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A note on Bayesian robustness for count data

Jairo A. Fúquene and Moises Delgado
University of Puerto Rico

Abstract. The usual Bayesian approach for count data is Gamma/Poisson
conjugate analysis. However, in this conjugate analysis the influence of
the prior distribution could be dominant even when prior and likelihood
are in conflict. Our proposal is an analysis based on the Cauchy prior for
natural parameter in exponential families. In this work, we show that the
Cauchy/Poisson posterior model is a robust model for count data in contrast
with the usual conjugate Bayesian approach Gamma/Poisson model. We use
the polynomial tails comparison theorem given in (Bayesian Anal. 4 (2009)
817–843) that gives easy-to-check conditions to ensure prior robustness. In
short, this means that when the location of the prior and the bulk of the mass
of the likelihood get further apart (a situation of conflict between prior and
likelihood information), Bayes theorem will cause the posterior distribution
to discount the prior information. Finally, we analyze artificial data sets to
investigate the robustness of the Cauchy/Poisson model.

1 Introduction

In recent years, the Bayesian robustness methods have been very important in de-
velopments of Bayesian Analysis. We can find in the literature different propos-
als about robust priors. For example, in Dawid (1973), O’Hagan (1979), Berger
(1985), Pericchi and Smith (1992) and Gelman et al. (2008), robust priors for
location parameters are studied; however, for the Poisson likelihood there is no
previously known clear results in Bayesian robustness. In Fúquene, Cook and Per-
icchi (2009), the Cauchy and Berger’s robust heavy-tailed priors are considered
and several mathematical results are presented. These authors obtain specific re-
sults for the Binomial and Normal likelihoods with applications to clinical trials.
On the other hand, the proposal in this paper is to show the robustness of the
Cauchy prior for the Poisson likelihood. Robust priors have bounded influence, in
other words the prior is discounted automatically when there are conflicts between
prior information and data. An important term in this paper is “The posterior mean
is robust with respect to the prior” which is explained in the following definition
(Fúquene (2009)):

Definition 1.1. Let λ be a random variable with prior distribution, π(λ), with
location parameter μ. The posterior mean is robust with respect to the prior, if and
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only if, the posterior mean remains bounded as μ → +∞ or μ → −∞. That is, the
posterior mean is robust if there exists a constant M such that −M < E(λ|y) < M .

Fúquene, Cook and Pericchi (2009) present a novel result, the polynomial tails
comparison theorem, which gives easy-to-check conditions to ensure prior robust-
ness for the natural parameter in exponential families. We can use this result for
the Poisson likelihood, because the likelihood does not have to be location/scale. In
this work, we show the robustness of the cauchy prior for the Cauchy/Poisson pos-
terior model in contrast with the usual conjugate approach Gamma/Poisson pos-
terior model. The paper proceeds as follows: in Section 2, we give a background
of the Cauchy/Poisson and Gamma/Poisson posterior models. In Section 3, we
study the prior specification and posterior moments of the Cauchy/Poisson model.
In Section 4, we analyze artificial data sets to investigate the robustness of the
Cauchy/Poisson model. We make some closing concluding remarks in Section 5.

2 The Poisson likelihood with conjugate and Cauchy priors

The Poisson likelihood arises in the study of data taking the form of counts. In
words, let a sample of size n, X1, . . . ,Xn ∼ Poisson(θ). The Poisson distribution
in the exponential family form is

f (X̄n|λ) ∝ exp(nX̄nλ − neλ), (2.1)

where X̄n = ∑n
i=1 Xi and the natural parameter is given by λ = log(θ). The max-

imum likelihood estimator (MLE) of the natural parameter is λ̂ = log(X̄n). Now
we perform a conjugate analysis, and express the Gamma(α,β) prior, after of the
transformation of the parameter θ to λ = log(θ), as

pG(λ) = βα

�(α)
exp(λα − βeλ), α,β > 0. (2.2)

The cumulant generating function of the prior distribution pG(λ) is given by
EG(etλ) ∝ log(�(α + t)) − t log(�(β)), hence

EG(λ) = �(α) − log(β); VG(λ) = � ′(α), (2.3)

where �(·) is the digamma function and � ′(·) is the trigamma function (see
Abramowitz and Stegun (1992)). The posterior distribution for the Gamma/Pois-
son model is given by

fGP(λ|X̄n) = (β + n)α+nX̄n

�(α + nX̄n)
exp{(α + nX̄n)λ − (β + n)eλ};

(2.4)
α,β > 0.
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We have the cumulant generation function of the Gamma/Poisson model in closed
form give as EGP(etλ|X̄n) ∝ log(�(α + nX̄n + t)) − t log(�(β + n)), hence the
posterior expectation and variance are given by

EGP(λ|X̄n) = �(α + nX̄n) − log(β + n);
(2.5)

VGP(λ|X̄n) = � ′(α + nX̄n).

On the other hand, we consider a Cauchy prior for the natural parameter λ = log(θ)

pC(λ) = β

π [β2 + (λ − ν)2] , (2.6)

with parameters of location and scale ν and β , respectively, the posterior distribu-
tion of the C/P model is

fCP(λ|X̄n) = exp{nX̄nλ − neλ − log(β2 + (λ − ν)2)}
p(X̄n)

, (2.7)

where p(X̄n) is the predictive marginal. Approaches to the approximation of
p(X̄n) are the Laplace’s method, the rejection method and Markov chain Monte
Carlo (MCMC) methods. We can see that the posterior (2.7) has the form

fCP(λ|X̄n) = exp{θy − nM(θ) + ρ(θ) − c(y)} (2.8)

where c(y) = log(p(X̄n)), ρ(θ) = log(pC(λ)), θy = nX̄nλ and M(θ) = eλ.
Pericchi, Sanso and Smith (1993) show that posterior distributions that have the
form (2.8) belong to the exponential family.

3 Computations with Cauchy and conjugate priors

Because the Cauchy/Poisson model has only one parameter, we can use the re-
jection method to find the posterior moments of this model (see Gamerman and
Lopes (2006)). It is clear that the Cauchy density is an envelope, and it is simple to
generate Cauchy distributed samples, so the method is well defined and feasible.
The rejection method proceeds as follows:

1. Calculate M = f (X̄n|λ̂).
2. Generate λj ∼ pC(λ).
3. Generate Uj ∼ uniform(0,1).
4. If MUj pC(λj ) < f (X̄n|λj )pC(λj ), accept λj . Otherwise reject λj and go to

step 2.
5. Return to step 1 and repeat, until the desired sample {λj , j = 1, . . . ,10,000}

is obtained. The members in this sample will then be random variables from
fCP(λ|X̄n).
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Figure 1 Posterior expectation and posterior variance of the Cauchy/Poisson (C/P) and
Gamma/Poisson (G/P) posterior models.

We use Monte Carlo Methods for the posterior moments of the Cauchy/Poisson
model.

In Figure 1, the MLE is kept fixed at log(X̄n) = 0 and the prior location is
moved to create a conflict between data and prior. With a Gamma prior the pos-
terior expectation is unbounded. We can see that the posterior expectation of the
Cauchy/Poisson posterior model is bounded. In other words, when prior and like-
lihood information are in conflict, the posterior expectation of the Cauchy/Poisson
tends to MLE. In contrast to the Gamma/Poisson model, the posterior variance
with the Cauchy prior is not monotonic in the conflict between the MLE and prior
location.

Now, we show the Polynomial Tails Comparison theorem presented in Fúque-
ne, Cook and Pericchi (2009). In order to decide if a Cauchy prior is robust with
respect to a Poisson likelihood, the following theorem is useful and easy to apply.

Let f (λ) be any likelihood function such that as |λ| → ∞∫
|λ|>m

f (λ)dλ = O(m−2−ε). (3.1)

For this paper, f is a Poisson distribution. Define

c(λ;μ) = b

π(b2 + (λ − μ)2)
(3.2)

for some b > 0. This is the Cauchy PDF with center μ and scale b. Denote by
πC(λ|data) and πU(λ|data) the posterior densities employing the Cauchy and
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the Uniform prior densities respectively. Applying Bayes rule to both densities,
it yields for any parameter value λ0 the following ratio:

πC(λ0|data)

πU(λ0|data)
=

∫ ∞
−∞ f (λ)c(λ;μ)dλ

c(λ0;μ)
∫ ∞
−∞ f (λ)dλ

.

Theorem 3.1. For fixed λ0,

lim
μ→∞

∫ ∞
−∞ f (λ)c(λ;μ)dλ

c(λ0;μ)
∫ ∞
−∞ f (λ)dλ

= 1. (3.3)

In other words, when there is a conflict between prior information and the sam-
ple information, the Cauchy prior effectively becomes an uniform prior, and in
this precise sense the prior information is discounted. We need that the Poisson
likelihood to be of order (m−2−ε) in order to use Theorem 3.1.

Therefore, let m > 0 be such that ∀λ > m, λ
n

+ X̄nλ < exp(λ), so we have that

exp(λ + nX̄nλ) < exp(n exp(λ)),

exp(nX̄nλ)

exp(n exp(λ))
<

1

exp(λ)

hence ∫ ∞
m

exp(nX̄nλ)

exp(n exp(λ))
dλ <

∫ ∞
m

1

exp(λ)
dλ = − 1

exp(λ)

∣∣∣∣
∞

m

= 1

exp(m)
.

Furthermore,

lim
m→∞m2+ε

∫ ∞
m

exp(nX̄nλ)

exp(n exp(λ))
dλ = lim

m→∞
m2+ε

exp(m)
= 0. (3.4)

On the other hand, for λ < m < 0
∫ m

−∞
exp(nX̄nλ)

exp(n exp(λ))
dλ <

∫ m

−∞
exp(nX̄nλ)dλ = 1

nX̄n

exp(nxλ)

∣∣∣∣
m

∞
= exp(nX̄nm)

nX̄n

.

Furthermore,

lim
m→∞m2+ε

∫ m

−∞
exp(nX̄nλ)

exp(n exp(λ))
dλ = lim

m→∞
m2+ε exp(nX̄nm)

nX̄n

= 0. (3.5)

From (3.4) and (3.5), when m → ∞,
∫ ∞
|λ|>m

exp(nX̄nλ)

exp(n exp(λ))
dλ = O

(
1

m2+ε

)
.

Because of the Poisson likelihood is of order (m−2−ε), we can use the polyno-
mial comparison theorem to find the behavior of the posterior expectation of the
Cauchy/Poisson model. Hence, we have the following result.
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Corollary 3.1. The posterior expectations for the Cauchy/Poisson and Gamma/
Poisson posterior models satisfy the following:

1. Robust result:

lim
ν→±∞ECP(λ|X+) ≈ λ̂ − 1

2neλ̂
. (3.6)

2. Non-robust result:

lim
EG(λ)→±∞EGP(λ|X+) → ±∞, (3.7)

respectively.

Note: the limit (3.6) is approximately equal to the MLE.

Proof. Given the polynomial tails comparison theorem, we can use the uniform
prior instead of the Cauchy prior when ν → ±∞ for the Poisson likelihood, the
generating function for the Cauchy/Poisson model is

lim
ν→±∞ECP(etλ|X̄n) =

∫ ∞
−∞ exp{nX̄nλ − neλ + tλ}dλ∫ ∞

−∞ exp{nX̄nλ − neλ}dλ
, (3.8)

after of the transformation λ = log(θ/(1 − θ)), (3.8) is

lim
ν→±∞ECP(etλ|X̄n) = �(nX̄n + t)

nt�(nX̄n)
, (3.9)

hence

lim
ν→±∞ECP(λ|X̄n) = �(nX̄n) − log(n), (3.10)

the approximation of the Digamma function (Abramowitz and Stegun (1992)) is

�(z) ≈ log(z) − 1

2z
− O(z−2), (3.11)

hence

lim
ν→±∞ECP(λ|X̄n) ≈ log(nX̄n) − 1

2nX̄n

− O((nX̄n)
−2) − log(n). (3.12)

With the Gamma prior, EG(λ) ≈ log(α/β) − 1/2α − O(α−2). We can see that
EG(λ) → ∞ as α → ∞ and EG(λ) → −∞ as β → ∞, the approximation of the
posterior expectation for the conjugate G/P model is

EGP(λ|X̄n) ≈ log(α + nX̄n) − 1

2(α + nX̄n)
− O

(
(α + nX̄n)

−2) − log(β + n)

and EGP(λ|X̄n) → ∞ as α → ∞ and EGP(λ|X̄n) → −∞ as β → ∞. �
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4 Illustration

This example is taken from the blog called “Introduction to Bayesian Thinking”
of Jim Albert (available electronically at http://learnbayes.blogspot.com). Suppose
we are interested in learning about the proportion of official at-bats that are home
runs, called the home run rate, λ, for Derek Jeter1 before the start of the 2004
season. Suppose our prior beliefs are that the median is equal to 0.05 and the 90th
percentile is equal to 0.081. On the other hand, the likelihood information is based
in the number of at-bats and home runs hit by Jeter in the 2004 season.

We can obtain this data in jeter2004 contained in the LearnBayes package avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org
(R Development Core Team (2010)). We have with this information that Jeter ob-
tains

∑n
i=1 Xi = 23 home runs in n = 643 at-bats.

Here the two priors that match this information are Cauchy and Gamma. For
the Gamma prior, the parameters are α = 6 and β = 113.5, in the Log-Odds
scale the expectation and scale of the Gamma prior are respectively, �(6) −
log(113.5) = −3.02 and

√
� ′(6) = 0.42. For the Cauchy prior, the location is

the same as in Gamma prior and the scale can be calculated as β = (log(0.05) +
3.02)/ tan(π(0.9 − 1/2)) = 0.16.

Figure 2 displays the Cauchy/Poisson and Gamma/Poisson posterior models. In
this figure, we can see that the posterior and likelihood are very similar. In other
words, when the prior and likelihood information are consistent for the Poisson

Figure 2 Cauchy/Poisson and Gamma/Poisson when prior and likelihood are consistent.

1Derek Sanderson Jeter is an American professional baseball player considered to be one of the
best players of his generation.

http://learnbayes.blogspot.com
http://CRAN.R-project.org
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Figure 3 Cauchy/Poisson and Gamma/Poisson when prior and likelihood are in conflict.

likelihood the results are approximately equal with either Cauchy or Gamma pri-
ors.

On the other hand, suppose that Jeter during the 2004 season hits 30 home runs
in 120 at-bats. In this case, Figure 3 displays the situation of conflict between prior
and likelihood information. We can see that the Cauchy/Poisson model is more
related with the sample data. In contrast, the weight of the Gamma prior is higher
than in Cauchy/Poisson model. Figure 3 illustrates how the weight of the prior in
the conjugate case is very high when prior and likelihood are in conflict.

5 Concluding remarks

(1) The Cauchy prior in the Cauchy/Poisson model is robust but the Gamma
prior in the conjugate Cauchy/Poisson model for the inference of the Log-Odds is
not.

(2) We can use the rejection method to calculate easily the posterior moments
of the Cauchy/Poisson model.

(3) This approach has major application to several areas including for example
the Poisson model with extra variation in Bayesian methods for ecology or in a
poisson model parameterized in terms of rate and exposure.

(4) Finally, the use of a robust cauchy prior in the Cauchy/Poisson model with
a hierarchical structure may be even more important, recent results of robust hier-
archical models for a normal likelihood are shown in Perez and Pericchi (2009).
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