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Abstract: Suppose n1/2(θ̂n − θ) → Np(0, V (θ)) as n → ∞ for some esti-

mate θ̂n of θ in Rp. If p = 1 and g(θ) =
∫ θ
0
V (x)−1/2dx, it is well known

that n1/2(g(θ̂n) − g(θ)) → N (0, 1) as n → ∞, the distribution often being

less skew so that inference based on the approximation n1/2(g(θ̂n)−g(θ)) ∼
N (0, 1) should be more accurate than inference based on the approximation

V (θ̂n)−1/2n1/2(θ̂n−θ) ∼ N (0, 1). If p > 1 there is generally no such one to
one transformation g(·). We consider three different types of stabilization of
V (θ). We also consider the problem of finding g(·) so that the components

of g(θ̂n) are asymptotically independent.
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1. Introduction and summary

Suppose we wish to make an inference (such as constructing a consistent
test or confidence region (CR) for θ) on a parameter θ in Rp on the basis of
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knowing that for some estimate θ̂n, n
1/2(θ̂n − θ) is approximately (written ∼̇)

Nn(0, V (θ, ψ)) when n, the sample size, is large; where ψ ∈ Rs is a nuisance
parameter; V (·, ·) is a given function such that V (θ, ψ) > 0 (positive definite)

and V (·, ·) is continuous at (θ, ψ). By Slutsky’s Theorem if ψ̂n
p
→ ψ then as

n→ ∞, V (θ̂n, ψ̂n)
p
→ V (θ, ψ) so that we may make our inference on

V
(
θ̂n, ψ̂n

)−1/2

n1/2
(
θ̂ − θ

)
∼̇Np (0, Ip) . (1.1)

On the other hand if we choose a transformation g(·) : Rp → Rp which is one
to one and continuous in a neighborhood of θ, then

n1/2
(
g(θ̂n)− g(θ)

)
∼̇Np (0, Vg(θ, ψ)) , (1.2)

where

Vg(θ, ψ) = ∂g(θ)/∂θ′V (θ, ψ)∂g(θ)′/∂θ (1.3)

and ∂g(θ)/∂θ′ is the p × p matrix with (i, j) element ∂gi(θ)/∂θj . So, we could
base our inference on

Vg

(
θ̂n, ψ̂n

)−1/2

n1/2
(
g(θ̂)− g(θ)

)
∼̇Np (0, Ip) .

When V (θ, ψ) does not depend on ψ we denote it by V (θ), and likewise for Vg.
If p = 1 and V (θ, ψ) = V (θ), then it is generally recommended that one

choose

g(θ) =

∫ θ

0

V (x)−1/2dx (1.4)

since this yields Vg(θ) ≡ 1 so that there is no error from estimating Vg(θ). This
transformation also generally reduces skewness and so improves the approxima-
tion. So, for example, an asymptotically 1− α level CR for θ is

−Snα ≤ g
(
θ̂n

)
− g(θ) ≤ Snα

provided n1/2Snα → Φ−1(1− α/2) as n→ ∞.

Example 1.1. For θ̂ the sample variance from a normal population with vari-
ance θ, V (θ) = 2θ2 so that (1.4) yields g(θ) = 2−1/2 log θ. (With {Snα} chosen
appropriately, the above CR for g(θ) reduces to the usual exact CR for the vari-
ance of a normal population.)

This transformation reduces γ1 = µ3µ
−3/2
2 from 23/2n−1/2(1 + o(1)) for θ̂n

to −21/2n−1/2(1 + o(1)) for g(θ̂n)). �

Example 1.2. Let θ̂n be the sample correlation from a bivariate normal popu-
lation with correlation θ. Then V (θ) = (1− θ2)2 for which (1.4) gives

g(θ) = 2−1 log
1 + θ

1− θ
.



C. Withers and S. Nadarajah/Stabilizing the asymptotic covariance of an estimate 163

This reduces γ1 from −6θn−1/2(1+o(1)) for θ̂n to θ3n−3/2(1+o(1)) for g(θ̂n).
(See for instance pages 212, 216 of Hotelling [5] and equation (16.78) of Stuart
and Ord [7]). �

In Example 1.2, the variance stabilizing transformation also reduces the skew-
ness from O(n−1/2) to O(n−3/2). Withers and Nadarajah [8] show how to choose
a transformation which will effect such a reduction. In general, however, it will
not be the same as the variance stabilizer: for Example 1.1 above it would be
g(θ) = θ3.

For p > 1 one cannot hope to find a one to one g(·) such that

n1/2
(
g(θ̂n)− g(θ)

)
∼̇Np (0, Ip)

even when V (θ, ψ) = V (θ) – except for special types of V (θ) diagonal – since we
cannot impose p+p(p−1)/2 constraints with just p functions g1, . . . , gp. For some
exceptions see Holland [4]. However, for problems such as testing θ = θ0, a given
value, or the corresponding parameter from a second sample), or constructing
a p-dimensional CR (confidence region) for θ, one may try instead to find a one
to one g(·) such that either
(i) the diagonal of Vg(θ) is constant, say

Vg(θ)ii = 1

for 1 ≤ i ≤ p.
or (ii) such that the diagonal of Vg(θ)

−1 is constant, say

Vg(θ)
ii = 1

for 1 ≤ i ≤ p, where (V ij) = V −1.
Problem (ii) appears to be more relevant than Problem (i) for obtaining an
approximate confidence region for θ. Problem (i) is considered in §3. In §5 we
illustrate that Problem (ii) often has no solution.

In many cases one will be constrained to pick g(·) in the form

gi(θ) = g(i) (θi) (1.5)

for 1 ≤ i ≤ p, where each g(i) : R → R is one to one – typically either because
separate CRs are required by the client for each θi (despite their being depen-
dent) or because a transformation such as in (i) or (ii) may give a peculiarly
shaped CR in Rp that is difficult to visualize. So, we have
Problem (iii): how can one choose g(·) of type (1.5) so that {Vg(θ)ii, 1 ≤ i ≤ p}
are ‘as stable as possible’? Since for g(·) of type (1.5)

Vg(θ)ii = ġ(i) (θi)
2
V (θ)ii, 1 ≤ i ≤ p

one cannot hope to correct for variation from {θj , j 6= 1} in V (θ)ii using such
a transformation. Consider for instance
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Example 1.3. Suppose F is bivariate normal with arbitrary mean and covari-

ance
( θ2 θ1
θ1 θ3

)
and sample covariance

(
θ̂2 θ̂1
θ̂1 θ̂3

)
. By (1.2) this has

V (θ) =




θ21 + 2θ2θ3 2θ1θ2 2θ1θ3
. 2θ22 2θ21
. . 2θ23


 . (1.6)

So, under (1.5), Vg(θ)11 = ġ(1)(θ1)
2(θ21 + 2θ2θ3), so that there is no obvious

way to proceed. One might decide to stabilize the dominant term, viz. θ21 if

θ̂21 ≫ 2θ̂2θ̂3 with g(1)(θ1) = log θ1, or 2θ2θ3 if θ̂1 ≪ 2θ̂2θ̂3 with g(1)(θ1) = θ1.
So, there appears to be no satisfactory answer to Problem (iii) and we shall not
consider it further.

Quite a different problem is (iv) that of choosing a one to one g(·) : Rp → Rp

such that g1(θ̂n), . . . , gp(θ̂n) are asymptotically independent:

Vg(θ)ij = 0

for i 6= j. This problem is considered in §4. Clearly, there will generally be no
solution if p > 3, and in fact even for p = 2 there is often no solution. In this
case, one compromise is to look for g(·) such that the off-diagonal elements are
“small”. The use of this sort of reparameterization has been argued for by Gillis
and Ratkowsky [3]. In fact, Ratkowsky [6] advocates that the client be urged
to switch his interest in θ1, . . . , θp to concern about φ1, . . . , φp, where φ = g(θ).
Such orthogonal reparameterization has also proved useful in simplifying com-
putational procedures. For example, the classical use of orthogonal polynomials
in calculating regression parameters amounts to an orthogonal reparameteriza-
tion.

When Problem (iv) has no solution – or as a first step to finding a solution
of problem (iv) – we have

Problem (v): find a one to one g(·) : Rp → Rp so that g(θ̂n)1 is independent
(asymptotically) of the other components; i.e.

Vg(θ)ij = 0

for 2 ≤ j ≤ p. Problem (v) is also considered in §4.
So far we have assumed V (θ) is a known function. However, finding it for a

particular estimate θ̂ may be sometimes extremely difficult by classical means.
In §2 we give a brief account of how V (θ) may be found very simply.

2. Finding the asymptotic covariance

Consider a random sample Z1, . . . , Zn of observations from Rs with unknown
distribution F and empirical distribution Fn. Let θ(·) be a p-dimensional func-
tional on the set of distributions on Rs. Suppose we decide to estimate θ(F ) by

θ̂n = θn(Fn), where θn(·) is a functional such that

n1/2 (θn(F )− θ(F )) → 0
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as n→ ∞. For example, the unbiased estimate of Σ(F ) = covarF (Z1) is Σn(Fn),
where

Σn(F ) =
(
1− n−1

)−1
Σ(F ).

Under regularity conditions, (I), say,

Aθ(F )
−1/2n1/2 (θn(Fn)− θ(F )) → N (0, Ip) (2.1)

as n→ ∞, where

Aθ(F ) =

∫
Iθ,F (z)Iθ,F (z)

′dF (z)

and

Iθ,F (z) = lim
ε↓0

(
θ
(
1− εF + εδz

)
− θ(F )

)
/ε,

– the influence function of θ(·). Here, δz is the distribution putting mass 1
at z. (Under slightly weaker conditions we may replace Aθ by Aθn in (2.1)).
For example, when θn(F ) = θ(F ) =

∫
zdF (z), we may take (I): Aθ(F ) finite.

Non-parametric confidence regions based on (2.1) can then be computed.
Now suppose that we may assume (say by the physical nature of the problem)

that F has a known parametric form Fθ0 , ψ, where (θ0, ψ) are unknown, θ0
lies in Rp, and ψ in Rq. Then θn(Fn) is a consistent estimate of θ0 provided
θ(Fθ0,ψ) ≡ θ0, and V (θ0) = Aθ(Fθ0,ψ).

For p = 1 we saw that Vg(θ) = 1 for the transformation (1.4). If Vn(θ)
approximates the covariance of θn(Fn) more closely than V (θ), one might prefer
to use instead

gn(θ) =

∫ θ

0

Vn(x)
−1/2dx. (2.2)

So, in Example 1.2, N1/2(θ̂n − θ) has variance (1 − θ2)2(1 + 11θ2/2N +
O(N−2)), where N = n − 1, by equation (16.74) of Stuart and Ord [7], for
which (2.2) gives

gn(θ) = g(θ)− (4N)−1 (3g(θ) + θ) ,

where g(θ) = 1/2 log{(1 + θ)/(1 − θ)}.

3. Stabilizing the diagonal of the covariance

In this section, we illustrate Problems (i) and (ii) for the case, where we
wish to estimate θ(F ) = {µ(F ),Σ(F )} or a component of it such as µ(F ),

where µ(F ) = EFZ1 =
∫
zdF (z), and Σ(F ) = covarF (Z1) with θ̂n = θn(Fn) =

{µ(Fn),Σn(Fn)} and

n1/2 (Σn(F )− Σ(F )) → 0
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as n → ∞. By equation (1.4) of Withers and Nadarajah [8], θ(·) has influence
function

Iθ,F (z) = {Iµ,F (z), IΣ,F (z)} ,

where

Iµ,F (z) = z − µ(F ), IΣ,F (z) = (z − µ(F )) (z − µ(F ))
′ − Σ(F ).

So, n1/2(θ̂n − θ) has asymptotic covariance Aθ(F ) = {Aθiθj (F )} given by

Aµi,µj
(F ) = Σij(F ), (3.1)

Aµk,Σij
(F ) = µijk(F ), (3.2)

where

µijk(F ) =

∫
(zi − µi(F )) (zj − µj(F )) (zk − µk(F )) dF (z)

and

AΣij ,Σkl
(F ) = µijkl(F )− Σij(F )Σkl(F ), (3.3)

where µijkl(F ) is defined analogously. (Here, we have extended our notation in
an obvious manner since θ is not a vector.)

So, for any parametric distribution, Fθ, for which the third central moments
vanish, µijk(Fθ) ≡ 0, µ̂n and Σ̂n are asymptotically independent.

Example 3.1. Consider F (z) = Ns(µ,Σ). So, θ(F ) = θ, where θ = {µ,Σ}.
(So, the M.L.E. of θ is θ(Fn) while an unbiased estimate of θ is θn(Fn), where
θn(F ) = {µ(F ), n

n−1Σ(F )}.) By (3.1)–(3.3), V (θ) is given by

Vµ,µ(θ) = Σ, Vµ,Σ(θ) = 0,

VΣij ,Σkl
(θ) = ΣikΣjl +ΣilΣjk,

which does not depend on µ. �

In general, when θ =
(
θ1
θ2

)
and V (θ) does not depend on θ1 then for Vg(θ) to

satisfy Problem (i) or (ii), (1.3) requires that g(θ) is independent of θ1, so that
g(·) is not one to one and there is no solution. So, in Example 3.1 Problem (i),
like Problem (iv), has no solution when θ includes any component of µ.

Does Problem (i) have a solution for θ = Σ, ψ = µ? First consider two
subsets of Σ. As noted for the case p = 1 a solution to Problems (i) and (iv) for
θ = (Σ11, . . . ,Σpp)

′ is (1.5) with gi(·) ≡ p(·), where

p(x) = 2−1/2 log x. (3.4)

In this case,

Vg(θ) =
(
2ρ2ij

)
,
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where

ρij = corr
(
(Z1)i , (Z1)j

)
= Σij (ΣiiΣjj)

−1/2 .

Now consider Problem (i) as in Example 1.3 for

θ = (Σ12,Σ11,Σ22)
′
. (3.5)

Note that V (θ) is given by (1.6). To find a solution one may proceed sequentially.
One can first stabilize those V (θ)ii which are functions of θi alone, using (1.4).
By (1.3) this has the effect of dividing the corresponding elements of the ith

row and column of V (θ) by V (θ)
1/2
ii , where the (i, i) element is counted twice.

That is, transforming to

x(θ) = (θ1, p (θ2) , p (θ3))
′
,

Vx(θ) =




θ21 + θ2θ3 21/2θ1 21/2θ1
. 1 θ21θ

−1
2 θ−1

3

. . 1


 .

As a second step we might look for a transformation of type u(θ) = y(x) =
y(x(θ)) = (a(θ1)b(θ2)c(θ3), x2, x3)

′ such that Vu(θ)11 = 1. If these steps are
done in the reverse order the result will be the same: first we try for g(θ) =
(u(θ), θ2, θ3)

′ such that Vg(θ)11 depends on u = u(θ) alone, where u(θ) has form
θ1bc, and b = b(θ2), c = c(θ3). Since g(θ)i = θi, i = 2, 3, Vg(θ)ij = V (θ)ij , 2 ≤ i,
j ≤ 3. In particular, V (θ)22, V (θ)33 are not altered. (Recall these are in the
required form for the use of (1.4).)

By (1.3), we obtain

Vg(θ)11 = θ21b
2c2 + θ2b

2θ3c
2 + θ21 ḃ

22θ22c
2 + 2θ21b

2ċ2θ22 + 4θ21θ2bḃc
2

+ 4θ21b
2cċ+ 4θ41 ḃbċc,

which is a quartic in θ1 and hence in u. In particular, we require that 4ḃb−3ċc−3,

the coefficient of u4, be constant. This is achieved by b = θ
−1/2
2 , c = θ

−1/2
3 ,

(which gives u(θ) = ρ12.)
Checking the other terms, we find that this works; Vg(θ)11 is a function of

ρ12 alone. We obtain from (1.3), for

θ =




ρ12
Σ11

Σ22


 , V (θ) =




(
1− θ21

)2 (
θ1 − θ31

)
θ2

(
θ1 − θ31

)
θ3

. 2θ22 2θ21θ2θ3

. . 2θ23


 .

So, applying (1.4) to diagonal terms we obtain as a solution to Problem (i): for

θ =




z (ρ12)
p (Σ11)
p (Σ22)


 , V (θ) =




1 2−1/2ρ12 2−1/2ρ12
. 1 ρ12
. . 1


 . (3.6)
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Here, z(·) is Fisher’s z-transformation

z(ρ) = 2−1 log
1 + ρ

1− ρ
,

and p(·) is given by (3.4). So, an answer to Problem (i) for θ = Σ is

g(θ) = {z (ρij) , p (Σii)} = {qij , λi}

say, for which by (1.3), Vg(θ : θi, θj) = Vg(θ)ij is given by

Vg (θ : λi, λj) = ρ2ij ,

Vg (θ : qij , qkl) =
(
1− ρ2ij

)−1 (
1− ρ2kl

)−1
{
ρkiρlj + ρkjρli − ρklρkiρkj

− ρklρliρlj − ρijρkiρli

− ρijρkjρlj + 1/2ρijρkl(ρ
2
ki + ρ2li + ρ2kj + ρ2lj)

}
,

Vg (θ : qij , λk) =
(
1− ρ2ij

)−1
2−1/2

{
2ρikρjk − ρij

(
ρ2ik + ρ2jk

)}
.

4. Obtaining asymptotic independence

Here, we consider Problems (iv) and (v). Let us again proceed stepwise, at

the first step transforming to g(θ)′ = (u(θ), θ2, θ3, . . .) and seeking to make u(θ̂)

asymptotically independent of (θ̂2, θ̂3, . . .); i.e. we seek u(·) so that Vg(θ)12 =
· · · = Vg(θ)1p = 0. This will solve Problem (v) and reduce the dimension of
Problem (iv) from p to p− 1. We have

Vg(θ) =




∑
uiujVij

∑
uiVi2 · · ·

∑
uiVip

. V22 · · · V2p
· · · · · · · · · · · ·
. Vp2 · · · Vpp


 ,

where Vij = Vij(θ) and ui = ∂u(θ)/∂θi. The method of obtaining the general
solution of

p∑

i=1

uiVij = 0 (4.1)

for a fixed j, is known as the method of characteristic curves, and is as follows,
(c.f. pages 28-30 of Courant and Hilbert [2]).

Solve dθi/ds = Vij(θ), 1 ≤ i ≤ p for functions θ1(s), . . . , θp(s), with p ar-
bitrary coefficients. Eliminate s to get p − 1 equations of the form ci = φi(θ),
1 ≤ i ≤ p− 1, where ci is an arbitrary constant, and φi a completely specified
function. Then the general solution of (4.1) is uj(θ) = w(φ1(θ), . . . , φp−1(θ)),
where w(·) is a suitably differentiable but otherwise arbitrary function. So, in
order to solve Problem (v) we have first to find the solutions uj(θ) to (4.1) for
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j = 2, . . . , p in terms of p − 1 arbitrary functions, and then to see if we can
choose our arbitrary functions so that u2(θ) = · · · = up(θ).

Generally one can simplify the problem taking suitable linear combinations
of (4.1) and solving the partial differential equations so obtained.

Consider again

Example 4.1. Consider F (z) = N2(µ,Σ) with θ given by (3.5). Solving the
problem for θ is the same as solving it for g(θ), if g is one-to-one, so we may
as well start from the form θ given by (3.6), since it has a fairly simple form
for V (θ). Set ρ = ρ12. Then (4.1) with j = 2, 3 is just

u12
−1/2ρ+ u2 + u3ρ

2 = 0 = u12
−1/2ρ+ u2ρ

2 + u3,

which simplifies, assuming |ρ| 6= 1, to

u2 = u3

and

u1 = −ψ (θ1)u2,

where ψ(θ1) = 21/2(ρ+ ρ−1), ρ = tanh(θ1).
By the method of characteristic curves the solution is u(θ) = f(θ2 − θ3 −

b(θ1)), where f(·) is differentiable but otherwise arbitrary, and ḃ(θ1) = ψ(θ1),
i.e. b(θ1) = 21/2 log sinh |2θ1|. �

In particular, taking f(x) = 21/2x gives u(θ) = 21/2(θ2 + θ3)− log sinh |2θ1|.

That is u(θ̂) is asymptotically independent of (θ̂2, θ̂3). Transforming back to Σ
we obtain:

Theorem 4.1. Set ρ = ρ12. Let

M12(Σ) = Σ11Σ22Σ
−1
12 − Σ12 = (Σ11Σ22)

1/2 (
ρ−1 − ρ

)
. (4.2)

Then M12(Σ̂) is asymptotically independent of (Σ̂11, Σ̂22).

An application of (1.3) to (1.1) yields nvarM12(Σ̂) → AM12
(Σ) = d(ρ2)Σ11Σ22

and nvar(ρ̂−1 − ρ̂) → d(ρ2) as n→ ∞, where d(x) = x− 4− x−1 + x−2. So, by
the conditional properties of the normal distribution (for example, page 28 of
Anderson [1]), we have conditional convergence:

Corollary 4.1. As n→ ∞,

n1/2
(
M12

(
Σ̂
)
−M12(Σ)

) ∣∣∣
(
Σ̂11, Σ̂22

)
→ N (0, AM12

(Σ)) ,

n1/2
(
ρ̂−1 − ρ̂− ρ−1 + ρ

) ∣∣∣
(
Σ̂11, Σ̂22

)
→ N

(
0, d

(
ρ2
))
.

This solves Problem (v) for θ given by (3.5) and reduces Problem (iv) to

finding a one to one g(·) : R2 → R2 so that g1(Σ̂11, Σ̂22) is asymptotically

independent of g2(Σ̂11, Σ̂22). For simplicity transform θ = (Σ11,Σ22)
′ to

θ = (p (Σ11) , p (Σ22))
′
for which V (θ) =

(
1 ρ212
. 1

)
, (4.3)
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where we may regard ρ12 as a nuisance parameter. In this form we see Problem
(iv) has no solution for θ in (4.3), and hence Problem (iv) has no solution for θ =
(Σ12,Σ11,Σ22)

′ – since transforming (4.3) suitably will spoil the independence
obtained in (4.2).

5. Stabilizing the diagonal of the inverse covariance

Here, we give an example, where Problem (ii) has no solution. Because of
the labor in computing inverses we take the case p = 3. Again suppose F is
bivariate normal and θ′ = (Σ12,Σ11,Σ22). To solve Problem (ii) for θ is the
same as solving it for g(θ), where g is one-to-one. So, let us take θ as in (3.6),
and set ρ = ρ12. Then

V (θ)−1 =




1 + ρ2 −ρ2/2 −ρ2/2
. b(ρ) c(ρ)
. . b(ρ)


 ,

where b(ρ) = 1/2 + 1/2(1− ρ2)−1 and c(ρ) = 1/2− 1/2(1− ρ2)−1.
Since V (θ) depends only on ρ, let us try a transformation of the form g(θ)′ =

(a1(ρ), a2(ρ)θ2, a3(ρ)θ3). Computing the coefficient of Vg(θ)
11 = (Vg(θ)

−1)11
one finds that |Vg(θ)|.Vg(θ)

11 is linear in (1, θ2, θ3) while |Vg(θ)| is quadratic in
(1, θ2, θ3). So, for Vg(θ)

11 to be independent of θ2, we require 0 = coefficient of θ22
in |Vg(θ)| = A2

1A
2
2A

2
3(1/2ρ

2− 1), where Ai(θ1) = ai(ρ). So, A2, A3 are constant,
say 1. If we choose A1 = (1 + ρ2)1/2 we obtain Vg(θ)

11 = 1, but Vg(θ)
ii = b(ρ),

i = 2, 3. So, it seems that in this example we can obtain either Vg(θ)
11 = 1 or

Vg(θ)
22 = Vg(θ)

33 = 1, but not both. So, it appears that Problem (ii) often has
no solution.
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