
Stochastic Systems

2013, Vol. 3, No. 2, 322–361

DOI: 10.1214/10-SSY020

TUNING APPROXIMATE DYNAMIC PROGRAMMING
POLICIES FOR AMBULANCE REDEPLOYMENT VIA

DIRECT SEARCH

By Matthew S. Maxwell, Shane G. Henderson and

Huseyin Topaloglu

Cornell University

In this paper we consider approximate dynamic programming
methods for ambulance redeployment. We first demonstrate through
simple examples how typical value function fitting techniques, such
as approximate policy iteration and linear programming, may not be
able to locate a high-quality policy even when the value function ap-
proximation architecture is rich enough to provide the optimal policy.
To make up for this potential shortcoming, we show how to use direct
search methods to tune the parameters in a value function approxima-
tion architecture so as to obtain high-quality policies. Direct search
is computationally intensive. We therefore use a post-decision state
dynamic programming formulation of ambulance redeployment that,
together with direct search, requires far less computation with no
noticeable performance loss. We provide further theoretical support
for the post-decision state formulation of the ambulance-deployment
problem by showing that this formulation can be obtained through a
limiting argument on the original dynamic programming formulation.

1. Introduction. Emergency medical service (EMS) providers are
tasked with staffing and positioning emergency vehicles to supply a region
with emergency medical care and ensure short emergency response times.
Large operating costs and increasing numbers of emergency calls (henceforth
“calls”) make this a demanding task. One method commonly used to reduce
response times to calls is known as ambulance redeployment. Ambulance
redeployment, also known as move-up or system-status management, is the
strategy of relocating idle ambulances in real time to minimize response
times for future calls. When making ambulance redeployment decisions it is
necessary to take into account the current state of the system, which may
include the position and operating status of ambulances in the fleet, the
number and nature of calls that are queued for service and external fac-
tors such as traffic jams and weather conditions. Furthermore, the system
evolves under uncertainty and the probability distributions for where and
when future calls are likely to arrive influence how the ambulances should be

Received November 2010.

322

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/10-SSY020

TUNING ADP POLICIES 323

deployed. Dynamic programming (DP) provides an attractive framework to
build models for ambulance redeployment as it allows us to capture the ran-
domness in the evolution of the system and to make decisions that depend
on the system state. However, DP-based ambulance redeployment models
require keeping track of a large amount of information to represent the state
of the system. This requirement yields high-dimensional state variables and
DP models often end up being computationally intractable.

In this paper, we investigate the use of approximate dynamic program-
ming (ADP) techniques for building tractable ambulance redeployment mod-
els. Our approach models the ambulance redeployment problem as a Markov
decision process (MDP) and defines a parameterized approximation Jr of
the DP value function J . The approximation Jr is constructed as a linear
combination of B “basis” functions that are weighed by using the set of
coefficients r = (r1, . . . , rB) ∈ ℜB. Thus, each set of coefficients r provides a
different approximation to the value function. We can use the approximate
value function Jr to construct an approximate ambulance redeployment pol-
icy, where the decision we make at any point in time is chosen as the one
that minimizes the sum of the immediate expected cost and the expected
value function approximation at the next decision epoch. The main question
of interest is how to choose the set of parameters r so that the ambulance
redeployment decisions from the approximate policy perform well and the
decisions can be computed quickly. We make contributions on both how to
choose the set of parameters r and how to speed up the computation times
for decisions.

There are several methods to choose the set of parameters r. One method
is to collect cost trajectories of the system under a reasonable policy and
choose the parameters r so that the value function approximation Jr pro-
vides a good fit to the collected cost trajectories. This idea forms the foun-
dation underlying temporal learning-based methods and approximate policy
iteration [12, 33]. There is also some work that directly solves a regression
problem to fit Jr to cost trajectories of the system [45, 25]. Another ap-
proach is to use the linear programming (LP) representation of the MDP
formulation of the ambulance redeployment problem. In this LP, there is
one decision variable corresponding to the value function in each state of
the system. So, the number of decision variables can be very large or even
infinite, but we can get around this difficulty by replacing the value func-
tions in the LP with the approximation Jr. In this case, the parameters r
become the decision variables in the LP, which may not be too many for
a reasonable choice of the set of basis functions. Solving the LP yields a
set of parameters r, which, in turn, characterizes a value function approx-

324 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

imation Jr. In this paper, we demonstrate an interesting shortcoming of
both the regression-based and LP-based methods for choosing a set of pa-
rameters r. In particular, we consider the case where there exists a set of
parameters r so that the approximate policy that we obtain by using the
value function approximation Jr is an optimal policy. In other words, by
choosing the parameters r appropriately, it is possible to recover an optimal
policy. However, we demonstrate that both the regression-based method and
the LP-based method may fail to identify such a value of r and may end
up with suboptimal policies. This is of some concern, because although an
optimal policy is within the reach of our approximation architecture, the
regression-based and LP-based approaches may miss this policy.

To overcome this potential pitfall, we propose using direct search meth-
ods to choose a set of parameters r. In particular, the important metric in
practical applications is the performance of the policy obtained by using
the value function approximation Jr. Each r ∈ ℜB yields a value function
approximation Jr, which, in turn, provides an approximate policy with a
corresponding total expected cost. For a given initial state of the system s0,
we use Ĵr(s0) to denote the total expected cost incurred by the approximate
policy characterized by the set of parameters r. We note that Ĵr(s0) can be
estimated by simulating the approximate policy for multiple sample paths.
In this case, we can use direct search methods to solve the optimization
problem minr∈ℜB Ĵr(s0) and obtain a set of parameters r that characterizes
an approximate policy with desirable performance. Since we can compute
Ĵr(s0) for any r ∈ ℜB by using simulation, direct search methods that use
only function values are particularly suitable for solving the last optimiza-
tion problem. In this paper, we experiment with direct optimization methods
based on simplex search [30] and successive quadratic approximations [16].
Another possibility is to use the cross-entropy method; see [42] for an ap-
plication to the game of Tetris. We report significant improvements when
compared with a more standard, regression-based method for choosing the
set of parameters r.

One potential drawback of using direct search methods to choose a set of
parameters is that we need to compute Ĵr(s0) for every value of r that we
visit during the course of the search process. Computing Ĵr(s0) requires sim-
ulating the approximate policy characterized by the parameters r. On the
other hand, simulating the approximate policy characterized by the param-
eters r requires making decisions sequentially over time, where each decision
is chosen as the one that minimizes the sum of the immediate expected cost
and the expected value function approximation at the next decision epoch.
Due to the necessity of estimating expectations to implement the decisions

TUNING ADP POLICIES 325

of the approximate policy, the computational requirements of direct search
can be quite large. To overcome this difficulty, we give an alternative MDP
formulation of the ambulance redeployment problem that measures the state
of the system immediately after making a redeployment decision. We refer
to this formulation as the post-decision state formulation. The useful feature
of the post-decision state formulation is that the value function approxima-
tion is computed by using the post-decision state and the post-decision state
is a deterministic function of the state and decision at the current epoch.
Thus, the post-decision state formulation avoids the necessity to compute
expectations when simulating the policy characterized by a value function
approximation. This flexibility allows us to improve the computation times
for direct search methods by an order of magnitude, with no noticeable
performance loss.

To further motivate the post-decision state formulation and provide the-
oretical support for it, we consider an alternative DP formulation where the
next artificial decision epoch is taken to be the earlier of the next true deci-
sion epoch in the system and a deterministic time that is τ time units into
the future. This definition of a decision epoch yields a correct DP formula-
tion for the ambulance redeployment problem for any choice of τ > 0. The
standard DP formulation in discrete time arises when τ = ∞. As τ shrinks
towards 0, the simulation effort required to determine decisions is reduced,
but we obtain less and less information on the expected cost accrued until
the next true decision epoch, so we rely more and more on the value-function
approximation. We show that in the limit as τ → 0, we arrive at the post-
decision state formulation, so that the post-decision state formulation can
be viewed as the limit of a series of DP formulations designed to reduce
computational effort. This interpretation of the post-decision state formula-
tion as a limit should hold in some generality. Section 7 discusses the kinds
of systems in which we expect this to be the case.

The idea of measuring the state of the system right after a decision ap-
pears in [46, 41, 33]. Similar to us, [33] motivates the use of the post-decision
state variable through ADP. In that work, the post-decision state variable
is used to reduce the number of dimensions of the state variable. A state
variable with a smaller number of dimensions suggests a less complicated
value function to approximate. For our application setting, the post-decision
state variable does not necessarily change the number of dimensions of the
state variable, but it allows us to bypass computing expectations when sim-
ulating the behavior of an approximate policy. [31, 39, 44] and [46] use the
post-decision state variable in batch service, dynamic assignment, fleet man-
agement and inventory control problems.

326 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

The ambulance redeployment literature contains a number of different ap-
proaches for computing redeployment policies. One approach is to formulate
an integer program that models ambulance redeployment and to solve this
integer program in real-time whenever a redeployment decision is required
[20, 23, 29, 35]. This approach is computationally intensive and sometimes
requires a parallel computing environment, possibly along with heuristic so-
lution methods, to obtain a redeployment decision in real time. Another
approach is to solve an integer program in a preparatory phase which de-
termines a “lookup table,” or the desired ambulance locations given the
number of currently available ambulances [3, 21]. Real-time redeployment is
managed by dispatchers who attempt to position ambulances according to
the prescribed locations. Other approaches attempt to directly incorporate
the randomness of calls into the model formulation. For example, [7, 8, 9]
formulate the ambulance redeployment problem as a DP. This approach was
revisited more recently in [48] in an attempt to gain insight into the prob-
lem. As mentioned above, the difficulty of working with DP formulations is
that they are intractable for realistic problem sizes and computing optimal
policies is possible only in simplified situations such as those having only
one or two ambulances. The work of [4, 5] incorporates random evolution of
the system heuristically through the construction of a “preparedness func-
tion” that attempts to evaluate future states based on their ability to handle
incoming calls. Recently, [47] has developed another approach that involves
solving integer programs in real time. The integer programs require certain
coefficients that are chosen in a “tuning phase” that uses simulation opti-
mization, in the same manner developed herein. Indeed, the developments
in [47] were partially motivated by the work presented here.

There has been earlier work on obtaining ambulance redeployment poli-
cies using ADP [26, 27, 28, 36]. The ADP approach is flexible enough to
deal with the random evolution of the system directly and does not have
the computational burden of the integer programming methods. Similar to
the lookup table approach, ADP algorithms require a preparatory tuning
process which may be computationally expensive, but after this initial com-
putation most ADP policies are able to operate in real-time situations with-
out computational concerns. The contribution in this paper relative to this
earlier work is that we show how to use direct search, in conjunction with
a post-decision state formulation, to dramatically reduce the computation
required for tuning, making it possible to design effective ADP policies for
large metropolitan regions.

ADP methods only approximate the true value function, and so the result-
ing ADP policies are not necessarily optimal. Nevertheless, given a suitable

TUNING ADP POLICIES 327

approximation architecture, ADP policies have been shown to perform well
in problems that would be intractable otherwise. Examples of ADP appli-
cations include inventory control [46], inventory routing [1], option pricing
[45], backgammon [43], dynamic fleet management [44], and network revenue
management [2, 19].

One difficult aspect of using ADP is the choice of basis functions. An
effective choice of basis functions generally requires expert opinion, accu-
rate intuition of the MDP dynamics, and significant trial and error. There
are no generally accepted rules to pick suitable basis functions and they
must be chosen manually to represent the key features of the system. On
the other hand, there are numerous algorithmic methods for tuning the pa-
rameter vector r to obtain good policies given a set of basis functions, e.g.,
approximate policy iteration [12], temporal-difference learning [40], least-
squares temporal-difference learning [14, 13], linear programming [37, 15],
and smoothed approximate linear programming [17].

In the remainder of the paper, Section 2 introduces ADP and describes the
construction of ADP policies. Section 3 uses a sample problem to describe
theoretical limitations of common parameter tuning methods that are based
on regression and the LP formulation. Section 4 describes the ambulance
redeployment problem in detail, formulates ambulance redeployment as an
MDP, and gives an ADP approach for ambulance redeployment. Section 5 il-
lustrates how the limitations in Section 3 can have significant negative effects
on policy performance and how direct search methods are able to provide
better-performing policies than traditional tuning approaches for ambulance
redeployment. Section 6 introduces the post-decision state formulation and
shows that, coupled with direct search, the post-decision formulation of am-
bulance redeployment is an efficient method for tuning ADP parameters in
high-dimensional problems. Section 7 concludes.

2. Approximate dynamic programming. Finding an optimal pol-
icy in an MDP depends upon the computation of the DP value function J .
Unfortunately, computing the value function J is intractable for many MDPs.
One common approach to overcome this difficulty is to approximate J with
a parameterized formulation that is easy to compute. Section 2.1 explains
how these approximations are used to create ADP policies and Section 2.2
describes two general approaches used to tune the ADP approximation pa-
rameters. In this section, and also in Section 3 we focus on infinite-horizon,
discounted-cost problems for simplicity and clarity, but the key ideas gen-
eralize to other formulations including, for example, cost up to absorption,
as discussed briefly in Section 3.

328 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

2.1. ADP policies. A discrete-time MDP is defined by a state space,
a control space, system dynamics, transition costs, and an objective function.
A state s ∈ S contains enough information such that the future evolution of
the MDP is independent of the past evolution given the current state. The
state space S is the set of all possible states that may be realized by the MDP.
The notation Sk denotes the kth state of the MDP evolution. For each s ∈ S
we define a control space X (s) that dictates the available actions in state s.
The control space for the MDP is defined as X =

⋃

s∈S X (s) and we assume
|X (s)| < ∞ for all s ∈ S. Let Uk+1 denote a vector of iid Uniform(0, 1)
random variables (with appropriate dimension) used to generate all random
behavior between states Sk and Sk+1. We denote the MDP system dynamics
as Sk+1 = f(Sk, x, Uk+1) where the next state Sk+1 results from being in
state Sk, choosing action x ∈ X (Sk), and having random effects dictated
by Uk+1.

Let c(Sk, x, Uk+1) denote the (possibly random) transition cost associated
with being in state Sk and choosing action x ∈ X (Sk). One common objec-
tive function for MDPs is to minimize the expected sum of the discounted
transition costs from a given starting state S0, i.e.,

(2.1) min
π

E

[

∞
∑

k=0

αkc (Sk, π(Sk), Uk+1)

]

,

where a policy π is a mapping from S to X such that π(s) ∈ X (s) for all
s ∈ S and α ∈ (0, 1) is the discount factor. This expectation is finite if, e.g.,
c is bounded. The value function for policy π starting in state S0 is defined
as

Jπ(S0) = E

[

∞
∑

k=0

αkc(Sk, π(Sk), Uk+1)

]

.

For an optimal policy π∗ we define the value function J = Jπ∗

. From the
DP optimality principle we know that
(2.2)

J(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + αJ (f(Sk, x, Uk+1))] ∀Sk ∈ S,

and that choosing an action x ∈ X (Sk) achieving the minimum in the right-
hand side of (2.2) for every state Sk ∈ S yields an optimal policy [11].
Unfortunately, the complexity of computing J often increases drastically in
the size of S; hence most MDPs with large state spaces are intractable to
solve via DP.

One approach to overcome these computational difficulties is to approxi-
mate J with a simpler function and to use the approximation in lieu of the

TUNING ADP POLICIES 329

value function when computing policy decisions. This approach is known as
ADP. For example, given “basis functions” φ1, . . . , φB mapping S to R we
define a linear approximation architecture Jr(·) =

∑B
b=1 rbφb(·) where the

subscript r denotes the vector (r1, . . . , rB) of tunable parameters. Given an
approximation Jr for J we define the quantity

(2.3) Lr(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + αJr (f(Sk, x, Uk+1))] ∀Sk ∈ S,

and the ADP policy with respect to Lr chooses an action x ∈ X (Sk) achiev-
ing the minimum in the right-hand side. In this manner, Lr defines an ADP
policy. This ADP policy is also known as the greedy policy with respect
to Jr; however, we use the former terminology to distinguish between ADP
policies that use the same approximation architecture Jr but are formulated
differently.

For any given state s ∈ S there may be multiple actions achieving the
minimum on the right-hand side of (2.2) or (2.3). In DP any action achiev-
ing the minimum may be chosen without loss of optimality. However, in an
ADP context these actions may have very different consequences. Neverthe-
less, it is common to regard all actions achieving Lr(s) as equivalent choices
since they are equivalent insofar as the approximation architecture is able
to differentiate. Because the vector of tunable coefficients r ultimately af-
fects actions chosen and overall performance these coefficients are referred
to as ADP policy parameters. These coefficients are generally tuned in a
preparatory phase before an ADP policy is implemented.

For further information, see [34] for MDPs, [10] for DP, and [12, 33] for
ADP.

2.2. Tuning ADP policies. Theoretical results show that if Jr(s) ≈ J(s)
for all s ∈ S then the performance of the greedy policy with respect to Jr is
not too far from the optimal policy performance. For example, [12, Proposi-
tion 6.1] considers infinite-horizon discounted problems with finite state and
action spaces and proves that ‖J∗

r − J‖∞ ≤ 2α‖Jr − J‖∞/(1 − α), where
α ∈ (0, 1) is the discount factor, and J∗

r is the true value function associ-
ated with the greedy policy induced by the approximation Jr. Thus, one
can get arbitrarily close to the optimal policy with an arbitrarily accurate
approximation for the true value function, and owing to the finite number
of potential policies, an optimal policy is actually attained when ‖Jr − J‖∞
is sufficiently small.

The standard method for tuning approximation architectures therefore
tries to ensure that Jr ≈ J . In this sense, value function fitting methods

330 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

attempt to find coefficients r that solve

(2.4) min
r

‖Jr − J‖ ,

for some distance measure ‖ · ‖. These methods tune the coefficients based
upon approximating the true value function with the hope of getting good
policy performance as a result.

The objective function in (2.4) does not represent the true goal. Instead,
we are interested in the performance of the policy represented by the coef-
ficients r. Direct search attempts to optimize this true goal, i.e., to solve

(2.5) min
r

E

[

∞
∑

k=0

αkc (Sk, πr(Sk), Uk+1)

]

,

where πr denotes the ADP policy with respect to, say, Lr. Thus the direct
search method tunes the policy coefficients of the value function approxima-
tion Jr based solely upon the performance of the ADP policy using Jr.

Why might there be differences in the performance of policies where the
coefficients are chosen in this manner? The choice of action in a fixed state
depends on the relative values of the value function approximation Jr in the
current and potential future states, and not on the individual values them-
selves. Thus, an approximate value function Jr bearing little resemblance to
the actual value function J can still induce a good policy, and there might
be large differences in the performance of policies obtained from (2.4) and
(2.5). A striking example involves the game of Tetris [42], where the cross-
entropy method was used to improve average game scores by an order of
magnitude over value function fitting methods.

The key observation is that value function fitting methods may not always
return the coefficients corresponding to the best policy performance. This
can happen even when the optimal policy arises from a particular choice
of r, as we see next.

3. Limitations of common ADP tuning approaches. Two general
approaches for value function fitting are regression and linear programming.
In this section we show through simple examples that even when a choice of
coefficients r induces the optimal policy, neither tuning method may be able
to recover it. The reason is that the fitting criterion is not typically aligned
with the performance of the greedy policy induced by the approximate value
function.

3.1. Limitations of regression-based approaches. Given an initial policy
π0, regression-based methods take a noisy estimate, Ĵπ0(s), of the value

TUNING ADP POLICIES 331

Fig 1. Example MDP.

function for π0 starting at state s for each s ∈ S (or perhaps only a subset
of S). A new set of policy parameters r∗π0,p

is calculated via regression, i.e.,

(3.1) r∗π0,p
= argmin

r

{

∑

s∈S

∣

∣

∣
Ĵπ0(s)− Jr(s)

∣

∣

∣

p

}

,

where 1 ≤ p ≤ ∞ indicates the p-norm used in the regression. Commonly
in ADP, the least-squares regression is formulated recursively and used in
conjunction with simulation to update policy parameters after each sampled
state transition; see [12, 33].

Usually the regression-based tuning is iterated with the hope of finding
a set of parameters inducing a policy with good performance. For example,
one standard tuning approach called approximate policy iteration begins
with an initial policy π0 and then simulates state trajectories using π0 that
are used to compute the coefficients r∗π0,2 via (3.1). In the next iteration π1
is set to be the greedy policy with respect to the approximation architecture
using the coefficients from the initial iteration, i.e., Jr∗π0,2

, and π1 is used to

simulate state trajectories and compute the coefficients for the next iteration
r∗π1,2

. This process is repeated until the computational budget is exhausted
or a suitable policy is obtained.

Regression-based tuning methods are appealing because they are easily
understood, easily implemented, and fast to compute, but they may have
drawbacks.

Consider the MDP shown in Figure 1 where the objective is to minimize
the discounted sum of the transition costs starting from state 3, where α ∈
(0, 1] is the discount factor. (When α = 1 there is no discounting and we
are instead minimizing expected total cost up to absorption in State 0.) In
this MDP there are only two deterministic policies. Let π1 (π2) denote the
policy that opts to transition to State 1 (State 2) from State 3. Consider
the case where α > 3/4. In this case π2 is the optimal policy.

Let φ1(s) = s and consider the approximation architecture Jr(s) = r1φ1(s).
For the approximation architecture to induce the policy π2 we must have
3 + αJr(2) = 3 + 2αr1 < αr1 = 0 + αJr(1) which implies that r1 < −3/α.

332 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

Thus, the approximation architecture Jr is rich enough to induce an optimal
policy provided that r1 is chosen correctly.

Now consider a p-norm regression as in (3.1) with 1 ≤ p < ∞. Under the
policy π1 we have that

3
∑

s=0

|Jπ1(s)− r1s|
p = |0− 0|p + |4− r1|

p + |0− 2r1|
p + |4α− 3r1|

p

= |4− r1|
p + 2p |r1|

p + |4α− 3r1|
p .(3.2)

For any r1 < 0, each term of (3.2) can be decreased by increasing r1 to 0.
Hence the set of coefficients returned by the regression satisfies r∗ ≥ 0, and
the induced policy is the suboptimal policy π1 for any 1 ≤ p < ∞. A similar
analysis holds when starting from the policy π2, so in either case we will
induce the suboptimal policy π2. The same argument works when p = ∞.

Thus, in this example regression with respect to any p-norm will always
return a sub-optimal policy. The same result holds when any subset of S
is used in the regression (with the exception of {0} for which any r1 ∈
R is a valid regression solution). Furthermore, given any discount factor
α ∈ (0, 3/4] we can create a similar example where suboptimal policies
result. Additionally, with minor modifications to the MDP in Figure 1, we
can create MDPs where the suboptimal policy is arbitrarily worse than the
optimal policy. A similar example for an undiscounted MDP is given in [27].

3.2. Limitations of LP-based approaches. LP-based methods are based
on the LP formulation of exact dynamic programs and have the form

max
r

νT J̄r

(3.3)

s.t. E [c(Sk, x, Uk+1) + αJr(f(Sk, x, Uk+1))] ≥ Jr(Sk) ∀Sk ∈ S, x ∈ X (Sk)

for minimizing the expected α-discounted transition costs, where ν is a (col-
umn) vector with positive components and J̄r denotes a vector containing
Jr(Sk) for all Sk ∈ S, see [37, 15]. This LP formulation is most useful when
the expectation in the constraints can be computed exactly or estimated eas-
ily. Also, due to the number of constraints in this LP, it is often necessary
to use techniques such as constraint sampling to make the LP tractable.

Again consider the MDP shown in Figure 1 with discount factor α ∈
(3/4, 1). Let φ1(s) = 1 and φ2(s) = s and consider the approximation ar-
chitecture Jr(s) = r1φ1(s) + r2φ2(s). For the approximation architecture to
induce the optimal policy π2 we must have 3 + αJr(2) = 3 + αr1 + 2αr2 <
αr1 + αr2 = 0 + αJr(1) which implies that r2 < −3/α.

TUNING ADP POLICIES 333

Now consider what happens when we tune the coefficients using the LP-
based formulation. The LP formulation for the MDP in Figure 1 can be
written as

max
r

[

ν1 ν2 ν3 ν4
]

r1
r1 + r2
r1 + 2r2
r1 + 3r2

s.t. (1− α)r1 ≤ 0(3.4)

(1− α)r1 + r2 ≤ 4(3.5)

(1− α)r1 + 2r2 ≤ 0(3.6)

(1− α)r1 + (3− α)r2 ≤ 0(3.7)

(1− α)r1 + (3− 2α)r2 ≤ 3.(3.8)

Let qα = (1− α)r1, and rewrite (3.5)-(3.8) as

r2 ≤ 4− qα

r2 ≤
−qα
2

r2 ≤
−qα
3− α

r2 ≤
3− qα
3− 2α

.

Since qα ≤ 0 by (3.4) we know that the feasible region for (r1, r2) contains at
least {(r1, r2) : r1 ≤ 0, r2 ≤ 0}. Given any feasible r = (r1, r2) inducing an
optimal ADP policy (i.e., r1 ≤ 0 and r2 < −3/α) we have that r′ = (r1, 0)
is also feasible. The objective function value for r′ is greater than that of r
by −(ν2 + 2ν3 + 3ν4)r2 > 0. Consequently, coefficients inducing an optimal
ADP policy will not induce an optimal LP solution, and hence will never be
returned via an LP-based tuning approach.

Given any α ∈ (0, 1), one can find a value for the transition cost from
state 1 to state 0 in the example MDP so that LP-based tuning again fails
to recover the optimal policy. Additionally, the difference between the opti-
mal policy performance and that obtained via LP-based tuning can be made
arbitrarily large by increasing this transition cost. Discounting is not essen-
tial. Indeed, when α = 1 so that we are minimizing expected (undiscounted)
cost till absorption, we drop the constant (first) basis function, and impose
the boundary condition Jr(0) = 0 in the tuning LP. Again an optimal pol-
icy is obtained for a particular choice of r but the LP formulation will not
return it.

334 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

The MDP in Figure 1 is of course a simple example that is easily solved
exactly, but it is typical of ADP applications where the approximation ar-
chitecture does not encompass the true value function. Furthermore, since
the example MDP is deterministic the inability to properly tune the policy
coefficients is a direct consequence of the tuning methods themselves, as
opposed to sampling-based errors that may arise when dealing with random
state transitions.

In Sections 4 and 5 we show that similar issues arise in a realistic appli-
cation of ADP, namely ambulance redeployment.

4. Ambulance redeployment. To model EMS operations we divide
the region under consideration into an appropriate-sized grid and assume
that calls in each grid cell arrive according to independent time-inhomogen-
eous Poisson processes and are independently distributed uniformly through-
out the cell. When a call arrives, the dispatcher assigns the closest available
ambulance to the call. If there are no ambulances available the call is placed
on a waiting list and served first-come first-served as ambulances become
available.

In reality the closest ambulance is not always the one dispatched to a
call, but it is a close approximation of the policy followed in most EMS
systems. Furthermore, in reality calls are prioritized into “levels of care”
but we assume a single level of care.

If the ambulance assigned to a call was available at base at the time of the
call, then we assume it takes 45 seconds for the crew to reach their vehicle
and be ready to leave. This delay is called turn-out time or chute time. If the
assigned ambulance was not idle at a base, then it does not incur turn-out
time.

After being assigned to a call the ambulance travels to the call scene. We
assume deterministic travel times along the shortest path of a representative
street network. The distance to calls off the road network are calculated using
the Manhattan distance from the nearest node. Although not used in our
model, random travel times could be incorporated with little modification.

Paramedics provide preliminary care to the patient at the scene. We model
this “on scene” time as an exponentially distributed random variable having
a mean of 12 minutes. In approximately 25% of the cases the patient does not
need to be transported to a hospital and the ambulance becomes free at the
call scene. Otherwise, the patient is transported to a hospital and transferred
to the hospital staff. The destination hospital is chosen from the empirical
distribution of hospital destinations given the location of the emergency, and
the transfer time at the hospital is modeled as a Weibull-distributed random
variable with a mean of 30 minutes and standard deviation of 13 minutes.

TUNING ADP POLICIES 335

Our ADP policy makes redeployment decisions when an ambulance be-
comes available after completing care for the patient, either at the call scene
or the hospital. Thus, when an ambulance becomes available, the redeploy-
ment policy is used to calculate the desired redeployment base for the newly
free ambulance. After the redeployment decision is made, the ambulance
travels to this destination to wait for future calls; however, if a call arrives
before the ambulance has reached its destination it may still be assigned
to the call (provided it is closest to the call). Our goal is to tune the ADP
policy so that we maximize the fraction of calls with response times (time
from receipt of the call to the time when the ambulance stops at the desti-
nation) under a time threshold which is typically 8 or 9 minutes. We only
consider redeploying ambulances to bases, but other locations such as con-
venient street intersections and hospitals could be included as well. If there
are calls on the waiting list when an ambulance becomes available, the am-
bulance is immediately assigned to the first call on the waiting list and no
redeployment decision is made.

Section 4.1 gives an MDP formulation for this problem and Section 4.2
presents the ADP policy for ambulance redeployment including an explana-
tion of the basis functions used within the approximation architecture and
the methods used to compute the policy.

4.1. Ambulance redeployment as an MDP. We model the ambulance
redeployment problem as a queuing system within the generalized semi-
Markov decision process framework [22]. In this setup calls are customers
and ambulances are servers. The service time for a call includes the response
time, time at scene, and transport and transfer time to a hospital if needed.

4.1.1. State space. Let N denote the number of ambulances, and let ci
for i = 1, . . . , N denote the location of the call being served by ambulance
i, with ci = ∅ if ambulance i is available. Let ai denote the location of am-
bulance i at the time it last responded to or completed serving a call. In
this queuing system, the service time distribution for a call depends upon
both ci and ai. Let ri denote the redeployment base for ambulance i, i.e.,
the location of the base to which ambulance i will position itself once am-
bulance i becomes available. If ambulance i is serving a call, then the value
of ri does not impact the system dynamics until the ambulance becomes
available. Control actions in this MDP will set these redeployment values as
ambulances become available. Let wi for i = 1, . . . ,M denote the location
of the ith call on the waiting list, with wi = ∅ if there is no ith call waiting.
If a call arrives and there are already M calls on the waiting list we assume
the call is handled by another agency. This assumption has very little prac-

336 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

tical implication since one could take M to be quite large to capture EMS
operations having no alternative supporting agencies.

The events in this discrete-event dynamic system (DEDS) are e0 indicat-
ing that a call arrival has occurred, and ei for i = 1, . . . , N indicating that
ambulance i has completed serving its assigned call. Let t denote the cur-
rent simulation time, t0 denote the time since the last call arrival, and ti for
i = 1, . . . , N denote the elapsed time since ambulance i was either assigned
to a call or finished serving a call.

Let C = (c1, . . . , cN), A = (a1, . . . , aN), R = (r1, . . . , rN), W = (w1, . . . ,
wM), and T = (t, t0, . . . , tN). Thus the state of the DEDS can be denoted as
s = (C,A,R,W, e, T) where e ∈ {e0, . . . , eN}. Let C(s), A(s), R(s), W (s),
e(s), and T (s) denote the C, A, R, W , e, and T components of state s.
Additionally, let ci(s), ai(s), ri(s), and wi(s) denote the ith component of
C(s), A(s), R(s), and W (s), let t(s) denote the t component of T (s), and
let ti(s) denote the ti component of T (s).

Ambulance dispatchers typically have more information at their disposal
than that contained within this state space representation. For example,
dispatchers often know the status of the busy ambulances–whether they are
treating a patient at the call scene, transporting a patient to a hospital, or at
a hospital transferring a patient. Dispatchers use this information in making
redeployment decisions. For example, if a call arises near a hospital at which
some ambulance has nearly completed patient transfer, the dispatcher may
not assign an ambulance to the call and instead wait for the ambulance at
the hospital to become available. In this sense, the state space representation
is a simplified model of dispatcher information and the simulated dynamics
are a simplification of ambulance redeployment dynamics (as is typical for
simulation).

4.1.2. Control space. We call state s a decision state if there is a rede-
ployment decision to be made in that state, i.e., if an ambulance just became
available, e(s) = ei and ti(s) = 0 for some 1 ≤ i ≤ N , and there are no calls
on the waiting list, w1(s) = ∅. For decision states X (s) is the set of potential
locations to which we may direct the newly-freed ambulance. We consider
this set to be a predetermined set of ambulance bases in the proximity of an
ambulance’s home base. For “non-decision states” X (s) = {∅} indicating a
“do-nothing” action. We assume that |X (s)| is finite (and not too large) for
all s ∈ S so that the right-hand side of (2.3) can be estimated via Monte
Carlo for each x ∈ X (s) within real-time computation constraints.

In practice, more complicated redeployment actions are often taken. For
example, when one ambulance becomes free, multiple idle ambulances may
be asked to relocate along with the newly freed ambulance. Such policies

TUNING ADP POLICIES 337

could be implemented within our framework, but we do not do so for three
reasons. First, as the complexity of potential redeployment options increases,
the time required to choose the decision increases as well. Second, although
more complex redeployment decisions may be able to increase performance
over single ambulance redeployments, we believe the potential improvement
to be marginal. Third, ambulance crews often consider redeployments to be,
at best, a nuisance. It is therefore important to not over-burden crews with
redeployments. Our strategy of only repositioning newly free ambulances
involves minimal disruption, since the crews are already “on the road.” It
is straightforward to consider redeployment at other instants, such as just
after an ambulance has been dispatched, or at regular time intervals through
the day. Simulation results in this vein are given in [28].

4.1.3. System dynamics. We denote the MDP system dynamics as
Sk+1 = f(Sk, x, Uk+1) where the next state Sk+1 is a function of the cur-
rent state Sk, the chosen action x ∈ X (Sk), and random effects dictated by
Uk+1. Define the post-decision state as the immediate state resulting from
being in state Sk and applying the effects of action x to the state (before
the passage of time). We denote the post-decision state resulting from state
Sk and choosing action x ∈ X (Sk) as S+

k (x). When the control taken in
state Sk is implicitly understood we use the more concise notation S+

k . The
pre-decision state Sk and post-decision state S+

k (x) are equal when Sk is a
non-decision state. For any decision state Sk recall that the action x corre-
sponds to dispatching the ambulance that became available to Base x. The
post decision state S+

k (x) is therefore equal to Sk, except that if i is the
index of the ambulance that just became free (so that e(Sk) = ei), then the
redeployment base, i.e., destination, of Ambulance i is ri(S

+
k (x)) = x.

A more complete discussion of post-decision states and associated ADP
representations can be found in [33].

Given S+
0 ∈ S with t(S+

0) = 0 we use the following algorithm to construct
the DEDS:

1. (Initialization) Set the event counter k = 0.
2. (Residual time generation) For each event ei ∈ E(S+

k) generate a
residual time zi conditional upon the current state S+

k where E(S+
k) =

{e0} ∪ {ei : ci(S
+
k) 6= ∅ for i = 1, . . . , N} denotes the set of active

events for state S+
k , i.e., the set of events that may cause a transition

out of state S+
k . Without loss of generality we assume zi is generated

by inversion from the ith component of Uk+1 which we denote Uk+1(i).
Thus zi = F−1

i

(

S+
k , Uk+1(i)

)

where F−1
i

(

S+
k , ·
)

is the quantile function
for the residual event time for event ei in state S+

k .

338 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

3. (Select next event) Let Ek+1 be an event with minimal residual
time from step 2, and let ∆k+1 denote that residual time.

4. (Select next state) Generate Sk+1 conditional upon S+
k , Ek+1, and

∆k+1 via Uk+1.
5. (Update clocks) Set t(Sk+1) = t(Sk)+∆k+1. Set ti(Sk+1) = 0 where

i is the index of event Ek+1. Additionally, set ti(Sk+1) = 0 if there is a
call arrival in state Sk+1, i.e., Ek+1 = e0, and ambulance i is assigned
to respond to the arriving call. For all other clocks set ti(Sk+1) =
ti(Sk) + ∆k+1.

6. (Redeployment Decision) Let S+
k+1 = Sk+1. If Sk+1 is a decision

state then choose a desired ambulance base for redeployment, x ∈
X (Sk+1), for server i and set Ri(S

+
k+1) = x, where i denotes the server

that just became idle, i.e., the index i such that Ek+1 = ei.
7. (Repeat) Set k = k + 1 and repeat from Step 2.

Given this DEDS formulation, we define the continuous-time queuing pro-
cess S(t) of the DEDS for t ≥ 0 by defining

C(t) =

∞
∑

k=0

C(S+
k)1{t(Sk)≤t<t(Sk+1)}

A(t) =
∞
∑

k=0

A(S+
k)1{t(Sk)≤t<t(Sk+1)}

R(t) =
∞
∑

k=0

R(S+
k)1{t(Sk)≤t<t(Sk+1)}

W (t) =
∞
∑

k=0

W (S+
k)1{t(Sk)≤t<t(Sk+1)}

e(t) =
∞
∑

k=0

e(S+
k)1{t(Sk)≤t<t(Sk+1)}, and

T (t) =

(

t,

∞
∑

k=0

(

t0(S
+
k) + t− t(Sk)

) 1{t(Sk)≤t<t(Sk+1)}, . . . ,

∞
∑

k=0

(

tN (S+
k) + t− t(Sk)

) 1{t(Sk)≤t<t(Sk+1)}

)

.

By this construction S(t) is piecewise constant in the C, A, R, W , and
e components and piecewise linearly increasing in the T component, with
jumps occurring only at event times. Additionally, S(t) is right continuous
with left limits.

TUNING ADP POLICIES 339

4.1.4. Transition costs and objective function. Given a state Sk, an ac-
tion x ∈ X (Sk), and Uk+1 we incur a transition cost of c(Sk, x, Uk+1). Let
D be a given threshold time of 8 minutes for satisfactory response times.
The transition cost is 1 if an ambulance is assigned to a call which it cannot
reach within D minutes and 0 otherwise. In other words,

c(Sk, x, Uk+1) =

1 if ∃ i s.t. ti(Sk+1) = 0, ci(Sk+1) 6= ∅, and

d(ai(Sk+1), ci(Sk+1)) > D

0 otherwise,

where ti(Sk+1) = 0 and ci(Sk+1) 6= ∅ together indicate that ambulance i has
just started responding to a call and d(ai(Sk+1), ci(Sk+1)) is the travel time
between ambulance i’s location at the time of the arrival, ai(Sk+1), and the
call location ci(Sk+1) (including any turn-out time).

We are interested in the expected number of “late calls,” or calls not
responded to within the time threshold D, over a finite planning horizon T
which is usually between one and two weeks. Thus, given the initial state
S0, we use the objective function in (2.1) where c(Sk, π(Sk), Uk+1) = 0
for all Sk such that t(Sk) > T . Discounting future late calls has no clear
significance or meaning in an ambulance redeployment context, so α = 1 in
our experiments.

Our transition cost is chosen both for simplicity and because EMS provider
contracts are usually written in terms of the percentage of calls responded
to within the given threshold. With this transition-cost definition, there is
no incentive for marginal reductions in response times that do not cross
the threshold. The work in [18, 6] instead optimizes for “maximum surviv-
ability.” Although we do not incorporate survivability into our work, the
ADP framework is versatile enough to do so. Furthermore, plots of the full
response-time distribution in [26] show that ADP policies using the given
transition costs reduce the full response-time distribution, and not just those
response times that are close to the threshold, at least in the experiments
reported there.

4.2. ADP policy for ambulance redeployment. To define an ADP policy
for ambulance redeployment using the form of (2.3) we must first define
the basis functions φ1, . . . , φB and the policy parameters r that form the
approximation architecture Jr (Section 4.2.1). By assumption |X (s)| is not
too large for any s ∈ S, so we can compute the minimization in (2.3) by
calculating the value of the right-hand side for each x ∈ X (s) and taking
the minimum. We cannot, however, compute the expectation on the right-

340 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

hand side in closed form, so we estimate it using Monte Carlo simulation
(Section 4.2.2).

4.2.1. Erlang basis function. Our approximation architecture decouples
the city into smaller, independent regions each containing only a single am-
bulance base. Each region is modeled as an Erlang loss system having expo-
nential interarrival time distributions and general service time distributions.
The basis functions in our approximation architecture represent the Erlang
loss for each of these smaller regions. Thus B represents both the num-
ber of basis functions in our approximation architecture and the number of
ambulance bases.

Let Γ denote the collection of grid cells into which the call arrival process
is discretized. Define l(γ) for γ ∈ Γ to be the centroid of cell γ and l(b) for
b = 1, . . . , B to be the location of base b. Let Γb = {γ ∈ Γ : d(l(γ), l(b)) ≤
d(l(γ), l(b′)) for all b′ = 1, . . . , B} denote the set of grid cells that have
centroids closer to base b than to any other base.

Define λ(γ, t) to be the call arrival rate in cell γ at time t and Λ(t) =
∑

γ∈Γ λ(γ, t) to be the total call arrival rate at time t. Let the arrival rate to

Γb be λb(s) =
∑

γ∈Γb
λ(γ, t(s)), and let nb(s) =

∑N
i=1 1{ci(s)=∅}1{ri(s)=l(b)}

denote the number of ambulances either idle at base b or redeploying to base
b in state s.

Thus for b = 1, . . . , B, we define the basis function for base b in state s to
be the Erlang loss for an M/G/nb(s)/nb(s) queue with arrival rate λb(s) and
service rate µb weighted according to how likely call arrivals are within Γb:

φb(s) =
λb(s)

Λ(t(s))

(λb(s)/µb)
nb(s)/nb(s)!

∑nb(s)
k=0 (λb(s)/µb)k/k!

.

The average service time 1/µb is a sum of the average response time, scene
time, hospital transport time, and hospital transfer time for calls arriving in
Γb. The scene time and hospital transfer time are generated from distribu-
tions with known means. The average response time and hospital transport
time are estimated via simulation as the average response time from base b
to calls arriving in Γb and the average transport time from calls arriving in
Γb to their destination hospitals respectively. Repeating this procedure for
b = 1, . . . , B we approximate the service rates µ1, . . . , µb prior to running
the DEDS and include them as input to the simulation.

The Erlang loss is the steady state proportion of arrivals refused service
in a queue having limited queuing capacity. This quantity is relevant for
ambulance redeployment because it can be viewed as an approximation for
the steady state proportion of calls that cannot be served by ambulances

TUNING ADP POLICIES 341

stationed at the closest base. Such calls must either be placed on a waiting
list or served by an ambulance stationed further away. In either situation the
response time for the call is likely to increase significantly and the majority
of such calls will not be served within the given threshold. For this reason
the Erlang loss calculation is related to the value function for a particular
state, i.e., the proportion of late calls resulting from being in a given state.

As is common in ADP applications, the basis functions φ1, . . . , φB are not
intended to represent the value function exactly. Our approximation archi-
tecture ignores the state dependent service rates as well as the more complex
dynamics involved when ambulances serve calls outside their respective area.
Nevertheless, the basis functions in combination with the tuning coefficients
r1, . . . , rB are effective for designing policies that perform well. For exam-
ple, this approximation architecture is able to significantly improve upon
the ambulance redeployment policies in [28] and [26].

4.2.2. Simulation-based ADP policy. For a given decision state Sk ∈ S,
the ADP policy selects a redeployment base by choosing the redeployment
base x ∈ X (Sk) that minimizes the right-hand side of (2.3). We cannot
compute the expectation in the right-hand side of (2.3) analytically, so we

estimate it through Monte Carlo simulation. Let U
(1)
k+1, . . . , U

(G)
k+1 denote G

iid uniform random vectors of appropriate dimension. We approximate the
ADP policy (recall that we use an undiscounted formulation on a finite time
horizon) as

(4.1) argmin
x∈X (Sk)

1

G

G
∑

g=1

(

c(Sk, x, U
(g)
k+1) + Jr

(

f(Sk, x, U
(g)
k+1)

))

.

We call this approach simulation-based ADP due to the use of Monte
Carlo simulation, as opposed to other methods that do not need to esti-
mate the expectation via simulation (e.g., the post-decision state policy in
Section 6). Techniques such as ranking and selection and common random
numbers can also be used to select the minimum instead of using näıve
Monte Carlo sampling for each x ∈ X (Sk).

5. Simulation optimization tuning results. The limitations of value
function fitting methods as illustrated in Section 3 extend beyond sample
problems such as that depicted in Figure 1. We consider the problem of
tuning the simulation-based ambulance redeployment ADP policy for use in
Edmonton, Alberta, Canada. Edmonton is the 5th largest city in Canada
with a population over 700,000. We model the ambulance operations of Ed-
monton using a discrete event simulation having 16 ambulances, 11 ambu-

342 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

0 50 100 150 200 250
20

25

30

35

40

45

50

55

60

Function evaluation

A
v
e
ra

g
e
 m

is
s
e
d
 c

a
lls

 (
P

e
rc

e
n
t
o
f
to

ta
l
c
a
lls

)

Least Squares

Nelder−Mead

NUOBYQA

Fig 2. Results for three methods for tuning ADP coefficients in Edmonton, Canada. Each

curve plots the estimated percentage of calls with response times above the threshold for

250 policies that are obtained within a tuning procedure.

lance bases, and 5 hospitals. The call arrival model has a flat arrival rate of
6 calls/hour with a higher density of calls in the metro areas during the day
and a higher density of calls in rural areas in the evening and early morn-
ing. The travel model used in the simulation is a deterministic shortest-path
calculation on a network consisting of major roads in the Edmonton area.

Before proceeding we stress that since the call arrival process, ambulance
redeployment policies, and travel network are all stylized, so our simulation
results should not be interpreted as indicative of actual performance in Ed-
monton, nor should the results in Section 6.3 be interpreted in that way.
Rather, these computational results showcase the performance of different
ADP policies in realistic but not real scenarios with realistic but not real
dynamics.

Figure 2 shows the performance of three different tuning methods for
the simulation-based ADP policy in Section 4.2.2 using the value function
approximation architecture given in Section 4.2.1. Each point in the graph
represents an unbiased estimate of policy performance for the ADP policy
with respect to Lr for a given set of coefficients r. The coefficients used in

TUNING ADP POLICIES 343

each iteration are dictated by the tuning method (based upon the results
of previous iterations), and policy performance is estimated from 20 repli-
cations of a simulated two-week period of ambulance operations using the
specified policy. The estimation of performance at one set of coefficients is
considered to be one function evaluation, and the sequence of these function
evaluations are indicated along the x-axis. The y-axis gives the estimated
percentage of late calls for each policy.

The least-squares method is a value-function fitting method described
for infinite-horizon discounted costs in Section 3.1, and we use a version of
that method for finite-horizon (two-week) problems here. The Nelder-Mead
method is a black box unconstrained local optimization heuristic for deter-
ministic functions [30], and the Noisy UOBYQA algorithm is a derivative-
free unconstrained local optimization algorithm based on quadratic approxi-
mation adapted from [32] for use with noisy data [16]. Each function evalua-
tion used the same random number seed and simulations were synchronized
via the substream functionality of the RngStream random number genera-
tor [24].

We chose the initial policy coefficients used by the tuning methods via a
“static” policy, or a policy where every ambulance is assigned a home base
to which the ambulance returns each time it becomes available. We selected
the static policy π0 yielding the best performance as estimated through
Monte Carlo simulation over a large set of static policies. We then used π0
to generate 30 two-week sample paths and collected the noisy estimates of
the value function for π0, Ĵ

π0(s), for every s in the sample paths. Given
the values of Ĵπ0(·) from the simulation, we used (3.1) to calculate the
policy coefficients r∗π0,2 (e.g., a single regression-based iteration) and these
coefficients were used as the initial policy coefficients for the tuning methods.
We also use the static policy π0 as a benchmark policy to evaluate the
potential benefits of using a redeployment policy over a policy which does
not redeploy ambulances dynamically. We do not use discounting, i.e., α = 1.

Each iteration along the x-axis of Figure 2 yields a different set of coeffi-
cients r, and one can pick the r that gives the best performance. Although
each point is an unbiased estimate of performance using the associated co-
efficients, selecting the coefficients with the best performance introduces
a selection bias. Consequently, each “minimizing” policy was reevaluated
using independent random number streams to estimate their performance.
The performance of these policies, expressed as 95% confidence intervals, are
28.6% ± .1% for least squares, 26.7% ± .1% for Nelder-Mead, and 24.8% ±
.1% for NUOBYQA. The performance of the inital static policy was 28.4%
± .1%.

344 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

The least squares method found reasonable policies very quickly, but the
performance of these policies did not significantly decrease with further tun-
ing. Overall, the least squares method was unable to find a policy with bet-
ter performance than the initial static policy. The Nelder-Mead method also
found a policy with good performance early on; however, ultimately this
method converges to a local minimum having inferior performance to the
policies found by the NUOBYQA method. The best policies were found with
the NUOBYQA method and provide a 3.5% decrease in the percentage of
late calls as compared to the initial static policy.

A city-wide decrease of just 1% of late calls represents a practically sig-
nificant improvement in the context of ambulance redeployment. Simulation
experiments not reported here indicate that to obtain a similar improvement
using a static policy, one would have to purchase, maintain, and staff an ad-
ditional ambulance, 24 hours a day and 7 days a week. Hence a reduction of
3.5% is highly significant.

These results may appear to contradict those of [28], where regression suc-
cessfully identified policies that out-performed the best known static polices.
The key difference here is a different approximation architecture. Repeating
the same analysis in this paper with the approximation architecture used
in [28] shows that all three methods find policies having about a 2–3% im-
provement over the static policy, consistent with the results of [28].

The time taken for the simulation-based ADP algorithm to make a single
redeployment decision is about .07 seconds on a 2.66 Ghz processor, which
is easily fast enough for real-time decisions. However, the computational
burden of the (off-line) tuning procedure is large. Each function evaluation
consists of 20 two-week replications of ambulance operations and requires
about 1 hour of computation. The total tuning process required nearly 12
days of computation for each method. Since ADP parameters only need to
be tuned once before implementing an ADP policy, this is still practically
feasible, but these tuning methods are not likely to scale well for larger cities.

There may be situations where the dimension of r or other factors make
direct search computationally prohibitive and regression- or LP-based meth-
ods must be used. Perhaps because of these extreme cases we believe that
simulation-optimization methods are underutilized. This situation persists
even though examples such as that in Section 3 and [27] show that there
are limitations of standard methods not present in simulation-optimization
methods and the gains from using simulation-optimization techniques can
be enormous; see e.g., [42]. In Section 6 we show how the computational
disadvantages of direct search can be dramatically reduced in the context of
ambulance redeployment in a major metropolitan region.

TUNING ADP POLICIES 345

6. Post-decision state formulation. Suppose that for any state Sk

we can rewrite the immediate cost function c(Sk, x, Uk+1) and the system
dynamics function f(Sk, x, Uk+1) in terms of the post-decision state S+

k (x)
as c(S+

k (x), Uk+1) and f(S+
k (x), Uk+1) respectively. In contrast to Sections 2

and 3 where we worked in discrete time, and in Sections 4 and 5 where we did
not discount, here we allow discounting in continuous time. For notational
simplicity we denote the discount factor on the interval between the kth
event Sk and the (k+ j)th event Sk+j, which is of length t(Sk+j)− t(Sk), as
αj = αt(Sk+j)−t(Sk), where α ∈ (0, 1].

Let the post-decision value function be defined as

(6.1) J̃(S+
k (x)) = E

[

c(S+
k (x), Uk+1) + α1J(f(S

+
k (x), Uk+1))

]

.

Then we have that J(Sk) = minx∈X (Sk) J̃(S
+
k (x)).

Let J̃r denote a linear approximation architecture for the post-decision
state where r represents the set of coefficients, and define

(6.2) L̃r(s) = min
x∈X (s)

J̃r(s
+(x)) ∀ s ∈ S.

The ADP policy with respect to L̃r is called the post-decision state ADP
policy. The computational benefits of (6.2) over (2.3) are that the expecta-
tion operator is contained within the approximation J̃r. Consequently, this
formulation trades the computational burden of Monte Carlo simulation
with a heavier reliance on the (post-decision) value function approximation.
We elect to use the same basis functions for both the pre- and post-decision
state approximations Jr and J̃r, albeit with unique coefficients.

In Section 6.1 we define a generalization of the ADP policy, in Section 6.2
we show that the post-decision state policy is a limiting case of this gener-
alization, and in Section 6.3 we provide computational results for a direct
search tuning method using the post-decision state policy.

6.1. Truncated microsimulation policy. An ADP policy in state Sk uses
(2.3) to choose an action x ∈ X (Sk) based upon the expected value of the
sum of the transition cost to Sk+1 and the value function at state Sk+1 given
action x. If the state Sk+1 is similar to Sk there may be little new information
contained in state Sk+1. For example, if Sk+1 corresponds to a call arrival
occurring almost immediately after a service completion, then state Sk+1

does not contain very much information on the evolution of the system after
state Sk. For situations where Sk+1 corresponds to a non-decision state (no
decision is required), (2.3) can be extended to capture more information

346 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

on the evolution of the system by evaluating the expectation over the time
interval not just until the next state, but until the next decision state.

Let Q = Q(k, Sk, x) be a random variable indicating the number of non-
decision states between state Sk and the next decision state given that we
choose decision x in the kth state Sk. Then the value function for Sk can be
rewritten as

J(Sk) = min
x∈X (Sk)

E

[

Q
∑

j=0

αjc(Sk+j, xj , Uk+j+1)(6.3)

+ αQ+1J (f(Sk+Q, xQ, Uk+Q+1))

]

∀ Sk ∈ S,

where x0 = x and xj = ∅ for 1 ≤ j < Q (see Appendix A). Using this
formulation we define

Lr,∞(Sk) = min
x∈X (Sk)

E

[

Q
∑

j=0

αjc(Sk+j , xj, Uk+j+1)

+ αQ+1Jr (f(Sk+Q, xQ, Uk+Q+1))

]

∀ Sk ∈ S,

and call the ADP policy with respect to Lr,∞ the “microsimulation ADP
policy.” The idea behind the microsimulation ADP policy is that instead
of estimating the expectation through Monte Carlo samples of the next
state as in (4.1), we use short simulations or “microsimulations” to sample
transition costs and future state evolution up until a decision state is reached.
One practical drawback of this policy is that it is not known how long
each microsimulation must run before reaching a decision state. When large
values of Q are observed, the computation may be too large for real-time
implementation even if the standard ADP policy can be computed rapidly.
To overcome this drawback we select a deterministic time τ > 0 and truncate
each microsimulation at τ if it has not already stopped due to reaching a
decision state.

The truncation time may occur at a non-event time, so we appeal to the
continuous-time version of the DEDS (see Section 4.1.3). Suppose that the
kth (pre-decision) state is Sk at time t(Sk) and we take action x at that
instant. Let S+

k (x) = S(t(Sk)) denote the post-decision state immediately
after decision x is taken from pre-decision state Sk. Also, let Sk(τ, x) denote
the (random) state, S(t(Sk) + τ), at time t(Sk) + τ . Finally, let S+

k (τ, x)
denote the deterministic state that arises at time t(Sk) + τ when no events
occur in the time interval (t(Sk), t(Sk) + τ].

TUNING ADP POLICIES 347

Let γ1 = t(Sk+1)−t(Sk) and γQ+1 = t(SQ+1)−t(Sk) denote the time until
the next event and the time until the next decision event respectively. Let
Qτ = Qτ (k, Sk, x) be a random variable giving the number of non-decision
states between time t(Sk) and the earlier of the next decision state or the
threshold time t(Sk) + τ , given that we choose decision x in state Sk. Then
the truncated microsimulation value function for all Sk ∈ S can be expressed
(see Appendix B) as

J(Sk) = min
x∈X (Sk)

P (τ ≤ γ1)α
τ J̃(S+

k (τ, x))

+ E

[

Qτ
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + ατ J̃(Sk(τ, x)); γ1 < τ ≤ γQ+1

]

+ E

[

Q
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + αQ+1J(f(Sk+Q, xQ, Uk+Q+1)); γQ+1 < τ

]

.

For all Sk ∈ S, let the approximate value function be

Lr,r′,τ(Sk) = min
x∈X (Sk)

P (τ ≤ γ1)α
τ J̃r(S

+
k (τ, x))

(6.4)

+ E

[

Qτ
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + ατ J̃r(Sk(τ, x)); γ1 < τ ≤ γQ+1

]

+ E

[

Q
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1)); γQ+1 < τ

]

.

The ADP policy with respect to Lr,r′,τ is called the truncated microsimula-
tion policy. Two different sets of coefficients r and r′ must be used with this
policy to account for the approximations of J̃ and J respectively.

6.2. Limiting behavior of the truncated microsimulation value function
approximation. The truncated microsimulation policy attempts to balance
the more precise estimation of longer microsimulations with the computa-
tional effort required by such simulations. Since the computational effort re-
quired to compute the truncated microsimulation policy generally increases
with the threshold τ it is natural to ask how the policy performs with re-
duced computational effort, i.e., as τ goes to zero. We show below that the
truncated microsimulation policy converges to the post-decision state policy
as τ → 0.

348 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

The key idea is that the truncated microsimulation value-function ap-
proximation Lr,r′,τ should be very close to that of the post-decision value-
function approximation L̃r when τ is small because the system has had
little time to change between the two evaluation points. In essence, the first
term in the right-hand side of (6.4) will dominate as τ → 0. To make this
precise, we show pathwise convergence as τ → 0, and then take expecta-
tions through to the limit. The pathwise argument relies on the notion that
t(Sk) + τ < t(Sk+1) for sufficiently small τ , i.e., that the event times are
strictly increasing, almost surely.

There are, however, some states where the event times are not strictly
increasing, even if the interarrival and service-time distributions are non-
atomic. Indeed, if a clock ti(Sk) has reached the maximal value of the support
of the associated distribution, then an immediate event will occur. Let B
denote the set of states in S where this happens. The proof of Proposition 1
below is in Appendix C.

Proposition 1. Assume the interarrival distributions and service-time
distributions of the DEDS are non-atomic. If P (S0 /∈ B) = 1 then P (∃k :
t(Sk+1) = t(Sk)) = 0, i.e., if S0 is not in B w.p.1 then the probability of any
two events occurring at the same time is zero.

Under the conditions of Proposition 1 the event times are strictly increas-
ing, and so, by bounded convergence, limτ↓0 P (t(Sk) + τ < t(Sk+1)) = 1 for
all Sk ∈ S.

Assuming J , J̃ , and c are bounded, we can bound the two expectations
in Lr,r′,τ (see (6.4)) by a function of E[Q], the expected number of non-
decision events in (t(Sk), t(S−k)+ τ). We further assume that the expected
number of arrivals on any finite interval is finite. The number of events on
any interval can be bounded by twice the number of arrivals (one event for
the arrival and one event for the service completion) plus a finite constant
depending on the initial state. Thus the two expectations in Lr,r′,τ must be
finite. This is sufficient to state and prove our final result, the proof of which
is given in Appendix C. The assumption that J , J̃ and c are bounded can be
relaxed, but it is sufficient for our ambulance deployment formulation and
it simplifies the proofs.

Theorem 2. Assume that P (S0 /∈ B) = 1, that J̃r, for a fixed r, and c
are bounded, that J̃r(·) is continuous in T (·) (for any fixed remaining state
components), and that the discount factor α ∈ (0, 1]. Then for any bounded

TUNING ADP POLICIES 349

ADP approximation architecture Jr′

lim
τ↓0

Lr,r′,τ (s) = L̃r(s) ∀s ∈ S.

Thus the function defining the post-decision state policy is the limit of the
function defining the truncated microsimulation policy as the truncation time
goes to zero (for any bounded ADP approximation architecture).

The key arguments in the proof of Theorem 2 are as follows. Since Lr,r′,τ is
a minimum over a finite number of convergent sequences we can interchange
the order of the limit and the minimum in Lr,r′,τ . By Proposition 1 and the
fact that the expectations of Lr,r′,τ are finite,

lim
τ↓0

Lr,r′,τ (Sk) = min
x∈X (Sk)

lim
τ↓0

J̃r(S
+
k (τ, x))

= min
x∈X (Sk)

J̃r(lim
τ↓0

S+
k (τ, x)) since J̃r is continuous

= min
x∈X (Sk)

J̃r(S
+
k (x)) by the construction in Section 4.1.3.

Thus as the simulation threshold time goes to zero the function defining
the truncated microsimulation policy converges to the function defining the
post-decision state policy. In this sense we can view the post-decision state
policy as a limit of the truncated microsimulation policy, further motivating
the post-decision state policy. This interpretation of the post-decision state
policy as a limit should hold under very general conditions that are not
specific to the ambulance redeployment problem. The essential ingredients
are continuity of the value-function approximation, right-continuity of paths,
finite action space, and uniform integrability.

The post-decision state ADP policy has the overwhelming computational
advantage of not needing to perform Monte Carlo microsimulations to ap-
proximate expectations. Given an approximation architecture J̃r, the only
computation required to make a decision is computing the minimum of J̃r
over a finite (and reasonably small) set. Consequently, tuning post-decision
state policies with direct search methods becomes computationally feasible
even with much higher dimensional problems than those of Section 5.

6.3. Computational results. Melbourne is the second largest city in Aus-
tralia with about 4 million residents. Our model has 87 ambulance bases,
22 hospitals, and up to 97 ambulances. The call-arrival model divides Mel-
bourne into a 100×100 grid with time-dependent arrival rates. Based on the
geography of Melbourne roughly 80% of these grid cells have no demand.

350 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

For the remaining 20%, we estimated a typical week of call-arrival rates
from historic call data. Throughout the week the daily call arrivals for the
entire city vary from about 300 calls/day to 750 calls/day with an average
of approximately 570 calls/day. To correspond to the fluctuating demand,
ambulance availability is controlled through daily shifts similar to those used
in practice with as few as 65 ambulances available during low-demand times
and up to 97 ambulances available during peak times. The demand model
we use for Melbourne is more realistic than that used for Edmonton, but
as with Edmonton, the call-arrival volume and patterns used in our simu-
lation differ significantly from the true demand. By design then, the model
we use is realistic but not real, and our results have no reflection on actual
ambulance operations in Melbourne.

The travel model used in the simulation is a deterministic shortest-path
calculation on a detailed road network with 4,955 nodes and 11,876 arcs. To
reduce computation time, the shortest paths between any two nodes are pre-
computed and stored. To further reduce computation time we perform one-
week simulations for Melbourne as compared with the two-week simulations
of Edmonton.

The ADP policies used in this section are defined by the post-decision
state ADP formulation defined in (6.2) with no discounting (α = 1). The
parameterized approximation architecture J̃r used by the post-decision state
ADP has the same form as the approximation architecture Jr (as described
in Section 4.2.1), but the coefficients for these two approximation architec-
tures are distinct.

Figure 3 shows the results of the least squares and Nelder-Mead tuning
methods for Melbourne using the post-decision state ADP formulation. Since
this approximation architecture has one basis function per ambulance base
there are 87 basis functions used in the approximation architecture, and
the ADP policy parameter tuning problem is an 87 dimensional problem.
In this high-dimensional space the NUOBYQA method is computationally
infeasible and hence is not included in the results. As in Figure 2, each
point along the x-axis represents a single function evaluation at a given set
of coefficients, and the y-axis gives the average percentage of missed calls
over 30 independent replications of the one-week period. As in Section 5,
the performance of the minimizing policy was reevaluated with independent
random number streams to eliminate selection bias. The static policy used
to generate the initial policy for the tuning approach has 26.7% ± .1% late
calls. The best policy found by the least squares based fitting procedure
has 31.3% ± .1% late calls which is significantly worse than the initial static
policy. The Nelder-Mead search method was able to find a policy with 25.8%

TUNING ADP POLICIES 351

0 200 400 600 800 1000 1200 1400 1600 1800 2000
24

26

28

30

32

34

36

38

40

42

Funcion Evaluation

A
v
e

ra
g

e
 m

is
s
e

d
 c

a
lls

 (
P

e
rc

e
n

t
o

f
to

ta
l
c
a

lls
)

Least Squares

Nelder−Mead

Fig 3. Results for two methods for tuning ADP coefficients in Melbourne, Australia. Each

curve plots the estimated percentage of calls with response times above the threshold for

2000 policies that are obtained within a tuning procedure.

± .1% late calls, a practically significant improvement over the static policy
of about 0.9%.

The direct search tuning in Figure 3 required approximately 12.5 hours of
computation time on a 2.66 Ghz processor whereas one function evaluation
of the simulation-based ADP policy on Melbourne requires over 5.5 hours.
Without the post-decision state formulation such an extensive tuning process
would have required over one year of computation time given the same
processing capacities. Thus a direct search tuning method coupled with a
post-decision state formulation is able to decrease the computational effort
used to tune the ADP policy while simultaneously finding superior policies.

7. Conclusion. Ambulance redeployment policies can improve EMS
response times within current resources. By altering the positioning of am-
bulances in real-time EMS providers are better able to respond to gaps in
coverage that occur due to inherent uncertainties involved in emergency
services. ADP is an appealing framework for implementing ambulance re-

352 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

deployment because it directly accounts for the randomness in the system
while maintaining computational feasibility for real-time decision support.

Unfortunately, standard tuning approaches for ADP policies have lim-
itations that may prevent the resulting ADP policies from performing as
well as possible within a given approximation architecture. These limita-
tions were shown both theoretically for a stylized problem and empirically
for two different ambulance redeployment scenarios. In both of these scenar-
ios direct search methods were able to find ADP policies with significantly
better performance than the best policies found otherwise.

The benefit of direct-search tuning is that it tunes ADP policy parameters
based directly on the performance resulting from those parameters, rather
than indirectly through value-function fitting. This benefit, however, comes
with the cost of higher computational requirements than typically required
for other approaches. Using a post-decision state representation the compu-
tational burden for tuning associated ADP policies is dramatically reduced.

The post-decision state formulation of a problem may seem foreign and
perhaps forced at first, but we show that in our ambulance redeployment
setting, the post-decision state ADP policy is actually the limit of a general
truncated microsimulation policy which is based on the standard simulation-
based ADP formulation. As such, the post-decision state ADP policy can
be viewed as the limiting policy of simulation-based ADP policies when the
computational budget for simulations goes to zero. While we proved this
result only in the present context, the result should hold more generally.
Our proof essentially consists of the following steps:

1. Show that as τ , the length of the micro simulations, decreases to 0, the
state of the continuous-time Markov process at the end of the micro
simulation converges to the post-decision state. It is sufficient that the
sample paths following decision epochs are right continuous, as was
the case here.

2. Show that the expected value of the “cost-to-go” from time τ onwards
converges to the expected value of the cost-to-go immediately after
the decision epoch. In general, this will follow if the value function
approximation is continuous in the state variables so that pathwise
convergence is attained as τ → 0, and if the appropriate quantities are
uniformly integrable. In our setting these quantities were bounded, so
uniform integrability was immediate.

3. Ensure that the expected value of the cost-to-go from the post-decision
state can be readily computed. In our setting, the post-decision state
was deterministic given the pre-decision state and action, so no aver-
aging was required.

TUNING ADP POLICIES 353

4. Ensure that the optimal action with respect to this post-decision state
formulation can be readily computed. In our setting the action space is
finite and easily enumerated, so we optimize by complete enumeration.

APPENDIX A: MICROSIMULATION VALUE FUNCTION
DERIVATION

We use the notation E[X;A] to denote the expected value of the random
variable X on the event A, i.e., E[XIA], where IA(ω) = 1 if ω ∈ A and 0
otherwise. For all Sk ∈ S,

J(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1))]

= min
x∈X (Sk)

E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1));Q = 0]

+ E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1));Q = 1] + · · ·

= min
x∈X (Sk)

E [c(Sk, x, Uk+1)) + α1J(f(Sk, x, Uk+1));Q = 0]

+ E[c(Sk, x, Uk+1) + α1c(Sk+1, ∅, Uk+2) + α2J(f(Sk+1, ∅, Uk+2));Q = 1] + · · ·

= min
x∈X (Sk)

∞
∑

q=0

E

q
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + αq+1J(f(Sk+q , xq, Uk+q+1));Q = q

= min
x∈X (Sk)

E

Q
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + αQ+1J(f(Sk+Q, xQ, Uk+Q+1))

 ,

where x0 = x and xj = ∅ for j ≥ 1.

APPENDIX B: TRUNCATED MICROSIMULATION VALUE
FUNCTION DERIVATION

For all Sk ∈ S

J(Sk) = min
x∈X (Sk)

E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1))]

= min
x∈X (Sk)

P (τ ≤ γ1)E
[

c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1))
∣

∣

∣
τ ≤ γ1

]

+ E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1)); γ1 < τ ≤ γQ+1]

+ E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1)); γQ+1 < τ] .

Consider the conditional expectation above. There is zero cost associated
with the transition from the pre-decision state Sk to the post-decision state
S+
k (x), and on to state Sk(τ, x). We then incur, by definition, the cost

354 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

c(Sk(τ, x), Uk+1) from then till state Sk+1 is reached, which must be dis-
counted by ατ . Finally, we have the discounted value function at state Sk+1

(by definition of f(·, ·)). Thus,

E

[

c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1))
∣

∣

∣
τ ≤ γ1

]

= E

[

ατc(Sk(τ, x), Uk+1) + ατJ(f(Sk(τ, x), Uk+1))
∣

∣

∣
τ ≤ γ1

]

= ατ
E

[

J̃(Sk(τ, x))
∣

∣

∣
τ ≤ γ1

]

by (6.1)

= ατ J̃(S+
k (τ, x)),

where the last equality holds because on the event τ ≤ γ1, Sk(τ, x) =
S+
k (τ, x) and J̃(S+

k (τ, x)) is a deterministic function of Sk, τ , and x.
Similarly,

E [c(Sk, x, Uk+1) + α1J(f(Sk, x, Uk+1)); γ1 < τ ≤ γQ+1]

= E

[

∑Qτ

j=0 αjc(Sk+j , xj , Uk+j+1) + ατ J̃(Sk(τ, x)); γ1 < τ ≤ γQ+1

]

.

Thus, for all Sk ∈ S,

J(Sk) = min
x∈X (Sk)

P (τ ≤ γ1)α
τ J̃(S+

k (τ, x))

+ E

Qτ
∑

j=0

αjc(Sk+j, xj , Uk+j+1) + ατ J̃(Sk(τ, x)); γ1 < τ ≤ γQ+1

+ E

Q
∑

j=0

αjc(Sk+j, xj , Uk+j+1) + αQ+1J(f(Sk+Q, xQ, Uk+Q+1)); γQ+1 < τ

where the last line follows from (6.3).

APPENDIX C: PROOF OF THEOREM 2

We first prove Proposition 1. Let I(s) = {i : ei ∈ E(s)} denote the
index set of active events E(s). For any s ∈ S let Mi(s) for ei ∈ E(s)
denote the (possibly infinite) supremum of the support of the residual time
distribution for event ei. Recall that B is the set of states where an event
occurs immediately. More formally, define

B = {s ∈ S : ∃ ei ∈ E(s) where Mi(s) = 0} .

TUNING ADP POLICIES 355

Lemma 3. If P (Sk /∈ B) = 1 then

P (t(Sk+1) = t(Sk)) = 0,

i.e., if Sk is not in B w.p.1, then the probability of getting an immediate
event on the next transition is zero.

Proof. Recall that F−1
i

(

Sk, ·
)

denotes the quantile function for the resid-
ual event time for event ei in state Sk. We have

P (t(Sk+1) = t(Sk)) = P (t(Sk+1) = t(Sk)|Sk /∈ B)P (Sk /∈ B)

+ P (t(Sk+1) = t(Sk)|Sk ∈ B)P (Sk ∈ B)

= P (t(Sk+1) = t(Sk)|Sk /∈ B) by assumption

= P

(

min
i∈I(Sk)

F−1
i

(

Sk, Uk+1(i)
)

= 0
∣

∣

∣
Sk /∈ B

)

.

Conditional upon I(Sk) = I, we have

P
(

min
i∈I

F−1
i

(

Sk, Uk+1(i)
)

= 0
∣

∣

∣
Sk /∈ B, I(Sk) = I

)

≤
∑

i∈I

P
(

F−1
i

(

Sk, Uk+1(i)
)

= 0
∣

∣

∣
Sk /∈ B, I(Sk) = I

)

=
∑

i∈I

P (Uk+1(i) = 0)

= 0,

where the second to last equality holds due to the fact that Sk /∈ B which
implies that for each i ∈ I the residual time distribution is non-atomic and
hence F−1

i

(

Sk, Uk+1(i)
)

= 0 if and only if Uk+1(i) = 0.
Since there are a finite number of realizations of I(·) we have that

P

(

min
i∈I(Sk)

F−1
i

(

Sk, Uk+1(i)
)

= 0
∣

∣

∣
Sk /∈ B

)

= 0,

and the desired result holds.

Lemma 4. If P (Sk /∈ B) = 1 then

P (Sk+1 /∈ B) = 1,

i.e., if Sk is not in B w.p.1 then Sk+1 is not in B w.p.1.

356 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

Proof. We have

P (Sk+1 ∈ B) = P (Sk+1 ∈ B|Sk /∈ B)P (Sk /∈ B)

+ P (Sk+1 ∈ B|Sk ∈ B)P (Sk ∈ B)

= P (Sk+1 ∈ B|Sk /∈ B) by assumption

= P (∃ i ∈ I(Sk+1) such that Mi(Sk+1) = 0|Sk /∈ B)

≤ P
(

∃ i ∈ I(Sk) such that F−1
i

(

Sk, Uk+1(i)
)

=Mi(Sk)|Sk /∈ B
)

.

The third equality holds by definition of B and the last line holds because
a necessary condition to satisfy Mi(Sk+1) = 0 is that F−1

i

(

Sk, Uk+1(i)
)

be
equal to Mi(Sk). Conditional upon I(Sk) = I, we have

P
(

∃ i ∈ I such that F−1
i

(

Sk, Uk+1(i)
)

= Mi(Sk)|Sk /∈ B, I(Sk) = I
)

≤
∑

i∈I

P
(

F−1
i

(

Sk, Uk+1(i)
)

= Mi(Sk)|Sk /∈ B, I(Sk) = I
)

=
∑

i∈I

P (Uk+1(i) = 1)

= 0,

where the second to last equality holds due to the fact that Sk /∈ B which
implies that for each i ∈ I the residual time distribution is non-atomic and
hence F−1

i

(

Sk, Uk+1(i)
)

= Mi(Sk) if and only if Uk+1(i) = 1.
Since there are a finite number of realizations of I(·) we have that

P
(

∃ i ∈ I(Sk) such that F−1
i

(

Sk, Uk+1(i)
)

= Mi(Sk)|Sk /∈ B
)

= 0,

and the desired result holds.

Proof of Proposition 1. Given P (S0 /∈ B) = 1 and Lemma 4 we
know that P (Sk /∈ B) = 1 for all k by induction. Thus by Lemma 3 we know
that P (t(Sk+1) = t(Sk)) = 0 for all k.

The number of events is bounded by twice the number of arrivals (one for
arrival and one for service completion) plus a constant factor depending on
the initial state S0. Since the number of arrivals are countable the number
of events are also countable, and we have that

P (∃k : t(Sk+1) = t(Sk)) ≤
∞
∑

k=0

P (t(Sk+1) = t(Sk))

= 0.

We now turn to the proof of Theorem 2.

TUNING ADP POLICIES 357

Lemma 5. If the value function approximation is bounded, i.e., |Jr′(s)| ≤
HJ < ∞ and the costs are bounded, i.e., |c(s, x, ·)| ≤ Hc < ∞ for all s ∈ S,
x ∈ X (s), then

lim
τ↓0

E

[

∣

∣

∣

Q
∑

j=0

αjc(Sk+j , xj , Uk+j+1)

+ αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1))
∣

∣

∣
; γQ+1 < τ

]

= 0,

where x0 ∈ X (Sk) and xj = ∅ for 1 ≤ j ≤ Q.

Proof. By the boundedness assumptions,

∣

∣

∣

Q
∑

j=0

αjc(Sk+j, xj , Uk+j+1)+αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1))
∣

∣

∣
≤

Q
∑

j=0

Hc+HJ .

The quantity Q is bounded by the total number of events in (t(Sk), t(Sk)+
τ) which is bounded by twice the number of arrivals in (t(Sk), t(Sk)+τ) (one
for arrival, one for service completion) plus a constant number of events
depending upon the state Sk. The expected number of arrivals in any finite
time period is finite, so the dominating random variable Hc(Q + 1) + HJ

has finite expectation. Dominated convergence completes the proof, since
γQ+1 ≥ τ eventually.

Using exactly the same technique we can show that if J̃r and the costs
are both bounded, then

lim
τ↓0

E

∣

∣

∣

Qτ
∑

j=0

αjc(Sk+j, xj , Uk+j+1) + ατ J̃r(Sk(τ, x))
∣

∣

∣
; γ1 < τ ≤ γQ+1

 = 0,

where x0 ∈ X (Sk) and xj = ∅ for 1 ≤ j ≤ Qτ .

Proof of Theorem 2. We have that

lim
τ↓0

Lr,r′,τ (Sk) = lim
τ↓0

(

min
x∈X (Sk)

P (τ ≤ γ1)α
τ J̃r(S

+
k (τ, x))

(C.1)

+ E

[Qτ
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + ατ J̃r(Sk(τ, x)); γ1 < τ ≤ γQ+1

]

358 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

+ E

[Q
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1)); γQ+1 < τ

]

)

= min
x∈X (Sk)

lim
τ↓0

(

P (τ ≤ γ1)α
τ J̃r(S

+
k (τ, x))

+ E

[Qτ
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + ατ J̃r(Sk(τ, x)); γ1 < τ ≤ γQ+1

]

+ E

[Q
∑

j=0

αjc(Sk+j , xj , Uk+j+1) + αQ+1Jr′(f(Sk+Q, xQ, Uk+Q+1)); γQ+1 < τ

]

)

.

The interchange of the minimum and limit above is justified because we have
a minimization over a finite number of convergent sequences and hence the
sequence of the minimums converges uniformly. Interchange of the minimum
and limit for uniformly convergent sequences is justified in, for example, [38,
Proposition 5].

From Proposition 1, limτ↓0 P (τ ≤ γ1) = 1 and we have already shown
that the remaining terms converge to 0. Thus we have that

lim
τ↓0

Lr,r′,τ (Sk) = min
x∈X (Sk)

lim
τ↓0

J̃r(S
+
k (τ, x))

= min
x∈X (Sk)

J̃r

(

lim
τ↓0

S+
k (τ, x)

)

(C.2)

= min
x∈X (Sk)

J̃r
(

S+
k (x)

)

(C.3)

= L̃r(Sk),

where (C.2) follows because the T component of S+
k (τ, x) is the only com-

ponent that varies as τ ↓ 0 (see Section 4.1.3) and J̃r(·) is continuous in T (·)
by assumption, and (C.3) follows from the definition of the continuous-time
system dynamics in Section 4.1.3.

Acknowledgments. We thank the associate editor for extremely help-
ful comments that improved the paper. This research was supported in part
by NSF Grants CMMI 0758441 and CMMI 1200315.

REFERENCES

[1] Adelman, D. A price-directed approach to stochastic inventory routing. Operations

Research, 52(4):499–514, 2004. MR2075790

[2] Adelman, D. Dynamic bid-prices in revenue management. Operations Research,
55(4):647–661, 2007. MR2349028

http://www.ams.org/mathscinet-getitem?mr=2075790
http://www.ams.org/mathscinet-getitem?mr=2349028

TUNING ADP POLICIES 359

[3] Alanis, R., Ingolfsson, A., and Kolfal, B. A Markov chain model for an EMS
system with repositioning, 2010.

[4] Andersson, T. Decision support tools for dynamic fleet management. PhD the-
sis, Department of Science and Technology, Linkoepings Universitet, Norrkoeping,
Sweden, 2005.

[5] Andersson, T. and Vaerband, P. Decision support tools for ambulance dispatch
and relocation. Journal of the Operational Research Society, 58:195–201, 2007.

[6] Bandar, D., Mayorga, M. E., and McLay, L. A. Optimal dispatching strategies
for emergency vehicles to increase patient survivability. To appear, International

Journal of Operational Research, 2012. MR3014423

[7] Berman, O. Dynamic repositioning of indistinguishable service units on transporta-
tion networks. Transportation Science, 15(2), 1981. MR0639599

[8] Berman, O. Repositioning of distinguishable urban service units on networks. Com-

puters and Operations Research, 8:105–118, 1981.

[9] Berman, O. Repositioning of two distinguishable service vehicles on networks. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-11(3), 1981. MR0614679

[10] Bertsekas, D. Dynamic Programming and Optimal Control. Athena Scientific,
Nashua, NH, 2005. MR2183196

[11] Bertsekas, D. and Shreve, S. Stochastic Optimal Control: The Discrete Time

Case. Academic Press, New York, 1978. MR0511544

[12] Bertsekas, D. and Tsitsiklis, J. Neuro-Dynamic Programming. Athena Scientific,
Belmont, Massachusetts, 1996.

[13] Boyan, J. A. Technical update: Least-squares temporal difference learning. Machine

Learning, 49(2):233–246, 2002.

[14] Bradtke, S. J., Barto, A. G., and Kaelbling, P. Linear least-squares algorithms
for temporal difference learning. In Machine Learning, pages 22–33, 1996.

[15] de Farias, D. P. and Van Roy, B. The linear programming approach to approxi-
mate dynamic programming. Operations Research, 51:2003, 2001. MR2019651

[16] Deng, G. and Ferris, M. C. Adaptation of the UOBYQA algorithm for noisy
functions. In WSC ’06: Proceedings of the 38th conference on Winter simulation,
pages 312–319. Winter Simulation Conference, 2006.

[17] Desai, V. V., Farias, V. F., and Moallemi, C. C. Approximate dynamic pro-
gramming via a smoothed linear program. To appear in Operations Research, 2012.
MR2995921

[18] Erkut, E., Ingolfsson, A., and Erdoğan, G. Ambulance deployment for maxi-
mum survival. Naval Research Logistics, 55(1):42–58, 2007. MR2378248

[19] Farias, V. F. and Van Roy, B. An approximate dynamic programming approach
to network revenue management. Technical report, Stanford University, Department
of Electrical Engineering, 2007.

[20] Gendreau, M., Laporte, G., and Semet, S. A dynamic model and parallel tabu
search heuristic for real time ambulance relocation. Parallel Computing, 27:1641–
1653, 2001.

[21] Gendreau, M., Laporte, G., and Semet, S. The maximal expected coverage relo-
cation problem for emergency vehicles. Journal of the Operational Research Society,
57:22–28, 2006.

[22] Glynn, P. W. A GSMP formalism for discrete event systems. Proceedings of the

IEEE, 77(1), 1989.

http://www.ams.org/mathscinet-getitem?mr=3014423
http://www.ams.org/mathscinet-getitem?mr=0639599
http://www.ams.org/mathscinet-getitem?mr=0614679
http://www.ams.org/mathscinet-getitem?mr=2183196
http://www.ams.org/mathscinet-getitem?mr=0511544
http://www.ams.org/mathscinet-getitem?mr=2019651
http://www.ams.org/mathscinet-getitem?mr=2995921
http://www.ams.org/mathscinet-getitem?mr=2378248

360 M. S. MAXWELL, S. G. HENDERSON AND H. TOPALOGLU

[23] Kolesar, P. and Walker, W. E. An algorithm for the dynamic relocation of fire
companies. Operations Research, 22(2):249–274, 1974.

[24] L’Ecuyer, P., Simard, R., Chen, E. J., and Kelton, W. D. An object-oriented
random-number package with many long streams and substreams. Operations Re-

search, 50(6):1073–1075, 2002.

[25] Longstaff, F. A. and Schwartz, E. S. Valuing American options by simulation:
A simple least-squares approach. The Review of Financial Studies, 14(1):113–147,
2001.

[26] Maxwell, M. S., Henderson, S. G., and Topaloglu, H. Ambulance redeploy-
ment: An approximate dynamic programming approach. In M. D. Rossetti, R. R. Hill,
B. Johansson, A. Dunkin, and R. G. Ingalls, editors, Proceedings of the 2009 Winter

Simulation Conference, pages 1850–1860, Piscataway, New Jersey, 2009. Institute of
Electrical and Electronics Engineers, Inc.

[27] Maxwell, M. S., Henderson, S. G., and Topaloglu, H. Identifying effective
policies in approximate dynamic programming: Beyond regression. In B. Johansson,
S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, editors, Proceedings of the 2010
Winter Simulation Conference, Piscataway, New Jersey, 2010. Institute of Electrical
and Electronics Engineers, Inc.

[28] Maxwell, M. S., Restrepo, M., Henderson, S. G., and Topaloglu, H. Ap-
proximate dynamic programming for ambulance redeployment. INFORMS Journal

on Computing, 22(2):266–281, 2010. MR2677214

[29] Nair, R. and Miller-Hooks, E. Evaluation of relocation strategies for emergency
medical service vehicles. Transportation Research Record: Journal of the Transporta-

tion Research Board, 2137:63–73, 2009.

[30] Nelder, J. and Mead, R. A simplex method for function minimization. The Com-

puter Journal, 7(4):308–313, 1965.

[31] Papadaki, K. and Powell, W. B. An adaptive dynamic programming algorithm
for a stochastic multiproduct batch dispatch problem. Naval Research Logistics,
50(7):742–769, 2003. MR2001023

[32] Powell, M. UOBYQA: Unconstrained optimization by quadratic approximation.
Mathematical Programming, 92(3):555–582, 2002. MR1905766

[33] Powell, W. B. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality. John Wiley & Sons, Hoboken, NJ, 2007. MR2347698

[34] Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Hoboken, NJ, 2005.

[35] Richards, D. Optimised Ambulance Redeployment Strategies. PhD thesis, The
University of Auckland, Auckland, New Zealand, 2007.

[36] Schmid, V. Solving the dynamic ambulance relocation and dispatching problem us-
ing approximate dynamic programming. European Journal of Operational Research,
219:611–621, 2012. MR2898941

[37] Schweitzer, P. J. and Seidmann, A. Generalized polynomial approximations in
Markovian decision processes. Journal of Mathematical Analysis and Applications,
110(2):568–582, 1985. MR0805277

[38] Shapiro, A. Monte Carlo sampling methods. In A. Ruszczynski and A. Shapiro,
editors, Stochastic Programming, volume 10 of Handbooks in Operations Research and

Management Science, pages 353–425. Elsevier, 2003. MR2052758

[39] Spivey, M. Z. and Powell, W. B. The dynamic assignment problem. Transporta-
tion Science, 38(4):399–419, 2004.

http://www.ams.org/mathscinet-getitem?mr=2677214
http://www.ams.org/mathscinet-getitem?mr=2001023
http://www.ams.org/mathscinet-getitem?mr=1905766
http://www.ams.org/mathscinet-getitem?mr=2347698
http://www.ams.org/mathscinet-getitem?mr=2898941
http://www.ams.org/mathscinet-getitem?mr=0805277
http://www.ams.org/mathscinet-getitem?mr=2052758

TUNING ADP POLICIES 361

[40] Sutton, R. S. Learning to predict by the methods of temporal differences. In
Machine Learning, pages 9–44. Kluwer Academic Publishers, 1988.

[41] Sutton, R. S. and Barto, A. G. Reinforcement Learning. The MIT Press, Cam-
bridge, MA, 1998.

[42] Szita, I. and Lörincz, A. Learning tetris using the noisy cross-entropy method.
Neural Computation., 18(12):2936–2941, 2006.

[43] Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6(2):215–219, 1994.

[44] Topaloglu, H. and Powell, W. B. Dynamic programming approximations for
stochastic, time-staged integer multicommodity flow problems. INFORMS Journal

on Computing, 18(1):31–42, 2006. MR2205745

[45] Tsitsiklis, J. and Van Roy, B. Regression methods for pricing complex American-
style options. IEEE Transactions on Neural Networks, 12(4):694–703, 2001.

[46] Van Roy, B., Bertsekas, D. P., Lee, Y., and Tsitsiklis, J. N. A neuro dynamic
programming approach to retailer inventory management. In Proceedings of the IEEE

Conference on Decision and Control, 1997.

[47] Zhang, L. Simulation Optimisation and Markov Models for Dynamic Ambulance

Redeployment. PhD thesis, The University of Auckland, Auckland, New Zealand,
2012.

[48] Zhang, L., Mason, A., and Philpott, A. Optimization of a single ambulance move
up. Preprint, 2010.

School of Operations Research

and Information Engineering

Ithaca NY 14853

E-mail: msm57@cornell.edu
sgh9@cornell.edu
ht88@cornell.edu

http://www.ams.org/mathscinet-getitem?mr=2205745
mailto:msm57@cornell.edu
mailto:sgh9@cornell.edu
mailto:ht88@cornell.edu

	Introduction
	Approximate dynamic programming
	ADP policies
	Tuning ADP policies

	Limitations of common ADP tuning approaches
	Limitations of regression-based approaches
	Limitations of LP-based approaches

	Ambulance redeployment
	Ambulance redeployment as an MDP
	State space
	Control space
	System dynamics
	Transition costs and objective function

	ADP policy for ambulance redeployment
	Erlang basis function
	Simulation-based ADP policy

	Simulation optimization tuning results
	Post-decision state formulation
	Truncated microsimulation policy
	Limiting behavior of the truncated microsimulation value function approximation
	Computational results

	Conclusion
	Microsimulation value function derivation
	Truncated microsimulation value function derivation
	Proof of Theorem 2
	Acknowledgments
	References
	Author's addresses

