
Electronic Journal of Statistics

Vol. 4 (2010) 1225–1257
ISSN: 1935-7524
DOI: 10.1214/10-EJS584

Adaptive Bayesian density estimation

with location-scale mixtures

Willem Kruijer and Judith Rousseau

CEREMADE
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We construct approximations of β-Hölder densities be continuous mix-
tures of exponential power distributions, leading to approximations of the
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1. Introduction

When the number of components in a mixture model can increase with the sam-
ple size, it can be used for nonparametric density estimation. Such models were
called mixture sieves by Grenander [15] and Geman and Hwang [7]. Although
originally introduced in a maximum likelihood context, there has been a large
number of Bayesian papers in recent years; among many others, see [25], [5],
and [6]. Whereas much progress has been made regarding the computational
problems in nonparametric Bayesian inference (see for example the review by
Marin et al. [22]), results on convergence rates were found only recently, espe-
cially for the case when the underlying distribution is not a mixture itself. Also
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the approximative properties of mixtures needed in the latter case are not well
understood.

In this paper we find conditions under which a probability density of any
Hölder-smoothness can be efficiently approximated by a location-scale mixture.
Using these results we then considerably generalize existing results on posterior
convergence of location-scale mixtures. In particular our results are adaptive to
any degree of smoothness, and allow for more general kernels and priors on the
mixing distribution. Moreover, the bandwidth prior can be any inverse-gamma
distribution, whose support neither has to be bounded away from zero, nor to
depend on the sample size.

We consider location-scale mixtures of the type

m(x; k, µ, w, σ) =
k∑

j=1

wjψσ(x− µj), (1)

where σ > 0, wj ≥ 0,
∑k
j=1 wj = 1, µj ∈ R and, for p ∈ N

∗,

ψσ(x) =
1

2σΓ
(
1 + 1

p

)e−(|x|/σ)p . (2)

Approximation theory (see for example [3]) tells us that for a compactly
supported kernel and a compactly supported β-Hölder function, being not nec-
essarily nonnegative, the approximation error will be of order k−β , provided
σ ∼ k−1 and the weights are carefully chosen. This remains the case if both
the kernel and the function to be approximated have exponential tails, as we
consider in this work. If the function is a probability density however, this raises
the question whether the approximation error k−β can also be achieved using
nonnegative weights only. To our knowledge, this question has been little studied
in the approximation theory literature.

Ghosal and Van der Vaart [13] approximate twice continuously differentiable
densities with mixtures of Gaussians, but it is unclear if their construction can be
extended to other kernels, or densities of different smoothness. In particular, for
functions with more than two derivatives, the use of negative weights seems at
first sight to be inevitable. A recent result by Rousseau [26] however does allow
for nonnegative approximation of smooth but compactly supported densities by
beta-mixtures. We will derive a similar result for location-scale mixtures of a
kernel ψ as in (2). In our result on continuous mixtures (Theorem 1), p may
be any positive integer, whereas for discrete mixtures (Lemma 4) we require it
to be even. Although the same differencing technique is used to construct the
desired approximations, there are various differences. First, we are dealing with
a noncompact support, which required investigation of the tail conditions under
which approximations can be established. Second, we are directly dealing with
location-scale mixtures, hence there is no need for a ‘location-scale mixture’
approximation as in [26].

The parameters k, σ, w and µ in (1) can be given a prior distribution Π;
when there are observations X1, . . . , Xn from an unknown density f0, Bayes’
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formula gives the posterior

Π(A | X1, . . . , Xn) =

∫
A

∏n
i=1m(Xi; k, µ, w, σ)dΠ(k, µ, w, σ)∫ ∏n
i=1m(Xi; k, µ, w, σ)dΠ(k, µ, w, σ)

.

The posterior (or its mean) can be used as a Bayesian density estimator of f0.
Provided this estimator is consistent, it is then of interest to see how fast it
converges to the Dirac-mass at f0. More precisely, let the convergence rate be a
sequence ǫn tending to zero such that nǫ2n → ∞ and

Π(d(f0, f) > Mǫn | X1 . . . , Xn) → 0 (3)

in Fn0 -probability, for some sufficiently large constantM , d being the Hellinger-
or L1-metric. The problem of finding general conditions for statistical models
under which (3) holds has been studied in among others [11], [13], [32], [17], [8]
and [29]. In all these papers, the complexity of the model needs to be controlled,
typically by verifying entropy conditions, and at the same time the prior mass on
Kullback-Leibler balls around f0 needs to be lower bounded. It is for the latter
condition that the need for good approximations arises. Our approximation

result allows to prove (3) with ǫn = n− β
2β+1 (logn)t for location-scale mixtures of

the kernel ψ, provided p is even and f0 is locally Hölder and has exponential tails.
The constant t in the rate depends on the choice of the prior. We only consider
priors independent of β, hence the posterior adapts to the unknown smoothness
of f0, which can be any β > 0. The adaptivity relies on the approximation
result that allows to approximate f0 with f1 ∗ ψ, for a density f1 that may be
different from f0. In previous work on density estimation with finite location-
scale mixtures (see e.g. [27], [8] and [13]) f0 is approximated with f0 ∗ ψ, which
only gives minimax-rates for β ≤ 2.

For regression-models based on location-scale mixtures, fully adaptive poste-
riors have recently been obtained by De Jonge and Van Zanten [2]; their work
was written at the same time and independently of the present work. For contin-
uous beta-mixtures (near)-optimal1 rates have been derived by Rousseau [26].
Another related work is [28], where also kernels of type (2) are studied; however
it is assumed that the true density is a mixture itself. In a clustering and variable
selection framework using multivariate Gaussian mixtures, Maugis and Michel
[23] give non-asymptotic bounds on the risk of a penalized maximum likelihood
estimator. Finally, for a general result on consistency of location scale mixtures,
see [31].

After an overview of the notation, the main results are presented in section 2.
In section 3 we construct the density hβ leading to the approximation result of
Theorem 1. In section 4 this result is used to prove Theorem 2. In section 5
we give examples of priors on the weights which satisfy condition (12) stated
below.

1In the sequel, a near optimal rate is understood to be the minimax rate with an additional
factor (logn)c.
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Notation Let Cp denote the normalizing constant
(
2Γ
(
1+ 1

p

))−1
. The inverse

ψ−1
σ (y) = σ

(
log

Cp

y

)1/p
is defined on (0, Cp]. When σ = 1 we also write ψ(x) =

ψ1(x) = Cp exp{−|x|p} and ψ−1(y) = ψ−1
1 (y). For any nonnegative α, let

να =

∫
xαψ(x)dx. (4)

For any function h, let Kσh denote the convolution h ∗ ψσ, and let ∆σh denote
the error (Kσh)− h.

The (k − 1)-dimensional unit-simplex and the k-dimensional bounded quad-
rant are denoted

∆k = {x ∈ R
k : xi ≥ 0,

k∑

i=1

xi = 1}, Sk = {x ∈ R
k : xi ≥ 0,

k∑

i=1

xi ≤ 1}

and Hk[b, d] = {x ∈ R
k | xi ∈ [bi, di]}, where b, d ∈ R

k. When no confusion can
result we write Hk[b, d] := Hk[(b, . . . , b), (d, . . . , d)] for real numbers b and d.

Given ǫ > 0 and fixed points x ∈ R
k and y ∈ ∆k, define the l1-balls

Bk(x, ǫ) =
{
z ∈ R

k;

k∑

i=1

| zi − xi |≤ ǫ
}
,

∆k(y, ǫ) =
{
z ∈ ∆k;

k∑

i=1

| zi − yi |≤ ǫ
}
.

Inequality up to a multiplicative constant is denoted with . and & (for .

we also use O). The number of integer points in an interval I ∈ R is denoted
N(I). Integrals of the form

∫
gdF0 are also denoted F0g.

2. Main results

We now state our conditions on f0 and the prior. Note that some of them will
not be used in some of our results. For instance in Theorem 1 below, (C3) is not
required. Further discussion on these conditions is given after the statements of
Theorems 1 and 2.
Conditions on f0. The observations X1, . . . , Xn are an i.i.d. sample from a
density f0 satisfying the following conditions.

(C1) Smoothness. log f0 is assumed to be locally β-Hölder, with derivatives

lj(x) = dj

dxj log f(x). We assume the existence of a polynomial L and a
constant γ > 0 such that, if r is the largest integer smaller than β,

|lr(x)− lr(y)| ≤ r!L(x)|x − y|β−r (5)

for all x, y with |y − x| ≤ γ.
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(C2) Tails. There exists ǫ > 0 such that the functions lj and L satisfy

F0|lj|
2β+ǫ

j <∞, j = 1, . . . , r, F0L
2+ ǫ

β <∞, (6)

and there exist constants α > 2, T > 0 and c > 0 such that when |x| > T ,

f0(x) ≤ cx−α. (7)

(C3) A stronger tail condition: f0 has exponential tails, i.e. there exist positive
constants T,Mf0 , τ1, τ2 such that

f0(x) ≤Mf0e
−τ1|x|

τ2
, |x| ≥ T. (8)

(C4) Monotonicity. f0 is strictly positive, and there exist xm < xM such that
f0 is nondecreasing on (−∞, xm) and nonincreasing on (xM ,∞). Without
loss of generality we assume that f0(xm) = f0(xM ) = c and that f0(x) ≥ c
for all xm < x < xM . The monotonicity in the tails implies that Kσf0 &

f0; see the remark on p. 149–150 in [9].

Assumption (C3) is only needed in the proofs of Lemma 4 and Theorem 2. Inter-
estingly it is not needed below in Theorem 1 for the construction of continuous
mixture approximation Kσhβ to f0. In Theorem 2 however Kσhβ needs to be
discretized, and the number of support points should be of order σ−1 (with an
additional | log σ| factor). This is only possible under (C3); see also Lemma 12
below.

We can now state the approximation result which will be the main ingredient
in the proof of Theorem 2, but which is also interesting on its own right. Note
that the index p in (2) may be any positive integer, so also the Laplace kernel
(p = 1) is allowed. The proof is given in section 3, after Lemma 2.

Theorem 1. Let f0 be a density satisfying conditions (C1), (C2) and (C4),
and let Kσ denote convolution over the kernel ψ defined in (2), for any p ∈ N.
Then there exists a density hβ such that for all small enough σ,

∫
f log

f

Kσhβ
= O(σ2β),

∫
f

(
log

f

Kσhβ

)2

= O(σ2β). (9)

The construction of the approximation hβ is detailed in section 3. As our
smoothness condition is only local, the class of densities satisfying (C1), (C2)
and (C4) is quite large. In particular, all (log)-spline densities are permitted,
provided they are sufficiently differentiable at the knots. Condition (6) rules out
super-exponential densities like exp{− exp{x2}}. In fact the smallest possible
L̃(x) such that (5) holds, does not have to be of polynomial form, but in that case
it should be bounded by some polynomial L for which (6) holds. Note that when

β = 2, L is an upper bound for d2

dx2 log f0(x) = f
′′

0 (x)/f0(x)−(f ′(x)/f(x))2, and
apart from the additional ǫ in (6), this assumption is equivalent to the assump-
tion in [13] that F0(f

′′

0 /f0)
2 and F0(f

′

0/f0)
4 be finite. The polynomial function

L can be of any degree when the true density has exponential tails, which is the
case when the bound (8) holds; when only (7) is assumed, condition (6) implies
a bound on the degree of L.
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We now describe the family of priors we consider to construct our estimate.
Prior (Π) The prior on σ is the inverse Gamma distribution with scale

parameter λ > 0 and shape parameter α > 0, i.e. σ has prior density
λα

Γ(α)x
−(α+1)e−λ/x and σ−1 has the Gamma-density λα

Γ(α)x
α−1e−λx.

The other parameters have a hierarchical prior, where the number of compo-
nents k is drawn, and given k the locations µ and weights w are independent.
The priors on k, µ and w satisfy the conditions (10)–(12) below.

The prior on k is such that for all integers k > 0

B0e
−b0k(log k)

r0 ≤ Π(k) ≤ B1e
−b1k(log k)

r0
, (10)

for some constants 0 < B0 ≤ B1, 0 < b1 ≤ b0 and r0 ≥ 0. The logarithmic factor
in the convergence rate in Theorem 2 is affected by r0 when r0 > 1. However
the choice of r0 = 0 (geometric distribution) or r0 = 1 (Poisson distribution)
lead to the same posterior convergence rate.

Given k, the locations µ1, . . . , µk are drawn independently from a prior den-
sity pµ on R satisfying

pµ(x) ∝ e−a1|x|
a2

for constants a1, a2 > 0. (11)

Alternatively, we could assume an exponential lower bound e−a1|x|
a2

and, for
some a4 < a2, an upper bound proportional to e−a3|x|

a4
; since this would not

add much we assume that pµ is of the form (11). The main point here is that
pµ may not have polynomial tails, which would increase to much the entropy of
the model, or super-exponential tails, which would diminish the approximative
properties of the model.

Given k, the prior distribution of the weight vector w = (w1, . . . , wk) is
independent of µ, and there is a constant d1 such that for ǫ < 1

k , and w0 ∈ ∆k,

Π(w ∈ ∆k(w0, ǫ) | K = k) & exp
{
−d1k(log k)b log

1

ǫ

}
, (12)

for some nonnegative constant b, which affects the logarithmic factor in the
convergence rate.

Theorem 2. Let the bandwidth σ be given an inverse-gamma prior, and assume
that the prior on the weights and locations satisfies conditions (10)–(12). Given
a positive even integer p, let ψ be the kernel defined in (2), and consider the
family of location-scale mixtures defined in (1), equipped with the prior described
above. If f0 satisfies conditions (C1)–(C4), then Π(· | X1, . . . , Xn) converges
to f0 in Fn0 -probability, with respect to the Hellinger or L1-metric, with rate
ǫn = n−β/(1+2β)(log n)t, where r0 and b are as in (10) and (12), and t >
(2 + β−1)−1( pτ2 +max{r0, a2τ2 , 1 + b}) + max(0, (1− r0)/2).

The proof is based on Theorem 5 of Ghosal and van der Vaart [13], which is
included here as Theorem 3 in appendix A.

Condition (10) is usual in finite mixture models, see for instance [10], [20]
and [26] for beta-mixtures. It controls both the approximating properties of the
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support of the prior and its entropy. For a Poisson prior, we have r0 = 1 and
for a geometric prior r0 = 0. Note that contrary to the conjugate prior on the
variance parameter of a Gaussian model, the inverse -Gamma prior is on σ and
not on σ2. However, this can be related to the Gamma prior on

√
α considered

by Rousseau [26], where
√
α is a scale parameter of the kernel having the same

interpretation as σ−1 in our framework. Conditions (11) and (12) translate the
general prior mass condition (38) in Theorem 3 to conditions on the priors for µ
and w. The prior is to put enough mass near µ0 and w0, which are the locations
and weights of a mixture approximating f0. Since µ0 and w0 are unknown, the
conditions in fact require that there is a minimal amount of prior mass around
all their possible values. The restriction to kernels with even p in Theorem 2
is assumed to discretize the approximation hk obtained from Theorem 1. This
discretization relies on Lemmas 4 and 12. Results on minimax-rates for Laplace-
mixtures (p = 1) (see [18]) suggest that this assumption is in fact necessary. Note
that also [2] and [28] require analytic kernels.

3. Approximation of smooth densities

In many statistical problems it is of interest to bound the Kullback-Leibler
divergence DKL(f0,m) =

∫
f0 log

f0
m between f0 and densities contained in the

model under consideration, in our case finite location-scale mixtures m. When
β ≤ 2, the usual approach to find an m such that DKL(f0,m) = O(σ2β), is
to discretize the continuous mixture Kσf0, and show that ‖Kσf0 −m‖∞ and
‖f0 −Kσf0‖∞ are both O(σβ). Under additional assumptions on f0, this then
gives a KL-divergence of O(σ2β). But as ‖f0−Kσf0‖∞ remains of order σ2 when
β > 2, this approach appears to be inefficient for smooth f0. In this section
we propose an alternative mixing distribution f̃0 such that DKL(f0,Kσf̃0) =
O(σ2β). To do so, we first construct a not necessarily positive function fβ such
that under a global Hölder condition, ‖f0 −Kσfβ‖∞ = O(σβ). However, as we
only assume the local Hölder condition (C1), the approximation error of O(σβ)
will in fact include the local Hölder constant, which is made explicit in Lemma 1.
Modifying fk we obtain a density which still has the desired approximative
properties (Lemma 2). Using this result we then prove Theorem 1. Finally we
prove that the continuous mixture can be approximated by a discrete mixture
(Lemmas 3 and 4).

To illustrate the problem that arises when approximating a smooth density
f0 with its convolution Kσf0, let us consider a three times continuously dif-
ferentiable density f such that ‖f ′′

0 ‖∞ = L.2 Then ‖f0 − Kσf0‖∞ ≤ 1
2ν2Lσ

2,
where ν2 is defined as in (4). Although the regularity of f0 is larger than two,
the approximation error remains order σ2. The following calculation illustrates
how this can be improved if we take f1 = f0−∆σf0 = 2f0−Kσf0 as the mixing

2We emphasize that this global condition is only considered here as a motivation for the
construction of fβ ; in the rest of the paper smoothness condition (C1) is assumed
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density instead of f0. The approximation error is

|(Kσf1)(x) − f0(x)| =
∣∣∣∣
∫
ψσ(x− µ) {(f0 −∆σf0)(µ) − f0(x)} dµ

∣∣∣∣

=

∣∣∣∣
∫
ψσ(x− µ)

{
(f(µ)− f0(x)) −

∫
ψσ(ǫ− µ)(f0(ǫ)− f0(µ))dǫ

}
dµ

∣∣∣∣

=

∣∣∣∣
σ2ν2
2

f
′′

0 (x) +O(σ3)− σ2

2

∫
ψσ(x − µ)f

′′

0 (µ)dµ −O(σ3)

∣∣∣∣ = O(σ3).

Likewise, the error is O(σβ) when f is of Hölder regularity β ∈ (2, 4]. When
β > 4, this procedure can be repeated, yielding a sequence

fj+1 = f0 −∆σfj, j ≥ 0. (13)

Once the approximation error O(σβ) is achieved with a certain fjβ , the approx-
imation clearly doesn’t improve any more for fj with j > jβ . In the context of a
fixed β > 0 and a density f0 of Hölder regularity β, fβ = fjβ will be understood

as the first function in the sequence {fi}i∈N for which an error of order σβ is
achieved, i.e. jβ is such that β ∈ (2jβ , 2jβ+2]. The construction of the sequence
{fi}i∈N is related to the use of superkernels in kernel density estimation (see e.g.
[30] and [4]), or to the twicing kernels used in econometrics (see [24]). However,
instead of finding a kernel ψjβ such that ‖f0−ψjβ ∗f0‖∞ = O(σβ), we construct

a function fjβ for which ‖f0 − ψ ∗ fjβ‖∞ = O(σβ).
In Lemma 11 in appendix B we show that for any β > 0, ‖f0 −Kσfβ‖∞ =

O(σβ) when f0 is (globally) β-Hölder. In Theorems 1 and 2 however we have
instead the local Hölder condition (C1) on log f0, along with the tail and mono-
tonicity conditions (C2) and (C4). With only a local Hölder condition, the ap-
proximation error will depend in some way on the local Hölder constant L(x)
as well as the derivatives lj(x) of log f0. This is made explicit in the following
approximation result, whose proof can be found in Appendix C. A similar result
for beta-mixtures is contained in Theorem 3.1 in [26].

Lemma 1. Given β > 0, let f0 be a density satisfying condition (C1), for any
possible function L, not necessarily polynomial. Let the integer jβ be such that
β ∈ (2jβ, 2jβ+2], and let fβ = fjβ be defined as in (13). Then for all sufficiently
small σ and for all x contained in the set

Aσ = {x : |lj(x)| ≤ Bσ−j | log σ|− j
p , j = 1, . . . , r, |L(x)| ≤ Bσ−β | log σ|− β

p }
(14)

we have

(Kσfβ)(x) = f0(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
, (15)

where H > 0 can be chosen arbitrarily large and

R(x) = rr+1|L(x)|+
r∑

i=1

ri|li(x)|β/i, (16)

for nonnegative constants ri.
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Compared to the uniform result that can be obtained under a global Hölder
condition (Lemma 11 in appendix B) the approximation error (Kσfβ)(x)−f0(x)
depends on R(x). The good news however, is that on a set on which the lj’s are
sufficiently controlled, it is also relative to f0(x), apart from a term σH where
H can be arbitrarily large. Note that no assumptions were made regarding L,
but obviously the result is only of interest when L is known to be bounded in
some way. In the remainder we require L to be polynomial.

Since Kσfj is a density when fj is a density, we have that fj integrates to
one for any nonnegative integer j. For j > 0 the fj’s are however not necessarily
nonnegative. To obtain a probability density, we define

Jσ,j = {x : fj(x) >
1

2
f0(x)}, (17)

gj(x) = fj(x)1Jσ,j +
1

2
f0(x)1Jc

σ,j
, (18)

hj(x) = gj(x)/

∫
gj(x)dx. (19)

The constant 1
2 in (17) and (18) is arbitrary and could be replaced by any other

number between zero and one. In the following lemma, whose proof can be found
in Appendix D, we show that the normalizing constant

∫
gβ is 1 + O(σβ). For

this purpose, we first control integrals over the sets Aσ defined in (14) and

Eσ = {x : f0(x) ≥ σH1}, (20)

for a sufficiently large constant H1.

Lemma 2. Let f0 be a density satisfying conditions (C1), (C2) and (C4). Then
for all small enough σ and all nonnegative integers m and all K > 0,

∫

Ac
σ

(Km
σ f0)(x)dx = O(σ2β),

∫

Ec
σ

(Km
σ f0)(x)dx = O(σK), (21)

provided that H1 in (20) is sufficiently large. Furthermore, Aσ ∩ Eσ ⊂ Jσ,k for
small enough σ. Consequently,

∫
gβ(x)dx = 1 +

∫

Jc
σ,k

(
1

2
f0 − fβ

)
dx = 1 +O(σ2β). (22)

Finally, when β > 2, and fβ is defined as in Lemma 1 and hβ = hjβ as in (19),

Kσhβ(x) = f0(x)
(
1 +O(R(x)σβ)

)
+O

(
(1 +R(x))σH

)
(23)

for all x ∈ Aσ ∩ Eσ, i.e. in (15) we can replace fβ by hβ, provided we assume
that x is also contained in Eσ.

Remark 1. From (18), (19) and (22) it follows that hβ ≥ f0/(2(1 + O(σβ))).
The fact that Kσf0 is lower bounded by a multiple of f0 then implies that the
same is true for Kσhβ.
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Remark 2. The integrals over Acσ in (21) can be shown to be O(σ2β) only using
conditions (C1) and (C2), whereas for the integrals over Ecσ also condition (C4)
is required.

Using this result we can now prove Theorem 1:

Proof. Since

∫

S

p log
p

q
≤
∫

S

p
p− q

q
=

∫

S

(p− q)2

q
+

∫

S

(p− q) =

∫

S

(p− q)2

q
+

∫

Sc

(q − p)

for any densities p and q and any set S, we have the bound

∫
f0(x) log

f0(x)

Kσhβ(x)
dx ≤

∫

Aσ∩Eσ

(f0(x) −Kσhβ(x))
2

Kσhβ(x)
dx

+

∫

Ac
σ∪E

c
σ

f(x) log
f0(x)

Kσhβ(x)
dx+

∫

Ac
σ∪E

c
σ

(Kσhβ(x)− f0(x))dx.

(24)

The first integral on the right can be bounded by application of (23) and
Remark 1 following Lemma 2. On Aσ ∩Eσ the integrand is bounded by f0(x)×
O(σβR(x))− 2O(σβ+HR(x)) +O((1 +R(x))2)σ2H/f0(x). Let H1 be such that
the second integral in (21) is O(σ2β) (i.e. K = 2β), and choose H ≥ H1 + β.
It follows from the definition of R(x) and (6) that the integral over Aσ ∩ Eσ
is O(σ2β) for each of these terms. For example,

∫
(1 + R(x))2σ2H/f0(x)dx =∫

f0(x)(1 + R(x))2σ2H/f2
0 (x)dx . σ2(H−H1), as f0(x) ≥ σH1 on Eσ and the

Lebesgue measure of this interval is at most σ−H1 . To bound the second inte-
gral in (24) we use once more that Kσhβ & f0, and then apply (21) with m = 0.
For the last integral we use (21) with m = 0, . . . , jβ+1; recall that hβ is a linear
combination of Km

σ f0, m = 0, . . . , jβ .
The second integral in (9) is bounded by

∫

Ac
σ∪E

c
σ

f0(x)

(
log

f0(x)

Kσhβ(x)

)2

dx+

∫

Aσ∩Eσ

(f0(x) −Kσhk(x))
2

Kσhk(x)
dx,

which is O(σ2β) by the same arguments.

The continuous mixture approximation of Theorem 1 is discretized in Lemma 4
below. Apart from the finite mixture derived from hβ we also need to construct
a set of finite mixtures close to it, such that this entire set is contained in a
KL-ball around f0. For this purpose the following lemma is useful. A similar
result can be found in Lemma 5 of [13]. The inequality for the L1-norm will be
used in the entropy calculation in the proof of Theorem 2.

Lemma 3. Let w, w̃ ∈ ∆k, µ, µ̃ ∈ R
k and σ, σ̃ ∈ R

+. Let ψ be a differ-
entiable symmetric density such that xψ′(x) is bounded. Then for mixtures
m(x) = m(x; k, µ, w, σ) and m̃(x) = m(x; k, µ̃, w̃, σ̃) we have
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‖m− m̃‖1 ≤ ‖w − w̃‖1 + 2‖ψ‖∞
k∑

i=1

wi ∧ w̃i
σ ∧ σ̃ | µi − µ̃i | +

| σ − σ̃ |
σ ∧ σ̃ ,

‖m− m̃‖∞ .

k∑

i=1

| wi − w̃i |
σ ∧ σ̃ +

k∑

i=1

wi ∧ w̃i
(σ ∧ σ̃)2 | µi − µ̃i | +

| σ − σ̃ |
(σ ∧ σ̃)2 .

Proof. Let 1 ≤ i ≤ k and assume that w̃i ≤ wi. By the triangle inequality,

‖wiψσ(· − µi)− w̃iψσ̃(· − µ̃i)‖ ≤ ‖wiψσ(· − µi)− w̃iψσ(· − µi)‖
+ ‖w̃iψσ(· − µi)− w̃iψσ(· − µ̃i)‖+ ‖w̃iψσ(· − µ̃i)− w̃iψσ̃(· − µ̃i)‖

for any norm. We have the following inequalities:

‖ψσ(z−µi)−ψσ(z− µ̃i)‖1 = 2

∣∣∣∣Ψ
(
µi − µ̃i
2σ

)
−Ψ

(
µ̃i − µi
2σ

)∣∣∣∣

≤ 2‖ψ‖∞
| µ̃i − µi |

σ
≤ 2‖ψ‖∞

σ ∧ σ̃ | µ̃i − µi |,

‖ψσ −ψσ̃‖1 ≤ 1

σ ∧ σ̃

∫
| ψ(x

σ
)−ψ(

x

σ̃
) | dx ≤ 1

σ ∧ σ̃ | σ− σ̃ |,

‖ψσ − ψσ̃‖∞ ≤ 1

(σ ∧ σ̃)2 ‖
d

dz
gx‖∞ | σ − σ̃ |, (25)

‖ψσ(z−µi)−ψσ(z− µ̃i)‖∞ .
1

(σ ∧ σ̃)2 | µ̃i − µi | .

To prove (25), let σ = z−1 and σ̃ = z̃−1, and for fixed x define the function
gx : z → zψ(zx). By assumption, d

dzgx(z) = ψ(zx) + zxψ′(zx) is bounded, and

‖ψσ − ψσ̃‖∞ = sup
x

| gx(z)− gx(z̃) |≤| z − z̃ | ‖ d
dz
gx‖∞

≤ 1

(σ ∧ σ̃)2 ‖
d

dz
gx‖∞ | σ − σ̃ | .

Applying the mean value theorem to ψ itself, the last inequality is obtained.

The approximation hβ defined by (19) can be discretized such that the result
of Lemma 1 still holds. The discretization relies on Lemma 12 in Appendix F,
which is similar to Lemma 2 in [13]. As in [2] and [28], we require the kernel ψ
to be analytic. i.e. p needs to be even.

Lemma 4. Let the constant H1 in the definition of Eσ be at least 4(β+p). Given
β > 0, let f0 be a density that satisfies conditions (C1)–(C4) and for p = 2, 4, . . .
let ψ be as in (2). Then there exists a finite mixture m = m(·; kσ, µσ, wσ, σ) with
kσ = O(σ−1| log σ|p/τ2) support points contained in {x : f0(x) ≥ cσH1+2β}, for
some sufficiently small c > 0, such that

∫
f0 log

f0
m

= O(σ2β),

∫
f0

(
log

f0
m

)2

= O(σ2β). (26)
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Furthermore, (26) holds for all mixtures m′ = m(·; kσ , µ, w, σ′) such that σ′ ∈
[σ, σ + σδ

′H1+2], µ ∈ Bkσ (µσ, σ
δ′H1+2) and w ∈ ∆kσ (wσ , σ

δ′H1+1), where δ′ ≥
1 + β/H1.

The proof can be found in Appendix E. A discretization assuming only (C1),
(C2) and (C4) could be derived similarly, but to have sufficient control of the
number of components in Theorem 2, we make the stronger assumption (C3) of
exponential tails. Note that although the smallest interval containing all support
points will generally be larger that Eσ, conditions (C3) and (C4) imply that both
sets have Lebesgue measure of order | log σ|1/τ2 .

4. Proof of Theorem 2

We first state a lemma needed for the entropy calculations.

Lemma 5. For positive vectors b = (b1, . . . , bk) and d = (d1, . . . , dk), with
bi < di for all i, the packing numbers of ∆k and Hk[b, d] satisfy

D(ǫ,∆k, l1) ≤
(
5

ǫ

)k−1

, (27)

D(ǫ,Hk[b, d], l1) ≤ k!
∏k
i=1(di − bi + 2ǫ)

(2ǫ)k
. (28)

Proof. A proof of (27) can be found in [11]; the other result follows from a
volume argument. For λk the k-dimensional Lebesgue measure, λk(Sk) = 1

k!

and λk(Bk(y,
ǫ
2 , l1)) =

ǫk

k! , where Bk(y,
ǫ
2 , l1) is the l1-ball in R

k centered at y,
with radius ǫ

2 . Suppose x1, . . . , xN is a maximal ǫ-separated set in Hk[b, d]. If
the center y of an l1-ball of radius

ǫ
2 is contained in Hk[b, d] then for any point

z in this ball, | zi − yi |≤ ǫ
2 for all i. Because for each coordinate we have the

bounds | zi |≤| yi | + | zi − yi |≤ di +
ǫ
2 and | zi |≥ bi − ǫ

2 , z is an element of
Hk[b− ǫ

2 , d+
ǫ
2 ]. The union of the balls Bk(x1,

ǫ
2 , l1), . . . , Bk(xN ,

ǫ
2 , l1) is therefore

contained in Hk[b − ǫ
2 , d+

ǫ
2 ].

Proof of Theorem 2. The proof is an application of Theorem 3 in appendix A,
with sequences ǫ̃n = n−β/(1+2β)(logn)t1 and ǭn = n−β/(1+2β)(logn)t2 , where
t1 and t2 ≥ t1 are determined below. Let kn be the number of components in

Lemma 4 when σ = σn = ǫ̃
1/β
n . This lemma then provides a kn-dimensional

mixture m = m(·; kn, µ(n), w(n), σn) whose KL-divergence from f0 is O(σn
2β) =

O(ǫ̃2n). The number of components satisfies

kn = O(σn
−1| log σn|1+p

−1

) = O
(
n1/(1+2β)(log n)

p
τ2

−
t1
β

)
. (29)

By the same lemma there are l1-balls Bn = Bkn(µ
(n), σn

δ′H1+2) and ∆(n) =
∆kn(w

(n), σn
δ′H1+1) such that the same is true for all kn-dimensional mixtures
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m = m(·; kn, µ, w, σ) with σ ∈ [σn, σn + σn
δ′H1+2] and (µ,w) ∈ Bn ×∆(n). It

now suffices to lower bound the prior probability on having kn components and
on Bn, ∆(n) and [σn, σn + σn

δ′H1+2].
Let b = δ′H1 + 2; as σ−1 is gamma distributed, it follows from the mean

value theorem that

Π(σ ∈ [σn, σn + σn
b]) =

∫ σn+σn
b

σn

λα

Γ(α)
x−(α+1)e−λ/xdx

≥
∫ σn+σn

b

σn

λα

Γ(α)
e−2λ/xdx ≥ 4

λα+1

Γ(α)
σn

b−2e−λσn
−1

,

(30)

which is larger than exp{−nǫ̃2n} for any choice of t1 ≥ 0. Condition (10) gives a
lower bound ofB0 exp{−b0kn logr0 kn} on Π(kn), which is larger than exp{−nǫ̃2n}
when (2 + β−1)t1 > r0 + p/τ2. Given that there are kn components, condition
(12) gives a lower bound on Π(∆(n)), which is larger than exp{−nǫ̃2n} when
(2+β−1)t1 > 1+b+p/τ2. The required lower-bound for Π(Bn) follows from (8)

and the fact that µ
(n)
1 , . . . , µ

(n)
kn

are independent with prior density pµ satisfying

(11). The ‘target’ mixture given by Lemma 4 has location vector µ(n), whose
elements are contained in {x : f0(x) ≥ cσn

H1+2β}. The monotonicity assump-
tion (C4) implies that this set is an interval, say Iµ, and by the exponential tails
of f0 (C3) we have |x| = O(| log σn|1/τ2) for all x ∈ Iµ. From assumption (11) it
now follows that at the boundaries of Iµ, pµ is lower bounded by a multiple of
exp{−a1| log σn|a2/τ2}. Consequently, for all i = 1, . . . , kn,

Π

(
| µi − µ

(n)
i |≤ σn

δ′H1+2

kn

)
&
σn

δ′H1+2e−a1| log σn|
a2/τ2

kn
.

As the l1-ball Bkn(µ
(n), σn

δ′H1+2) contains the l∞-ball {µ ∈ R
kn : | µi−µ

(n)
i |≤

σn
δ′H1+2

kn
, 1 ≤ i ≤ kn}, we conclude that

Π (µ ∈ Bn) & exp{−dkn(logn)max{1,a2/τ2}}

for some constant d > 0. Combining the above results it follows that Π(KL(f0,
ǫ̃n)) ≥ exp{−nǫ̃2n} when t1 > (2 + β−1)−1( pτ2 +max{r0, a2τ2 , 1 + b}).

We then have to find sets Fn such that (37) and (39) hold. For rn =

n
1

1+2β (logn)tr (rounded to the nearest integer) and a polynomially increasing
sequence bn such that ba2n > n1/(1+2β), with a2 as in (11), we define

Fn =
{
m(·; k, µ, w, σ) : k ≤ rn, µ ∈ Hk[−bn, bn], σ ∈ Sn

}
.

The bandwidth σ is contained in Sn = (σn, σ̄n], where σn = n−A and σ̄n =
exp{nǫ̃2n(logn)δ}, for arbitrary constants A > 1 and δ > 0. An upper bound on
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Π(Scn) can be found by direct calculation, for example

∫ ∞

σ̄n

λα

Γ(α)
x−(α+1)e−

λ
x dx =

∫ σ̄−1
n

0

λα

Γ(α)
xα−1e−λxdx

≤
∫ σ̄−1

n

0

λα

Γ(α)
xα−1dx = O(exp{−αnǫ̃2n(logn)δ}).

Hence Π(Scn) ≤ e−cnǫ̃
2
n for any constant c, for large enough n. The prior mass

on mixtures with more than rn support points is bounded by a multiple of
exp{−b1kn logrn kn}. The prior mass on mixtures with at least one support
point outside [−bn, bn] is controlled as follows. By conditions (10) and (11), the
probability that a certain µi is outside [−bn, bn], is

Π(| µi |> bn) =

∫

[−bn,bn]c
pµ(x)dx . bmax{0,1−a2}

n e−a1b
a2
n . (31)

Since the prior on k satisfies (10), k clearly has finite expectation. Consequently,
(31) implies that

Π(N([−bn, bn]c) > 0) =

∞∑

k=1

Π(K = k) Π( max
i=1,...,k

| µi |> bn | K = k)

≤
∞∑

k=1

Π(k)k Π(| µi |> bn) . e−a1b
a2
n .

(32)

Combining these bounds, we find

Π(Fc
n) ≤ Π(Scn) +

∞∑

k=rn

ρ(k) + Π(N([−bn, bn]c > 0)) . e−b1rn(logn)
r0
.

The right hand side decreases faster than e−nǫ̃
2
n if tr + r0 > 2t1.

To control the sum in (37), we partition Fn using

Fn,j =
{
m(·; k, µ, w, σ) : k ≤ rn, µ ∈ Hk[−bn, bn], σ ∈ Sn,j

}
,

Sn,j = (sn,j−1, sn,j ] = (σn(1 + ǫ̃n)
j−1, σn(1 + ǫ̃n)

j ], j = 1, . . . , Jn,

Jn =

(
log

σ̄n
σn

)
/ log(1 + ǫn) = O

(
nǫ̃n(logn)

δ
)
.

An upper bound on the prior probability on the Fn,j is again found by direct
calculation:

Π(Fn,j) ≤ Π(Sn,j) = Π(σ−1 ∈ [σ−1
n (1 + ǫ̃n)

−j , σ−1
n (1 + ǫ̃n)

1−j))

=

∫ σ−1
n (1+ǫ̃n)

1−j

σ−1
n (1+ǫ̃n)−j

yα−1e−λydy

≤ λ−1 max{(σ−1
n (1 + ǫ̃n)

−j)α−1, (σ−1
n (1 + ǫ̃n)

1−j)α−1}
× exp{−λσ−1

n (1 + ǫ̃n)
−j}

. σ1−α
n (1 + ǫ̃n)

−(α−1)j exp{−λσ−1
n (1 + ǫ̃n)

−j}.

(33)
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As the L1-distance is bounded by the Hellinger-distance, condition (37) only
needs to be verified for the L1-distance. We further decompose the Fn,j ’s and
write

Fn,j = ∪rnk=1Fn,j,k = ∪rnk=1

{
m(·; k, µ, w, σ) : µ ∈ Hk[−bn, bn], σ ∈ Sn,j

}
.

It will be convenient to replace the covering numbers N in (37) by their
corresponding packing numbers D, which are at least as big. Since for any pair
of metric spaces (A, d1) and (B, d2) we haveD(ǫ, A×B, d1+d2) ≤ D( ǫ2 , A, d1)×
D( ǫ2 , B, d2), Lemma 3 implies that for all k ≥ 1, D(ǭn,Fn,j,k, ‖ · ‖1) is bounded
by

D
( ǭn
3
,∆k, l1

)
D
( ǭnsn,j−1

6‖ψ‖∞
, Hk[−bn, bn], l1

)
D
( ǭnsn,j−1

3
, (sn,j−1, sn,j ], l1

)
.

Lemma 5 provides the following bounds:

D
( ǭn
3
,∆k, l1

)
≤

(
15

ǭn

)k−1

,

D
( ǭnsn,j−1

6‖ψ‖∞
, Hk[−bn, bn], l1

)
≤ k!

( ǭnsn,j−1

3‖ψ‖∞

)−k k∏

i=1

(
2bn +

ǭnsn,j−1

3‖ψ‖∞

)
,

D
( ǭnsn,j−1

3
, (sn,j−1, sn,j], l1

)
≤

(
sn,j−1ǭn/3

)(
(sn,j − sn,j−1) + ǭnsn,j−1/3

)
.

For some constant C, we find that

D(ǭn,Fn,j , ‖ · ‖1) ≤ rnD(ǭn,Fn,j,rn , ‖ · ‖1)
. rnC

rnrn!(ǭn)
−2rnsn,js

−rn+1
n,j−1 (max(bn, ǭnsn,j−1))

rn .
(34)

If bn ≥ ǭnsn,j−1, we have (1+ ǫ̃n)
−j ≥ ǭnσn

bn(1+ǫ̃n)
, and the last exponent in (33) is

bounded by −λb−1
n ǭn/(1+ ǫ̃n). A combination of (33), (34) and Stirling’s bound

on rn! then imply that
√
Π(Fn,j)

√
N(ǭn,Fn,j, d) is bounded by a multiple of

σ(1−α)/2
n (1 + ǫ̃n)

−(α−1)j/2√rnCrn/2rrn/2+1/2
n (ǭn)

−rn√sn,j

s
−rn/2+1/2
n,j−1 brn/2n exp{−λ

2
σ−1
n (1 + ǫ̃n)

−j}

. n
A
2 rn+

α−3
2 A(1 + ǫ̃n)

− 1
2 (j−1)(rn+α−2)+ 1−α

2 (rn + 1)rn+1

C
rn
2 ǭ−rnn b

rn
2
n exp{−λb−1

n

ǭn
1 + ǫ̃n

}

. K0 exp{K1rn(log n)},

for certain constants C, K0 and K1. If bn < ǭnsn,j−1 we obtain similar bound

but with an additional factor ǭ
−rn/2
n n−Arn/2(1 + ǫ̃n)

(j−1)rn/2, where the fac-
tor (1 + ǫ̃n)

(j−1)rn/2 cancels out with (1 + ǫ̃n)
−(j−1)rn/2 on the third line of

the above display. There is however a remaining factor (1 + ǫ̃n)
1
2 (j−1)(2−α).
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Since Jn is defined such that n−A(1 + ǫ̃n)
Jn = exp{nǫ̃2n(logn)δ}, the sum of√

Π(Fn,j)
√
N(ǭn,Fn,j, d) over j = 1, . . . , Jn is a multiple of exp{K1rn(logn)+

nǫ̃2n(log n)
δ}, which increases at a slower rate than exp{nǭ2n} if 2t2 > max(tr +

1, 2t1 + δ). Combined with the requirement that tr + r0 > 2t1 this gives t2 >
t1 + 1−r0

2 . Hence the convergence rate is ǫn = n−β/(1+2β)(logn)t, with t >
(2 + β−1)−1( pτ2 +max{r0, a2τ2 , 1 + b}) + max(0, (1− r0)/2).

5. Examples of priors on the weights

Condition (12) on the weights-prior is known to hold for the Dirichlet distri-
bution. We now address the question whether it also holds for other priors.
Alternatives to Dirichlet-priors are increasingly popular, see for example [16].
In this section two classes of priors on the simplex are considered. In both cases
the Dirichlet distribution appears as a special case. The proof of Theorem 2
requires lower bounds for the prior mass on l1-balls around some fixed point in
the simplex. These bounds are given in Lemmas 6 and 8 below.

Since a normalized vector of independent gamma distributed random vari-
ables is Dirichlet distributed, a straightforward generalization is to consider
random variables with an alternative distribution on R

+. Given independent
random variables Y1, . . . , Yk with densities pi on [0,∞), define a vector X with
elements Xi = Yi/(Y1 + · · ·+ Yk), i = 1, . . . , k. For (x1, . . . , xk−1) ∈ Sk−1,

P (X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=

∫ ∞

0

P (Y1 ≤ x1y, . . . Yk−1 ≤ xk−1y) dP
Y1+···+Yk(y)

=

∫ ∞

0

∫ x1y

0

∫ x2y

0

· · ·
∫ xk−1y

0

pk(y −
k−1∑

i=1

si)

k−1∏

i=1

pi(si)ds1 · · · dsk−1dy. (35)

The corresponding density is

pX1,...,Xk−1(x1, . . . , xk−1) =

∫ ∞

0

yk−1pk(y −
k−1∑

i=1

xiy)

k−1∏

i=1

pi(xiy)dy

=

∫ ∞

0

yk−1
k∏

i=1

pi(xiy)dy,

(36)

where xk = 1−∑k−1
i=1 xi. We obtain a result similar to lemma 8 in [13].

Lemma 6. Let X1, . . . , Xk have a joint distribution with a density of the form
(36). Assume there are positive constants c1(k), c2(k) and c3 such that for i =
1, . . . , k, pi(z) ≥ c1(k)z

c3 if z ∈ [0, c2(k)]. Then there are constants c and C

such that for all y ∈ ∆k and all ǫ ≤ ( 1k ∧ c1(k)c2(k)c3+1)

P
(
X ∈ ∆k(y, 2ǫ)

)
≥ Ce−ck log( 1

ǫ ).
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Proof. As in [13] it is assumed that yk ≥ k−1. Define δi = max(0, yi − ǫ2) and

δ̄i = min(1, yi + ǫ2). If xi ∈ (δi, δ̄i) for i = 1, . . . , k − 1, then
∑k
i=1 | xi − yi |

≤ 2
∑k−1
i=1 | xi − yi |≤ 2(k − 1)ǫ2 ≤ ǫ. Note that (x1, . . . , xk−1) ∈ Sk, as∑k−1

j=1 xj ≤ k−1
k + (k − 1)ǫ2 < 1. Since all xi in (36) are at most one,

p(x1, . . . , xk−1) ≥
∫ c2(k)

0

yk−1
k∏

i=1

(
c1(k)(xiy)

c3
)
dy

=

(
c2(k)

c3+1
c1(k)

)k

(c3 + 1)k
(x1 · · · · · xk)c3 .

Because

xk =

∣∣∣∣∣∣
1−

k−1∑

j=1

xj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
yk +

k−1∑

j=1

(yj − xj)

∣∣∣∣∣∣
≥ k−1 − (k − 1)ǫ2 ≥ ǫ2 ≥ 1

k2
,

P
(
X ∈ Bk(y, ǫ)

)

≥ 1

k2c3

(
c2(k)

c3+1
c1(k)

)k

(c3 + 1)k

k−1∏

j=1

∫ δ̄j

δj

xc3j dxj ≥
(
c2(k)

c3+1
c1(k)

)k

(c3 + 1)2k
ǫ2k(c3+1)−2

≥ exp

{
k log(c2(k)

c3+1c1(k))− log(c3 + 1)− log(k)− 2k log(

√
2

ǫ
)

}
.

As ǫ ≤ ( 1k ∧ c1(k)c2(k)
c3+1

), there are constants c and C for which this quantity

is lower-bounded by Ce−ck log(
1
ǫ ).

Alternatively, the Dirichlet distribution can be seen as a Polya tree. Following
Lavine [21] we use the notation E = {0, 1}, E0 = ∅ and for m ≥ 1, Em =
{0, 1}m. In addition, let Em∗ = ∪mi=0{0, 1}i. It is assumed that k = 2m for some
integerm, and the coordinates are indexed with binary vectors ǫ ∈ Em. A vector
X has a Polya tree distribution if

Xǫ =
m∏

j=1,ǫj=0

Uǫ1···ǫj−1

m∏

j=1,ǫj=1

(
1− Uǫ1···ǫj−1

)
,

where
(
Uδ, δ ∈ Em−1

∗

)
is a family of beta random variables with parameters(

(αδ1 , αδ2), δ ∈ Em−1
∗

)
. We only consider symmetric beta densities, for which

αδ = αδ1 = αδ2 . Adding pairs of coordinates, lower dimensional vectors Xδ can
be defined for δ ∈ Em−1

∗ . For δ ∈ Em−1
∗ , let Xδ0 = UδXδ and Xδ1 =

(
1−Uδ

)
Xδ,

and X∅ = 1 by construction. If αδ = 1
2αδ1···δi−1 for all 1 ≤ i ≤ m and δ ∈ Ei,

X is Dirichlet distributed.
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Lemma 7. Let X have a Polya distribution with parameters αδ, δ ∈ Em−1
∗ .

Then for all y ∈ ∆2m and η > 0,

pm(y, η) = P
(
X ∈ ∆k(y, η)

)
= P (

∑

ǫ∈Em

| Xm
ǫ − ymǫ |≤ η)

≥
m∏

i=1

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ

|≤ η

2m−i+2
).

Proof. For all i = 1, . . . ,m and δ ∈ Ei−1,

| UδXδ − yδ0 | ≤ Uδ | Xδ − yδ | +yδ | Uδ −
yδ0
yδ

|,

| (1 − Uδ)Xδ − yδ1 | ≤ (1− Uδ) | Xδ − yδ | +yδ | (1 − Uδ)−
yδ − yδ0
yδ

| .

Consequently,
∑

δ∈Em

| Xδ − yδ | =
∑

δ∈Em−1

| Xδ0 − yδ0 | + | Xδ1 − yδ1 |

≤
∑

δ∈Em−1

| Xδ − yδ | + 2
∑

δ∈Em−1

yδ | Uδ −
yδ0
yδ

|

≤
∑

δ∈Em−1

| Xδ − yδ | + 2 max
δ∈Em−1

| Uδ −
yδ0
yδ

| .

Hence,

pm(y, η) ≥ pm−1(y,
η

2
)P

(
max

∂∈Em−1
| Uδ −

yδ0
yδ

|≤ η

4

)

≥
m∏

i=2

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ

|≤ η

2m−i+2
)P (| U∅ − y0 |≤ η

2m
)

≥
m∏

i=1

P ( max
∂∈Ei−1

| Uδ −
yδ0
yδ

|≤ η

2m−i+2
),

as

p1(η2
−m) = P (| X0 − y0 | + | X1 − y1 |≤ η2−m)

= P (| U0 − y0 | + | (1− U0)− (1 − y0) |≤ η2−m)

= P (| U0 − y0 |≤ η2−m−1).

With δ ∈ Ei−1 fixed, we can lower-bound P (| Uδ − yδ0
yδ

|≤ η
2m−i+2 ) for various

values of the αδ. In the remainder we will assume that αδ = αi, for all δ ∈ Ei−1,
with i = 1, . . . ,m. For increasing αi ≥ 1, Uδ has a unimodal beta-density, and
without loss of generality we can assume the most unfavorable case, i.e. when
yδ0
yδ

= 0. If the αi are decreasing, and smaller than one, this is when yδ0
yδ

= 1
2 .
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In both cases Lemma 9 in appendix A is used to lower bound the normalizing
constant of the beta-density.

If αi ↑ ∞, i = 1, . . . ,m when m→ ∞, then

P (| Uδ |≤ η2−m+i−2) =

∫ η2−m+i−2

0

Γ(2αi)

Γ2(αi)
xαi−1(1− x)αi−1dx

&

∫ η2−m+i−2

0

αi
− 1

2 22αi−
1
2
1

2
xαi−1dx = 2−(m−i)αi−

3
2αi

− 3
2 ηαi .

At the ith level there are 2i−1 independent variables Uδ with the Beta(αi, αi)
distribution, and therefore

log
(
pm(y, η)

)
& log

m∏

i=1

(
2−(m−i)αi−

3
2αi

− 3
2 ηαi

)2i−1

=

m∑

i=1

2i−1
{
−αi log

1

η
− 3

2
log(αi)− αi(m− i) log(2)

}
.

If αi ↓ 0, i = 1, . . . ,m when m→ ∞, we have

P (| Uδ −
1

2
|≤ η2−m+i−2) =

∫ 1/2+η2−m+i−2

1/2−η2−m+i−2

Γ(2αi)

Γ2(αi)
xαi−1(1− x)αi−1dx

& αiη2
−m+i−1

(1
4

)αi−1
,

log
(
pm(y, η)

)
&

m∑

i=1

2i−1
{
log(αi)−

(
2αi + (m− i− 1)

)
log(2)− log

1

η

}
.

We have the following application of these results.

Lemma 8. Let Xm
δ be Polya distributed with parameters αi. If αi = ib for

b > 0,

P (X ∈ ∆k(y, η)) ≥ C exp{−ck(log k)b log 1

η
},

for some constants c and C. By a straightforward calculation one can see that
this result is also valid for b = 0. In the Dirichlet case αi = 1

2αi−1 for i =
1, . . . ,m,

P (X ∈ ∆k(y, η)) ≥ C exp{−ck log 1

η
},

in accordance with the result in [11].

6. Conclusion

We obtained posteriors that adapt to the smoothness of the underlying density,
that is assumed to be contained in a nonparametric model. It is of interest to
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obtain, using the same prior, a parametric rate if the underlying density is a
finite mixture itself. This is the case in the location-scale-model studied in [19],
and the arguments used therein could be easily applied in the present work.
The result would however have less practical relevance, as the variances σ2

j of
all components are required to be the same.

Furthermore, the prior on the σj ’s used in [19] depends on n, and this seems
to be essential if the optimal rates and adaptivity found in the present work are
to be maintained. In the lower bound for the prior mass on a KL-ball around
f0, given by (30), we get an extra factor kn in the exponent, and the argument
only applies if λ = λn ≈ σn. This suggests that the restriction to have the same
variance for all components is necessary to have a rate-adaptive posterior based
on a fixed prior, but we have not proved this. The determination of lower bounds
for convergence rates deserves further investigation; some results can be found
in [33]. Full adaptivity over the union of all finite mixtures and Hölder densities
could perhaps be established by putting a hyperprior on the two models, as
considered in [12].
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Appendix A

The following theorem is taken from [13] (Theorem 5), and slightly adapted to
facilitate the entropy calculations in the proof of Theorem 2. Their condition
Π(Fn|X1, . . . , Xn) → 0 in Fn0 -probability is a consequence of (38) and (39)
below. This follows from a simplification of the proof of Theorem 2.1 in [11],
p.525, where we replace the complement of a Hellinger-ball around f0 by Fc

n. If
we then take ǫ = 2ǭn in Corollary 1 in [13], with ǭn ≥ ǫ̃n and ǭn → 0, the result
of Theorem 5 in this paper still holds.

Theorem 3 (Ghosal and van der Vaart, ([13])). Given a statistical model F ,
let {Xi}i≥1 be an i.i.d. sequence with density f0 ∈ F . Assume that there exists

a sequence of submodels Fn that can be partitioned as
∞∪

j=−∞
Fn,j such that, for

sequences ǫ̃n and ǭn ≥ ǫ̃n with ǭn → 0 and nǫ̃2n → ∞,

∞∑

j=−∞

√
N(ǭn,Fn,j, d)

√
Πn(Fn,j)e−nǭ

2
n → 0, (37)

Πn(KL(f0, ǫ̃n)) ≥ e−nǫ̃
2
n , (38)

Πn(Fc
n) ≤ e−4nǫ̃2n , (39)
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where KL(f0, ǫ̃n) is the Kullback-Leibler ball

{f : F0 log(f0/f) ≤ ǫ̃2n, F0 log
2(f0/f) ≤ ǫ̃2n}.

Then Πn(f ∈ F : d(f, f0) > 8ǭn | X1, . . . , Xn) → 0 in Fn0 -probability.

The advantage of the above version is that (39) is easier to verify for a faster
sequence ǫ̃n. The use of the same sequence ǫn in (37) and (39) would otherwise
pose restrictions for the choice of Fn.

The following asymptotic formula for the Gamma function can be found in
many references, see for example Abramowitz and Stegun [1].

Lemma 9. For any α > 0,

Γ(α) =
√
2πe−ααα−

1
2 eθ(α), (40)

where 0 < θ(α) < 1
12α . If α → ∞, this gives the bound Γ(2α)

Γ(α)Γ(α) & α− 1
2 22α−

1
2

for the beta function. For α → 0, the identity αΓ(α) = Γ(α + 1) gives the
bounds Γ(α) ≤ 1

α and Γ(α) ≥ c
α , where c = 0.8856 . . . is the local minimum

of the gamma function on the positive real line. Consequently, Γ(2α)
Γ(α)Γ(α) & α.

From (40) it follows that for all α > 0 and all integers j ≥ 1,

√
Γ
(
2j+1
1+α

)

j!
≤ 1√

2π
e

α
1+α (j+1)

( 2

1 + α

) j
1+α (j + 1)−

αj
1+α , (41)

Γ
(
j+1
1+α

)

j!
≤ e

α
1+α (j+1)+ 1

12
( 1

1 + α

) j
1+α (j + 1)−

αj
1+α . (42)

The following lemma will be required for the proof of Lemma 1 in Appendix C
below.

Lemma 10. Given a positive integer m and ψ(p)(x) = Cpe
−|x|p, let ϕ be the

m-fold convolution ψ(p) ∗ · · · ∗ ψ(p). Then for any α ≥ 0 and H > 0, there is a
number k′ = k′(p, α,m) such that for all sufficiently small σ > 0,

∫

|x|>k′| log σ|1/p
ϕ(x)|x|αdx ≤ σH .

Proof. First we consider the case α = 0. For i.i.d. random variables Zi ∼ ψ(p)

(i = 1, . . . ,m) we can write

∫

|x|>k′| log σ|1/p
ϕ(x)|x|αdx ≤ P

(
m∑

i=1

|Zi| > k′| log σ|1/p
)

≤ 2Cpm

∫ ∞

k′| log σ|1/p
e−x

p

dx ≤ σH , (43)

for all H > 0, provided k′ is large enough.
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Now let α > 0. For m = 1 and y = k′| log σ|1/p, we have

∫ ∞

y

xαψ(p)(x)dx =

∫ ∞

y1+α

ψ(p)

(
z1/(1+α)

)
dx =

Cp
Cp/(1+α)

∫ ∞

y1+α

ψ(p/(1+α))(z)dz

=
Cp

Cp/(1+α)
PZ∼ψ(p/(1+α))

(Z > k′
(1+α)| log σ| 1+α

p ) ≤ σH ,

(44)

for any α > 0. Now let m > 1, and X =
∑m

i=1 Zi for i.i.d. random variables Zi
with density ψ(p). If α ≥ 1 then, by Jensen’s inequality applied to the function
x 7→ xα,

E
(
|Z|α1|Z|>k′| log σ|1/p

)
≤ E

(
mα−1

(
m∑

i=1

|Zi|α
)
1|Z|>k′| log σ|1/p

)

≤ mα−1
m∑

i=1

E


|Zi|α

m∑

j=1

1|Zj|>
k′

m
| log σ|1/p


 ≤ σH ,

where we used (43), (44) and the independence of the Zi’s to bound the terms
with i 6= j. If α < 1, we bound |Z|α by |Z| and apply the preceding result.

Appendix B: Approximation under a global Hölder condition

For L > 0, β > 0 and r the largest integer smaller than β, let H(β, L) be the
space of functions h such that supx 6=y |h(r)(x) − h(r)(y)|/|y − x|β−r ≤ L, where

h(r) is the rth derivative of h. Let Hβ be the Hölder-space ∪L>0H(β, L), and
given some function h ∈ Hβ , let Lh,β−r = supx 6=y |h(r)(x)− h(r)(y)|/|y− x|β−r.
When β − r = 1, this equals ‖h(r+1)‖∞.

Lemma 11. Let f0 ∈ Hβ, where, β > 0 and denote jβ ∈ N such that 2jβ <
β ≤ 2jβ +2. Then ‖f0 − fβ ∗ψσ‖∞ = O(σβ), where fβ is defined recursively by
f1 = f0 −∆σf0 = 2f0 −Kσf0, fj+1 = f0 −∆σfj, j ≥ 1 and fβ = fjβ .

Proof. By induction it follows that

fβ =

jβ∑

i=0

(−1)i
(
jβ + 1

i+ 1

)
Ki
σf0, ∆

jβ
σ f0 =

jβ∑

i=0

(−1)jβ−i
(
jβ
i

)
Ki
σf0. (45)

The proof then depends on the following two observations. First, note that
if f0 ∈ Hβ then f1, f2, . . . are also in Hβ , even if ψ itself is not in Hβ (e.g.
when ψ is the Laplace kernel). Second, it follows from the symmetry of ψ that

Kσf
(r)
0 = dr

dxrKσf0, i.e. the rth derivative of the convolution of f0 equals the

convolution of f
(r)
0 .
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When k = 0 and β ≤ 2 the result is elementary. When k = 1 we have
Kσ(f1) − f0 = ∆σ(f0 − ∆σ(f0)) − ∆σ(f0) = −∆σ∆σf0, and ‖∆σ∆σf0‖∞ ≤
ν2σ

2‖(∆σf0)
′′‖∞. Because differentiation and the ∆σ operator can be inter-

changed, we also have ‖(∆σf0)
′′‖∞ = ‖(∆σf

′′

0 )‖∞. Since f0
′′ ∈ Hβ−2, the latter

quantity is O(σβ−2). Consequently, ‖∆σ∆σf0‖∞ = O(σβ). For k > 1, we repeat
this step and use that, as a consequence of (45), ‖Kσfk − f0‖∞ = ‖∆k+1

σ f0‖∞.
From the following induction argument it follows that for any positive integer
k, β ∈ (2k, 2k + 2] and f0 ∈ Hβ , ‖∆k+1

σ f0‖∞ = O(σβ). Suppose this statement
holds for k = 0, 1, . . . ,m − 1, and that f0 ∈ Hβ with β ∈ (2m, 2m + 2]. Then

‖∆m
σ f0‖∞ = O(‖∆σf

(2m)
0 ‖∞σ2m) and ‖∆σf

(2m)
0 ‖∞ = O(σβ−2m) as f

(2m)
0 ∈

Hβ−2m.

Appendix C: Proof of Lemma 1

The smoothness condition (5) in (C1) implies that

log f0(y) ≤ log f0(x) +
r∑

j=1

lj(x)

j!
(y − x)j + L(x)|y − x|β (46)

log f0(y) ≥ log f0(x) +

r∑

j=1

lj(x)

j!
(y − x)j − L(x)|y − x|β , (47)

again for all x, y with |y − x| ≤ γ.
Let f0 be a function for which these conditions hold, r being the largest

integer smaller than β. We define

Bf0,r(x, y) =

r∑

j=1

lj(x)

j!
(y − x)j + L(x)|y − x|β .

First we assume that β ∈ (1, 2] and r = 1. The case β ∈ (0, 1] is easier
and can be handled similarly; the case β > 2 is treated below. Using (46) we
demonstrate below that

Kσf0(x) ≤ (1+O((|L(x)|+ |lβ1 (x)|)σβ))f0(x)+O(1+ |L(x)|+ |lβ1 (x)|)σH . (48)

We omit the proof of the inequality in the other direction, which can be obtained
similarly using (47). To prove (48), we define, for any x ∈ R,

Dx = {y : |y − x| ≤ k′σ| log σ|1/p},

for a large enough constant k′ to be chosen below. Assuming that k′σ| log σ|1/p ≤
γ, for γ as in condition (C1), we can rewrite (46) as f0(y) ≤ f0(x) exp{Bf0,1(x, y)},
and

Kσf0(x) ≤ f0(x)

∫

Dx

eBf0,r(x,y)ψσ(y − x)dy +

∫

Dc
x

f0(y)ψσ(y − x)dy. (49)
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Furthermore, if x ∈ Aσ and y ∈ Dx, then for M = 1
(r+1)! exp{supx∈Aσ,y∈Dx

×
|Bf0,r(x, y)|} and some ξ ∈ (0, B),

eBf0,r(x,y) =
r∑

m=0

1

m!
Bmf0,r(x, y) +

eξ

(r + 1)!
Br+1
f0,r

(x, y)

≤
r∑

m=0

1

m!
Bmf0,r(x, y) +M |Bf0,r|r+1(x, y).

(50)

In the present case, β ∈ (1, 2] and r = 1, hence

eBf0,r(x,y) ≤ 1 +Bf0,r(x, y) +MB2
f0,r(x, y) = 1 + l1(x)(y − x) + L(x)|y − x|β

+M
(
l21(x)(y − x)2 + 2l1(x)L(x)(y − x)|y − x|β + L2(x)|y − x|2β

)
.

(51)

Integrating over Dx, the terms with a factor (y− x) disappear, so that the first
term on the right in (49) is bounded by

f0(x)

∫

Dx

ψσ(y − x)
{
1 + L(x)|y − x|β +M(k′B)2−β |l1(x)(y − x)|β

+Mk′
β
B|L(x)(y − x)|β

}
dy,

(52)

since |l1(x)(y−x)| ≤ k′B and |L(x)||(y−x)|β ≤ k′
β
B when x ∈ Aσ and y ∈ Dx.

Because
∫
Dc

x
ψσ(y− x)|y − x|αdy = σH for any α ≥ 0, when k′ in the definition

of Dx is sufficiently large (see Lemma 10 in Appendix A), (49), (51) and (52)

imply that for constants k1 =M(k′B)2−β and k2 = 1 +Mk′
β
B,

(Kσf0)(x) ≤ f0(x)

∫

R

ψσ(y − x){1 + k1|l1(x)|β |y − x|β + k2|L(x)||y − x|β}dy

+ (‖f0‖∞ + 1 + k1|l1(x)|β + k2|L(x)|)O(σH ),

(53)

which completes the proof of (48) for β ∈ (1, 2]. Using the same arguments the
inequality in the other direction (with different constants) can be obtained when
we define Bf0,1(x, y) = l1(x)(y − x) − L(x)|y − x|β , and use that eBf0,r(x,y) ≥∑r
m=0

1
m!B

m
f0,r

(x, y)−M |Bf0,r|r+1(x, y) instead of (50). This finishes the proof
of (15) for k = 0.

Now let f0 be a function for which (46) and (47) hold with β ∈ (3, 4] and
r = 3; the case β ∈ (2, 3] being similar and simpler. Before looking at Kσf1 we
first give an expression for Kσf0. When x ∈ Aσ and y ∈ Dx, e

B ≤ 1+B+ 1
2B

2+
1
6B

3+MB4 and for some constantM , with B(x, y) = l1(x)(y−x)+ 1
2 l1(x)(y−

x) + 1
6 l3(x)(y − x)3 + L(x)|y − x|β . Using this bound on eB we can redo the

calculations given in (49), (50), (52) and (53); again by showing inequality in
both directions we find that

Kσf0(x) = f0(x)
(
1 +

ν2
2
(l21(x) + l2(x))σ

2 +O(R(x)σβ)
)
+O

(
(1 +R(x))σH

)
.

(54)
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This follows from the fact that for x ∈ Aσ and y ∈ Dx we can control the terms
containing a factor |y − x|k with k > 2, similar to (52). All these terms can be
shown to be a multiple of σβ by taking out a factor |y − x|β and matching the
remaining factor |y − x|k−β by a certain power of the |lj |’s or |L|.

The proof of (15) for f1 can now be completed by the observation that (54) de-
pends on the kernel ψ only through the values of να. In fact it holds for any sym-
metric kernel such that

∫
ψ(x)|x|αdx = να <∞ and

∫
|x|>k′| log σ|1/p

ψ(x)|x|αdx =

σH when k′ is large enough. For the kernel ψ ∗ ψ these properties follow from
Lemma 10 in Appendix A. Consequently, (54) still holds when Kσf0 is replaced
by KσKσf0 and ν2 by νψ∗ψ,2 =

∫
(ψ ∗ ψ)(x)|x|αdx. As f1 = 2f0 − Kσf0 and

νψ∗ψ,2 = 2ν2, this proves (15) for k = 1.
The same arguments can be used when k > 1 and β ∈ (2k, 2k + 2]; in that

case all terms with σ2, σ4, . . . , σ2k cancel out. This can be shown by express-
ing the moments νm,2, . . . , νm,2k of the kernels Km

σ , m = 2, . . . , k + 1 in terms
of ν2, . . . , ν2k and combining this with (45) in the proof of Lemma 11 in Ap-
pendix B.

Appendix D: Proof of Lemma 2

To show that the first integral in (21) is of order σ2β , consider the sets

Aσ,δ = {x : |lj(x)| ≤ δBσ−j | log σ|−j/p, j = 1, . . . , r, |L(x)| ≤ δBσ−β | log σ|−β/p},

indexed by δ ≤ 1. For notational convenience, let
∑β
j=1 denote sums over (r+1)

terms containing respectively the functions l1, . . . , lr and lβ = L. First letm = 0.
It follows from (6) in (C2) and Markov’s inequality that

∫

Ac
σ

(K0
σf0)(x)dx ≤

β∑

j=1

P
(
|lj(X)| 2β+ǫ

j ≥ (δB)
2β+ǫ

j σ−2β−ǫ| log σ|− 2β+ǫ
p

)
= O(σ2β),

provided that σ−ǫ| log σ|− 2β+ǫ
p > 1, which is the case if σ is sufficiently small.

If m = 1, consider independent random variables X and U with densities
f0 and ψ, respectively. Then X + σU has density Kσf0. Because P (|U | ≥
k′| log σ|1/p) = O(σ2β) if the constant k′ is sufficiently large, we have

P (X +σU ∈ Acσ) ≤ P (X + σU ∈ Acσ, | U |≤ k′| log σ|1/p) + P (|U | ≥ k′| log σ|1/p)
= O(σ2β) + P (X + σU ∈ Acσ, X ∈ Aσ,δ, | U |≤ k′| log σ|1/p)
+ P (X + σU ∈ Acσ, X ∈ Acσ,δ, | U |≤ k′| log σ|1/p)

(55)

The last term is bounded by P (X ∈ Acσ,δ), which is O(σ2β) for any 0 < δ ≤ 1.
We show that the last term on the second line is zero for sufficiently small δ.
This can be shown by contradiction: together with the conditions on f0, the
fact that X ∈ Aσ,δ and X + σU ∈ Acσ,1 implies that |U | is large, contradicting
| U |≤ k′| log σ|1/p.
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To see this, note that since X ∈ Aσ,δ, |L(X)| ≤ δBσ−β | log σ|−β/p and
|lj(X)| ≤ δBσ−j | log σ|−j/p for j = 1, . . . , r. On the other hand, X + σU ∈
Acσ,1 implies that |L(X + σU)| ≥ Bσ−β | log σ|−β/p or that |li(X + σU)| ≥
δBσ−i| log σ|−i/p for some i ∈ {1, . . . , r}. From (5) it follows that for all i =
1, . . . , r

|li(X + σU)| ≤

∣∣∣∣∣∣

r−i∑

j=0

li+j(X)

j!
(σU)j +

r!

(r − i)!
|L(X)||σU |β−i

∣∣∣∣∣∣
≤ Bσ−i| log σ|−i/p

if δ is sufficiently small. Therefore it has to be a large value of |L(X + σU)|
that forces X + σU to be in Acσ. Hence it suffices to show that |L(X)| ≤
δBσ−β | log σ|−β/p and | U |≤ k′| log σ|1/p is in contradiction with |L(X+σU)| ≥
Bσ−β | log σ|−β/p. We now derive the contradiction from the assumption that L
is polynomial. Let q be its degree, and let η = max |zi|, zi being the roots of L.
First, suppose that |X | > η + 1. Then

U jσjL(j)(X) = O
(
|U jσjL(X)|

)
= O

(
σ−(β−j)| log σ|− β−j

p

)
, j = 1, . . . , q.

This implies

|L(X + σU)| ≤ |L(X)|+

∣∣∣∣∣∣

q∑

j=1

σjU jL(j)(X)

j!

∣∣∣∣∣∣
+
σq|U |q
q!

∣∣∣L(q)(ξ)− L(q)(X)
∣∣∣

≤ δBσ−β | log σ|− β
p +O(σ−(β−1)| log σ|− β−1

p ),

which is smaller than Bσ−β | log σ|− β
p when σ and δ < 1 are small enough. If

|X | ≤ η + 1, note that this implies |X + σU | ≤ η + 2 for sufficiently small σ, as

|U | ≤ k′| log σ| βp . Consequently,

|L(X + σU)| ≤ max
|x|≤η+2

|L(x)| = L̄ ≤ Bσ−β | logσ|− β
p ,

again for sufficiently small σ.
If m = 2 in (21), note that the above argument remains valid if X has density

Kσf0 instead of f0. The last term in (55) is then bounded by P (X ∈ Acσ,δ), which

is O(σ2β) by the result for m = 1. This step can be repeated arbitrarily often,
for some decreasing sequence of δ’s.

To bound the second integral in (21) for m = 0, we need the tail condition
f0(x) ≤ c|x|−α in (C2). In combination with the monotonicity of f0 required
in (C4), this implies that

∫

Ec
σ

f0(x)dx ≤ σH1/2

∫

Ec
σ

√
f0(x)dx = O(σ2β), (56)

which is O(σ2β) when H1 ≥ 4β.
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For m = 1, we integrate over the sets Ecσ ∩ Acσ and Ecσ ∩ Aσ. The integral
over the first set is O(σ2β) by the preceding paragraph. To bound the second
integral, consider the sets

Eσ,δ = {x : log f0(x) ≥ δH1 log σ}, (57)

indexed by δ ≤ 1. We can use the inequality (55) with Acσ, Aσ,δ and A
c
σ,δ replaced

by respectively Ecσ ∩Aσ, Eσ,δ ∩Aσ and Ecσ,δ ∩Aσ. The probability PX∼f0(X ∈
Ecσ,δ) can be shown to be O(σ2β) as in (56), provided that δH1/2 ≥ 2β. The

probability that |U | ≤ k′| log σ|1/p, X + σU ∈ Ecσ ∩ Aσ and X ∈ Eσ,δ ∩ Aσ is
zero: due to the construction of Aσ we have | l(X+σU)− l(X) |= O(1), whereas
| l(X + σU) − l(X) |≥ (1− δ)H1 | log σ |. This step can be repeated as long as
the terms PX∼f0(X ∈ Ecσ,δ) remain O(σ2β), which is the case if the initial H1

is chosen large enough. This finishes the proof of (21).
To prove (23), let β > 2 and jβ ≥ 1 be such that 2jβ < β ≤ 2jβ+2, l = log f0

being β-Hölder. It can be seen that Lemma 1 still holds if we treat l as if it was
Hölder smooth of degree 2. Instead of (15), we then obtain

(Kσf0)(x) = f0(x)
(
1 +O(R(2)(x)σ2)

)
+O

(
(1 +R(2)(x))σH

)
, (58)

where L(2) = l2 and R(2) is a linear combination of l21 and |L(2)|. The key
observation is that R(2) = o(1) uniformly on Aσ when σ → 0. Combining (58)
with the lower bound for f0 on Eσ, can find a constant ρ close to 1 such that

f1(x) = 2f0(x)−Kσf0(x)

= 2f0(x)− (1 +O(R(2)(x))σ2)f0(x) −O(1 +R(2)(x))σH > ρf0(x)

for small enough σ. Similarly, when l is treated as being Hölder smooth of degree
4, we find that

f2(x) = 2f1(x)−Kσf1(x)

= 2f1(x)− (1 +O(R(4)(x))σ4)f0(x) −O(1 +R(4)(x))σH > ρ2f0(x).

Continuing in this manner, we find a constant ρβ such that fjβ (x) > ρβf0(x)
for x ∈ Aσ ∩Eσ and σ sufficiently small. If initially ρ is chosen close enough to
1, ρjβ > 1

2 and hence Aσ ∩ Eσ ⊂ Jσ,k. To see that (21) now implies (22), note
that the integrand 1

2f0 − fβ is a linear combination of Km
σ f0, m = 0, . . . , k.

Appendix E: Proof of Lemma 4

We bound the second integral in (26); the first integral can be bounded similarly.
For h̃β the normalized restriction of hβ to E′

σ = {x : hβ(x) ≥ σH2}, with
H2 ≥ H1 chosen below, and m the finite mixture to be constructed, we write

∫
f0

(
log

f0
m

)2

=

∫

Eσ

f0

(
log

f0
Kσhβ

+ log
Kσhβ

Kσh̃β
+ log

Kσh̃β
m

)2

+

∫

Ec
σ

f0

(
log

f0
Kσhβ

+ log
Kσhβ
m

)2

.

(59)
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The integral of f0(log(f0/Kσhβ))
2 over Eσ is O(σ2β) by Theorem 1. To show

that the integral of f0(log(Kσhβ/Kσh̃β))
2 over Eσ is O(σ2β) as well, recall

the definition of gβ and hβ in (18) and (19). Note also that, since hβ ≥ f0/3
(Remark 1), (E′

σ)
c ⊂ {x; f0(x) ≤ 3σH2} ⊂ Ecσ. Combining (21) and (22) in

Lemma 2 with the fact that fβ is a linear combination of Ki
σf0, i = 0, . . . , k (see

(45) in appendix B), we find that
∫
(E′

σ)
c hβ = O(σ2β). Moreover, for all x ∈ Eσ

and all y ∈ (E′
σ)
c,

hβ(y) ≤ σH2−H1σH1 , hβ(x) ≥ f0(x)/3 ≥ σH1/3

so that hβ(y) ≤ σH2−H1f0(x) ≤ 3σH2−H1hβ(x). Consequently,
∫

(E′

σ)
c

ψσ(x− y)hβ(y)dy ≤ σH2−H1f0(x) ≤ 3σH2−H1hβ(x),

and∫

E′

σ

ψσ(x−y)hβ(y)dy = Kσhβ(x)−
∫

(E′

σ)
c

ψσ(x−y)hβ(y)dy ≥ f0(x)(c−3σH2−H1),

for some constant c > 0. This leads to, with H2 ≥ H1 + 2β

Kσhβ(x)

Kσh̃β(x)
=

Kσhβ(x)

Kσ(hβ1lE′

σ
)(x)

(1 +O(σ2β))

≤ (1 +O(σ2β))

(
1 +

∫
(E′

σ)
c ψσ(x− y)hβ(y)dy∫

E′

σ
ψσ(x− y)hβ(y)dy

)

≤ (1 +O(σ2β))(1 + c−1σH2−H1) = 1 +O(σ2β).

Similarly,

Kσhβ(x)

Kσh̃β(x)
≥ 1 +O(σ2β).

It follows that log(Kσhβ/Kσh̃β)(x) = O(σ2β) for all x ∈ Eσ, which gives the

required bound for
∫
Eσ
f0(log(Kσhβ/Kσh̃β))

2.

To bound the integral of f0(logKσh̃β/m)2 overEσ, letm = m(·; kσ, µσ, wσ, σ)
be the finite mixture obtained from Lemma 12, approximating h̃β . For all C > 0,

m can be chosen such that ||Kσh̃β −m||∞ ≤ σ−1e−C| log σ|p/τ2 . The mixture m
has kσ = ⌊N0σ

−1| log σ|p/τ2⌋ support points, which are contained in E′
σ.

By definition of hβ, hβ . fβ + f0, and a straightforward inductive argument
implies that fβ ≤ 2jβf0. Consequently, hβ . f0 and E′

σ ⊂ {x : f0(x) ≥ cσH2}
when c > 0 is sufficiently small. The monotonicity and exponential tails of f0
(Conditions (C3) and (C4)) imply that E′

σ ⊂ [−aσ, aσ] with aσ = a0| log σ|1/τ2 .
It follows that

∫

Eσ

f0

(
log

Kσh̃β
m

)2

≤
∫

Eσ

f0

(
||Kσh̃β −m||∞

σH2 − ||Kσh̃β −m||∞

)2

≤
(
σ−H2−1−ǫ exp{−C| logσ|p/τ2}

)2
= σ−2(H2+1)+C| log σ|

p−τ2
τ2 = O(σ2β),
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by choosing C large enough, when σ is small enough. Note that we can always
choose τ2 ≤ p, since f0(x) ≤ e−|x|τ2 implies that f0(x) . e−|x|τ for all τ < τ2.
The cross-products resulting from the square in the integral over Eσ in (59) can
be shown to be O(σ2β) using the Cauchy-Schwartz inequality and the preceding
bounds.

To bound the integral over Ecσ, we add a component with weight σ2β and
mean zero to the finite mixture m. From Lemma 3 it can be seen that this does
not affect the preceding results. Since f0 and hβ are uniformly bounded, so is
Kσhβ . If C is an upper bound for Kσhβ , then

∫

Ec
σ

f0(x)

(
log

Kσhβ
m

(x)

)2

dx ≤
∫

Ec
σ

f0(x)

(
log

C

σ2βψσ(x)

)2

dx

=

∫

Ec
σ

f0(x)

(
log(C−1

p C) + 2β| logσ|+ |x|p
σp

)2

dx.

(60)

This is O(σ2β) if

∫

Ec
σ

f0(x)|x|2pdx ≤ σH1/2

∫

Ec
σ

√
f0(x)|x|2pdx = O(σ2β+2p),

which is the case if H1 ≥ 4(β + p). The integral of f0(log f0/Kσhβ)
2 over Ecσ

is O(σ2β) by Lemma 1, and the integral of f0(log f0/Kσhβ)(logKσhβ/m) over
Ecσ can be bounded using Cauchy-Schwartz.

If m′ = m(·; kσ, µ, w, σ′) is a different mixture with σ′ ∈ [σ, σ + σδ
′H1+2],

µ ∈ Bkσ (µσ, σ
δ′H1+2) and w ∈ ∆kσ (wσ , σ

δ′H1+1), the L∞-norm between m and

m′ is σδ
′H1 by Lemma 3, and

∫
Eσ
f0

(
log

Kσ h̃β

m′

)2
= O(σ2β). The integral over

Ecσ can be shown to be O(σ2β) as in (60), where the |x − σ2β |2p that comes in
the place of |x|2p can be handled with Jensen’s inequality.

Appendix F: Discretization

The following result resembles Lemma 2 in [13]. Note that the constant τ2 in (8)
is not necessarily equal to p. Without loss of generality we assume that τ2 ≤ p.

Lemma 12. Let σ > 0 be small enough, F a distribution on [−aσ, aσ], with
aσ = a0| log σ|1/τ2 and p an even integer. Then for all C > 0, there exists a
finite distribution F ′ with N0σ

−1| log σ|p/τ2 support points contained in [−aσ, aσ]
such that ‖F ∗ ψσ − F ′ ∗ ψσ‖∞ ≤ σ−1e−C| log σ|p/τ2 and ‖F ∗ ψσ − F ′ ∗ ψσ‖1 .

σ−1e−C
′| log σ|p/τ2 , where C′ depends also on a0 and can be chosen as large as

need be, if C and a0 are large enough.

Proof. For M > 0 we define the intervals

Ij = [−aσ + (j − 1)Mσ| logσ|1/τ2 ,−aσ + jMσ| log σ|1/τ2 ], j = 0, . . . , Jσ + 1,
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where Jσ = 2M−1aσ| log σ|−1/τ2σ−1. To simplify the presentation, it is assumed
that Jσ is integer. The interval [−aσ, aσ] is the union of I1, . . . , IJσ ; the intervals
I0 and IJσ+1 are outside [−aσ, aσ]. Note that since p is even, |u|p = up for all
u. We define Fj = F1lIj/F (Ij) and construct a distribution F ′

j on Ij having at
most k + 1 support points and such that for all l = 0, . . . , kp− p,

∫

Ij

zldFj(z) =

∫

Ij

zldF ′
j(z). (61)

This is possible by Lemma A1 in [14].
To bound ‖F ∗ ψσ − F ′ ∗ ψσ‖∞ we use the inequality

∣∣∣∣∣ψσ(x) − Cp

k−1∑

i=0

(−1)i
(x − y)ip

σip+1i!

∣∣∣∣∣ ≤
Cp
σ

(
e|x− y|
kσ

)k
. (62)

(see also (3.7) in [14]). Consequently, when x ∈ Ij−1 ∪ Ij ∪ Ij+1,
∣∣∣∣∣

∫

Ij

ψσ(x− y)d(Fj − F ′
j)(y)

∣∣∣∣∣

≤
∣∣∣∣∣

∫

Ij

(
ψσ(x− y)− Cp

k−1∑

i=0

(−1)i
(x− y)ip

σip+1i!

)
d(Fj − F ′

j)(y)

∣∣∣∣∣

+ Cp

∣∣∣∣∣

∫

Ij

k−1∑

i=0

(−1)i

i!
σ−(ip+1)

ip∑

l=0

(
ip

l

)
|x|ip−l|y|ld(Fj − F ′

j)(y)

∣∣∣∣∣

≤ Cp
σ

(
e(2M)p| log σ|p/τ2

k

)k
,

where the last inequality follows from (62) and the fact that x ∈ Ij−1∪Ij ∪Ij+1

and y ∈ Ij ; hence |x− y|/σ ≤ 2M | logσ|1/τ2 . Note that the term on the second
line vanishes because of (61). If we choose k at least e2(2M)p| log σ|p/τ2 it follows
from the preceding inequalities that for all x ∈ Ij−1 ∪ Ij ∪ Ij+1, |(F ∗ ψσ)(x)−
(F ′ ∗ ψσ)(x)| ≤ Cpσ

−1e−k.

If x /∈ Ij−1 ∪ Ij ∪ Ij+1 and y ∈ Ij , ψσ(x− y) ≤ Cpσ
−1e−M

p| log σ|p/τ2 so that
∣∣∣∣∣

∫

Ij

ψσ(x− y)d(Fj − F ′
j)(y)

∣∣∣∣∣ ≤ 2Cpσ
−1e−M

p| log σ|p/τ2 .

Set F ′ =
∑Jσ

j=1 F (Ij)F
′
j , this distribution has at most Jσe

2(2M)p| log σ|p/τ2 .

σ−1| log σ|p/τ2 support points and satisfies

|ψσ ∗ (F − F ′)(x)| ≤
∣∣∣∣
∫
ψσ(x − y)d(F − F ′)(y)

∣∣∣∣

≤
Jσ∑

j=0

F (Ij)

∣∣∣∣∣

∫

Ij

ψσ(x− y)d(Fj − F ′
j)(y)

∣∣∣∣∣

≤ 2Cpσ
−1e−M

p| log σ|p/τ2 .
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This finishes the proof for the supremum-norm. Using this result, we find that

||ψσ∗(dF−dF ′)||1 ≤ 4|aσ|Cpσ−1e−M
p| log σ|p/τ2+2

∫

[2aσ,2aσ]c
|((F−F ′)∗ψσ)(x)|dx.

To bound the last integral, note that when |x| > 2aσ and y ∈ [−aσ, aσ], |x−y| ≥
|x|/2. Consequently,

∫

[2aσ,2aσ]c
|((F − F ′) ∗ ψσ)(x)|dx ≤

∫ ∞

2aσ

ψσ(x/2)dx ≤ σH .
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[18] A. P. Korostelëv and A. B. Tsybakov. Minimax theory of image
reconstruction, volume 82 of Lecture Notes in Statistics. Springer-Verlag,
New York, 1993. MR1226450

[19] Willem Kruijer. Convergence Rates in Nonparametric Bayesian
Density Estimation. PhD-thesis. Department of Mathematics, Vrije
Universiteit Amsterdam, http://www.math.vu.nl/~kruijer/PhDthesis_
Kruijer.pdf, 2008.

[20] Willem Kruijer and Aad Van der Vaart. Posterior convergence rates
for dirichlet mixtures of beta densities. Journal of Statistical Planning and
Inference, 138(7):1981–1992, 2008. MR2406419

[21] Michael Lavine. Some aspects of Pólya tree distributions for statistical
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