s) and the unit vectorv1 = (t − s)/‖t − s‖.
Note that in that case, the elements of matrixB are of the form〈−X′′(s)vj , vk〉,
hence bounded by(const)h−γ . So,

det[−X′′(s)] ≤ 〈−X′′(s)v1, v1〉Cd h−(d−1)γ = Cd [Y ′′(0)]−‖t − s‖−2h−(d−1)γ ,

the constantCd depending only on the dimensiond .
Similarly, if X′′(t) is negative definite, and the eventEh occurs, then

det[−X′′(t)] ≤ Cd [Y ′′(1)]−‖t − s‖−2h−(d−1)γ .

Hence, ifC is the condition{X(s) = x1,X(t) = x2,X
′(s) = 0,X′(t) = 0},

E
(∣∣ det

(
X′′(s)

)
det

(
X′′(t)

)∣∣1X′′(s)≺0,X′′(t)≺01Eh
/C

)
≤ C2

d h−2(d−1)γ ‖t − s‖−4E
([Y ′′(0)]−[Y ′′(1)]−1Eh

/C
)

≤ C2
d h−2(d−1)γ ‖t − s‖−4E

([
Y ′′(0) + Y ′′(1)

2

]2

1Eh
/C

)

= C2
d h−2(d−1)γ ‖t − s‖−4E

([
Z′′(0) + Z′′(1)

2

]2

1Eh
/C

)
≤ (const)C2

d h−2dγ ‖t − s‖4.

We now turn to the density in (15) using the following lemma which is similar
to Lemma 4.3, page 76, in Piterbarg (1996a). The proof is omitted.

LEMMA 3.1. For all s, t ∈ I ,

‖t − s‖d+3 pX(s),X(t),X′(s),X′(t)(0,0,0,0) ≤ D,(19)

whereD is a constant.

Back to the proof of the theorem, to bound the expression in (15) we use
Lemma 3.1 and the bound on the conditional expectation, thus obtaining

E
(
Mu−h,u(Mu−h,u − 1)1Eh

)
≤ (const)C2

d h−2dγ D

∫ ∫
I×I

‖t − s‖−d+1 ds dt

∫ ∫ u

u−h
dx1dx2(20)

≤ (const)h2−2dγ
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since the function(s, t) � ‖t − s‖−d+1 is Lebesgue-integrable inI × I . The last
constant depends only on the dimensiond and the setI . Takingγ small enough,
(13) follows. �

EXAMPLE. Let {X(s, t)} be a real-valued two-parameter Gaussian, centered
stationary isotropic process with covariance�. Assume that�(0) = 1 and that the
spectral measureµ is absolutely continuous with densityµ(ds, dt) = f (ρ) ds dt ,
ρ = (s2 + t2)1/2. Assume further thatJk = ∫ +∞

0 ρkf (ρ) dρ < ∞, for 1≤ k ≤ 5.
Our aim is to give an explicit upper bound for the density of the probability
distribution of MI whereI is the unit disc. Using (9) which is a consequence
of Theorem 3.1 and the invariance of the law of the process, we have

F ′
I (u) ≤ πE

(
δ1(X′′(0,0)

)
/X(0,0) = u,X′(0,0) = (0,0)

)
× pX(0,0),X′(0,0)

(
u, (0,0)

)
(21)

+ 2πE
(
δ1(X̃′′(1,0)

)
/X(1,0) = u, X̃′(1,0) = 0

)
pX(1,0),X̃′(1,0)(u,0)

= I1 + I2.

We denote byX, X′, X′′ the value of the different processes at some point(s, t);
by X′′

ss ,X
′′
st ,X

′′
tt the entries of the matrixX′′; and byϕ and� the standard normal

density and distribution.
One can easily check that:X′ is independent ofX andX′′, and has variance

πJ3Id ; X′′
st is independent ofX, X′ X′′

ss and X′′
tt , and has varianceπ4 J5.

Conditionally onX = u, the random variablesX′′
ss andX′′

tt have

expectation: −πJ3;
variance:

3π

4
J5 − (πJ3)

2;

covariance:
π

4
J5 − (πJ3)

2.

We obtain

I2 =
√

2

J3
ϕ(u)

[(
3π

4
J5 − (πJ3)

2
)1/2

ϕ(bu) + πJ3u�(bu)

]
,

with b = πJ3
(3π/4J5−(πJ3)

2)1/2 . As for I1 we remark that, conditionally onX = u,

X′′
ss + X′′

tt andX′′
ss − X′′

tt are independent, so that a direct computation gives

I1 = 1

8πJ3
ϕ(u)E

[
(αη1 − 2πJ3u)2 − πJ5

4
(η2

2 + η2
3)1{αη1<2πJ3u}

(22)

× 1{(αη1−2πJ3u)2− πJ5
4 (η2

2+η2
3)>0}

]
,
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where η1, η2, η3 are standard independent normal random variables andα2 =
2πJ5 − 4π2J 2

3 . Finally we get

I1 =
√

2π

8πJ3
ϕ(u)

∫ ∞
0

[
(α2 + a2 − c2x2)�(a − cx)

+ [2aα − α2(a − cx)]ϕ(a − cx)
]
xϕ(x) dx,

with a = 2πJ3u, c =
√

πJ5
4 .

4. First derivative, second form. We choose, once for this entire section,
a finite atlasA for I . Then, to everyt ∈ I it is possible to associate a fixed chart
that will be denoted(Ut , φt ). Whent ∈ ∂I , φt (Ut) can be chosen to be a half ball
with φt(t) belonging to the hyperplane limiting this half ball. Fort ∈ I , let Vt be
an open neighborhood oft whose closure is included inUt and letψt be aC∞
function such thatψt ≡ 1 onVt ; ψt ≡ 0 onUc

t .

1. For everyt ∈ İ ands ∈ I we define the normalizationn(t, s) in the following
way:

(a) Fors ∈ Vt , we set “in the chart”(Ut , φt ), n1(t, s) = 1
2‖s − t‖2. By “in

the chart” we mean that‖s − t‖ is in fact‖φt(t) − φt(s)‖.
(b) For generals, we setn(t, s) = ψt(s)n1(t, s) + (1− ψt(s)).

Note that in the flat case, when the dimensiond of the manifold is equal to the
dimensionN of the ambient space, the simpler definitionn(t, s) = 1

2‖s − t‖2

works.
2. For everyt ∈ ∂I ands ∈ I , we setn1(t, s) = |(s − t)N | + 1

2‖s − t‖2, where
(s − t)N is the normal component of(s − t) with respect to the hyperplane
delimiting the half ballφt(Ut ). The rest of the definition is the same.

DEFINITION 4.1. We will say thatf is helix-function—or anh-function—on
I with pole t ∈ I satisfying hypothesis (Ht,k), k integer,k > 1, if:

(i) f is a boundedCk function onI \ {t}.
(ii) f (s) := n(t, s)f (s) can be prolonged as function of classCk on I .

DEFINITION 4.2. In the same wayX is called anh-process with polet ∈ I

satisfying hypothesis (Ht,k), k integer,k > 1, if:

(i) Z is a Gaussian process withCk paths onI \ {t}.
(ii) For t ∈ İ , Z(s) := n(t, s)Z(s) can be prolonged as a process of classCk

onI , with Z(t) = 0,Z′(t) = 0, If s1, . . . , sm are pairwise different points ofI \ {t},
then the distribution ofZ(2)(t), . . . ,Z(k)(t),Z(s1), . . . ,Z

(k)(s1), . . . ,Z
(k)(sm)

does not degenerate.
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(iii) For t ∈ ∂I ; Z(s) := n(t, s)Z(s) can be prolonged as a process of class
Ck on I with Z(t) = 0, Z̃

′
(t) = 0, and if s1, . . . , sm are pairwise different

points of I \ {t}, then the distribution ofZ′
N(t),Z(2)(t), . . . ,Z(k)(t),Z(s1), . . . ,

Z(k)(s1), . . . ,Z
(k)(sm) does not degenerate.Z′

N(t) is the derivative normal to the
boundary ofI at t .

We use the terms “h-function” and “h-process” since the function and the paths
of the process need not extend to a continuous function at the pointt . However,
the definition implies the existence of radial limits att . So the process may take
the form of a helix aroundt .

LEMMA 4.1. Let X be a process satisfying(Hk, k ≥ 2), and letf be aCk

functionI → R.
(a)For t ∈ İ , set fors ∈ I, s = t ,

X(s) = at
sX(t) + 〈bt

s,X
′(t)〉 + n(t, s)Xt (s),

whereat
s andbt

s are the regression coefficients.
In the same way, set

f (s) = at
sf (t) + 〈bt

s, f
′(t)〉 + n(t, s)f t (s),

using the regression coefficients associated toX.
(b) For t ∈ ∂I , s ∈ T, s = t , set

X(s) = ãt
sX(t) + 〈b̃t

s, X̃
′(t)〉 + n(t, s)Xt (s)

and

f (s) = ãt
sf (t) + 〈b̃t

s, f̃
′(t)〉 + n(t, s)f t (s).

Then s � Xt(s) and s � f t (s) are, respectively, an h-process and an
h-function with polet satisfyingHt,k .

PROOF. We give the proof in the caset ∈ İ , the other one being similar. In fact,
the quantity denoted byXt(s) is justX(s) − at

sX(t) − 〈bt
s,X

′(t)〉. OnL2(�,P ),
let � be the projector on the orthogonal complement to the subspace generated by
X(t),X′(t). Using a Taylor expansion,

X(s) = X(t) + 〈(s − t),X′(t)〉
+ ‖t − s‖2

∫ 1

0
X′′((1− α)t + αs

)[v, v](1 − α)dα,

with v = s−t
‖s−t‖ . This implies that

Xt(s) = �

[
‖t − s‖2

∫ 1

0
X′′((1− α)t + αs

)[v, v](1− α)dα

]
,(23)
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which gives the result due to the nondegeneracy condition.�

We state now an extension of Ylvisaker’s (1968) theorem on the regularity of
the distribution of the maximum of a Gaussian process which we will use in the
proof of Theorem 4.2 and which might have some interest in itself.

THEOREM 4.1. Let Z :T → R be a Gaussian separable process on some
parameter setT and denote byMZ = supt∈T Z(t) which is(a random variable)
taking values inR ∪{+∞}. Assume that there existsσ0 > 0, m− > −∞ such that

m(t) = E(Zt ) ≥ m−, σ 2(t) = Var(Zt ) ≥ σ 2
0

for everyt ∈ T . Then the distribution of the random variableMZ is the sum of an
atom at+∞ and a—possibly defective—probability measure onR which has a
locally bounded density.

PROOF. Suppose first thatX :T → R is a Gaussian separable process
satisfying Var(Xt ) = 1, E(Xt ) ≥ 0, for everyt ∈ T . A close look at Ylvisaker’s
(1968) proof shows that the distribution of the supremumMX has a densitypMX

that satisfies

pMX(u) ≤ ψ(u) = exp(−u2/2)∫ ∞
u exp(−v2/2) dv

for everyu ∈ R.(24)

Let now Z satisfy the hypotheses of the theorem. For givena, b ∈ R, a < b,
chooseA ∈ R+ so that|a| < A and consider the process

X(t) = Z(t) − a

σ (t)
+ |m−| + A

σ0
.

Clearly, for everyt ∈ T ,

E(X(t)) = m(t) − a

σ (t)
+ |m−| + A

σ0
≥ −|m−| + |a|

σ0
+ |m−| + A

σ0
≥ 0,

and Var(X(t)) = 1. So that (24) holds for the processX.
On the other hand, the statement follows from the inclusion:

{a < MZ ≤ b} ⊂
{ |m−| + A

σ0
< MX ≤ |m−| + A

σ0
+ b − a

σ0

}
,

which implies

P{a < MZ ≤ b} ≤
∫ (|m−|+A)/σ0+(b−a)/σ0

(|m−|+A)/σ0

ψ(u)du

=
∫ b

a

1

σ0
ψ

(
v − a + |m−| + A

σ0

)
dv. �
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Set nowβ(t) ≡ 1. The key point is that, due to regression formulae, under the
condition{X(t) = u,X′(t) = 0} the event

Au(X,β) := {X(s) ≤ u,∀ s ∈ I }
coincides with the event

Au(X
t,βt ) := {

Xt(s) ≤ βt (s)u,∀ s ∈ I \ {t}},
whereXt andβt are the h-process and the h-function defined in Lemma 4.1.

THEOREM 4.2 (First derivative, second form).Let X : I → R be a Gaussian
process, I a C∞compact manifold contained inRd . Assume thatX has paths
of classC2 and for s = t the triplet (X(s),X(t),X′(t)) in R × R × Rd has a
nondegenerate distribution. Then, the result of Theorem3.1 is valid, the derivative
F ′

I (u) given by relation(10)can be written as

F ′
I (u) = (−1)d

∫
I

E
[
det

(
Xt ′′(t) − βt ′′(t)u

)
1Au(Xt ,βt )

]
× pX(t),X′(t)(u,0)σ (dt)

(25)
+ (−1)d−1

∫
∂I

E
[
det

(
X̃

t ′′
(t) − β̃

t ′′
(t)

)
u1Au(Xt ,βt )

]
× pX(t),X̃′(t)(u,0)σ̃ (dt)

and this expression is continuous as a function ofu.

The notationX̃t ′′
(t) should be understood in the sense that we first defineXt

and then calculate its second derivative along∂I .

PROOF OFTHEOREM 4.2. As a first step, assume that the processX satisfies
the hypotheses of Theorem 3.1, which are stronger that those in the present
theorem.

We prove that the first term in (10) can be rewritten as the first term in (25).
One can proceed in a similar way with the second term, mutatis mutandis. For that
purpose, use the remark just before the statement of Theorem 4.2 and the fact that
under the condition{X(t) = u,X′(t) = 0}, X′′(t) is equal toXt ′′(t) − βt ′′(t)u.

Replacing in the conditional expectation in (10) and on account of the
Gaussianity of the process, we get rid of the conditioning and obtain the first term
in (25). We now study the continuity ofu � F ′

I (u). The variableu appears at three
locations:

(i) in the densitypX(t),X′(t)(u,0), which is clearly continuous,
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(ii) in

E
[
det

(
Xt ′′(t) − βt ′′(t)u

)
1Au(Xt ,βt )

]
,

where it occurs twice: in the first factor and in the indicator function.

Due to the integrability of the supremum of bounded Gaussian processes, it is
easy to prove that this expression is continuous as a function of the firstu.

As for theu in the indicator function, set

ξv := det
(
Xt ′′(t) − βt ′′(t)v

)
(26)

and, forh > 0, consider the quantity E[ξv1Au(Xt ,βt )] − E[ξv1Au−h(Xt ,βt )], which is
equal to

E
[
ξv1Au(Xt ,βt )\Au−h(Xt ,βt )

] − E
[
ξv1Au−h(Xt ,βt )\Au(Xt ,βt )

]
.(27)

Apply Schwarz’s inequality to the first term in (27):

E
[
ξv1Au(Xt ,βt )\Au−h(Xt ,βt )

] ≤ [
E(ξ2

v )P{Au(X
t ,βt ) \ Au−h(X

t, βt )}]1/2
.

The eventAu(X
t ,βt) \ Au−h(X

t , βt ) can be described as

∀ s ∈ I \ {t} :Xt(s) − βt(s)u ≤ 0; ∃ s0 ∈ I \ {t} :Xt(s0) − βt (s0)(u − h) > 0.

This implies thatβt(s0) > 0 and that−‖βt‖∞h ≤ sups∈I\{t} Xt(s) − βt(s)u ≤ 0.
Now, observe that our improved version of Ylvisaker’s theorem (Theorem 4.1)
applies to the processs � Xt(s) − βt (s)u defined onI \ {t}. This implies that
the first term in (27) tends to zero ash ↓ 0. An analogous argument applies to the
second term. Finally, the continuity ofF ′

I (u) follows from the fact that one can
pass to the limit under the integral sign in (25).

To complete the proof we still have to show that the added hypotheses are in
fact unnecessary for the validity of the conclusion. Suppose now that the process
X satisfies only the hypotheses of the theorem and define

Xε(t) = Zε(t) + εY (t),(28)

where for eachε > 0, Zε is a real-valued Gaussian process defined onI ,
measurable with respect to theσ -algebra generated by{X(t) : t ∈ I }, possessing
C∞ paths and such that almost surelyZε(t), Z′

ε(t), Z′′
ε (t) converge uniformly

on I to X(t),X′(t),X′′(t), respectively, asε ↓ 0. One standard form to construct
such an approximation processZε is to use aC∞ partition of the unity onI and to
approximate locally the composition of a chart with the functionX by means of a
convolution with aC∞ kernel.

In (28), Y denotes the restriction toI of a Gaussian centered stationary
process satisfying the hypotheses of Proposition 3.1, defined onRN , and
independent ofX. Clearly Xε satisfies condition(Hk) for every k, since it
has C∞ paths and the independence of both terms in (28) ensures thatXε
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inherits from Y the nondegeneracy condition in Definition 3.1. So, ifMε
I =

maxt∈I Xε(t) andFε
I (u) = P{Mε

I ≤ u}, one has

Fε′
I (u) = (−1)d

∫
I

E
[
det

(
Xεt ′′(t) − βεt ′′(t)u

)
1Au(Xεt ,βε,t )

]
× pXε(t),Xε′(t)(u,0)σ (dt)

(29)
+ (−1)d−1

∫
∂I

E
[
det

(
X̃

εt ′′
(t) − β̃

εt ′′
(t)u

)
1Au(Xεt ,βεt )

]
× pXε(t),X̃ε′(t)(u,0)σ̃ (dt).

We want to pass to the limit asε ↓ 0 in (29). We prove that the right-hand side
is bounded ifε is small enough and converges to a continuous function ofu as
ε ↓ 0. SinceMε

I → MI , this implies that the limit is continuous and coincides
with F ′

I (u) by a standard argument on convergence of densities. We consider only
the first term in (29); the second is similar.

The convergence ofXε and its first and second derivative, together with the non-
degeneracy hypothesis, imply that uniformly ont ∈ I , as ε ↓ 0,
pXε(t),Xε′(t)(u,0) → pX(t),X′(t)(u,0). The same kind of argument can be used for
det(Xεt ′′(t) − βεt ′′(t)u), on account of the form of the regression coefficients and
the definitions ofXt andβt . The only difficulty is to prove that, for fixedu,

P{Cε�C} → 0 asε ↓ 0,(30)

whereCε = Au(X
εt , βεt ), C = Au(X

t,βt ).
We prove that

a.s.1Cε → 1C asε ↓ 0,(31)

which implies (30). First of all, note that the event

L =
{

sup
s∈I\{t}

(
Xt(s) − βt(s)u

) = 0
}

has zero probability, as already mentioned. Second, from the definition of
Xt(s) and the hypothesis, it follows that, asε ↓ 0, Xε,t (s), βε,t (s) converge to
Xt(s), βt(s) uniformly on I \ {t}. Now, if ω /∈ C, there exists̄s = s̄(ω) ∈ I \ {t}
such thatXt(s̄) − βt (s̄)u > 0 and for ε > 0 small enough, one hasXεt (s̄) −
βεt (s̄)u > 0, which implies thatω /∈ Cε .

On the other hand, letω ∈ C \ L. This implies that

sup
s∈I\{t}

(
Xt(s) − βt (s)u

)
< 0.

From the above-mentioned uniform convergence, it follows that ifε > 0 is small
enough, then sups∈I\{t}(Xεt (s) − βεt (s)u) < 0, henceω ∈ Cε . Equation (31)
follows.
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So, we have proved that the limit asε ↓ 0 of the first term in (29) is equal to the
first term in (25).

It remains only to prove that the first term in (25) is a continuous function
of u. For this purpose, it suffices to show that the functionu � P{Au(X

t ,βt)}
is continuous. This is a consequence of the inequality

|P{Au+h(X
t , βt)} − P{Au(X

t ,βt)}|
≤ P

{∣∣∣∣ sup
s∈I\{t}

(
Xt(s) − βt (s)u

)∣∣∣∣ ≤ |h| sup
s∈I\{t}

|βt (s)|
}

and of Theorem 4.1, applied once again to the processs � Xt(s)−βt(s)u defined
on I \ {t}. �

5. Asymptotic expansion of F ′(u) for large u.

COROLLARY 5.1. Suppose that the processX satisfies the conditions of
Theorem4.2and that in additionE(Xt ) = 0 andVar(Xt ) = 1.

Then, asu → +∞, F ′(u) is equivalent to

ud

(2π)(d+1)/2
e−u2/2

∫
I

(
det(�(t))

)1/2
dt,(32)

where�(t) is the variance–covariance matrix ofX′(t).

Note that (32) is in fact the derivative of the bound for the distribution function
that can be obtained by Rice’s method [Azaïs and Delmas (2002)] or by the
expected Euler characteristic method [Taylor, Takemura and Adler (2004)].

PROOF OFCOROLLARY 5.1. Setr(s, t) := E(X(s),X(t)), and fori, j = 1, d,

ri;(s, t) := ∂

∂si
r(s, t),

rij ;(s, t) := ∂2

∂si ∂sj
r(s, t), ri;j (s, t) := ∂2

∂si ∂tj
r(s, t).

For every t, i and j , ri;(t, t) = 0, �ij (t) = ri;j (t, t) = −rij ;(t, t). Thus X(t)

andX′(t) are independent. Regression formulae imply thatat
s = r(s, t), βt (s) =

1−r(t,s)
n(s,t)

. This implies thatβt(t) = �(t) and that the possible limits values ofβt (s)

ass → t are in the set{vT �(t)v :v ∈ Sd−1}. Due to the nondegeneracy condition
these quantities are minorized by a positive constant. On the other hand, fors = t ,
βt (s) > 0. This shows that for everyt ∈ I one has infs∈I βt (s) > 0. Since for every
t ∈ I the processXt is bounded, it follows that a.s.1Au(Xt ,βt ) → 1 asu → +∞.

Also

det
(
Xt ′′(t) − βt ′′(t)u

) � (−1)d det(�(t))ud.
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Dominated convergence shows that the first term in (25) is equivalent to∫
I
ud det(�t )(2π)−1/2e−u2/2(2π)−d/2(det(�t)

)−1/2
dt

= ud

(2π)(d+1)/2e−u2/2
∫
I

(
det(�t )

)1/2
dt.

The same kind of argument shows that the second term isO(ud−1e−u2/2), which
completes the proof.�
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