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From EM to Data Augmentation:
The Emergence of MCMC Bayesian
Computation in the 1980s

Martin A. Tanner and Wing H. Wong

Abstract. It was known from Metropolis et al. [J. Chem. Phys. 21 (1953)
1087-1092] that one can sample from a distribution by performing Monte
Carlo simulation from a Markov chain whose equilibrium distribution is
equal to the target distribution. However, it took several decades before the
statistical community embraced Markov chain Monte Carlo (MCMC) as a
general computational tool in Bayesian inference. The usual reasons that are
advanced to explain why statisticians were slow to catch on to the method
include lack of computing power and unfamiliarity with the early dynamic
Monte Carlo papers in the statistical physics literature. We argue that there
was a deeper reason, namely, that the structure of problems in the statisti-
cal mechanics and those in the standard statistical literature are different. To
make the methods usable in standard Bayesian problems, one had to exploit
the power that comes from the introduction of judiciously chosen auxiliary
variables and collective moves. This paper examines the development in the
critical period 1980-1990, when the ideas of Markov chain simulation from
the statistical physics literature and the latent variable formulation in maxi-
mum likelihood computation (i.e., EM algorithm) came together to spark the

widespread application of MCMC methods in Bayesian computation.

Key words and phrases:

1. INTRODUCTION

This paper surveys the historical development of
MCMC methodology during a key time period in
Bayesian computation. As of the mid-1980s, the
Bayesian community was focused on Gaussian quadra-
ture type methods, Laplace approximations and vari-
ants of importance sampling as the main computa-
tional tools in Bayesian analysis. Among more dog-
matic Bayesians, the use of Monte Carlo was met with
resistance and viewed as antithetical to Bayesian prin-
ciples. MCMC techniques published in the statistical
physics and image analysis literature were seen by
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the Bayesian computational community as techniques
for specialized problems. However, by the early 1990s
MCMC-based approaches have become a mainstay in
computational Bayesian inference. The purpose of this
paper is to review the events that led to this remark-
able development. In particular, we examine the crit-
ical decade of 1980-1990 when the ideas of Markov
chain simulation from the statistical physics literature
and the latent variable formulation in maximum likeli-
hood computation (i.e., EM algorithm) came together
to spark the widespread application of MCMC meth-
ods in Bayesian computation.

2. SOME PRE-HISTORY

2.1 Markov Chain Monte Carlo

The origin of MCMC can be traced to the early
1950s when physicists were faced with the need to
numerically study the properties of many particle sys-
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tems. The state of the system is represented by a vec-
tor x = (x1, x2, ..., Xx,), where x; is the coordinate of
the ith particle in the system and the goal is to study
properties such as pressure and kinetic energy, which
can be obtained from computation of the averaged val-
ues of suitably defined functions of the state vector.
The averaging is weighted with respect to the canon-
ical weight exp(—E(x)/kT), where the constants k
and T denote the Boltzmann constant and the tem-
perature, respectively. The physics of the system is
encoded in the form of the energy function. For ex-
ample, in a simple liquid model one has the energy
E(x) = (1/2) 33 i2; V(xi — xj[), where V() is a
potential function giving the dependence of pair-wise
interaction energy on the distance between two parti-
cles. Metropolis et al. (1953) introduce the first Markov
chain Monte Carlo method in this context by making
sequential moves of the state vector by changing one
particle at a time. In each move, a random change of
a particle is proposed, say, by changing to a position
chosen within a fixed distance from its current posi-
tion, and the proposed change is either accepted or re-
jected according to a randomized decision that depends
on how much the energy of the system is changed by
such a move. Metropolis et al. justified the method via
the concepts of ergodicity and detailed balance as in ki-
netic theory. Although they did not explicitly mention
“Markov chain,” it is easy to translate their formulation
to the terminology of modern Markov chain theory. In
subsequent development, this method was applied to
a variety of physical systems such as magnetic spins,
polymers, molecular fluids and various condense mat-
ter systems (reviewed in Binder, 1978), but all these ap-
plications share the characteristics that 7 is large! and
the n components are homogeneous in the sense that
each takes value in the same space (say, 6-dimensional
phase space, or up/down spin space, etc.) and inter-
acts in identical manner with other components ac-
cording to the same physical law as specified by the
energy function. These characteristics made it diffi-
cult to recognize how the method can be of use in a
typical Bayesian statistical inference problem where
the form of the posterior distribution is very different
from the Boltzmann distributions arising from physics.

n the words of Geman and Geman (1984), “The Metropolis al-
gorithm and others like it were invented to study the equilibrium
properties, especially ensemble averages, time-evolution and low-
temperature behavior, of very large systems of essentially identical,
interacting components, such as molecules in a gas or atoms in bi-
nary alloys.”

For this reason, although the probability and statistical
community was aware of MCMC very early on (Ham-
mersley and Handscomb, 1964%) and had in fact made
key contributions to its theoretical development (Hast-
ings, 1970), the method was not applied® to Bayesian
inference until the 1980s.

2.2 Latent Variable Methods in Likelihood
Inference: The EM Algorithm

During the 1960s and 1970s, statisticians developed
an approach to maximum likelihood computation that
is quite effective in many popular statistical models.
The approach was based on the introduction of latent
variables into the problem so as to make it feasible
to compute the MLE if the latent variable value were
known. Equivalently, if one regards the latent vari-
able as “missing data,” then this approach relies on the
simplicity of inference based on the “complete data”
to design an iterative algorithm to compute the maxi-
mum likelihood estimate and the associated standard
errors. This development culminated in the publica-
tion of the extremely influential paper Dempster, Laird
and Rubin (1977). A review of earlier research treat-
ing specific examples was presented in that paper, as

2Interestingly, Hammersley and Handscomb (1964) present the
discrete version of the Metropolis algorithm in the chapter entitled
“Problems in statistical mechanics,” rather than in the chapter on
“Principles of the Monte Carlo method” which covers topics such
as crude Monte Carlo, stratified sampling, importance sampling,
control variates, antithetic variates and regression methods. Simi-
larly, in another popular textbook, Rubinstein (1981) presents the
discrete version of the Metropolis algorithm toward the end of his
book, embedded in an algorithm for ‘global’ optimization, rather
than earlier in, for example, Chapter 3, “Random variate genera-
tion” or in Chapter 4, “Monte Carlo integration and variance reduc-
tion techniques.” Also, Ripley (1987) presents the discrete version
of the Metropolis algorithm in the section “Metropolis’ method and
random fields” (but not in the previous chapter on simulating ran-
dom variables or in the following chapter on Monte Carlo integra-
tion and importance sampling).

3Several authors have argued that this delay can be attributed
to “lack of appropriate computing power” (quoting Robert and
Casella, 2010). Kass (1997) in his JASA review of the book Markov
Chain Monte Carlo in Practice remarks on page 1645: “I believe
that MCMC became important in statistics when it did for the sim-
ple reason that in the early 1990s large numbers of researchers
could implement it on their desktops for interesting, nontrivial
problems. .. I would suggest that the timing of their growth in pop-
ularity is explained primarily by computing technology.” [This ar-
gument is quoted almost verbatim by Hitchcock (2003)—see Gu-
bernatis (2003) who presents several “first-hand” accounts of the
history of the Metropolis algorithm, as well as discusses why the
algorithm received scant use in the 10-15 years following its de-
velopment.]



508 M. A. TANNER AND W. H. WONG

well as the associated discussion. The high impact of
Dempster, Laird and Rubin stems from its compelling
demonstration that a wide variety of seemingly un-
related problems in standard statistical inference, in-
cluding multinomial sampling, normal linear models
with missing values, grouping and truncation, mixture
problems and hierarchical models, can all be encom-
passed within this latent variable framework and thus
become computationally feasible using the same algo-
rithm (called the EM algorithm by Dempster, Laird and
Rubin) for MLE inference.

Because of its influence in later MCMC methods on
the same set of problems, we briefly review a simpli-
fied formulation of the EM algorithm: Let y be the ob-
served data vector, pg(y) be the density of y, and we
are interested in the inference regarding 6. Two condi-
tions are assumed for the application of the EM. First,
it is assumed that although the likelihood L(@]y) =
po(y) may be hard to work with, one can introduce

This response does not explain why in 1987, when research uni-
versities had long since transitioned away from the university main-
frame (which billed for every second of CPU usage, every page of
memory, etc.) to departmental workstations (typically VAX 780’s
or 750’s, which were essentially free to faculty), the key compu-
tational Bayesian methods advocated at the time were based on
quadrature or Laplace approximations or importance sampling (see
the Appendix). Of course, one could not carry a VAX 750 around
in a briefcase and it was not as powerful as current PCs, but one
could log on from home or from the office and submit a job to run
overnight (or over a weekend) without having to deal with a charge-
back system. Clearly, the state of computing in the early 1980s did
not detract from the work of Geman and Geman (1984).

It may not have been a lack of computing power per se that con-
tributed to this developmental delay, but possibly a concern regard-
ing optimal algorithms. In this regard, Geman (1988a) notes: “...
we view Monte Carlo optimization techniques as research tools.
They are poor substitutes for the efficient dedicated algorithms that
should be developed when facing applications involving a flow of
data and a need for speedy analysis.” Efron (1979) mentions that
Tukey wanted to call the bootstrap the shotgun, because it “can
blow off the head of any problem if the statistician can stand the
resulting mess.” The same can be said for Metropolis—Hastings al-
gorithms, as they can solve any simulation problem, but as noted by
Geman (1988a), there is a strong sense that one could find a more
efficient approach to implementing the simulation in the specific
case.

Robert and Casella (2010) also cite “lack of background on
Markov chains.” We question this as well, for by the mid-1970s it
was standard practice to require a stochastic process course based
on such texts as Karlin and Taylor (1975) as part of the degree
requirements for a Ph.D. in Statistics. The treatment in Karlin
and Taylor (1975), for example, provides a more than sufficient
background to understand the related material in Hammersley and
Handscomb (1964).

a latent (i.e., unobserved) variable z so that the like-
lihood L8|y, z) = ps(y,z) based on the value of y
and z becomes easy to optimize as a function of 6. In
fact, for simplicity, we assume that pg(y, z) is an ex-
ponential family distribution. The second condition is
that for any fixed parameter value 6, it is possible to
compute the expectation of the sufficient statistics of
the exponential family, where the expectation is over z
under the assumption that z is distributed according to
its conditional distribution py(z]y). We will see below
that these conditions are closely related to the ones un-
der which the most popular form of MCMC algorithm
for Bayesian computation, namely, the Gibbs sampler,
is applicable.

3. EMERGENCE OF MCMC IN BAYESIAN
COMPUTATION IN THE 1980S

3.1 The State of Bayesian Computation
in the Mid-1980s

The early 1980s was an active period in the devel-
opment of Bayesian computational methods. In addi-
tion to the traditional approach that relied on the use
of conjugate priors to obtain analytically tractable pos-
terior distributions, significant progress was made in
numerical approximations to the posterior distribution.
We now briefly review the main approaches.

In many problems it is easy to evaluate the joint
posterior density up to a constant of proportionality.
The difficulty is to obtain posterior moments and mar-
ginal distributions of selected parameters of interest.
Numerical integration methods were developed to ob-
tain these quantities from the joint posterior. In partic-
ular, Naylor and Smith (1982) and Smith et al. (1985)
advocated the use of Gaussian quadrature which would
be the correct choice in large sample situations when
the posterior is approximately normal. Alternatively,
Kloek and van Dijk (1978, 1980) proposed the use of
importance sampling to carry out the integration, and
applied the method systematically in the context of si-
multaneous equation models. Many novel variations
were experimented with in both approaches, including
the important idea of adaptation where a preliminary
integration was used to guide the choice of parame-
ters (grid points, importance function, etc.) in a second
round of integration.

Another influential work was Tierney and
Kadane (1986) which uses the technique of Laplace
approximation to obtain accurate approximations for
posterior moments and marginal densities; albeit in
contrast to the other approaches, the accuracy of this
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approximation is determined by the sample size and
not under the control of the Bayesian analyst.

These efforts demonstrated that accurate numerical
approximation to marginal inference can be obtained in
problems with moderate dimensional parameter space
[e.g., Smith et al. (1985) report success on problems
with up to 6 dimensions] and created a great deal of
excitement in the prospect of computational Bayesian
inference (see, e.g., Zellner, 1988). On the other hand,
a review of the writings of leading Bayesian statisti-
cians in this period reveal no awareness of the promise
of the MCMC approach that would soon emerge as a
dominate tool in Bayesian computation. In fact, among
more dogmatic Bayesians,* the use of Monte Carlo
was met with resistance and viewed as antithetical to
Bayesian principles.

We are now ready to discuss the specific develop-
ments that sparked the emergence of MCMC method-
ology in statistics.

3.2 Formulation of the Gibbs Sampler

In 1984, Geman and Geman published a paper on
the topic of Bayesian image analysis (Geman and Ge-
man, 1984). Beyond its immediate and large impact in
image analysis, this paper is significant for several re-
sults of more general interest, including a proof of the
convergence of simulated annealing, and the introduc-
tion of the Gibbs sampler.

We briefly review how the Gibbs sampler emerged
in this context. The authors began by drawing an anal-
ogy between images and statistical mechanics systems.
Pixel gray levels and edge elements were regarded as
random variables and an energy function based on local
characteristics of the image was used to represent prior
information on the image such as piece-wise smooth-
ness. Because interaction energy terms involved only
local neighbors, the conditional distribution of a vari-
able given the remaining components of the image de-
pends only on its local neighbors, and is therefore easy
to sample from. Such a distribution, for the systems of
image pixels, is similar to the canonical distribution in
statistical mechanics studied by Boltzmann and Gibbs,
and it is thus called a Gibbs distribution for the image.

Next, the authors analyzed the statistical problem
of how to restore the image from an observed im-
age which is a degradation of true image through the
processes of local blurring and noise contamination.

4For a more detailed review of the prevailing approaches and
views on Bayesian computation through the late 1980s, see the Ap-
pendix.

They showed that the posterior distribution of true im-
age given the observed data is also a Gibbs distribution
whose energy function still involves only local interac-
tions. Geman and Geman proposed to generate images
from this posterior distribution by iteratively sampling
each image element from its conditional distribution
given the rest of the image, which is easy to do because
the distribution is still Gibbs. They call this iterative
conditional sampling algorithm the Gibbs sampler. For
the history of Bayesian computation, this was a pivotal
step—although similar algorithms were already in use
in the physics literature; to our knowledge, this work
represented the first proposal to use MCMC to simu-
late from a posterior distribution. On the other hand,
because the Gibbs model for images is so similar to the
(highly specialized) statistical physics models, it was
not apparent that this approach could be effective in
traditional statistical models (see the Appendix).

3.3 Introduction of Latent Variables and Collective
Moves

The use of iterative sampling for Bayesian inference
in traditional statistical models was first demonstrated
in Tanner and Wong (1987). The problems treated in
this work, such as normal covariance estimation with
missing data, latent class models, etc., were of the type
familiar to mainstream statisticians of the time. A char-
acteristic of many of these problems was that the likeli-
hood is hard to compute (thus not amenable to MCMC
directly). To perform Bayesian analysis on these mod-
els, the authors embedded them in the setting of the EM
algorithm where a latent variable z can be introduced to
simplify the inference of the parameter 6. They started
from the equations

G p@ly) =/p(0|y,z>p<z|y>dz,

(3.2) pzly) =fp(z|9,y)p(9|y)d9-

Recall that the conditions needed for the EM to work
well are that pg(y, z) is simple to work with as a func-
tion of 0, and py(z|y) is easy to work with as a func-
tion of z. The first condition usually implies that the
complete data posterior p(8|y, z) is also easy to work
with. Thus, (3.1) can be approximated as a mixture of
p(@ly, z) over a set of values (mixture values) for z
drawn from (3.2). Similarly, (3.2) is approximated as a
mixture of p(z|6,y) over mixture values for 6 drawn
from (3.1). This led the authors to propose an iter-
ated sampling scheme to construct approximations to
p(@ly) and p(z|y) simultaneously. In each step of the
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iteration, one draws a sample of values with replace-
ment from the mixture values for z (or ), and then con-
ditional on each such z, draws 0 (or z) from p(@|y, z)
[or p(z]6, y)].

This computation is almost identical to a version of
the Gibbs sampler that iterates between the sampling of
p@|y,z) and p(z|6,y). In fact, if the sampling from
the mixture values for z (or #) was done without re-
placement rather than with replacement, as suggested
by Morris (1987), then one would have exactly a pop-
ulation of independently run Gibbs samplers. The au-
thors also noted> the connection to the equilibrium dis-
tribution of a Markov chain, but they did not employ it
as the main mathematical framework in their analysis.
In any case, a prominent aspect of its relevance lies in
the explicit introduction of the latent variable z, which
may or may not be part of the data vector or the pa-
rameter vector of the original statistical model, to cre-
ate an iterative sampling scheme for the Bayesian in-
ference of the original parameter 6. Tanner and Wong
referred to this aspect of the design of the algorithm
as “data augmentation.” A judicious choice of latent
variables can allow one to sample from the posterior
p(@]y) in cases where direct MCMC methods, includ-
ing the Gibbs sampler, may not even be applicable be-
cause of difficulty in evaluating p(0|y).

As a discussant of Tanner and Wong (1987), Mor-
ris (1987) makes several key observations of great rel-
evance to MCMC Bayesian computing. In addition to
suggesting a version of data augmentation that is the
same as parallel Gibbs sampling, he emphasizes that
(just as in the EM context) the augmentation is not
limited to missing data, but can be done with parame-
ters as well: “and to emphasize that their ‘missing data’
concept can be used to include unknown parameters or
latent data.” As an illustration of the data augmenta-
tion algorithm, Morris (1987) presents what we would
now call the Gibbs sampler for a three-stage hierarchi-
cal model with k + 1 parameters. At the first level of his
model, y; |6; are distributed independently as N (6;, V;),
fori =1, ...,k (V; known). At the second stage, 6;|A

5 Quoting Tanner and Wong (1987): “To see this, consider the ex-
treme case in which m =1, so that iteration i produces only one
value 6(i). In this case, (i) (i = 1,2, ...) forms a Markov process
with transition function equal to K (6, ¢), as defined in (2.3). Un-
der the regularity conditions of Section 6, this is an ergodic Markov
process with an equilibrium distribution satisfying the fixed point
equation given in (2.3).” Equation (2.3) presents the Markov transi-
tion function K (9, ¢) (see also their Markov transition operator dis-
cussion in Remark 4) via the expression g(9) = [ K (0, ¢)g(¢) d¢,
where K (60, ¢) = [ p(0lz, ) p(zlp, y) dz.

are ii.d. N(0, A),i =1, ..., k. At the final stage, A is
distributed as a completely known distribution. Morris
then says, “Let initial values AV, ..., A be given.
The posterior distribution of 6 given (y, A) is nor-
mally distributed and the P step samples 91'(] )~ N Q-
By, Vi =B fori=1,....k j=1,....m,
independently, with B = V;/(V; + AD)....” For
the A parameter he writes, “The I step (1.5), there-
fore, samples new values AD A according to
AV ~ O+ 10PN/ xy, for j =1,...,m, with
x,? 't sampled independently for each j, [|6]|> denot-
ing the sum of squares.”

Although no new theory beyond MCMC is needed
for the analysis of a sampling algorithm designed to
include latent variables, the nature of the resulting
process may be drastically different from the tradi-
tional MCMC processes, even in cases when the pos-
terior p(8|y) is computable and therefore amenable to
direct MCMC analysis. Consider, for example, a linear
model y = xf + ¢, where the errors are independently
distributed according to Student’s ¢ with a fixed degree
of freedom. In this case the joint posterior density for 3
is computable and one can apply the standard Metropo-
lis sampler to sample from it, by iteratively proposing
to change the 8 vector, one component at a time. How-
ever, the sampler may be easily trapped at local max-
ima. What is worse, the moves may be exceedingly lo-
calized (therefore slow) if there is serious collinearity.
On the other hand, by regarding the error as a gamma-
mixture of normal variables, one can condition on the
gamma variables and generate the whole vector 8 (i.e.,
a collective move), which allows large moves even in
the presence of collinearity.®

Interestingly, at about the same time, Swendsen and
Wang (1987) also introduced the use of latent variables
(called auxiliary variables) in the setting of a statisti-
cal mechanics system. This work deals with the Potts
model of spins on a lattice. The authors introduced
bond variables between spins and then alternated be-
tween the sampling of the two types of variables, spins
and bonds. By conditioning on the bonds, they were
able to make more global changes of the spin config-
uration by simultaneously updating a whole cluster of

SFor simplicity, the errors are unscaled in our example. If the er-
rors have a scaling parameter, then it will have correlation with the
gamma variables and this will slow down the convergence. More
advanced augmentation schemes can be created to break this corre-
lation and accelerate convergence; see Liu, Rubin and Wu (1998),
Liu and Wu (1999) and van Dyk and Meng (2001).
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spins that are connected by active bonds (i.e., a collec-
tive move). In this way they were able to dramatically
reduce the correlation time of the resulting Markov
process for simulating a two-dimensional Ising model.
Justifiably, this work is widely regarded as a break-
through in dynamic Monte Carlo methods in statistical
physics.

3.4 A Synthesis

Above we described how MCMC Bayesian com-
putation arose in the 1980s from two independent
sources, the statistical physics heritage as represented
by Geman and Geman (1984), and the EM heritage as
represented by Tanner and Wong (1987). A synthesis
of these two traditions occurred in the important work
of Gelfand and Smith (1990). Like the former, they em-
ployed the Gibbs sampling version of MCMC. Like the
latter, they focused on traditional statistical models and
relied on the use of latent variables to create iterative
sampling schemes. Their paper’ provided many exam-
ples to illustrate the ease of use® and effectiveness of it-
erative sampling, and clarified the relation between the
data augmentation algorithm and the Gibbs sampler.

The framing of data augmentation as MCMC also
raised some new and interesting theoretical issues
in the analysis of the MCMC output. For example,
it follows from (3.2) that in data augmentation the
estimate of an expectation E(g(0)|y) is given by

Ly E(g(9)|y, zi), where the z;’s are the currently

n i=1
sampled values for the latent variable z. Gelfand and
Smith refer to the use of this estimate, instead of the

usual estimate % > 8(6;), as Rao—-Blackwellization.

7Also of note are the papers of Li (1988) who used a multi-
component Gibbs sampler to perform multiple imputation from the
posterior, Gelman and King (1990) who employed MCMC to ana-
lyze hierarchical models of voting data across districts and Spiegel-
halter and Lauritzen (1990) who treated graphical models. The lat-
ter appeared to have inspired the popular MCMC software BUGS
(Lunn et al., 2009).

8Smith (1991) notes that regarding the Gibbs sampler: “Substan-
tial iterative computation is then required, but the need for sophis-
ticated numerical understanding on the part of the statistical an-
alyst is obviated.” Gelfand et al. (1990) also comment that sam-
pling methods have a “hidden” efficiency: “In addition, in the case
of most of the more sophisticated techniques, substantial fresh ef-
fort is required (including, in some cases, beginning the analy-
sis anew) if the focus of inferential interest changes....” Tanner
and Wong (1987, pages 533 and 549), in their normal variance—
covariance matrix example, make the same point when they note
the ease in which one may examine the posterior distribution of
any function of the variance—covariance matrix, such as the small-
est eigenvalue (see their Figure 1 in the Rejoinder).

They reasoned that if the z;’s are independently drawn,
as in a final iteration of the data augmentation algo-
rithm, then clearly Rao—Blackwellization will reduce
estimation error. They did not analyze the situation
when the samples are dependent, as when the samples
are generated from the Gibbs sampling process. The
superiority of the Rao—Blackwellized estimator in the
two-component Gibbs sampler was later established in
Liu, Wong and Kong (1994)—see also Geyer (1995).

After the publication of Gelfand and Smith’s influ-
ential paper, many mainstream statisticians began to
adapt the use of MCMC in their own research, and the
results in these early applications quickly established
MCMC as a dominant methodology in Bayesian com-
putation. However, it should be noted that in any given
problem there could be a great many ways to formu-
late a MCMC sampler. In simulating an Ising model,
for example, one can try to flip each spin conditional
on the rest, or flip a whole set of spins connected by
(artificially introduced) bonds that are sampled alterna-
tively with the spins. The effectiveness of the Swend-
sen and Wang (1987) algorithm in the Ising model
does not simply stem from the fact that it is a Gibbs
sampler, but rather depends critically on the clever de-
sign of the specific form of the sampler. Likewise,
a large part of the success of MCMC in the early 1990s
was based on versions of Gibbs samplers that were
designed to exploit the special structure of statistical
problems in the style of the EM and data augmentation
algorithms. Thus, the emergence of MCMC in main-
stream Bayesian inference has depended as much on
the introduction of the mathematically elegant MCMC
formalism as on the realization that the structure of
many common statistical models can be fruitfully ex-
ploited to design versions of the algorithm that are fea-
sible and effective for these models.

The appearance of Gelfand and Smith (1990) marked
the end of the emergence of the MCMC approach to the
study of posterior distributions, and the beginning of an
exciting period, lasting to this day, of the application
of this approach to a vast array of problems, includ-
ing inference in non-parametric problems. Advanced
techniques have also been developed in this framework
to accelerate convergence. Statisticians, no longer lag-
gards in MCMC methodology, now rival physicists in
the advancement of MCMC methodology.® It is our
hope that this paper will serve as a useful historical
context to understand current developments.

9For example, Geyer (1991) introduced parallel tempering ahead
of related concepts in the physics literature—see Hukushima and
Nemoto (1996).
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APPENDIX

In this appendix we present three key resources that
define the state-of-the-art Bayesian computing as of the
mid to late 1980s.

A.1 Smith et al. (1985)

A key reference that catalogs the tools in the
Bayesian’s armamentarium as of 1985 is the paper by
Adrian F. M. Smith and colleagues entitled “The im-
plementation of the Bayesian paradigm” (see Smith et
al., 1985). After providing an overview of the goals of
Bayesian computation, the authors critically review a
number of implementation strategies: (1) exact analytic
implementation based on conjugate priors; (2) large
sample normal approximation; (3) alternative asymp-
totic approximations including discussion of a preprint
of Tierney and Kadane (1986) outlining the Laplace
approach; (4) Monte Carlo integration—specifically
importance sampling; (5) quadrature methodology—
specifically the approach of Naylor and Smith (1982)
based on the Gauss—Hermite product rules; and (6) suc-
cessive transformations of the parameters of the model
to achieve normality. The remainder of Smith et
al. (1985) reviews in considerable detail the Naylor and
Smith (1982) strategy based on Gaussian quadrature,
as well as presents several interesting examples. The
authors conclude with the following remark: “novel
numerical integration techniques together with effi-
cient graphical procedures are now making Bayesian
analysis practical for a wide range of problems.”

A.2 The 1987 Special Issue of JRSS D
(The Statistician)

In 1987, the Journal of the Royal Statistical Society
Series D (The Statistician) published a special issue en-
titled “Practical Bayesian statistics,” edited by Gopal
K. Kanji with technical editors Adrian F. M. Smith and
A. P. Dawid. Following up on the report of Smith et
al. (1985), Smith et al. (1987) discuss an adaptive ap-
proach where Gauss—Hermite quadrature methods are
combined with parameter transformations in an iter-
ative manner, namely, successive transformations are
determined by the estimated variance—covariance ma-
trix of the previous iteration. Also discussed in this pa-
per is an iterative importance sampling strategy, where
the information in the previous iteration is used to
improve the importance function for the transformed
parameters. Smith et al. (1987) suggest using “quasi-
random” sequences on the k-dimensional hypercube
and reference the preprint of Shaw (1988a).

The paper by Smith et al. (1987) sets the compu-
tational theme of the issue, as many of the other pa-
pers make use of either Gauss—Hermite quadrature
methodology or importance sampling. van Dijk, Hop
and Louter (1987) present the details of an algorithm
for the computation of posterior moments and densi-
ties based on importance sampling, specifically that the
importance sampling function can be adapted based on
the output of the previous iteration. In van Dijk, Hop
and Louter (1987), the posterior mean and the poste-
rior covariance matrix based on the output of the pre-
vious iteration is used to update the parameters of the
multivariate Student ¢ importance function.

Stewart (1987) illustrates how (nonadaptive) impor-
tance sampling can be used in the context of hierarchi-
cal Bayesian models. Grieve (1987), Marriott (1987),
Naylor (1987) and Shaw (1987) overcome the an-
alytic intractability of the posterior using the adap-
tive Gauss—Hermite integration strategy of Naylor and
Smith (1982). Van Der Merwe and Groenewald (1987)
approximate the posterior distribution with a Pear-
son distribution, while Achcar, Bolfarine and Peric-
chi (1987) make use of the Laplace approximation
discussed in Tierney and Kadane (1986). Spiegelhal-
ter (1987), in his treatment of evidence propagation in
expert systems, briefly mentions stochastic relaxation
(Geman, 1988b) as a possible technique but does not
use it in his treatment.'? Finally, O’Hagan (1987) ex-
pressed strong objection to using Monte Carlo meth-
ods in Bayesian inference—even going as far as giving
his paper the title “Monte Carlo is fundamentally un-
sound.”

A.3 The Third Valencia International Meeting:
June 1-5, 1987

The Third Valencia International Meeting on
Bayesian Statistics was held on June 1-5, 1987. Ac-
cording to the Preface of the Proceedings (see Bernardo
et al., 1988), the scientific program consisted of 31
invited papers, each with discussion, and 33 refereed
contributed papers: “The selection of topics, authors
and discussants ensures that those Proceedings pro-
vide a definitive up-to-date overview of current con-
cerns and activity in Bayesian Statistics, encompassing
a wide range of theoretical and applied research.”

As was seen in the paper by Smith et al. (1985), as
well as the special issue of The Statistician, the key
computational approaches vying for contention in this
Proceedings are approximations based on Laplace’s

10gee also Pearl (1987).
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method, Gaussian quadrature numerical integration—
possibly implemented in an iterative manner, and
importance sampling—possibly embellished with an
adaptive procedure to update the importance function.
A survey of available software for Bayesian analy-
sis was presented by Goel (1988) and this paper was
discussed by van Dijk (1988). In the body of the dis-
cussion, van Dijk (1988) proposes a decision tree to
determine which computational technique is most suit-
able for the problem at hand. He notes that if the pos-
terior is “reasonably well behaved in the sense that
it is unimodal, continuous, proper, not too skewed,”
then a Laplace approximation approach or possibly an
importance sampling approach using a Student ¢ im-
portance function, as discussed in van Dijk, Hop and
Louter (1987), should be used. If a transformation of
the parameters results in a “more regular shape of the
posterior,” then he suggests Naylor and Smith (1982).
If the posterior distribution is unimodal, but not much
more is known, then van Dijk suggests importance
sampling with adaptive importance functions. In this
regard, van Dijk (1988) references the preprint of
Geweke (1989) who also advocates for importance
sampling and who remarks, “Integration by Monte
Carlo is an attractive research tool because it makes
numerical problems much more routine than do other
numerical integration methods.”

A second paper on Bayesian software was presented
by Smith (1988). In the first sentence of the paper’s
abstract, he notes, “Recent developments in methods
of numerical integration and approximation, in con-
junction with hardware trends towards the widespread
availability of single-user workstations which com-
bine floating-point arithmetic power with sophisticated
graphics facilities in an integrated interactive environ-
ment, would seem to have removed whatever excuses
were hitherto historically available for the lack of any
generally available form of Bayesian software.” Smith
argues that given advances in algorithm development,
as well as the movement from large mainframes to
workstations, the time is ripe for the development of
Bayesian software. Smith points out on page 433 that
the computational tools he has in mind are approx-
imations based on asymptotic expansions, numerical
integration methods based on quadrature and impor-
tance sampling methodology. In discussing the state
of the field, Zellner (1988) notes, “... it is concluded
that a Bayesian era in econometrics and statistics has
emerged.”

DuMouchel (1988), Albert (1988), Poirier (1988)
and Sweeting (1988) employ or suggest the use of

the Laplace approximation referencing Tierney and
Kadane (1986) or related references. Morris (1988)
proposes an approach based on the Pearson family
which can be used to generalize the method of Laplace.
Kass, Tierney and Kadane (1988) discuss the Laplace
approximation in detail, extending the theory, provid-
ing examples and discussing implementation in the S
computing environment.

Kim and Schervish (1988) make extensive use of
the Gauss—Hermite approach as presented in Smith et
al. (1985) and the discussants of this paper suggest the
use of spherical integration rules (as implemented in
Bayes 4). Shaw (1988b) discusses several approaches
to numerical integration, with emphasis on Gauss—
Hermite and importance sampling with quasi-random
sequences (see Shaw, 1987, 1988a). Grieve (1988)
uses Gauss—Hermite in the analysis of LD50 experi-
ments, Marriott (1988) uses these methods (referenc-
ing Bayes 4) in the context of ARMA time series
models and Pole (1988) in the context of state-space
models. Schnatter (1988) uses generalized Laguerre in-
tegration for forecasting AR(p) time series models.

Rubin (1988) presents an overview!! of his impor-
tance sampling based algorithm SI/R, which he pro-
poses as a general approach for posterior simulation,
distinguishing it from the iterative MCMC approach
in Tanner and Wong (1987), noting, “The SIR (Sam-
pling/Importance Resampling) algorithm is an ubiqui-
tously applicable noniterative algorithm for obtaining
draws from an awkward distribution: M draws from
an initial approximation are made, and then m < M
draws are made from these with probability approxi-
mately proportional to their importance ratios.”

A noted exception to the Laplace/numerical inte-
gration/importance sampling approach to Bayesian
computing is the paper by Geman (1988a). In Sec-
tion 2.5 on computing, Geman very clearly points
out the basic idea behind MCMC methods, “Dy-
namics are simulated by producing a Markov chain,
X(1), X(2),... with transition probabilities chosen
so that the equilibrium distribution is the posterior
(Gibbs) distribution (2.4). One way to do this is with
the Metropolis algorithm (Metropolis et al., 1953).
More convenient for image processing is a variation
we call stochastic relaxation.” He then proceeds to
present what we now refer to as the full conditionals
for the Gibbs sampler in the context of his problem.
However, neither in the discussion nor in the response

The presentation of this algorithm comprised the bulk of his
discussion of Tanner and Wong (1987).
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is there evidence to suggest that anyone at the time
envisioned the MCMC methodology presented in Ge-
man (1988a) having a broader impact to general para-
metric statistical problems. If anything, the methodol-
ogy seems pigeon-holed as techniques for image analy-
sis. Examining the Preface of the Proceedings, we find
that the paper is summarized as “The important area of
image-processing is reviewed by Geman.” In fact, Ge-
man appeared to have doubts about the practical utility
of MCMC methods in his remark on page 169: “On
the other hand, it is indeed difficult to find approaches
that are as computationally expensive as ours. In this
regard, we view Monte Carlo optimization techniques
as research tools. They are poor substitutes for the ef-
ficient dedicated algorithms that should be developed
when facing applications involving a flow of data and
a need for speedy analysis.” Added to this is his com-
ment found on page 171 when referring to the algo-
rithm in Besag (1986): “Furthermore, this determinis-
tic algorithm is typically far more efficient than sto-
chastic relaxation methods.”
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