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Abstract. Linear dynamic mixed models are commonly used for continuous
panel data analysis in economic statistics. There exists generalized method of
moments (GMM) and generalized quasi-likelihood (GQL) inferences for bi-
nary and count panel data models, the GQL estimation approach being more
efficient than the GMM approach. The GMM and GQL estimating equations
for the linear dynamic mixed model can not, however, be obtained from the
respective estimating equations under the nonlinear models for binary and
count data. In this paper, we develop the GMM and GQL estimation ap-
proaches for the linear dynamic mixed models and demonstrate that the GQL
approach is more efficient than the GMM approach, also under such linear
models. This makes the GQL approach uniformly more efficient than the
GMM approach in estimating the parameters of both linear and nonlinear
dynamic mixed models.

1 Introduction

Let yit denote a continuous response for the ith (i = 1, . . . , I ) individual recorded
at time t (t = 1, . . . , T ). Let xit be the p ×1 vector of fixed covariates correspond-
ing to yit , and β be the p × 1 vector of fixed effects of xit on yit . Further suppose
that the response yit is influenced by yi,t−1 for t = 2, . . . , T , as well as it is also
influenced by an unobservable random effect γ ∗

i which is shared by all responses
of the ith individual recorded over T periods of time. This type of data can be
explained by using a linear dynamic panel data model (LDPDM) given by

yi1 = x′
i1β + ziγ

∗
i + εi1,

(1.1)
yit = x′

itβ + θ(yi,t−1 − x′
i,t−1β) + ziγ

∗
i + εit for t = 2, . . . , T ,

where zi is an additional covariate for the ith individual on top of the fixed covari-
ates xit , εit

iid∼ (0, σ 2
ε ) and γ ∗

i

iid∼ (0, σ 2
γ ). Also, εit and γ ∗

i are independent. In (1.1),
θ is referred to as the lag 1 dynamic dependence parameter. Note that the linear
dynamic mixed model in (1.1) is semiparametric by nature. This is because, the
random effects and the errors of the model are assumed to have their means and
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variances, but, their distributional forms are unknown. We refer to Bun and Car-
ree (2005), for example, and the references therein for this type of linear dynamic
mixed model based inferences.

Note that the LDPDM (1.1) produces the marginal mean as

E[Yit ] = x′
itβ = μit (say), (1.2)

which depends on the time dependent covariate at time t, and is a function of
the regression parameter vector β. Further, the marginal variance and the bivariate
auto-covariances produced by the model (1.1) have the formulas given by

var[Yit ] = σitt = z2
i σ

2
γ

{
t−1∑
j=0

θj

}2

+ σ 2
ε

t−1∑
j=0

θ2j for t = 1, . . . , T (1.3)

and

cov[Yiu, Yit ] = σiut = z2
i σ

2
γ

t−1∑
j=0

θj
u−1∑
k=0

θk + σ 2
ε

u−1∑
j=0

θ t−u+2j for u < t, (1.4)

respectively, and they are the functions of the dynamic dependence parameter θ,

random effects variance σ 2
γ , and the error variance σ 2

ε . It is of scientific interest to
estimate these parameters, namely β, θ, σ 2

γ and σ 2
ε , consistently and as efficiently

as possible.
Note that for the above linear dynamic mixed model (1.1), many econome-

tricians such as Arellano and Bond (1991), Ahn and Schmidt (1995), Blundell
and Bond (1998), and Imbens (2002) [see also Chamberlain (1992), Keane and
Runkle (1992) and Bond, Bowsher and Windmeijer (2001)] have bypassed the
estimation of the variance parameters and estimated the regression parameter β

and the dynamic dependence parameter θ by using the well-known generalized
method of moments (GMM) due to Hansen (1982). To be specific, to bypass the
variance parameters, these authors utilize the differences of the responses such as
zit = yit − yi,t−1 and construct suitable moment functions for the ith individual as
ψi(zi1, . . . , ziT ;β, θ) so that E[ψi(zi1, . . . , ziT ;β, θ)] = 0. This leads to the p +1
dimensional moment estimating equations for β and θ given by

I−1
I∑

i=1

ψi(zi, β, θ) = 0, (1.5)

where zi ≡ [zi1, . . . , ziT ]′. The moment estimators for β and θ obtained from (1.5)
are consistent but they may be inefficient. As an improvement over (1.5), some of
the above-mentioned authors estimate η = (β ′, θ)′ by minimizing the quadratic
form

I−1

[
I∑

i=1

ψi(zi, η)

]′
C

[
I∑

i=1

ψi(zi, η)

]
(1.6)
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for some positive definite m×m symmetric matrix C. The resulting estimators are
referred to as the GMM estimators due to Hansen (1982).

In Section 2, following Hansen (1982), we develop the GMM approach to es-
timate all parameters of the model (1.1), namely η = (β ′, θ)′, σ 2

γ and σ 2
ε . Note

that, in our approach, unlike the aforementioned authors, we do not need to by-
pass the estimation of the random effects variance σ 2

γ . Next, following Sutradhar
(2004) [see also Jiang and Zhang (2001)], in Section 3, we develop a generalized
quasi-likelihood (GQL) approach for the estimation of all parameters of the model
(1.1). Note that both GQL and GMM are moments based estimation approaches.
But, unlike the GMM approach, the GQL estimating equations are constructed
by pooling the covariance matrix based standard distance functions of all inde-
pendent individuals. This makes the GQL approach more efficient than the GMM
approach. Further note that even though these GMM and GQL approaches were
developed recently by Sutradhar, Rao and Pandit (2008) for binary panel data, and
by Jowaheer and Sutradhar (2009) for panel count data, these approaches, how-
ever, do not have the so-called pedagogical virtue of reducing from the discrete
data case to the continuous data case following the model (1.1).

We remark that the construction of the GMM and GQL estimating equations
requires the computation of the fourth-order moments based certain weight ma-
trices similar to the C matrix in (1.6). These weight matrices are approximated
by pretending that the data follow the normal distribution but with correct means
and variances under the semiparametric model (1.1). This approximation for the
weight matrices helps to increase the efficiency of the estimators as compared to
using certain independence assumption based identity weight matrices. Next, for
efficiency comparison between the two proposed GMM and GQL approaches, in
Section 4, we provide the formulas for the asymptotic variances of the estima-
tors [see equations (4.1) and (4.5)] without making any distributional assumptions
for the errors and random effects in model (1.1). Note that these variances were
computed based on the GMM estimating equation (2.7) and the GQL estimating
equations (3.2) and (3.4), which were also developed under the semiparametric
model (1.1). However, for an empirical efficiency comparison between the GMM
and GQL approaches, we may consider normal errors and random effects, under
the model (1.1), without any loss of generality. This normality consideration does
not put one approach in any disadvantageous situation as compared to the other.
The asymptotic variances under such a special normal case are also given in the
same section [see equations (4.2) and (4.6)]. The efficiency results for selected
values of the parameters are displayed in Table 1 in Section 4. As expected, the
GQL approach appears to be uniformly more efficient than the GMM approach in
estimating all parameters of the dynamic mixed model (1.1).
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2 GMM estimation approach

In this approach, one first writes appropriate standard unbiased moment functions
for the parameters of interest. Suppose that ψ1,ψ2,ψ3 and ψ4 are four such func-
tions for the parameters of interest, namely for β, θ, σ 2

γ and σ 2
ε in the present linear

dynamic mixed model setup. Here, E[ψm] = 0, for all m = 1, . . . ,4. Next, by con-
structing a vector of all moments functions, such as

ψ = [ψ ′
1,ψ2,ψ3,ψ4]′,

a quadratic form, namely

Q = ψ ′Cψ (2.1)

[Jiang and Zhang (2001, Section 1, equation (4))] is minimized in order to ob-
tain the GMM (or optimal moment) estimates for the desired parameters α =
[β ′, θ, σ 2

γ , σ 2
ε ]′. In (2.1), C is a suitable (p + 3) × (p + 3) positive definite weight

matrix C, with C = [cov(ψ)]−1 as an optimal choice [Jiang and Zhang (2001),
Hansen (1982)].

Now to construct the vector of moment functions, we consider

ψ1 =
I∑

i=1

T∑
t=1

xit [yit − x′
itβ], (2.2)

ψ2 =
I∑

i=1

T −1∑
t=1

[{(yit − x′
itβ)(yi,t+1 − x′

i,t+1β)} − σit,t+1], (2.3)

ψ3 =
I∑

i=1

T∑
u<t

[{(yiu − x′
iuβ)(yit − x′

itβ)} − σiut ] (2.4)

and

ψ4 =
I∑

i=1

T∑
t=1

[{yit − x′
itβ}2 − σitt ]/IT

(2.5)

− 2
I∑

i=1

T∑
u<t

[{(yiu − x′
iuβ)(yit − x′

itβ)} − σiut ]/IT (T − 1)

for the estimation of β ′, θ, σ 2
γ and σ 2

ε , respectively. Note that these functions are
unbiased for zero, that is, E[ψm] = 0 for m = 1, . . . ,4. Further note that since the
parameters β ′, θ, σ 2

γ and σ 2
ε , have different interpretation in the present linear dy-

namic mixed model setup as opposed to those of the panel count model considered
by Jowaheer and Sutradhar (2009) and binary panel model by Sutradhar, Rao and
Pandit (2008), the moment functions in (2.2)–(2.5) are different than those of the
count and binary data models.
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Note that the estimate of α = [β ′, θ, σ 2
γ , σ 2

ε ]′ that minimizes the quadratic form
(2.1) is obtained by solving

∂ψ ′

∂α
Cψ = ∂ψ ′

∂α
[cov(ψ)]−1ψ = 0. (2.6)

But, since the computation of the cov(ψ) matrix in (2.6) requires the formulas for
the third and fourth-order moments as well, one cannot compute such a covariance
matrix provided the error distributions for the model (1.1) are known. However,
as the consistency of the estimator of α will not be effected by the choice of the
weight matrix, a possible resolution is to use a normality (N ) based “working”
CN, say, matrix, and solve the estimating equation

∂ψ ′

∂α
CNψ = ∂ψ ′

∂α
[covN(ψ)]−1ψ = 0. (2.7)

We remark that even though it is suggested that the weight matrix C be computed
under “working” normality, the distance function ψ is computed based on σ 2

γ and
σ 2

ε , the variances of the true distributions of γ ∗
i and εit , respectively. The estimat-

ing equation (2.7) may be solved by using the Gauss–Newton iterative equation

α̂GMM(r + 1) = α̂GMM(r) +
[
∂ψ ′

∂α
CN

∂ψ

∂α′
]−1

r

[
∂ψ ′

∂α
CNψ

]
r

, (2.8)

where [·]r denotes that the expression within the square bracket is evaluated at
α = α̂GMM(r), the estimate obtained for the r th iteration. Let the final solution
obtained from (2.8) is denoted by α̂GMM.

2.1 Construction of the “working” weight matrix CN

Recall that C = [cov(ψ)]−1, where for m,v = 1, . . . ,4,

cov(ψ) = (cov(ψm,ψv)) (2.9)

with ψ1,ψ2,ψ3 and ψ4 are as in (2.2), (2.3), (2.4) and (2.5), respectively. Note that
the computation of this covariance matrix requires the formulas for all possible
second, third and fourth-order moments. Computing CN means that the elements
of the C matrix be computed by pretending that the data, that is, the response vec-
tor yi = (yi1, . . . , yit , . . . , yiT )′ follows a T -dimensional multinormal distribution
with true mean vector μi = (μi1, . . . ,μit , . . . ,μiT )′, and the T × T true covari-
ance matrix �i = (σiut ), where μit = x′

itβ by (1.2) and the formulas for σitt and
σiut are as in (1.3) and (1.4), respectively.

For convenience we provide all third and fourth-order moments as in the fol-
lowing two lemmas.

Lamma 2.1. Let δiu
t = E[(Yiu − μiu)(Yi
 − μi
)(Yit − μit )]. Under normality

δiu
t = 0. (2.10)
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Lamma 2.2. Let φiu
mt = E[(Yiu − μiu)(Yi
 − μi
)(Yim − μim)(Yit − μit )]. Un-
der normality

φiu
mt = σiu
σimt + σiumσi
t + σiutσi
m. (2.11)

We now use the above two lemmas and derive the elements of cov(ψ) in (2.9) as
follows. The resulting matrix is denoted by covN(ψ) so that CN = [covN(ψ)]−1,

as shown in (2.7) and (2.8).
The variances are given by

varN(ψ1) =
I∑

i=1

T∑
u=1

T∑
t=1

σiutxiux
′
it , (2.12)

varN(ψ2) =
I∑

i=1

T −1∑
u=1

T −1∑
t=1

[
φiu(u+1)t (t+1) − σiu(u+1)σit (t+1)

]
, (2.13)

varN(ψ3) =
I∑

i=1

T∑
u<


T∑
m<t

[φiu
mt − σiu
σimt ], (2.14)

varN(ψ4) = (IT )−2
I∑

i=1

T∑
u=1

T∑
t=1

[φiuutt − σiuuσitt ]

− 2(IT )−1(
IT (T − 1)

)−1
I∑

i=1

T∑
u=1

T∑
m<t

[φiuumt − σiuuσimt ] (2.15)

+ 4
(
IT (T − 1)

)−2
I∑

i=1

T∑
u<


T∑
m<t

[φiu
mt − σiu
σimt ].

All covariances for ψ1 with other functions are zero. That is,

covN(ψ1,ψ2) = covN(ψ1,ψ3) = covN(ψ1,ψ4) = 0. (2.16)

The remaining covariances have the formulas as

covN(ψ2,ψ3) =
I∑

i=1

T −1∑
u=1

T∑
m<t

[φiu,u+1,mt − σiu,u+1σimt ], (2.17)

covN(ψ2,ψ4) = (IT )−1
I∑

i=1

T −1∑
u=1

T∑
t=1

[
φiu(u+1)t t − σiu(u+1)σitt

]

− 2{IT (T − 1)}−1 (2.18)

×
I∑

i=1

T −1∑
u=1

T∑
m<t

[
φiu(u+1)mt − σiu(u+1)σimt

]
,
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covN(ψ3,ψ4) = (IT )−1
I∑

i=1

T∑
u=1

T∑
m<t

[φiuumt − σiuuσimt ]
(2.19)

− 2{IT (T − 1)}−1
I∑

i=1

T∑
u<


T∑
m<t

[φiu
mt − σiu
σimt ].

3 GQL estimation approach

3.1 GQL estimating equation for β

Let yi = [yi1, . . . , yit , . . . , yiT ]′ be the T × 1 vector of first-order responses. Since
E[Yit = x′

itβ = μit by (1.2), one obtains

E[Yi] = [μi1, . . . ,μit , . . . ,μiT ]′ = [x′
i1, . . . , x

′
it , . . . , x

′
iT ]′β

= Xiβ = μi (say).

One may then write the so-called GQL estimating equation for β as

I∑
i=1

∂μ′
i

∂β
�−1

i (yi − μi) =
I∑

i=1

X′
i�

−1
i (yi − Xiβ) = 0, (3.1)

yielding the GQL estimator of β given by

β̂GQL =
[

I∑
i=1

X′
i�

−1
i Xi

]−1 I∑
i=1

X′
i�

−1
i yi . (3.2)

Note that this GQL estimator is in fact the well-known generalized least squared
(GLS) estimator, with �i as the covariance matrix of yi, where its diagonal ele-
ments σitt are defined in (1.3), and its off-diagonal elements σiut have the formulas
given by (1.4).

3.2 GQL estimating equation for ξ = (θ,σ 2
γ , σ 2

ε )′

To estimate all three scale parameters, we follow Jowaheer and Sutradhar (2009,
Section 2.2.2) but utilize a vector of basic statistic consisting of the corrected
squares and the pair-wise products of the responses, given by

si = [(yi1 − μi1)
2, . . . , (yiT − μiT )2, (yi1 − μi1)(yi2 − μi2),

(3.3)
. . . , (yiu − μiu)(yit − μit ), . . . , (yi,T −1 − μi,T −1)(yiT − μiT )]′.

The GQL estimating equation for ξ has the form

I∑
i=1

∂σ ′
i

∂ξ
�−1

i (si − σi) = 0, (3.4)
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where σi = (σi11, . . . , σitt , . . . , σiT T , σi12, . . . , σiut , . . . , σi,T −1,T )′ = E(si) and
�i = cov(si). Note that similar to the computational difficulty for the weight ma-
trix C under the GMM approach, we encounter difficulties to compute the fourth-
order moment matrix �i. This is because the true distributions of the random ef-
fects and errors of the model (1.1) are not known. Let �i,N denote the “working”
matrix to be computed by pretending that the responses follow the multivariate
normal distribution as pointed out in the last section. Thus we solve the “working”
GQL estimating equation

I∑
i=1

∂σ ′
i

∂ξ
�−1

iN (si − σi) = 0 (3.5)

instead of (3.4), to obtain the GQL estimate for ξ.

Note that as si contains corrected squares and pairwise products of the re-
sponses, the normality based fourth-order moments matrix �iN may be computed
by using the general fourth order moments from Lemma 2.2.

4 Asymptotic efficiency comparison

4.1 Asymptotic covariance matrix of the GMM estimator

Recall that the GMM estimate for α = (β ′, θ, σ 2
γ , σ 2

ε )′ is obtained from (2.8). Un-
der some mild regularity condition it may be shown that as I → ∞,

I 1/2(α̂GMM − α)
(4.1)

∼ N

[
0, I

{
∂ψ ′

∂α
CN

∂ψ

∂α

}−1(
∂ψ ′

∂α
CNC−1CN

∂ψ

∂α′
){

∂ψ ′

∂α
CN

∂ψ

∂α′
}−1]

,

where C−1 = cov(ψ) is the true covariance matrix for ψ based on the true data
such as Gaussian or elliptic or any other symmetric continuous data. Note that
if the true distributions of the errors are normal, then C = CN . This leads to the
covariance matrix of α̂GMM as

cov(α̂GMM) =
{
∂ψ ′

∂α
CN

∂ψ

∂α′
}−1

. (4.2)

4.2 Asymptotic covariance matrix of the GQL estimator

Note that since I individuals are independent, it follows from (3.2) by applying
the standard central limit theorem that asymptotically (I → ∞)

√
I (β̂GQL − β) ∼ N

(
0, I

[
I∑

i=1

X′
i�

−1
i Xi

]−1)
. (4.3)
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Let ξ̂GQL = (θ̂GQL, σ̂ 2
γ,GQL, σ̂ 2

ε,GQL)′ be the solution of (3.5). Under some mild
regularity conditions, it may be shown that asymptotically (I → ∞)

I 1/2(ξ̂GQL − ξ) ∼ N(0, IV ∗
GQL), (4.4)

where V ∗
GQL is given by

V ∗
GQL =

[
I∑

i=1

∂σ ′
i

∂ξ
�−1

iN

∂σi

∂ξ

]−1[
I∑

i=1

∂σ ′
i

∂ξ
�−1

iN �i�
−1
iN

∂σ ′
i

∂ξ

]

(4.5)

×
[

I∑
i=1

∂σ ′
i

∂ξ
�−1

iN

∂σi

∂ξ

]−1

with �i as the true covariance matrix of si, as in (3.4). Note that if the true distri-
butions of the model (1.1) errors are normal, then the asymptotic covariance matrix
V ∗

GQL in (4.5) reduces to

V ∗
GQL =

[
I∑

i=1

∂σ ′
i

∂ξ
�−1

iN

∂σi

∂ξ

]−1

. (4.6)

4.3 Relative efficiency of the GQL versus GMM estimators under true
normal distributions: an empirical study

To reflect the asymptotic case, we consider I = 500. Furthermore, since the panel
data is usually collected over a small period of time, we consider T = 4, for ex-
ample. As far as the covariates are concerned, we choose two time dependent co-
variates. The first covariate is considered to be

xit1 =
⎧⎨
⎩

0 for i = 1, . . . , I/2; t = 1,2,
1 for i = 1, . . . , I/2; t = 3,4,
1 for i = K/2 + 1, . . . , I ; t = 1, . . . ,4,

whereas the second covariate is chosen to be

xit2 =

⎧⎪⎪⎨
⎪⎪⎩

1 for i = 1, . . . , I/2; t = 1,2,
1.5 for i = 1, . . . , I/2; t = 3,4,
0 for i = I/2 + 1, . . . , I ; t = 1,2,
1 for i = I/2 + 1, . . . , I ; t = 3,4.

By using β1 = β2 = 1.0; θ = 0.3 and 0.8, σ 2
γ = 0.5, 1.0, 1.5 and 2.0 and σ 2

ε = 1.0,

and the covariates given above, we have computed the diagonal elements (vari-
ances) of the covariance matrices from (4.2), and (4.3) and (4.6).

The asymptotic variances are shown in Table 1. The results of the table show
that the variances of the estimators for all five parameters β1, β2, θ, σ 2

γ and σ 2
ε ,

under the GQL approach are uniformly smaller than the corresponding variances
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Table 1 Comparison of asymptotic variances (var) of the GQL and GMM estimators for the estima-
tion of the regression parameters (β1 and β2), dynamic dependence parameter θ, and the variance
components (σ 2

γ and σ 2
ε ), of a longitudinal mixed model for the normal panel data, with T = 4 and

K = 500, β1 = β2 = 1.0 and σ 2
ε = 1.0

Asymptotic variances

θ Method Quantity σ 2
γ = 0.5 1.0 1.5 2.0

0.3 GQL var(β̂1) 1.99 × 10.0−3 1.50 × 10.0−3 3.68 × 10.0−3 2.45 × 10.0−3

var(β̂2) 1.47 × 10.0−3 1.18 × 10.0−3 2.66 × 10.0−3 1.65 × 10.0−3

var(θ̂) 2.53 × 10.0−4 4.85 × 10.0−5 8.70 × 10.0−5 9.01 × 10.0−7

var(σ̂ 2
γ ) 9.33 × 10.0−4 1.50 × 10.0−3 4.95 × 10.0−3 4.15 × 10.0−3

var(σ̂ 2
ε ) 1.08 × 10.0−3 1.05 × 10.0−3 1.22 × 10.0−3 1.00 × 10.0−3

GMM var(β̂1) 2.52 × 10.0−3 3.12 × 10.0−3 3.71 × 10.0−3 4.31 × 10.0−3

var(β̂2) 1.86 × 10.0−3 2.34 × 10.0−3 2.81 × 10.0−3 3.29 × 10.0−3

var(θ̂) 2.53 × 10.0−3 2.81 × 10.0−3 3.20 × 10.0−3 3.63 × 10.0−3

var(σ̂ 2
γ ) 5.27 × 10.0−2 0.119 0.225 0.385

var(σ̂ 2
ε ) 9.75 × 10.0−3 2.99 × 10.0−2 6.82 × 10.0−2 0.128

0.8 GQL var(β̂1) 2.36 × 10.0−3 1.06 × 10.0−3 2.79 × 10.0−2 2.76 × 10.0−2

var(β̂2) 2.70 × 10.0−3 1.60 × 10.0−3 6.08 × 10.0−4 0.160

var(θ̂) 2.76 × 10.0−6 9.60 × 10.0−8 1.96 × 10.0−7 1.48 × 10.0−7

var(σ̂ 2
γ ) 2.53 × 10.0−4 1.01 × 10.0−3 2.26 × 10.0−3 4.04 × 10.0−3

var(σ̂ 2
ε ) 1.00 × 10.0−3 1.00 × 10.0−3 1.00 × 10.0−3 1.00 × 10.0−3

GMM var(β̂1) 6.82 × 10.0−3 9.57 × 10.0−3 1.23 × 10.0−2 1.51 × 10.0−2

var(β̂2) 5.53 × 10.0−3 7.97 × 10.0−3 1.04 × 10.0−2 1.28 × 10.0−2

var(θ̂) 0.799 0.229 0.161 0.136

var(σ̂ 2
γ ) 1.108 0.447 0.421 0.459

var(σ̂ 2
ε ) 9.601 9.723 14.621 21.392

under the GMM approach, indicating that the GQL approach produces the same
or more efficient estimates than the GMM approach for all 5 parameters of the
model. For example, when θ = 0.3 and σ 2

γ = 1.5, the GQL estimates of β1 and β2

are found to be 3.71×10.0−3

3.68×10.0−3 = 1.008 and 2.81×10.0−3

2.66×10.0−3 = 1.056 times more efficient

than the corresponding GMM estimates. For the estimation of θ, σ 2
γ and σ 2

ε , the
GQL approach is found to outperform the GMM approach. For example, for the
same set of parameters, that is, when θ = 0.3 and σ 2

γ = 1.5, the GQL estimates

of θ, σ 2
γ and σ 2

ε were found to be 3.20×10.0−3

8.70×10.0−5 = 36.78, 0.225
4.95×10.0−3 = 45.45 and

6.82×10.0−2

1.22×10.0−3 = 55.90, times more efficient than the corresponding GMM estimates.
It is also seen from the table that for larger dynamic dependence parameter θ =
0.8, the GMM approach performs much worse as compared to the GQL approach.
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