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Correspondence Analysis with Incomplete
Paired Data using Bayesian Imputation

Jules J. S. de Tibeiro∗ and Duncan J. Murdoch†

Abstract. In this paper we consider the analysis of incomplete tables using
correspondence analysis. We focus on a dataset concerning congenital heart disease
(Fraser and Hunter 1975), in which the data forms a square table, but only a
symmetrized version of the off- diagonal entries was reported. We use Markov chain
Monte Carlo (MCMC) on a hierarchical Bayes model to estimate the underlying
rates, and use correspondence analysis to study the relationships in the completed
table.
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1 Introduction

Correspondence analysis (CA) is a statistical technique to display the structural rela-
tionships in a two-way table of counts (Benzécri 1973, 1992; Lébart et al. 1984; Greenacre
1984).

The main tool is the biplot, a plot of points corresponding to each row (or each
column, or both). As in other biplot techniques, CA offers the remarkable feature
of jointly representing individuals and variables. A table with independent rows and
columns would have all points plotted near the origin; departures from the origin mea-
sure departures from independence in terms of their contributions to a χ2 statistic
testing independence. Not only does one gain insight in the relationship amongst indi-
viduals and amongst variables, but one can also find an indication of which variables are
important in the description of which individuals (Gordon 1999). (We will give more
details about CA in section 2 below.)

In this paper we consider the CA of part of a dataset collected by Fraser and Hunter
(1975) on congenital cardiovascular defects. A congenital cardiovascular defect occurs
when the heart or blood vessels near the heart don’t develop normally before birth.
Congenital cardiovascular defects are present in about 1 percent of live births. The
goal of Fraser and Hunter (1975) was to reveal etiologic relations among cardiac lesions.
Sibships in which two or more children had dissimilar cardiac lesions were culled from
reported studies and other sources. Fraser and Hunter (1975) collected information on
13 lesions; for simplicity we consider the subset of the 7 most frequent ones.

The Fraser and Hunter (1975) data (Table 1) is incomplete. There are no records of
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Table 1: Observed data on pairs of cardiac malformations. Actual counts Xij were
not observed; the table shows values kij = Xij + Xji. Values on the diagonal were
unobserved and counted as zero in the column totals.

ToF VSD PS TGV PDA AS ASD
ToF . 13 19 10 4 1 1
VSD . . 3 5 3 3 6
PS . . . 2 0 1 1
TGV . . . . 4 1 2
PDA . . . . . 2 0
AS . . . . . . 2
ASD . . . . . . .

cases where two siblings had the same defect. Additionally, the pairings are unordered,
so only the top off- diagonal entries in the table are recorded, representing the total
number of pairs occurring in either order.

CA is a natural method for investigating dependencies in contingency tables, but
it requires complete tables. Our goal in this paper is to describe how to deal with the
missing data and the lack of ordering in datasets like the Fraser and Hunter (1975) data.

de Leeuw and van der Heijden (1988) handled the missing data problem iteratively:
missing values were initialized, then recalculated assuming the independence model un-
til convergence was achieved. In this way a complete table was imputed in which the
missing entries had minimal contributions to the chi-square calculations. van der Heij-
den et al. (1989) showed how a similar approach could be used to deal with departures
from other models, such as the symmetry model and the quasi-symmetry model. de
Tibeiro (1996) used a minimal trace criterion to impute the missing entries in the Fraser
and Hunter (1975) dataset. Ben Salem (1992) proposed a sufficient condition for the
existence of finite values of missing data satisfying the minimum trace criterion.

Several other papers have also considered the Fraser and Hunter (1975) dataset.
MacGibbon (1983) used log-linear modelling and proposed a new method of outlier
detection. Dinwoodie and MacGibbon (2004) used Markov chain Monte Carlo (MCMC)
methods to approximate exact p-values for tests of quasi-independence. Dinwoodie et al.
(2004) computed the p-values exactly using generating functions.

In contrast to these earlier papers, in this paper we will describe a Bayesian approach
for handling the missing data. The missing values will be imputed as medians of their
posterior distributions. Posterior simulations will be used to illustrate the uncertainty
in the imputation. Like the other imputation methods, the Bayesian method will allow
standard CA in the presence of missing data, rather than providing a formal test of
independence or quasi-independence. Unlike them, it will incorporate and display the
uncertainty due to the missing data.

The remainder of the paper is organized as follows. In section 2, we give an overview
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of CA. Section 3 describes a Bayesian approach to reconstruct the diagonal for the
purpose of CA. In section 4, we apply CA on the cardiology data using this approach.

2 Overview of Two-Way Correspondence Analysis

We provide here a short overview of CA. For more details, see Benzécri (1992), Greenacre
and Hastie (1987), Lébart et al. (1984, 1997), and Greenacre (1984, 2007).

As mentioned above, CA attempts to display the structural relationships in a two-
way table of counts in coordinates representing the rows and columns. Because our
approach is chiefly graphical, following the French tradition of Benzécri (1973), we
consider CA as an adaptation to categorical data of Principal Component Analysis
(PCA). CA displays a low-dimensional projection of the data (e.g., into a plane). It
does this for two variables or categories simultaneously, thus revealing associations (and
oppositions) between them.

Similar to PCA, CA provides eigenvalues that are squared singular values (called
principal inertias in CA), percentages of explained variance (percentages of inertia),
factor loadings (correlations with principal axes), and communalities (percentages of
explained inertia for individual rows or columns).

Contrary to the loglinear analysis approach (Bishop et al. 1975), no model is assumed
in CA. However, the metric is based on the assumption that the variance of an entry is
proportional to its mean, as it would be in a Poisson model. CA is essentially a method
for a weighted least- squares approximation of a frequency matrix. The projections are
the central output of CA.

Let I rows and J columns be collected into the I × J matrix N with elements kij .
(For convenience of notation we will assume I ≥ J in this general discussion; in our
cardiac data, I = J). Let ki+ and k+j denote the sum of the ith row and jth column,
respectively, and k++ =

∑
i

∑
j kij denote the grand total of N. The mass of the jth

column is defined as cj = k+j/k++, and likewise the mass of the ith row is ri = ki+/k++.
All of CA is based on the so-called correspondence matrix of relative frequencies P with
entries pij = kij/k++ and the matrix S with elements sij = (pij− ricj)/

√
ricj . We note

here that this makes CA invariant to rescaling of the original matrix N.

The total inertia Φ2 = χ2/k++ is known as Pearson’s mean-square contingency
coefficient, where χ2 is Pearson’s chi-squared statistic of the data matrix, i.e. the sum
of squares of the matrix S.

Φ2 = tr(SSt) (1)

=
I∑

i=1

J∑

j=1

(pij − ricj)
2
/(ricj) (2)

The data in a contingency table can be used to check for association of two categorical
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variables corresponding to the rows and columns of P. The assumption of independence
is E(pij) = ricj , i = 1, · · · , I; j = 1, · · · , J . The usual chi-square statistic for testing
independence may be written in several forms:

χ2 = k++tr(SSt) = k++tr(StS) (3)

= k++

I∑

i=1

J∑

j=1

(pij − ricj)2/(ricj) (4)

= k++

k∑

i=1

λ2
i (5)

where λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
k > 0 are the nonzero eigenvalues of SSt and k is its rank. The

biplot is a projection of the rows or columns of SSt onto the span of the eigenvectors
corresponding to λ2

1 and λ2
2. When λ2

1 + λ2
2 constitutes a substantial proportion of∑k

i=1 λ2
i , the biplot will display most of the variability contributing to χ2.

See the references listed above (especially Benzécri (1992) and Greenacre (2007))
for extensive discussions of the interpretation of biplots. Briefly, we can say the fol-
lowing. The points in the biplot correspond to coordinates of the two eigenvectors
associated with λ1 and λ2, so the orientation of axes is arbitrary. Points appearing
near the origin correspond to rows or columns in which the assumption of independence
is approximately valid. If the point representing one row or column falls far from the
origin, it will generally be opposed by one or more points in the opposite direction;
that opposition indicates the way in which independence is violated: the table deviates
from independence largely in the entries corresponding to these points. The actual lin-
ear combinations of sij values contributing to each point are not important, but the
relative positions and the shape of the overall plot may be.

In the heart defect data shown in Table 1, kij is the number of cases concerning
two consanguineous subjects, in which one is diagnosed with i, the other one with j.
The observed table is symmetrical. The diagonal is missing because Fraser and Hunter
(1975) excluded the cases where the two subjects presented the same malformation,
only counting the cases where they have distinct malformations. Due to this fact, the
table does not yield very well to CA. If the missing values are replaced with a zero
diagonal, the non-responses of Table 1 result in a strong lack of independence between
the factors. Figure 1 shows a biplot of this table. The lack of independence is evident in
the fact that no columns are plotted near the (0, 0) location at the centre of the display.
The first axis displays most of the variation (59% versus 19% for the second axis); this
simply reflects the fact that ToF and PS have such high counts.

There is no usable information in this plot. We might hope to see better information
if we had plotted the original Xij counts; the remainder of this paper presents a Bayesian
approach to impute them.
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3 A Bayesian Approach

Due in part to recent significant computational advances such as Markov chain Monte
Carlo (MCMC), Bayesian analysis is becoming a practical choice for dealing with com-
plicated statistical scenarios, such as random effect or mixed models, classification,
missing values, image processing, signal detection, etc.

The aim of this section is to describe a Bayesian approach to imputing the miss-
ing data in our table of counts, and an MCMC method to approximate the posterior
distribution. The correspondence analysis of the results is described in the next section.

3.1 The Statistical Model

Let Xij be the (unobserved) count of pair (i, j), with order taken to be significant.
In our actual dataset, the full table is not observed. Instead, we observe totals kij =
Xij +Xji for i 6= j, and have no information on Xii. However, we begin by modelling a
complete version of the observed table. At the end the missing values will be imputed
by looking at their posterior distribution under a hierarchical Bayes model conditional
on the observations.

We assume the over-parametrized log-linear model

Xij ∼ Poisson(µij)

where
log µij = αi + αj + δij (6)

This model differs from the standard loglinear symmetry model (Agresti 1990, p. 353)
in two ways. First, there are no identifiability constraints on the parameters. Omitting
the identifiability constraints simplifies the model considerably: in the prior model used
in the absence of data, the αi and δij terms are independent. Second, our model allows
δij 6= δji. Allowing for a lack of symmetry in the δij values also simplifies the model:
the Xij terms are independent in the prior. These two simplifications make our model
easier to interpret.

The parameters αi and δij are modelled differently from each other. We believe
that there will be large differences in αi, as these control differences in the marginal
responses in the rows or columns of our observation matrix: in our example, differences
in the rates of cardiac malformations. However, we don’t assume prior knowledge of the
relative frequency. Thus our prior distribution on each is

αi ∼ N(0, 106)

independently across i. This represents a diffuse but proper prior distribution. (An
improper prior for the αi terms would behave similarly in the presence of sufficient data;
an advantage of using a proper prior is that it guarantees a proper posterior regardless
of the amount of data present.) The αj term in (6) is not modelled separately, as αj is
equal to αi with i = j.
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The parameters δij measure departures from an independence model. We believe
that the different pairings don’t follow a pure independence model, but we don’t expect
the departures to be large. Thus we assume

δij ∼ N(0, σ2)

where the standard deviation σ is given the prior distribution

σ ∼ Unif(0, 10)

The upper limit of 10 on the distribution of σ serves two purposes. First, it provides an
upper bound on the variability of δij , matching our belief that this variability should not
be large. A value of δij larger than 10 would make a huge change to the model, contrary
to our belief. The bound on δij guarantees that the posterior distribution will be proper.
The use of a uniform prior on the standard deviation is a “default” choice recommended
by Spiegelhalter et al. (2004, p. 173), who discuss a number of alternatives which may
be more appropriate in specific situations. A welcome consequence of the upper limit
on σ is that it allows us to “borrow strength” from the observed kij values to estimate
the unobserved Xij values.

We used WinBUGS (Spiegelhalter et al. 2003) to carry out the MCMC fit to this
model. Once translated into the WinBUGS language, the specification above is suffi-
cient for WinBUGS to automatically construct a Markov chain using Gibbs sampling,
whose steady-state distribution is the posterior distribution of the parameters and the
unobserved data. Unfortunately, this chain mixes very slowly. Since kij = Xij + Xji

is observed but Xij is not, the posterior distribution of Xij is highly negatively cor-
related with that of Xji. Gibbs samplers work best when the unknown components
are relatively uncorrelated, so we reformulated the model to reduce this correlation as
follows:

δij = (δij + δji)/2
εij = (δij − δji)/2
νij = ln 2 + αi + αj + δij

for i < j. In this parametrization νij is used as the log of the mean for off-diagonal kij

values, i.e. for i < j

kij ∼ Poisson(exp(νij))

We note that this model is not quite identical to the model presented earlier in this
section, where the mean for kij would be exp(αi + αj)[exp(δij) + exp(δji)] instead of
2 exp[αi +αj +(δij + δji)/2] as here. For the small values of δij we expect, these should
be very close. The diagonal terms δii were left unchanged in the model.
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In this new formulation, the prior for δij becomes

δij ∼ N(0, σ2/2)
εij ∼ N(0, σ2/2)
δij = δij + εij

δii ∼ N(0, σ2)

Posterior draws of Xij are based on the relation

Xij | kij , µij , µji ∼ Binomial[kij , µij/(µij + µji)]

3.2 MCMC and Correspondence Analysis

Once samples are drawn from the posterior distribution, further decisions need to be
made before correspondence analysis can be carried out. There are a number of possible
matrices which could be used in CA.

One choice would be the imputed Xij matrix; another would be the full kij matrix
including the imputed diagonal. Alternatively, the µij matrix or the symmetrized (µij +
µji)/2 matrix could be used. The posterior distribution for each of these is approximated
by MCMC, giving a distribution of possible correspondence analyses of the problem.

The most natural choice for a single estimated matrix to use in CA would be the mean
or median of the posterior distribution. Because the model is loglinear, the posterior
distributions for the matrix entries are highly skewed to the right, and we chose to use
the posterior median. It is clear that the posterior medians for kij , µij and Xij are
all symmetric matrices, since our prior is symmetric and there is no information in the
data to break the symmetry. The matrix entries are not all equally uncertain: non-
diagonal entries of kij are known by observation, with uncertainty only in the missing
diagonal entries. The µij matrix also includes uncertainty about the actual mean, and
Xij includes uncertainty in how the observations are distributed between symmetric
pairs.

In actual practice, we would normally do our analysis based on the kij values. CA is
mainly a descriptive technique, and this comes closest to describing the observed data.
In cases where CA is used for inference about the underlying model (e.g. to declare
that certain characteristics are related in some way in the general population), the plots
based on µij values would be helpful to show the uncertainty in those inferences.

3.3 Uncertainty in Imputation

The Bayesian analysis produces posterior distributions for the unknown quantities, not
just estimates. How should these be incorporated into the analysis?

Greenacre (1984, sec. 8.1) addresses uncertainty in CA using jackknife and bootstrap
replications. This is roughly equivalent (albeit using a frequentist approach) to using
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Table 2: Posterior medians of (Xij + Xji)/2 and (µij + µji)/2.

kij

ToF VSD PS TGV PDA AS ASD
ToF 9.0 6.5 9.5 5.0 2.0 0.5 0.5
VSD . 5.0 1.5 2.5 1.5 1.5 3.0
PS . . 1.0 1.0 0.0 0.5 0.5
TGV . . . 2.0 2.0 0.5 1.0
PDA . . . . 0.0 1.0 0.0
AS . . . . . 0.0 1.0
ASD . . . . . . 0.0

(µij + µji)/2
ToF VSD PS TGV PDA AS ASD

ToF 9.3 6.4 7.8 4.7 1.9 1.0 1.0
VSD . 5.1 1.7 2.5 1.4 1.3 2.1
PS . . 0.9 1.1 0.4 0.5 0.5
TGV . . . 1.9 1.3 0.6 0.8
PDA . . . . 0.4 0.5 0.3
AS . . . . . 0.3 0.5
ASD . . . . . . 0.3

the posterior distribution of the symmetrized mean matrix. The idea is to use the
estimated matrix to determine the projection, and then to display samples from the
posterior distribution of (µij + µji)/2 by projecting their biplots into the same plane.

4 Application to Cardiology Data

In this section we report the results of the Bayesian analysis described in section 3.
We used WinBUGS to run a Markov chain on the reformulated model for 1000 steps
of burn-in and a further 50,000 steps to obtain properties of the posterior distribution.
We found that WinBUGS performed very well on this model, with fast mixing.

We used the posterior median of (Xij + Xji)/2 (which is equal to kij/2 with no
uncertainty when i 6= j) as our imputed data, and the posterior median of (µij +µji)/2
as our estimate of the posterior mean matrix. Table 2 shows these results. Only the
entries on and above the diagonal are shown; the entries below the diagonal mirror those
above.

The eigenvalues and the percentages of inertia (in parentheses) explained by the
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Table 3: Diagonal estimates using de Tibeiro (1996) method compared with posterior
medians.

ToF VSD PS TGV PDA AS ASD
Minimum trace 29.1 9.5 8.0 4.0 2.8 4.5 0.0
Median of kii 9 5 1 2 0 0 0

non-trivial eigenvalues are:

λ1 = 0.0633 (47%); λ2 = 0.0531 (40%);
λ3 = 0.0085 (6.4%); λ4 = 0.0071 (5.5%);
λ5 = 0.0017 (1.2%); λ6 = 0.00004 (0.03%).

The sum of the eigenvalues is equal to the χ2-coefficient of the table of posterior
medians divided by the grand total. Here the sum of the first two most significant
dimensions accounts for about 87% of χ2/k++. In other words, two axes out of a
possible five will summarize 87% of the departure from independence. This suggests
that a planar representation will provide a good visual summary of the data. See Figure
2. While the (µij + µji)/2 entries are not integer-valued, we may still formally carry
out the CA calculations, and have done so in this plot.

The axes of a CA are defined by contrasts. Figure 2 reveals that axis 1 is mainly
a contrast between PS and ToF, because they have the largest contributions in that
dimension. This suggests an unusual relation between those two malformations, and
examination of the original table shows that the ToF-PS entry of 19 is unusually large,
given that the other PS entries are all 3 or less, and the other ToF entries are all 13 or
less.

The second axis consists primarily of the contrast between PS and ToF versus the
other malformations. Thus most of the χ2 statistic in (3) may be attributed to the
differences between the three groups consisting of the singletons ToF and PS, and the
remaining malformations.

We also applied the minimum trace method of de Tibeiro (1996) to the full dataset.
The first seven diagonal entries are shown in Table 3. As can be seen, the minimum
trace criterion generally gives larger estimates of the missing diagonal entries. Partly
this reflects the skewness of the distribution: the posterior medians are smaller than the
posterior means. It may also be explained by the fact that the minimum trace is trying
to minimize the χ2 statistic, rather than estimating values that are consistent with the
observed data.

To understand the uncertainty in this correspondence analysis, we produced Figure
3. Here 1000 simulations from the posterior are shown by displaying the locations of
the projections of each of the first four malformations onto copies of Figure 2. We have



528 Correspondence Analysis using Bayesian Imputation

also included contours of the posterior density for each malformation.

The original aim of Fraser and Hunter (1975) was to describe the relations among
the cardiac malformations. From Figure 2 we would conclude that the first axis is
determined almost exclusively by the opposition between ToF and PS, while the second
axis opposes this pair to all the other malformations. However, Figure 3 shows that
the observation about the first axis may not hold for the imputed data, in that there is
considerable uncertainty about the location of ToF along the first axis, while the second
axis is more stable. Indeed, a closer examination of the row and column contributions
revealed that the first axis is “inverse” in the sense of Benzécri (1992, p. 412) which
would make it difficult to interpret: it would suggest that possession of ToF or PS in one
sibling would convey a protection against the same malformation in the other sibling.

In conclusion, we can say that our Bayesian approach to filling in the missing entries
gave insight into the interpretation of the biplot that would not normally be available.
In addition, it allows straightforward display of the uncertainty in the imputed results.
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Figure 1: Biplot of the columns of N based on replacing the missing diagonal with
structural zeros.
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Figure 2: Biplot based on symmetrized posterior median of the µij matrix.
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Figure 3: Uncertainty in the biplot of the symmetrized median.


