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Bayesian Regularized Quantile Regression

Qing Li∗, Ruibin Xi† and Nan Lin‡

Abstract. Regularization, e.g. lasso, has been shown to be effective in quantile
regression in improving the prediction accuracy (Li and Zhu 2008; Wu and Liu
2009). This paper studies regularization in quantile regressions from a Bayesian
perspective. By proposing a hierarchical model framework, we give a generic treat-
ment to a set of regularization approaches, including lasso, group lasso and elastic
net penalties. Gibbs samplers are derived for all cases. This is the first work to
discuss regularized quantile regression with the group lasso penalty and the elastic
net penalty. Both simulated and real data examples show that Bayesian regu-
larized quantile regression methods often outperform quantile regression without
regularization and their non-Bayesian counterparts with regularization.

Keywords: Quantile regression; Regularization; Gibbs sampler; Bayesian analysis; Lasso;
Elastic net; Group lasso

1 Introduction

Quantile regression (Koenker and Bassett 1978) has gained increasing popularity as it
provides richer information than the classic mean regression. Suppose that we have
a sample (x1, y1), · · · , (xn, yn). Then the linear quantile regression model for the θth
quantile (0 < θ < 1) is yi = xT

i β + ui, i = 1, . . . , n, where β = (β1, · · · , βp)T ∈ Rp

and ui’s are independent with their θth quantiles equal to 0. It can be shown that the
coefficients β can be estimated consistently by the solution to the following minimization
problem

min
β

n∑

i=1

ρθ

(
yi − xT

i β
)
, (1)

where ρθ(·) is the check loss function

ρθ(t) =
{

θt, if t ≥ 0,
−(1− θ)t, if t < 0.

Although the asymptotic theory for quantile regression has been well developed
(Koenker and Bassett 1978; Koenker 2005), a Bayesian approach enables exact infer-
ence even when the sample size is small. Yu and Moyeed (2001) proposed a Bayesian
formulation of quantile regression using the skewed Laplace distribution for the errors
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and sampling β from its posterior distribution using a random walk Metropolis-Hastings
algorithm. Similar formulations were also employed by Tsionas (2003) and Kozumi and
Kobayashi (2009), both of which developed Gibbs samplers to estimate their mod-
els. Reed and Yu (2009) considered a similar scale-mixture expression of the skewed
Laplace distribution as in Kozumi and Kobayashi (2009) and derived efficient Gibbs
samplers. Reed et al. (2009) studied the stochastic search variable selection (SSVS)
algorithm based on the scale-mixture expression in Reed and Yu (2009). Kottas and
Krnjajić (2009) extended this idea to Dirichlet process scale mixture of skewed Laplace
distributions and another scale mixture of uniform distributions. The special case of
median regression was discussed by Walker and Mallick (1999), Kottas and Gelfand
(2001) and Hanson and Johnson (2002). They modeled the error distribution as mix-
ture distributions based on either the Dirichlet process or the Pólya tree. Hjort and
Walker (2009) introduced the quantile pyramids and discussed briefly on its applica-
tion to Bayesian quantile regression. Geraci and Bottai (2007) and Reich et al. (2009)
considered Bayesian quantile regression models for clustered data.

One crucial problem in building a quantile regression model is the selection of pre-
dictors. The prediction accuracy can often be improved by choosing an appropriate
subset of predictors. Also, in practice, it is often desired to identify a smaller subset
of predictors from a large set of predictors to obtain better interpretation. There has
been active research on sparse representation of linear regression. Tibshirani (1996)
introduced the least absolute shrinkage and selection operator (lasso) technique which
can simultaneously perform variable selection and parameter estimation. The lasso es-
timate is an L1-regularized least squares estimate, i.e., the lasso estimate is the solution
to minβ

∑n
i=1(yi−xT

i β)2 + λ‖β‖1, for some λ ≥ 0 and ‖β‖1 =
∑p

k=1 |βk|. Several con-
straints and corresponding improvement of the lasso are as follows. When categorical
predictors are present in the regression model, the lasso is not satisfactory since it only
selects individual dummy variables instead of the whole predictor. To solve this prob-
lem, Yuan and Lin (2006) introduced the group lasso by generalizing the lasso penalty.
Another extension of the lasso is the elastic net (Zou and Hastie 2005), which has an
improved performance for correlated predictors and can select more than n variables
in the case of p > n. Other related approaches include the smoothly clipped absolute
deviation (SCAD) model (Fan and Li 2001) and the fused lasso (Tibshirani et al. 2005).

The first use of regularization in quantile regression is made by Koenker (2004),
which put the lasso penalty on the random effects in a mixed-effect quantile regression
model to shrink the random effects towards zero. Wang et al. (2007) considered the
least absolute deviance (LAD) estimate with adaptive lasso penalty (LAD-lasso) and
proved its oracle property. Recently, Li and Zhu (2008) considered quantile regression
with the lasso penalty and developed its piecewise linear solution path. Wu and Liu
(2009) demonstrated the oracle properties of the SCAD and adaptive lasso regularized
quantile regression.

Our goal is to develop a Bayesian framework for regularization in linear quantile
regression. For linear regression, Bae and Mallick (2004) and Park and Casella (2008)
treated the lasso from a Bayesian perspective, and proposed hierarchical models which
can be solved efficiently through Gibbs samplers. These works shed light on incorpo-
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rating the regularization methods into the Bayesian quantile regression framework. In
this paper, we consider different penalties including lasso, group lasso and elastic net
penalties. Gibbs samplers are developed for these three types of regularized quantile
regression. As demonstrated later by simulation studies, these Bayesian regularized
quantile regression methods provide more accurate estimates and better prediction ac-
curacy than their non-Bayesian peers.

The rest of the paper is organized as follows. In Section 2, we introduce Bayesian
regularized quantile regression with lasso, group lasso and elastic net penalties, and
derive the corresponding Gibbs samplers. Simulation studies are then presented in
Sections 3 followed by a real data example in Section 4. Discussions and conclusions
are put in Section 5. An appendix contains technical proofs and derivations.

2 Bayesian formulation of the regularized quantile regres-
sion

Assume that yi = xT
i β +ui, i = 1, . . . , n, with ui being i.i.d. random variables from the

skewed Laplace distribution with density

f(u | τ) = θ(1− θ)τ exp[−τρθ(u)]. (2)

Then the joint distribution of y = (y1, · · · , yn) given X = (x1, · · · ,xn) is

f(y | X, β, τ) = θn(1− θ)nτn exp

{
−τ

n∑

i=1

ρθ(yi − xT
i β)

}
. (3)

Hence, maximizing the likelihood (3) is equivalent to minimizing (1). Recently, Kozumi
and Kobayashi (2009) proved that the skewed Laplace distribution (2) can be viewed
as a mixture of an exponential and a scaled normal distribution. More specifically, we
have the following lemma.

Lemma 1. Suppose that v is a standard exponential random variable and z is a standard
normal random variable. For θ ∈ (0, 1), denote

ξ1 =
1− 2θ

θ(1− θ)
and ξ2 =

√
2

θ(1− θ)
.

It follows that the random variable u = ξ1v + ξ2
√

vz follows the skewed distribution (2)
with τ = 1.

From Lemma 1, the response yi can be equivalently written as yi = xT
i β+τ−1ξ1vi +

τ−1ξ2
√

vizi, where vi and zi follow the standard exponential distribution, Exp(1),
and the standard normal distribution, N(0, 1), respectively. Let ṽi = τ−1vi, then
it follows the exponential distribution Exp

(
τ−1

)
, i.e. the density function of ṽi is
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f(ṽi | τ) = τ exp(−τ ṽi). Denote ṽ = (ṽ1, · · · , ṽn) and z = (z1, · · · , zn). Then, we have
the hierarchical model

yi = xT
i β + ξ1ṽi + τ−1/2ξ2

√
ṽizi,

ṽ | τ ∼
n∏

i=1

τ exp(−τ ṽi), (4)

z ∼
n∏

i=1

1√
2π

exp
(
−1

2
z2
i

)
.

The lasso, group lasso and elastic net estimates are all regularized least squares
estimates and the differences among them are only at their penalty terms. Specifically,
they are all solutions to the following form of minimization problem minβ

∑n
i=1(yi −

xT
i β)2 +λ1h1(β)+λ2h2(β), for some λ1, λ2 ≥ 0 and penalty functions h1(·) and h2(·).

The lasso corresponds to λ1 = λ, λ2 = 0, h1(β) = ‖β‖1 and h2(β) = 0. Suppose that the
predictors are classified into G groups and βg is the coefficient vector of the gth group.
Denote ‖βg‖Kg =

(
βT

g Kgβg

)1/2 for positive definite matrices Kg (g = 1, · · · , G). Then,
the group lasso corresponds to λ1 = λ, λ2 = 0, h1(β) =

∑G
g=1 ‖βg‖Kg and h2(β) = 0.

The elastic net corresponds to λ1, λ2 > 0, h1(β) = ‖β‖1 and h2(β) = ‖β‖22 =
∑p

k=1 β2
k.

Similarly, we form the minimization problem for regularized quantile regression as

min
β

n∑

i=1

ρθ(yi − xT
i β) + λ1h1(β) + λ2h2(β). (5)

That is, we replace the squared error loss by the the check loss, while keeping the corre-
sponding penalty terms unchanged. Starting from (4) we can show that, by introducing
suitable priors on β, the solution to (5) is equivalent to the maximum a posteriori
(MAP) estimate in the Bayesian formulation. In the following three subsections, we
will discuss (5) with lasso, elastic net and group lasso penalties separately. For each
penalty, we present the Bayesian hierarchical model and derive its corresponding Gibbs
sampler.

2.1 Quantile regression with the lasso penalty

We first consider quantile regression with the lasso penalty. The lasso regularized quan-
tile regression (Li and Zhu 2008) is given by

min
β

n∑

i=1

ρθ(yi − xT
i β) + λ

p∑

k=1

|βk|. (6)

If we put a Laplace prior π(β | τ, λ) = (τλ/2)p exp{−τλ
∑p

k=1 |βk|} and assume that
the residuals ui come from the skewed Laplace distribution (2), then the posterior
distribution of β is

f(β | y,X, τ, λ) ∝ exp

{
−τ

n∑

i=1

ρθ(yi − xT
i β)− τλ

p∑

k=1

|βk|
}

. (7)
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So minimizing (6) is equivalent to maximizing the likelihood (7). For any a ≥ 0, we
have the following equality (Andrews and Mallows 1974),

a

2
e−a|z| =

∫ ∞

0

1√
2πs

exp
(
−z2

2s

)
a2

2
exp

(−a2

2
s

)
ds. (8)

Let η = τλ. Then, the Laplace prior on β can be written as

π(β | τ, λ) =
p∏

k=1

η

2
exp{−η|βk|}

=
p∏

k=1

∫ ∞

0

1√
2πsk

exp
(
− β2

k

2sk

)
η2

2
exp

(−η2

2
sk

)
dsk.

Denote s = (s1, · · · , sp). We further put Gamma priors on the parameter τ and η2 and
have the following Bayesian hierarchical model.

yi = xT
i β + ξ1ṽi + ξ2τ

−1/2
√

ṽizi,

ṽ | τ ∼
n∏

i=1

τ exp (−τ ṽi) ,

z ∼
n∏

i=1

1√
2π

exp
(
−1

2
z2
i

)
, (9)

β, s | η2 ∼
p∏

k=1

1√
2πsk

exp
(
− β2

k

2sk

) p∏

k=1

η2

2
exp

(
−η2

2
sk

)
,

τ, η2 ∼ τa−1 exp(−bτ)
(
η2

)c−1
exp(−dη2).

If a = b = c = d = 0, the priors on τ and η2 become noninformative priors.

As for the Gibbs sampler, the full conditional distribution of βk is a normal distribu-
tion and those of τ and η2 are Gamma distributions. And the full conditional distribu-
tion of ṽi and sk are generalized inverse Gaussian distributions (Jørgensen 1982). The
details of the Gibbs sampler and full conditional distributions are given in Appendix A.

2.2 Quantile regression with the elastic net penalty

We consider quantile regression with the elastic net penalty, which solves the following

min
β

n∑

i=1

ρθ(yi − xT
i β) + λ1

p∑

k=1

|βk|+ λ2

p∑

k=1

β2
k. (10)

Let η1 = τλ1 and η2 = τλ2 and put the prior of βk as

π(βk | η1, η2) = C(η1, η2)
η1

2
exp{−η1|βk| − η2β

2
k}, (11)
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where C(η1, η2) is a normalizing constant depending on η1 and η2. The posterior of β
becomes

f(β | y,X, τ, λ1, λ2) ∝ exp

{
−τ

n∑

i=1

ρθ(yi − xT
i β)− τλ1

p∑

k=1

|βk| − τλ2

p∑

k=1

β2
k

}
. (12)

Maximizing the posterior distribution (12) is thus equivalent to minimizing (10). Cal-
culation of the constant C(η1, η2) is in Appendix B. Let η̃1 = η2

1/(4η2). Putting Gamma
priors on τ , η̃1 and η2, we then have the following hierarchical model.

yi = xT
i β + ξ1ṽi + ξ2τ

−1/2
√

ṽizi,

ṽ | τ ∼
n∏

i=1

τ exp(−τ ṽi),

z ∼
n∏

i=1

1√
2π

exp
(
−1

2
z2
i

)
,

βk | tk, η2
ind.∼ 1√

2π(tk − 1)/(2η2tk)
exp

{
− 1

2

(
tk − 1
2η2tk

)−1

β2
k

}
, (13)

tk|η̃1
ind.∼ Γ−1(1/2, η̃1)t

−1/2
k η̃

1/2
1 exp

{− η̃1tk
}
I(tk > 1),

τ, η̃1, η2 ∼ τa−1 exp(−bτ) η̃c1−1
1 exp(−d1η̃1) ηc2−1

2 exp(−d2η2),

where a, b, c1, c2, d1, d2 ≥ 0, I(·) is the indicator function and Γ(·, ·) is the upper incom-
plete gamma function.

Appendix B gives the details of the full conditionals for the Gibbs sampler. The full
conditional distributions are all common distributions except the full conditional of η̃1.
The full conditional distribution of η̃1 is

f(η̃1 | X,y, ṽ,β, t, τ, η2) ∝ Γ−p(1/2, η̃1)η̃
p/2+c1−1
1 exp

{
− η̃1

[
d1 +

p∑

k=1

tk

]}
.

Since it is difficult to directly sample from f(η̃1| X,y, ṽ,β, t, τ, η2), we use a Metropolis-
Hastings within Gibbs algorithm. The proposal distribution for the Metropolis-Hastings
step is q(η̃1| t) ∝ η̃p+c1−1

1 exp
{− η̃1

[
d1 +

∑p
k=1(tk − 1)

]}
. Notice that

lim
η̃1→∞

η̃
1/2
1 exp(η̃1)

Γ−1(1/2, η̃1)
= 1

and hence limη̃1→∞ f(η̃1| X,y, ṽ, β, t, τ, η2)q−1(η̃1| t) exists and equals to some positive
constant. So the tail behaviors of q(η̃1| t) and f(η̃1| X,y, ṽ,β, t, τ, η2) are similar. At
each iteration of the Gibbs sampler, we sample from f(η̃1 | X,y, ṽ, β, t, τ, η2) using a
one-step Metropolis-Hastings sampling.

2.3 Quantile regression with the group lasso penalty

When the predictors are grouped together, variable selection at the group level becomes
necessary, but lasso penalty simply ignores the group structure and is not suitable
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for this scenario. The group lasso penalty (Bakin 1999; Yuan and Lin 2006; Meier
et al. 2008) takes the group structure into account and can do variable selection at
the group level. Suppose that the predictors are grouped into G groups and βg is
the coefficient vector of the gth group predictors xig. Then, β = (βT

1 , · · · ,βT
G)T and

xi = (xT
i1, · · · ,xT

iG)T . Denote dg the dimension of the vector βg. Let Kg be a known
dg × dg positive definite matrix (g = 1, · · · , G). Define ‖βg‖Kg = (βT

g Kgβg)1/2. We
consider the following group lasso regularized quantile regression

min
β

n∑

i=1

ρθ(yi − xT
i β) + λ

G∑
g=1

‖βg‖Kg . (14)

Set the prior of βg as the Laplace prior π(βg| η) = Cdg

√
det(Kg)ηdg exp

(−η‖βg‖Kg

)
,

where Cdg = 2−(dg+1)/2(2π)−(dg−1)/2/Γ((dg + 1)/2), η = τλ, and Γ(·) is the gamma
function. Then, the posterior distribution of β is

f(β | y,X, τ, λ) ∝ exp

{
−τ

n∑

i=1

ρθ(yi − xT
i β)− τλ

G∑
g=1

‖βg‖Kg

}
. (15)

Maximizing the posterior (15) is then equivalent to minimizing (14). From the equality
(8), we have

π(βg| η) = Cdg

√
det(Kg)ηdg exp(−η‖βg‖Kg )

=
∫ ∞

0

1√
det(2πsgK−1

g )
exp

{
−1

2
βT

g

(
sgK−1

g

)−1
βg

}
×

(
η2/2

)(dg+1)/2

Γ
(

dg+1
2

) s(dg−1)/2
g exp

(−η2

2
sg

)
dsg.

Putting Gamma priors on τ and η, we then have the following hierarchical model.

yi = xT
i β + ξ1ṽi + ξ2τ

−1/2
√

ṽizi,

ṽ | τ ∼
n∏

i=1

τ exp(−τ ṽi),

z ∼
n∏

i=1

1√
2π

exp
(
−1

2
z2
i

)
, (16)

βg | sg
ind.∼ N(0, sgK−1

g ),

sg | η2 ind.∼ (
η2/2

)(dg+1)/2
s(dg−1)/2

g exp
(−η2

2
sg

)
,

τ, η2 ∼ τa−1 exp(−bτ)
(
η2

)c−1 exp(−dη2),

where a, b, c, d ≥ 0 are constants.
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As for the Gibbs sampler, the full conditional distributions of ṽi and τ are the same
as in the lasso regularized quantile regression. The full conditional distribution of βk

is a normal distribution and that of η2 is a Gamma distribution. The full conditional
distribution of sk is generalized inverse Gaussian. All details are included in Appendix
C.

3 Simulation studies

In this section, we carry out Monte Carlo simulations to study the performance of
Bayesian regularized quantile regression with comparison to some non-Bayesian ap-
proaches. The methods in the comparison include:

• Bayesian regularized quantile regressions with the lasso penalty (BQR.L), the
elastic net penalty (BQR.EN) and the group lasso penalty (BQR.GL).

• Regularized mean regression methods including the lasso and the elastic net (EN).

• The standard quantile regression (QR).

The data in the simulation studies are generated by

yi = xT
i β + ui, i = 1, . . . , n, (17)

where ui’s have the θth quantile equal to 0. We first consider models with homogeneous
errors and then those with heterogenous errors.

3.1 Independent and identically distributed random errors

For the i.i.d. random errors, we consider five simulation studies. The first three are
similar to those in Li and Zhu (2008). The fourth simulation study corresponds to the
case where elastic net regularization is more proper and the fifth corresponds to the
case where group lasso regularization is recommended.

• Simulation 1: β = (3, 1.5, 0, 0, 2, 0, 0, 0), which corresponds to the sparse case.

• Simulation 2: β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85), which corresponds
to dense case.

• Simulation 3: β = (5, 0, 0, 0, 0, 0, 0, 0), which corresponds to the very sparse case.

• Simulation 4: β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
10

, 3, . . . , 3︸ ︷︷ ︸
15

), which corresponds to the case with

more predictors than the sample size.

• Simulation 5: β = ((−1.2, 1.8, 0), (0, 0, 0), (0.5, 1, 0), (0, 0, 0), (1, 1, 0)), which cor-
responds to the case with group structures in the predictors.
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Table 1: MMADs for Simulation 1. In the parentheses are standard deviations of the
MMADs obtained by 500 bootstrap resampling. The bold numbers correspond to the
smallest MMAD in each category.

θ Method Error Distribution

normal normal mixture Laplace Laplace mixture

θ = 0.5 BQR.L 0.939 (0.048) 1.461 (0.089) 1.090 (0.103) 1.615 (0.149)
BQR.EN 1.051 (0.044) 1.521 (0.075) 1.174 (0.076) 1.642 (0.095)

lasso 1.089 (0.072) 1.510 (0.098) 1.384 (0.142) 2.026 (0.167)
EN 1.169 (0.066) 1.628 (0.102) 1.649 (0.098) 1.921 (0.133)
QR 1.262 (0.048) 1.812 (0.073) 1.636 (0.091) 1.965 (0.085)

QR-L 1.102 (0.038) 1.458 (0.090) 1.228 (0.081) 1.719 (0.125)

θ = 0.3 BQR.L 0.967 (0.059) 1.618 (0.073) 1.117 (0.102) 1.952 (0.140)
BQR.EN 0.973 (0.066) 1.623 (0.102) 1.180 (0.091) 2.006 (0.076)

lasso 1.135 (0.071) 1.762 (0.107) 1.436 (0.082) 2.144 (0.131)
EN 1.280 (0.063) 1.876 (0.091) 1.436 (0.105) 2.025 (0.135)
QR 1.213 (0.070) 1.712 (0.069) 1.406 (0.059) 2.157 (0.075)

QR-L 1.035 (0.071) 1.745 (0.109) 1.223 (0.104) 2.002 (0.115)

θ = 0.1 BQR.L 1.079 (0.060) 2.057 (0.143) 1.097 (0.103) 2.886 (0.214)
BQR.EN 1.078 (0.049) 2.099 (0.152) 1.168 (0.109) 2.959 (0.209)

lasso 1.076 (0.052) 2.652 (0.244) 1.361 (0.091) 3.136 (0.187)
EN 1.185 (0.074) 2.591 (0.212) 1.445 (0.103) 3.049 (0.261)
QR 1.318 (0.036) 1.873 (0.073) 1.453 (0.088) 1.913 (0.149)

QR-L 1.460 (0.101) 2.310 (0.150) 2.035 (0.114) 3.308 (0.215)

In the first three simulation studies, the rows of X in (17) are generated inde-
pendently from N(0,Σ), where the (i, j)th element of Σ is 0.5|i−j|. In Simulation
4, we first generate Z1 and Z2 independently from N(0, 1). Then let xj = Z1 + εj ,
j = 1, . . . , 10, xj ∼ N(0, 1), j = 11, . . . , 20, xj = Z2 + εj , j = 21, . . . , 30, where
εj ∼ N(0, 0.01), j = 1, . . . , 10, 21, . . . , 30. In Simulation 5, we first simulate a latent
variable, Z = (Z1, . . . , Z5)T , from N(0,Σ), where the (i, j)th element of Σ is 0.5|i−j|.
Then each Zj is trichotomized as 0, 1 or 2, depending on whether it is smaller than
Φ−1(1/3), between Φ−1(1/3) and Φ−1(2/3), or larger than Φ−1(2/3). Here Φ(·) is the
cumulative distribution function for standard normal distribution. The rows of X are
given by (I(Z1 = 0), I(Z1 = 1), I(Z1 = 2), . . . , I(Z5 = 0), I(Z5 = 1), I(Z5 = 2)).

Within each simulation study, we consider four different choices for the distribution
of ui’s.

• The first choice is a normal distribution N(µ, σ2), with µ chosen so that the θth
quantile is 0. σ2 is set as 9.

• The second choice is a mixture of two normal distributions, 0.1N(µ, σ2
1)+

0.9N(µ, σ2
2), with µ chosen so that the θth quantile is 0. σ2

1 is set as 1 and σ2
2 is

set as 5.
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Table 2: MMADs for Simulation 4. In the parentheses are standard deviations of the
MMADs obtained by 500 bootstrap resampling. The bold numbers correspond to the
smallest MMAD in each category.

θ Method Error Distribution

normal normal mixture Laplace Laplace mixture

θ = 0.5 BQR.L 3.736 (0.116) 5.613 (0.202) 4.907 (0.209) 6.941 (0.128)
BQR.EN 3.399 (0.143) 5.114 (0.177) 4.587 (0.122) 6.007 (0.134)

lasso 4.707 (0.268) 6.512 (0.388) 6.187 (0.365) 7.861 (0.196)
EN 3.172 (0.193) 5.329 (0.224) 4.326 (0.231) 6.490 (0.171)
QR 4.812 (0.300) 7.059 (0.229) 6.017 (0.263) 10.263 (0.552)

QR-L 7.480 (0.289) 7.766 (0.278) 7.899 (0.219) 8.581 (0.201)

θ = 0.3 BQR.L 3.840 (0.122) 6.141 (0.162) 5.135 (0.228) 7.012 (0.220)
BQR.EN 3.660 (0.189) 5.869 (0.172) 4.636 (0.239) 6.288 (0.145)

lasso 4.822 (0.399) 6.644 (0.227) 6.242 (0.157) 8.184 (0.274)
EN 3.490 (0.155) 5.645 (0.151) 4.841 (0.277) 6.585 (0.338)
QR 4.613 (0.155) 9.088 (0.401) 6.556 (0.411) 10.476 (0.388)

QR-L 6.641 (0.148) 7.726 (0.168) 7.180 (0.104) 8.366 (0.178)

θ = 0.1 BQR.L 3.920 (0.194) 7.861 (0.204) 5.474 (0.238) 9.217 (0.309)
BQR.EN 3.773 (0.147) 7.233 (0.197) 4.987 (0.198) 8.374 (0.183)

lasso 4.742 (0.301) 8.654 (0.225) 6.479 (0.310) 9.821 (0.265)
EN 3.577 (0.132) 8.046 (0.334) 4.836 (0.262) 9.581 (0.436)
QR 4.793 (0.288) 13.553 (0.704) 6.669 (0.319) 16.808 (0.921)

QR-L 6.890 (0.136) 9.865 (0.331) 7.637 (0.221) 10.760 (0.206)

• The third choice is a Laplace distribution Laplace(µ, b), with µ chosen so that the
θth quantile is 0. b is set to 3 so that the variance is 2b2 = 18.

• The fourth choice is a mixture of two Laplace distributions, 0.1Laplace(µ, b1) +
0.9Laplace(µ, b2), with µ chosen so that the θth quantile is 0. b1 is set as 1 and
b2 is set as

√
5.

Note that we intentionally choose error distributions that are different from the
skewed Laplace distribution to see how the Bayesian regularized quantile regression
depends on this error assumption, as there has been criticisms that assigning a specific
error distribution is departing from the semiparametric nature of quantile regression
since quantile regression treats the error distribution nonparametrically. Our simulation
results show that, in terms of parameter estimation accuracy and quantile estimation
accuracy, the Bayesian regularized quantile regression methods still perform well even
when this error distribution assumption is violated.

For each simulation study and each choice of the error distribution, we run 50 simu-
lations. In each simulation, we generate a training set with 20 observations, a validation
set with 20 observations, and a testing set with 200 observations. The validation set is
used to choose the penalty parameters in lasso (λ), EN (λ1 and λ2) and QR-L (λ). After
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Table 3: MMADs for Simulation 5. In the parentheses are standard deviations of the
MMADs obtained by 500 bootstrap resampling. The bold numbers correspond to the
smallest MMAD in each category.

θ Method Error Distribution

normal normal mixture Laplace Laplace mixture

θ = 0.5 BQR.L 1.353 (0.058) 1.857 (0.144) 1.397 (0.109) 2.181 (0.085)
BQR.EN 1.228 (0.098) 1.827 (0.150) 1.563 (0.078) 2.263 (0.081)

lasso 1.269 (0.056) 2.197 (0.135) 1.895 (0.120) 2.530 (0.083)
EN 1.251 (0.058) 1.909 (0.124) 1.651 (0.107) 2.272 (0.134)

QR-L 1.498 (0.089) 1.676 (0.080) 1.627 (0.138) 1.836 (0.120)
BQR.GL 1.222 (0.087) 1.800 (0.070) 1.466 (0.077) 1.834 (0.080)

θ = 0.3 BQR.L 1.275 (0.066) 2.202 (0.058) 1.416 (0.101) 2.330 (0.091)
BQR.EN 1.295 (0.066) 2.240 (0.075) 1.653 (0.129) 2.434 (0.038)

lasso 1.308 (0.083) 2.326 (0.159) 1.783 (0.119) 2.791 (0.141)
EN 1.346 (0.061) 2.122 (0.219) 1.658 (0.064) 2.530 (0.036)

QR-L 1.360 (0.051) 2.257 (0.056) 1.621 (0.076) 2.492 (0.100)
BQR.GL 1.232 (0.048) 2.013 (0.110) 1.361 (0.136) 2.182 (0.075)

θ = 0.1 BQR.L 1.259 (0.047) 2.424 (0.018) 1.450 (0.060) 2.457 (0.027)
BQR.EN 1.315 (0.071) 2.491 (0.016) 1.524 (0.066) 2.510 (0.011)

lasso 1.292 (0.055) 2.693 (0.190) 1.856 (0.119) 2.530 (0.148)
EN 1.240 (0.058) 2.530 (0.101) 1.779 (0.086) 2.530 (0.022)

QR-L 1.746 (0.068) 6.025 (0.611) 2.343 (0.109) 6.972 (0.742)
BQR.GL 1.225 (0.058) 2.350 (0.045) 1.424 (0.070) 2.366 (0.049)

the penalty parameters are selected, we combine the training set and the validation set
together to estimate β. Since QR is not a regularization method, it does not need the
validation set to choose any penalty parameters, so we directly combine the training
and validation sets together to estimate β. Similarly, BQR.L, BQR.EN and BQR.GL
do not need the validation set since they estimate the penalty parameter automatically,
so we also combine the training and validation sets together for estimation. The testing
set is used to evaluate the performance for these methods.

Priors for the Bayesian methods are taken to be almost noninformative. In BQR.L
and BQR.GL, the parameters a, b, c, d in the Gamma priors for τ and η2 are all set to
be 0.1. Similarly, in BQR.EN, the parameters a, b, c1, d1, c2, d2 in the Gamma priors for
τ, η̃1 and η2 are also chosen to be 0.1.

In the first four simulation studies, there is no group structure in the predictors, so
BQR.GL reduces to BQR.L. In Simulation 5, we choose the positive definite matrices
Kg = dgIdg , where dg’s are dimensions of βg’s, as suggested by Yuan and Lin (2006).

We considered five different values of the given quantile θ: 10%, 30%, 50%, 70% and
90%. But since all four distributions of ui’s are symmetric, only 10%, 30% and 50%
need to be reported. Due to the space limit, we only present the results for Simulation
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Table 4: The parameter estimations for the first three simulation studies. The error
distribution is chosen to be normal and the quantile θ is chosen to be 0.1. Within each
simulation study, the median of 50 estimates of β is reported.

Simulation Study Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

Simulation 1 βtrue 3.000 1.500 0.000 0.000 2.000 0.000 0.000 0.000
BQR.L 2.917 1.436 0.053 0.038 1.623 -0.001 0.045 0.019

BQR.EN 2.852 1.522 0.091 0.099 1.638 -0.055 0.126 0.018
lasso 2.605 1.276 0.000 0.000 1.292 0.000 0.000 0.000
EN 2.606 1.569 0.198 0.021 1.249 0.000 0.000 0.000
QR 3.007 1.642 -0.030 0.123 2.000 -0.109 0.218 -0.007

QR-L 2.501 1.453 0.000 0.000 1.548 0.000 0.000 0.000

Simulation 2 βtrue 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850
BQR.L 0.655 0.885 0.616 0.734 0.630 0.548 0.807 0.585

BQR.EN 0.714 0.879 0.759 0.797 0.726 0.556 0.926 0.729
lasso 0.534 0.756 0.758 0.839 0.630 0.592 0.728 0.527
EN 0.562 0.905 0.960 1.102 0.964 0.845 0.864 0.499
QR 0.884 1.000 0.808 0.962 0.864 0.729 1.057 0.831

QR-L 0.403 0.721 0.746 0.853 0.772 0.620 0.626 0.574

Simulation 3 βtrue 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BQR.L 4.802 0.0851 0.034 0.032 0.008 -0.081 0.021 0.031

BQR.EN 4.689 0.1634 0.037 0.008 0.040 -0.140 0.093 -0.016
lasso 4.018 0.0000 0.000 0.000 0.000 0.000 0.000 0.000
EN 3.956 0.1568 0.000 0.000 0.000 0.000 0.000 0.000
QR 4.981 0.1615 -0.030 0.123 0.025 -0.109 0.218 -0.007

QR-L 4.377 0.0017 0.000 0.000 0.000 0.000 0.000 0.000

1, 4 and 5 (Table 1, 2 and 3). In these tables, the MMAD stands for the median of
mean absolute deviations, i.e. median(1/200

∑200
i=1 |xT

i β̂ − xT
i βtrue|), where the median

is taken over the 50 simulations. In the parentheses are the standard deviations of
the MMAD obtained by 500 bootstrap resampling of the 50 mean absolute deviations
(MAD).

Simulation 1, 2 and 3 show that, in terms of the MMAD, the two Bayesian regularized
quantile regression methods perform better than the other four methods in general,
especially for the last three non-normal error distributions. In Simulation 2, whose
results are not shown here, BQR.EN performs the best — BQR.EN has the smallest
MMAD in 9 out of 12 simulation setups. In Simulation 3, with results not shown
either, BQR.L performs the best — BQR.L has the smallest MMAD in 9 out of 12
simulation setups. Although none of these four error distributions are assumed in the
Bayesian regularized quantile regression methods, performance of BQR.L and BQR.EN
shows that the Bayesian methods are quite robust to the error distribution assumption.
Secondly, as the Bayesian counterpart for QR-L,BQR.L generally behaves better in
terms of the MMAD. Thirdly, while QR-L performs well for θ = 0.5 and θ = 0.3,
its performance drops noticeably when θ = 0.1. This phenomenon also shows up in
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Simulation 4 and 5 and in the real data example in Section 4.

Simulation 4 is the case where we have more predictors than the sample size. Usually
the elastic net penalty is recommended in such situations, as can be seen from Table
2. Simulation 5 corresponds to the case with group structures among the predictors,
and group lasso penalty tends to behave better. The results are summarized in Table
3, where we can see that BQR.GL gives the best MMADs most of the times. Another
comment on Table 3 is that, due to the categorical nature of the predictors, the design
matrix is singular. As a result, the standard QR fails in this situation, while the other
six methods still work. This is another example showing the advantage of regularization
based methods.

Instead of looking at the MMADs, we may also look at the estimation of β’s directly.
Since the results would be too many to put in a table, we only choose the case where θ =
0.1 and normally distributed errors in the first three simulation studies for illustrations.
These are summarized in Table 4. From Table 4 we can see that, QR tends to give
less biased parameter estimates for β, but this not necessarily guarantees good quantile
prediction, as implied by the MMADs in all previous tables. Similar patterns are also
observed for the cases not shown here.

3.2 Heterogeneous random errors

Now we consider the case where ui’s are not i.i.d. random errors. The data are generated
according to Example 5.4 in Wu and Liu (2009) from the model

yi = 1 + x1i + x2i + x3i + (1 + x3i)εi,

where x1i is generated independently from N(0, 1), x3i is generated independently from
the uniform distribution on [0, 1], x2i = x1i + x3i + zi, where zi follows N(0, 1). εi’s are
independent normally distributed with variance 1 and mean as the negative of the θth
standard normal quantile. There are also five more independent noise random variables,
distributed as N(0, 1), x4, . . . , x8. The results are summarized in Table 5. Here we use
the same prior specification as those in Section 3.1, setting a = b = c = d = 0.1 for
BQR.L and a = b = c1 = d1 = c2 = d2 = 0.1 for BQR.EN. Table 5 contains another
performance criterion, the test error, which refers to the average check loss on the
independent testing data set (Wu and Liu 2009).

From Table 5 we can see that BQR.L, BQR.EN, QR and QR-L behave significantly
better than lasso and EN, which demonstrates the broader applicability of quantile
regression based methods. Secondly, within the set of quantile regression based methods,
all four methods considered here behave similarly in terms of the test error. However,
if we consider MMAD, BQR.L and BQR.EN outperform others uniformly. Thirdly,
BQR.L performs better than its non-Bayesian counterpart, QR-L, uniformly for all
quantiles considered.
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Table 5: MMADs and test errors for the simulation with heterogeneous random errors.
The bold numbers correspond to the smallest MMAD or test error in each category.

θ Method MMAD(SD) Test Error(SD)

0.25 BQR.L 0.2995 (0.012) 0.4942 (0.0030)
BQR.EN 0.3056 (0.009) 0.4945 (0.0031)

lasso 1.1015 (0.047) 0.6291 (0.0113)
EN 1.2389 (0.080) 0.6281 (0.0081)
QR 0.3180 (0.006) 0.4967 (0.0018)

QR-L 0.3211 (0.011) 0.4950 (0.0028)

0.5 BQR.L 0.2764 (0.010) 0.6128 (0.0038)
BQR.EN 0.2650 (0.009) 0.6128 (0.0030)

lasso 1.2976 (0.064) 0.8256 (0.0178)
EN 1.4991 (0.007) 0.8822 (0.0060)
QR 0.2984 (0.005) 0.6151 (0.0043)

QR-L 0.2902 (0.005) 0.6122 (0.0031)

0.75 BQR.L 0.2945 (0.008) 0.4914 (0.0017)
BQR.EN 0.2809 (0.008) 0.4931 (0.0020)

lasso 1.5853 (0.036) 0.8073 (0.0223)
EN 1.5448 (0.007) 0.7836 (0.0058)
QR 0.3165 (0.006) 0.4967 (0.0019)

QR-L 0.3186 (0.008) 0.4929 (0.0029)
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4 A real data example

In this section, we compare the performance of the six methods in Section 3, BQR.L,
BQR.EN, lasso, EN, QR, QR-L, on the Boston Housing data. This data set was first
analyzed by Harrison and Rubinfeld (1978) in a study on the influence of “clean air”
on house prices. The version of the data set in this paper is a corrected version of the
original data, corrected for a few minor errors and augmented with the latitude and
longitude of the observations, and is available in the “spdep” package in R (R Devel-
opment Core Team 2005). It has 506 rows and 20 columns. The response variable is
the log-transformed corrected median value of owner-occupied housing in USD 1000
(LCMEDV). Predictors that we considered include point longitudes in decimal degrees
(LON), point latitudes in decimal degrees (LAT), per capita crime (CRIM), proportions
of residential land zoned for lots over 25000 square feet per town (ZN), proportions of
non-retail business acres per town (INDUS), a factor indicating whether tract bor-
ders Charles River (CHAS), nitric oxides concentration (parts per 10 million) per town
(NOX), average numbers of rooms per dwelling (RM), proportions of owner-occupied
units built prior to 1940 (AGE), weighted distances to five Boston employment centers
(DIS), index of accessibility to radial highways per town (RAD), full-value property-
tax rate per USD 10,000 per town (TAX), pupil-teacher ratios per town (PTRATIO),
transformed African American population proportion (B) and percentage values of lower
status population (LSTAT).

Similar as in Section 3, we consider three choices of θ, 0.1, 0.3 and 0.5. Also, we
run 10-fold cross-validation to evaluate the performance of the four methods under the
check-loss criterion (1). The prior specifications are the same as those in Section 3,
a = b = c = d = 0.1 for BQR.L and a = b = c1 = d1 = c2 = d2 = 0.1 for BQR.EN.
The results are summarized in Table 6 and show that the Bayesian quantile regression
methods perform uniformly better than the lasso and EN for all selected quantiles, and
similarly to QR and QR-L. Again, as mentioned in the discussion of Tables 1, 2 and 3,
the performance of QR-L drops when θ changes from 0.5 and 0.3 to 0.1.

Also, instead of comparing the check loss, we can look at the point and interval
estimations for the parameters. These are summarized in Figure 1, where we choose
the case with θ = 0.1 as an illustration. 95% credible intervals are plotted for BQR.L
and BQR.EN estimators in these plots. As there are too many estimators in a plot,
we add a slight horizontal shift to the estimators given by BQR.L and BQR.EN to
make it more readable. Note that the Bayesian methods can easily provide the interval
estimations while the frequentist methods usually do not have simply implemented
interval estimators. From this figure we can see that the four quantile regression based
methods tend to behave similarly while lasso and EN also behave similarly. Also, among
the four quantile regression based methods, QR-L tends to behave more differently from
the other three methods, as there are many QR-L estimators lying outside the 95%
credible intervals of BQR.L and BQR.EN. This difference is less apparent for θ = 0.5
and θ = 0.3, the figures for which are not shown here.
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Figure 1: The estimates of the predictor effects for the Boston Housing data using
different methods. The given quantile is θ = 0.1. The 95% credible intervals given by
BQR.L and BQR.EN are also plotted.
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Table 6: 10-fold cross-validation results for the Boston Housing data. The bold numbers
correspond to the smallest MMAD in each category.

Method Test error

θ = 0.1 θ = 0.3 θ = 0.5

BQR.L 0.06626 0.06639 0.06597
BQR.EN 0.06613 0.06680 0.06600

lasso 0.06806 0.06806 0.06806
EN 0.06803 0.06807 0.06807
QR 0.06623 0.06623 0.06623

QR-L 0.07398 0.06745 0.06755

5 Conclusion and Discussion

In this paper, we propose the Bayesian regularized quantile regression and treat generi-
cally three different types of penalties, lasso, elastic net and group lasso. Bayesian hier-
archical models are developed for each regularized quantile regression problem and Gibbs
samplers are derived. Simulation studies and real data examples show that Bayesian
regularized quantile regression methods generally perform better compared with cur-
rent existing non-Bayesian regularized quantile regression methods. In particular, as
counterparts to each other, BQR.L behaves better than QR-L.

One of the most valued advantages of quantile regression is its model robustness in
the sense that it makes no distributional assumption to the error term other than its
quantile. However, in the parametric Bayesian quantile regression framework, a common
practice is to assume the error to have the skewed Laplace distribution (2). While this
may cause some concern on losing the nonparametric nature of quantile regression, our
results show that the Bayesian methods are quite insensitive to this assumption and
behave well for data generated from other distributions.

One issue we found in the numerical studies is that, compared to the Bayesian meth-
ods, the performance of QR-L often deteriorates for extreme quantiles like θ = 0.1, and
further study is needed to explain this phenomenon. Another future direction is to de-
velop Bayesian regularization for multiple quantiles. Zou and Yuan (2008a,b) considered
regularized quantile regression models for a finite number of quantiles. Our Bayesian
formulation shall extend naturally to this context by imposing suitable functional priors
on the coefficients.
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Appendix

A. The Gibbs sampler for the lasso regularized quantile regression

Let β−k be the parameter vector β excluding the component βk, s−k be the variable
s excluding the component sk and ṽ−i be the variable ṽ excluding the component ṽi.
Denote X = (x1, · · · ,xn). Then, the conditional distribution f(y|X, ṽ,β, s, τ, η2) in
the lasso regularized quantile regression is

f(y|X, ṽ, β, s, τ, η2) =
n∏

i=1

1√
2πτ−1ξ2

2 ṽi

exp
{
− (yi − xT

i β − ξ1ṽi)2

2τ−1ξ2
2 ṽi

}

= exp
{
− 1

2

n∑

i=1

(yi − xT
i β − ξ1ṽi)2

τ−1ξ2
2 ṽi

} n∏

i=1

1√
2πτ−1ξ2

2 ṽi

.

The full conditional distribution f(ṽi | X,y, ṽ−i,β, s, τ, η2) is

f(ṽi | X,y, ṽ−i,β, s, τ, η2) ∝ f(y|X, ṽ, β, s, τ, η)π(ṽi|τ)

∝ 1√
ṽi

exp
{
− (yi − xT

i β − ξ1ṽi)2

2τ−1ξ2
2 ṽi

}
exp(−τ ṽi)

∝ 1√
ṽi

exp
{
− 1

2

[(
τξ2

1

ξ2
2

+ 2τ

)
ṽi +

τ(yi − xT
i β)2

ξ2
2

ṽ−1
i

]}
.

Thus, the full conditional distribution of ṽi is a generalized inverse Gaussian distribution.
The full conditional distribution f(sk | X,y, ṽ, β, s−k, τ, η2) of sk is

f(sk | X,y, ṽ, β, s−k, τ, η2) ∝ π(βk | sk)π(sk | η2)

∝ 1√
2πsk

exp
(
− β2

k

2sk

)
exp

(
−η2

2
sk

)

∝ 1√
sk

exp
{
− 1

2
[
η2sk + β2

ks−1
k

]}
.

The full conditional f(sk | X,y, ṽ, β, s−k, τ, η2) is then again a generalized inverse
Gaussian distribution. Now we consider the full conditional distribution of βk which is
given by

f(βk | X,y, ṽ, β−k, s, τ, η2) ∝ f(y|X, ṽ, β, s, τ, η)π(βk | sk)

∝ exp

{
−1

2

n∑

i=1

(yi − xT
i β − ξ1ṽi)2
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}
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∝ exp
{
− 1

2

[( n∑

i=1

τx2
ik

ξ2
2 ṽi
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1
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ξ2
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]}
,

where xi = (xi1, · · · , xip)T and ỹik = yi − ξ1ṽi −
∑p

j=1,j 6=k xijβj . Let σ̃−2
k =

τξ−2
2

∑n
i=1 x2

ikṽ−1
i + s−1

k and µ̃k = σ̃2
kτξ−2

2

∑n
i=1 ỹikxikṽ−1

i . Then the full conditional
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distribution is just the normal distribution N(µ̃k, σ̃2
k). The full conditional distribution

of τ is

f(τ | X,y, ṽ, β, s, η2)
∝ f(y | X, ṽ,β, s, τ, η)π(ṽ | τ)π(τ)

∝ τn/2 exp
{
− 1

2

n∑

i=1

(yi − xT
i β − ξ1ṽi)2

τ−1ξ2
2 ṽi

}
τn exp

(
−τ

n∑

i=1

ṽi

)
τa−1 exp(−bτ)

∝ τa+3n/2−1 exp
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(
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i β − ξ1ṽi)2

2ξ2
2 ṽi

+ ṽi

)
+ b

]}
.

That is, the full conditional distribution of τ is a Gamma distribution. At last, the full
conditional distribution of η2 is

f(η2 | X,y, ṽ,β, s, τ) ∝ π(s | η2)π(η2)

∝
p∏

k=1

η2

2
exp

(
−η2

2
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) (
η2

)c−1 exp(−dη2)

∝ (
η2

)p+c−1 exp

{
−η2

(
p∑

k=1

sk/2 + d

)}
.

The full conditional distribution of η2 is again a Gamma distribution.

B. Calculation of C(η1, η2) and the Gibbs sampler for quantile regres-
sion with the elastic net penalty

B.1 Calculation of C(η1, η2) in (11)

Before putting priors on η1 and η2, let us first calculate the quantity C(η1, η2). By (8),
we have

π(βk| η1, η2) = C(η1, η2)
η1

2
exp{−η1|βk| − η2β

2
k}

= C(η1, η2)
∫ ∞
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2
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(−η2
1

2
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dsk.

Let tk = 1 + 2η2sk. Then we have

π(βk| η1, η2) = C(η1, η2)
∫ ∞

1
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dtk.
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Since
∫∞
−∞ π(βk| η1, η2)dβk = 1, by Fubini’s theorem, we have

∫ ∞
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1

t
−1/2
k

η2
1

4η2
exp

{−η2
1

4η2
(tk − 1)

}
dtk

= C(η1, η2)
(

η2
1

4η2

)1/2

exp
{

η2
1

4η2

} ∫ ∞

4−1η2
1η−1

2

t−1/2 exp(−t)dt

= 1.

Notice that
∫∞
4−1η2

1η−1
2

t−1/2 exp(−t)dt = Γ(1/2, 4−1η2
1η−1

2 ) is the upper incomplete
gamma function. Therefore, we have

C(η1, η2) = Γ−1

(
1/2,

η2
1

4η2

)(
η2
1

4η2

)−1/2

exp
{
− η2

1

4η2

}
.

B.2 The Gibbs sampler for quantile regression with the elastic net penalty

The full conditional distributions of ṽi and τ are again the same as in the lasso regular-
ized quantile regression case. Let

ỹik = yi − ξ1ṽi −
p∑

j=1,j 6=k

xijβj ,

σ̃−2
k = τξ−2

2

n∑

i=1

x2
ikṽ−1

i + 2η2tk(tk − 1)−1,

µ̃k = σ̃2
kτξ−2

2

n∑

i=1

ỹikxikṽ−1
i .

Then, similar to the lasso regularized quantile regression case, we can show that the full
conditional f(βk | X,y, ṽ, β−k, t, τ, η̃1, η2) of βk is the normal distribution N(µ̃k, σ̃2

k).

The full conditional distribution of tk − 1 is

f(tk − 1 | y,X, ṽ,β, t−k, τ, η̃1, η2)

∝ 1√
tk − 1

exp
{
− 1

2

(
tk − 1
2η2tk

)−1

β2
k

}
exp

{− η̃1tk
}
I(tk > 1)

∝ 1√
tk − 1

exp
{
− 1

2

[
2η̃1(tk − 1) +

2η2β
2
k

tk − 1

]}
I(tk − 1 > 0).

Therefore, the full conditional distribution of tk − 1 is a generalized Gaussian distribu-
tion. The full conditional distribution of η̃1 is

f(η̃1 | X,y, ṽ, β, t, τ, η2) ∝ η̃c1−1
1 exp(−d1η̃1)

p∏

k=1

Γ−1(1/2, η̃1)η̃
1/2
1 exp

{− η̃1tk
}

∝ Γ−p(1/2, η̃1)η̃
p/2+c1−1
1 exp

{
− η̃1

[
d1 +

p∑

k=1

tk

]}
.
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The full conditional distribution of η2 is

f(η2 | X,y, ṽ, β, t, τ, η̃1) ∝ ηc2−1
2 exp(−d2η2)

p∏

k=1

η
1/2
2 exp

{
− 1

2

(
tk − 1
2η2tk

)−1

β2
k

}

∝ η
p/2+c2−1
2 exp

{
− η2

(
d2 +

p∑

k=1

tk(tk − 1)−1β2
k

)}
,

which is a Gamma distribution.

C. The Gibbs sampler for the group lasso regularized quantile regres-
sion

Let β−g be the parameter vector β excluding the component vector βg. It is easy to see
that the full conditional distributions of ṽi and τ are the same as in the lasso regularized
quantile regression. The full conditional distribution of sg is

f(sg | y,X, ṽ,β, s−k, τ, η2) ∝ π(βg|sg)π(sg|η2)

∝ s−dg/2
g exp

{
−1

2
βT

g

(
sgK−1

g

)−1
βg

}
s(dg−1)/2

g exp
(−η2

2
sg

)

∝ s−1/2
g exp

{
−1

2
[
η2sg + βT

g Kgβgs
−1
g

]}
.

That is, the full conditional distribution of sg is again a generalized inverse Gaussian
distribution. The full conditional distribution of βg is

f(βg | X,y, ṽ, β−g, s, τ, η2)
∝ f(y|X, ṽ,β, s, τ, η)π(βg | sg)

∝ exp
{
− 1

2

n∑

i=1

(yi −
∑G

k=1 xT
ikβk − ξ1ṽi)2

τ−1ξ2
2 ṽi

}
exp

{
−1

2
βT

g

(
s−1

g Kg

)
βg

}
.

Let ỹig = yi −
∑G

k=1,k 6=g xT
ikβk − ξ1ṽi. Then, we have

f(βg | X,y, ṽ, β−g, s, τ, η2)

∝ exp
{
− 1

2

n∑

i=1

(ỹig − xT
igβg)2

τ−1ξ2
2 ṽi

}
exp

{
−1

2
βT

g

(
s−1

g Kg

)
βg

}

∝ exp
{
− 1

2

[
βT

g

(
s−1

g Kg + τξ−2
2

n∑

i=1

ṽ−1
i xigxT

ig

)
βg − 2τξ−2

2

n∑

i=1

ṽ−1
i ỹigxT

igβg

]}
.



554 Bayesian Quantile Regression

Let Σ̃−1
g = s−1

g Kg + τξ−2
2

∑n
i=1 ṽ−1

i xigxT
ig and µ̃g = Σ̃gτξ−2

2

∑n
i=1 ṽ−1

i ỹigxig. The full
conditional of βg is then N(µ̃g, Σ̃g). The full conditional distribution of η2 is given by

f(η2 | X,y, ṽ,β, s, τ) ∝
G∏

g=1

π(sg | η2)π(η2)

∝
G∏

g=1

(
η2

)(dg+1)/2
exp

(−η2

2
sg

) (
η2

)c−1 exp
(−dη2

)

∝ (
η2

)(p+G)/2+c−1
exp

{
−η2

(
G∑

g=1

sg/2 + d

)}
.

The full conditional distribution of η2 is again a Gamma distribution.
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