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Model Selection and Adaptive Markov Chain
Monte Carlo for Bayesian Cointegrated VAR

Models.

Gareth W. Peters∗, Balakrishnan Kannan†, Ben Lasscock† and Chris Mellen†

Abstract. This paper develops a matrix-variate adaptive Markov chain Monte
Carlo (MCMC) methodology for Bayesian Cointegrated Vector Auto Regressions
(CVAR). We replace the popular approach to sampling Bayesian CVAR mod-
els, involving griddy Gibbs, with an automated efficient alternative, based on the
Adaptive Metropolis algorithm of Roberts and Rosenthal (2009). Developing the
adaptive MCMC framework for Bayesian CVAR models allows for efficient esti-
mation of posterior parameters in significantly higher dimensional CVAR series
than previously possible with existing griddy Gibbs samplers. For a n-dimensional
CVAR series, the matrix-variate posterior is in dimension 3n2 + n, with signifi-
cant correlation present between the blocks of matrix random variables. Hence,
utilizing a griddy Gibbs sampler for large n becomes computationally impractical
as it involves approximating an n×n full conditional posterior using a spline over
a high dimensional n×n grid. The adaptive MCMC approach is demonstrated to
be ideally suited to learning on-line a proposal to reflect the posterior correlation
structure, therefore improving the computational efficiency of the sampler.

We also treat the rank of the CVAR model as a random variable and perform
joint inference on the rank and model parameters. This is achieved with a Bayesian
posterior distribution defined over both the rank and the CVAR model parameters,
and inference is made via Bayes Factor analysis of rank.

Practically the adaptive sampler also aids in the development of automated
Bayesian cointegration models for algorithmic trading systems considering instru-
ments made up of several assets, such as currency baskets. Previously the literature
on financial applications of CVAR trading models typically only considers pairs
trading (n=2) due to the computational cost of the griddy Gibbs. We are able to
extend under our adaptive framework to n >> 2 and demonstrate an example with
n = 10, resulting in a posterior distribution with parameters up to dimension 310.
By also considering the rank as a random quantity we can ensure our resulting
trading models are able to adjust to potentially time varying market conditions in
a coherent statistical framework.
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1 Introduction

Bayesian analysis of Cointegrated Vector Auto Regression (CVAR) models has been
addressed in several papers, see Koop et al. (2006) for an overview. In a Bayesian
CVAR model, specification of the matrix-variate model parameters priors, to ensure
the posterior is not improper, must be done with care, see Koop et al. (2006). This has
significant implications on the Bayesian model structure, in particular one can not make
a blind specification of priors on the VAR model coefficients as it may result in improper
posterior distributions. For this reason it is common to consider the Error Correction
Model (ECM) framework, see for example p.141-142 of Reinsel and Velu (1998). In this
paper we do not aim to address the issue of prior choice or prior distortions and we
adopt the model of Sugita (2002) and Geweke (1996) which admits desirable conjugacy
properties. The resulting posterior for a n-dimensional CVAR series, is matrix-variate
in dimension up to 3n2 + n for full rank models, with significant correlation present
between and within the blocks of matrix random variables. This presents a challenge
to efficiently sample from the posterior distribution when n is large.

The focus of the paper and novelty introduced involves developing a Bayesian adap-
tive MCMC sampling, based on the proposed algorithm of Roberts and Rosenthal
(2009), to allow us to significantly increase the dimension, n, of the CVAR series that can
be estimated. Typically in the cointegration literature the sampling approach adopted
is a griddy Gibbs sampling framework, see Bauwens and Lubrano (1996), Bauwens
and Giot (1998), Geweke (1996), Kleibergen and Van Dijk (2009), Sugita (2002) and
Sugita (2009). The conjugacy properties of the Bayesian model we consider result in
exact sampling of two of the matrix-variate random variables corresponding to the un-
known error covariance matrix and the combined matrix random variable containing
the cointegration equilibrium reversion rates α and the mean level µ of the CVAR se-
ries. However, the third unknown matrix-variate random variable corresponding to the
cointegration vectors β has a marginal posterior distribution with support in dimension
n× r. When the cointegration rank r and the dimension of the CVAR series n is large
(n > 5) then the standard griddy Gibbs based samplers are no longer computationally
viable samplers. Alternative samplers which may attempt to deconstruct the full con-
ditional distribution of the posterior for the cointegration vectors β into components
of this matrix, updating them one at a time will run into significant difficulties with
efficiency in the mixing properties of the resulting Markov chain. The reason for this is
due directly to two factors: the identification normalization constraint of the matrix β;
and the strong correlation present in the full conditional posterior distribution for the
matrix random variable β. Hence, utilizing a griddy Gibbs sampler for large n becomes
computationally impractical as it involves approximating up to an n×n matrix-variate
full conditional posterior using a spline constructed over a high dimensional space with
d knot points per dimension, creating a requirement for dn total grid points. The sam-
pler we develop overcomes these difficulties utilizing an adaptive MCMC approach. We
demonstrate that it is ideally suited to learning on-line a proposal to reflect the pos-
terior correlation in the matrix-variate random variable, ensuring that updating this
n × r matrix at each stage of the adaptive MCMC algorithm results in a non-trivial
acceptance probability.
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Adaptive MCMC is a new methodology to learn on-line the ’optimal’ proposal distri-
bution for an MCMC algorithm, see Atchadé and Rosenthal (2005), Haario et al. (2005),
Haario et al. (2001) and Andrieu and Moulines (2006) and more recently Giordani and
Kohn (2010) and Silva et al. (2009), of which there are several different versions of adap-
tive MCMC and Particle MCMC algorithms. Basically adaptive MCMC algorithms aim
to allow the Markov chain to adapt the Markov proposal distribution online throughout
the simulation in such a way that the correct stationary distribution is still preserved,
even though the Markov transition kernel of the chain is changing throughout the sim-
ulation. Clearly, this requires careful constraints on the type of adaption mechanism
and the adaption rate to ensure that stationarity is preserved for the resulting Markov
chain.

To summarize, this paper extends the matrix-variate block Gibbs sampling frame-
work typically used in Bayesian Cointegration models by replacing the computational
n×n dimensional griddy Gibbs sampler with two possible automated alternatives which
are based on matrix-variate adaptive Metropolis-within-Gibbs samplers. Additionally,
we consider rank estimation for reduced rank Cointegration models. From a Bayesian
perspective we tackle this via Bayes Factor (BF) analysis for posterior ”model” proba-
bilities of the rank. Then we demonstrate estimation and predictive performance under
a Bayesian setting for both Bayesian Model Selection (BMS) and Bayesian Model Av-
eraging (BMA).

The models and algorithms developed allow for estimation of either the rank r, i.e.
the model index, and the lag p of the CVAR model jointly with the model parameters.
For simplicity we shall assume the lag is fixed and known.

In this paper the following notation will be used: ’ denotes transpose, Id is the d×d
identity matrix, p(.) denotes a density and P(.) a distribution, Ω will be the space on
which densities will take their support and it will be assumed throughout that we are
working with Lebesgue measure. The operator ⊗ denotes the Kronecker product, ‖ · ‖
denotes the total variation norm and 4 denotes the unit vector difference operator. We
denote generically the state of a Markov chain at time j by random variable Θ(j) and
the transition kernel from realized state Θ(j−1) = θ to Θ(j) by Q

(
θ,Θ(j)

)
. In the case of

an adaptive transition kernel we will also assume that there is a sequence of transition
kernels denoted by QΓj

(
θ,Θ(j)

)
, where Γj is the sequence index.

1.1 Contribution and structure

In section 2 we present the matrix-variate posterior distribution for the CVAR model
formulated under an Error Correction Model (ECM) model framework. Next in section
3 we discuss the Bayesian CVAR model conditional on knowledge of the co-integration
rank. This includes discussing and summarizing properties of the Bayesian CVAR
model including identification, the justification of the ECM framework and issues to
consider when selecting matrix priors for Bayesian CVAR models with respect to prior
distortions. At this stage we make explicit the justification for why the Bayesian model
decomposes the cointegration matrix Π = αβ′ under the ECM framework, since working



468 Adaptive MCMC for Bayesian Cointegrated VAR Models.

directly with Π precludes direct use of Monte Carlo samples for inference in the VAR
model setting. As pointed out in Geweke (1996) and Sugita (2002), conditional on
matrix β the nonlinear ECM model becomes linear and therefore under the informative
priors we utilize, we can once again apply standard Bayesian analysis to the VAR model,
this turns out to be a very useful property widely used in the cointegration literature.
Then in section 4 we present the two algorithms developed based on Adaptive MCMC
to obtain samples from the target posterior, followed by section 5 which presents the
framework for rank estimation we utilize, along with discussion of model selection and
model averaging, with respect to the unknown rank of the CVAR system. We conclude
with both synthetic simulation examples with n ranging from 4 to 10, resulting in
posteriors defined in dimensions between 52 and 310 dimensions. We also provide
analysis on two real data examples from pairs and triples trading typically considered
in real world financial algorithmic trading models.

2 CVAR model under ECM framework

We note that a well presented representation to co-integration models is provided by
Engle and Granger (1987), Sugita (2002), Sugita (2009) and for the original error cor-
rection representation of a co-integrated series, see Granger (1981) and Granger and
Weiss (2001). The model presented in Sugita (2009) is based on the model of Strachan
and van Dijk (2007) and it generalizes the VECM model in Sugita (2002) to include
explicitly the possibility of an intercept and a linear time trend. In this paper we will
consider a CVAR model in which we have an intercept term but no time trend, the
extension to include a time trend is trivial to incorporate into our simulation methodol-
ogy. Based on the definitions of Sugita (2002) for a co-integrated series, we denote the
vector observation at time t by xt. Furthermore, we assume xt is an integrated of order
1, I(1), (n × 1)-dimensional vector with r linear cointegrating relationships. The error
vectors at time t, εt are assumed time independent and zero mean multivariate Gaussian
distributed, with covariance Σ. The Error Correction Model (ECM) representation we
consider is given by,

4xt = µ+αβ′xt−1 +
p−1∑
i=1

Ψi4xt−i + εt (1)

where t = p, p+1, . . . , T and p is the number of lags. Furthermore, the matrix dimensions
are: µ and εt are (n× 1), Ψi and Σ are (n× n), α and β are (n× r).

We can now re-express the model in equation (1) in a multivariate regression format,
as follows

Y = XΓ + Zβα′ + E = WB + E, (2)

where,

Y =
(
4xp 4xp+1 . . . 4xT

)′
, Z =

(
xp−1 xp . . . xT−1

)′
E =

(
εp εp+1 . . . εT

)′
,Γ =

(
µ Ψ1 . . . Ψp−1

)′
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X =


1 4x′p−1 . . . 4x′1
1 4x′p . . . 4x′2
...

... . . .
...

1 4x′T−1 . . . 4x′T−p+1

 ,W =
(
X Zβ

)
, B =

(
Γ′ α

)′
.

Here, we let t be the number of rows of Y , hence t = T − p + 1, producing X with
dimension t× (1 + n(p− 1)), Γ with dimension ((1 + n(p− 1))× n), W with dimension
t × k and B with dimension (k × n), where k = 1 + n(p − 1) + r, see Sugita (2002)
for additional details regarding this parameterization. The parameters µ represents the
trend coefficients, and Ψi is the ith matrix of autoregressive coefficients and the long
run multiplier matrix is given by Π = αβ′.

The long run multiplier matrix is an important quantity of this model, its properties
include: if Π is a zero matrix, the series xt contains n unit roots; if Π has full rank then
each univariate series in xt are (trend-)stationary; and co-integration occurs when Π is of
rank r < n. The matrix β contains the co-integration vectors, reflecting the stationary
long run relationships between the univariate series within xt and the α matrix contains
the adjustment parameters, specifying the speed of adjustment to equilibria β′xt.

This results in a likelihood model, where the parameters of interest are B, Σ and β,
given by

L(B,Σ,β|Y ) = (2π)−0.5nt|Σ⊗ It|−0.5 exp
(
−0.5V ec(Y −WB)′(Σ−1 ⊗ I−1

t )V ec(Y −WB)
)

∝ |Σ|−0.5t exp
(
−0.5tr[Σ−1(Ŝ +R)]

)
,

where Σ = Cov(E) and

R = (B − B̂)′W ′W (B − B̂), Ŝ = (Y −WB̂)′(Y −WB̂), B̂ = (W ′W )−1W ′Y.

3 Bayesian CVAR models conditional on Rank (r)

The assumptions and restrictions of our Bayesian CVAR model include:

1. Identification Issue: For any non-singular matrix A, the matrix of long run
multipliers Π = αβ′ is indistinguishable from Π = αAA−1β′, see Koop et al.
(2006) or Reinsel and Velu (1998). We use a standard approach to globally over-
come this problem by incorporating a non unique identification constraint. We
impose r2 restrictions as follows β = [Ir,β′∗]

′, where Ir denotes the r × r identity
matrix. However, as noted by Kleibergen and Van Dijk (2009) and discussed in
Koop et al. (2006) this can still result in local identification issues at the point
α = 0, when β does not enter the model. Hence, one must be careful to ensure
that the Markov chain generated by the matrix-variate block Gibbs sampler is
not invalidated by the terminal absorbing state. As is standard we monitor the
performance of the sampler to ensure this has not occurred.

2. Error Correction Model: The ECM framework complicates Bayesian analysis
since products, αβ′, preclude direct use of Monte Carlo samples for inference in
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the VAR model setting. However, conditional on β the nonlinear ECM model
becomes linear and therefore under the informative priors used by Geweke (1996)
and Sugita (2002), we can once again apply standard Bayesian analysis to the
VAR model.

3. Prior Choices: We do not consider the issue of prior distortions illustrated by
Kleibergen and Van Dijk (2009). This is not the focus of the present paper. Alter-
native prior models in the cointegration setting include Jeffrey’s priors, Embedding
approach and a focus on the cointegration space.

3.1 Prior and Posterior Model

Here we present the model for estimation of β, B and Σ conditional the rank r. As in
Sugita (2002), we use a conjugate hierarchical prior.

• β ∼ N(β̄, Q⊗H−1) where N(β̄, Q⊗H−1) is the matrix-variate Gaussian distri-
bution with prior mean β̄, Q is an (r × r) positive definite matrix, H an (n × n)
matrix.

• Σ ∼ IW (S, h) where IW (S, h) is the Inverse Wishart distribution with h degrees
of freedom and S is an (n× n) positive definite matrix.

• B|Σ ∼ N(P,Σ ⊗ A−1) where N(P,Σ ⊗ A−1) is the matrix-variate Gaussian dis-
tribution with prior mean P which is k × n and A is a (k × k) matrix, with
k = n(p− 1) + 1 + r which corresponds to the number of columns in W .

Combining the priors and likelihood produce matrix-variate conditional posterior dis-
tributions (derivation details provided in Sugita (2002)):

• Inverse Wishart distribution for

p(Σ|β, Y ) ∝ |S?|(t+h)/2|Σ|−(t+h+n+1)/2 exp
(
−0.5tr(Σ−1S?)

)
which is trivial to sample exactly;

• Matrix-variate Gaussian for

p(B|β,Σ, Y ) ∝ |A?|n/2|Σ|−k/2 exp
(
−0.5tr

(
Σ−1(B −B?)′A?(B −B?)

))
(or alternatively matrix-variate student-t distribution form for p(B|β, Y )), both
trivial to sample exactly;

• The marginal matrix-variate posterior for the cointegration vectors, β|Y , is not
well studied and is given by

p(β|Y ) ∝ p(β)|S∗|−(t+h+1)/2|A∗|−n/2. (3)

where we define A? = A + W ′W , B? = (A + W ′W )−1(AP + W ′WB̂) and S? =
S + Ŝ + (P − B̂)′[A−1 + (W ′W )−1]−1(P − B̂).
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4 Sampling and Estimation Conditional on Rank r

Here we focus on obtaining samples from the posterior distribution which can be used
to obtain Bayesian parameter estimates (MMSE, MAP). The complication in sampling
arises with the full conditional posterior 3.1 which can not be sampled from via straight
forward inversion sampling.

In this paper we outline novel algorithms to sample from the posterior distribution
p (β|Y,B,Σ, r), providing an alternative automated approach to the griddy Gibbs sam-
pler algorithm made popular in this Bayesian co-integration setting by Bauwens and
Lubrano (1996).

The matrix-variate griddy Gibbs sampler numerically approximates the target pos-
terior on a grid of values and then performs numerical inversion to obtain samples from
3.1 at each stage of the MCMC algorithm. Such a grid based procedure will suffer
from the curse of dimensionality when n is large (n > 5) after which it becomes highly
inefficient. Note, alternative approaches such as Importance Sampling will also be prob-
lematic once n becomes too large. It is difficult to optimize the choice of the Importance
Sampling distribution which will minimize the variance in the importance weights.

Instead we propose alternative samplers using adaptive matrix-variate MCMC method-
ology. They do not suffer from the curse of dimensionality and are simple to implement
and automate.

• Algorithm 1 - Random Walk (mixture local & global moves): Involves an
offline adaptively pretuned mixture proposal containing a combination of local and
global Random Walk (RW) moves. The proposal for the local RW moves have
standard deviation tuned to produce average acceptance probabilities between
[0.3, 0.5]. The independent global matrix-variate proposal updates all elements of
β via a multivariate Gaussian proposal centered on Maximum Likelihood param-
eter estimates for β and the Fisher information matrix for the covariance of the
global proposal. This is similar to the approach adopted in Vermaak et al. (2004)
and Fan et al. (2009).

• Algorithm 2 - Adaptive Random Walk: Involves an online matrix-variate
adaptive Metropolis algorithm based on methodology presented in Roberts and
Rosenthal (2009).

Proceeding sections denote the algorithmic ’time’ index by j and the current state of
a Markov chain for generic parameter θ at time j by θ(j). The length of the Markov
chain is J .

Note, since we have imposed r2 restrictions in the form of Ir, any proposal for
β = [Ir, β̃] will only correspond to the unrestricted elements of β denoted by β̃. In our
case, these correspond to those in locations (n− r)× r.
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4.1 Algorithm 1

In Algorithm 1 the mixture proposal distribution for parameters β̃ will be given by,

q
(
β̃(t−1), ·

)
= w1N

(
β̃; β̃ML,ΣML

)
+ (1− w1)

(n−r)×r∏
i=1

N
(
β̃i,k; β̃(t−1)

i,k , σ2
i,k

)
. (4)

The Maximum Likelihood parameters are obtained off-line, see (p. 286 Luetkepohl
(2005)). The local random walk proposal variances σ2

i,k for each element of β̃ are
obtained via pre-tuning.

4.2 Algorithm 2: Adaptive Metropolis within Gibbs sampler moves
for CVAR model given rank r

There are several classes of adaptive MCMC algorithms, see Roberts and Rosenthal
(2009). The distinguishing feature of adaptive MCMC algorithms, compared to stan-
dard MCMC, is generation of the Markov chain via a sequence of transition kernels.
Adaptive algorithms utilize a combination of time or state inhomogeneous proposal ker-
nels. Each proposal in the sequence is allowed to depend on the past history of the
Markov chain generated, resulting in many variants.

Due to the inhomogeneity of the Markov kernel used in adaptive algorithms, it is
particularly important to ensure the generated Markov chain is ergodic, with the appro-
priate stationary distribution. Several recent papers proposing theoretical conditions
that must be satisfied to ensure ergodicity of adaptive algorithms include, Atchadé and
Rosenthal (2005), Roberts and Rosenthal (2009), Haario et al. (2005), Andrieu and
Moulines (2006) and Andrieu and Atchadé (2007).

Haario et al. (2001) developed an adaptive Metropolis algorithm with proposal co-
variance adapted to the history of the Markov chain. The original proof of ergodicity of
the Markov chain under such an adaption was overly restrictive. It required a bounded
state space and a uniformly ergodic Markov chain.

Roberts and Rosenthal (2009) proved ergodicity of adaptive MCMC under simpler
conditions known as Diminishing Adaptation and Bounded Convergence. As in Roberts
and Rosenthal (2009) we assume that each fixed kernel in the sequence Qγ has stationary
distribution P (·). Define the convergence time for kernel Qγ when starting from state
θ as Mε (θ, γ) = inf{j ≥ 1 : ‖Qjγ (θ, ·) − P (·) ‖ ≤ ε}. Under these assumptions, they
derive the sufficient conditions;

• Diminishing Adaptation: limn→∞supθ∈E‖QΓj+1 (θ, ·)−QΓj
(θ, ·) ‖ = 0 in prob-

ability. Note, Γj are random indices.

• Bounded Convergence: {Mε

(
Θ(j),Γj

)
}∞j=0 is bounded in probability, ε > 0.

which guarantee asymptotic convergence in two senses,
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Algorithm 1: MH within Gibbs sampler for fixed rank r via a pretuned mixture
of global and local moves.

Input: Initial Markov chain state
(
Σ(0), B(0),β(0)

)
.

Output: Markov chain samples {Σ(j), B(j),β(j)}j=1:J ∼ p (Σ, B,β|Y ).
begin

1. Set initial state
(
Σ(0), B(0),β(0)

)
deterministically or by sampling the priors.

2. Calculate Maximum Likelihood parameters β̃ML and ΣML.

3. Initialize w1 and w2 = 1− w1 and index j = 1.

repeat

5. Sample Σ via inversion to obtain Σ(j).

6. Sample B via inversion to obtain B(j).

7. Sample realization U = u where U ∼ U [0, 1]

if u ≥ w1 then /* perform a local random walk move */

7a. Sample uniformly index (i, k) from set of n− r × r elements.

7b. Sample the (i, k)-th component β̃∗i,k ∼ N
(
β̃i,k; β̃(j−1)

i,k , σ2
i,k

)
.

7c. Construct proposal β∗ = [Ir×r, β̃∗], where β̃∗ is β̃(j−1) with
the (i, k)-th element given by β̃∗i,k.

else /* perform a global independent move */

7a. Sample proposal β̃∗ ∼ N
(
β̃; β̃ML,ΣML

)
.

7b. Construct proposal β∗ = [Ir×r, β̃∗].

8. Calculate Metropolis Hastings Acceptance Probability:

A
(
β(j−1),β∗

)
=

p
(
Σ(j), B(j),β∗|Y

)
q
(
β∗ → β(t−1)

)
p
(
Σ(j), B(j),β(j−1)|Y

)
q
(
β(t−1) → β∗

)
Accept β(j) = β∗ via rejection using A, otherwise β(j) = β(j−1).

9. j = j + 1

until j = J

end
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• Asymptotic convergence: limj→∞‖L
(
Θ(j)

)
− P (·) ‖ = 0

• WLLN:limj→∞
1
j

∑j
i=1 g

(
Θ(i)

)
=
∫
g(θ)p(θ)dθ for all bounded g : E → R.

It is non-trivial to develop adaption schemes which can be verified to satisfy these two
conditions. We develop a matrix-variate adaptive MCMC methodology in the CVAR
setting, using a proposal kernel known to satisfy these two ergodicity conditions for
unbounded state spaces and general classes of target posterior distribution, see Roberts
and Rosenthal (2009) for details.

In Algorithm 2 the mixture proposal distribution for parameters β̃ which is d =
(n− r)× r dimensional and is given at iteration j by,

qj

(
β̃(t−1), ·

)
= w1N

(
β̃; β̃(t−1),

(2.38)2

d
Σj

)
+ (1− w1)N

(
β̃; β̃(t−1),

(0.1)2

d
Id,d

)
.

(5)
Here, Σj is the current empirical estimate of the covariance between the parameters of β̃
estimated using samples from the Markov chain up to time j. The theoretical motivation
for the choices of scale factors 2.38, 0.1 and dimension d are all provided in Roberts
and Rosenthal (2009) and are based on optimality conditions presented in Roberts et al.
(1997) and Roberts and Rosenthal (2001). The adaptive MCMC Algorithm 2 is identical
to Algorithm 1 except we replace step 7 with the following alternative;

Algorithm 2: matrix-variate adaptive MH within Gibbs sampler for fixed rank r.

if u ≥ w1 then /* perform an adaptive random walk move */

7a. Estimate Σj the empirical covariance of β for elements in (n− r)× r using
samples {β̃(i)}i=1:j .

7b. Sample proposal β̃∗ ∼ N
(
β̃; β̃(t−1), (2.38)2

d Σj
)

.

7c. Construct proposal β∗ = [Ir×r, β̃∗].

else /* perform a non-adaptive random walk move */

7a. Sample proposal β̃∗ ∼ N
(
β̃; β̃(t−1), (0.1)2

d Id,d

)
.

7b. Construct proposal β∗ = [Ir×r, β̃∗].
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5 Rank Estimation for Bayesian CVAR models

Here we discuss the Bayes Factor approach to rank estimation, noting that it is compu-
tationally inefficient, since it involves running n+1 Markov chains, one for each model
(rank r). For a sophisticated alternative which presents a novel TD-MCMC based ap-
proach, requiring a single Markov chain to obtain samples from the posterior distribution
p (B,Σ,β, r|Y ), see Peters et al. (2009).

5.1 Posterior Model Probabilities for Rank r via Bayes Factors

In Sugita (2002) and Kleibergen and Paap (2002) the rank is estimated via Bayes factors,
a popular approach to Bayesian model selection in Bayesian cointegration literature.
We note that alternative approaches to rank estimation include Strachan and van Dijk
(2003) and Strachan and van Dijk (2007). Sugita (2002) works with a conjugate prior
on α which will not produce a problem with Bartlett’s paradox, posterior probabilities
of the rank are well defined.

Bayes Factors

The earlier work of Sugita (2002) compares the rank of the unrestricted α to the 0
rank setting. Note, Kleibergen and Paap (2002) have a slightly different approach in
that they compared each rank r to the full rank case for the unrestricted α parameter.
Recently, Sugita (2009) revisits the important question of rank estimation via Bayes
Factors also comparing the Schwarz BIC approximation and Chib (1995)’s approach for
the marginal likelihood.

Under a rank 0 comparison, the posterior model probabilities are given by,

Pr (r|Y ) =
BFr|0∑n
j=0BFj|0

, (6)

with BF0|0 defined as 1.

In the calculation of BFr|0, Sugita (2002) recommends an approach first introduced
by Verdinelli and Wasserman (1995) for nested model structure Bayes factors, which
results in

BFr|0 =
p(α′ = 0r×n)

C−1
r p(α′ = 0r×n|Y )

=
∫
p(α,β,Γ,Σ|Y )dαdβdΓdΣ

C−1
r

∫̇
p(α,β,Γ,Σ|Y )|rank(α)=0dαdβdΓdΣ

(7)

where the correction factor for the reduction in dimension Cr is given by,

Cr =
∫
p(α,β,Γ,Σ)|rank(α)=0dβdΓdΣ. (8)

We note that Sugita (2002) does not comment on numerical complications that can
arise when implementing this estimator for the CVAR model. We detail in Appendix 1,
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Section 7 steps that were critical to the calculation of the Bayes Factors when handling
potential numerical overflows. The numerical issues arise as t increases, for example the
term |S(i)

∗ |
t+h
2 will explode numerically. This will result in incorrect numerical results

for the Bayes Factors if not handled appropriately.

5.2 Model Selection, Model Averaging and Prediction

With samples from p(β, B,Σ, r|Y ) one can consider either model selection or model
averaging. In a survey of the literature on rank selection, the most common form of
inference performed involves model selection. In this paper we note that model averaging
should also be considered, especially when it is probable that given the realized data,
two different ranks are highly probable according to their posterior model probabilities.
We argue that by adopting the Bayesian model averaging framework one is able to
reduce potential model risk associated with selection of the rank from several choices,
which may all be fairly probable under the posterior. This in turn should reduce the
associate model risk involved in the popular application of CVAR models in algorithmic
trading strategies based on these co-integration frameworks and estimation of the rank.

In this case one can use the samples from p(β, B,Σ|Y, r) in each model r to form a
weighted model averaged estimate through the direct knowledge of the estimated model
probabilities given by p(r|Y ). There is discussion on model averaging in the CVAR
context found in Koop et al. (2006).

Bayesian Model Order Selection (BMOS)
In BMOS we select the most probable model corresponding to the maximum a posteriori
(MAP) estimate from p(r|Y ), denoted rMAP . Conditional on rMAP , we then take
the samples of {β(j), B(j),Σ(j)}j=1:M corresponding to Markov chain simulated for the
rMAP model and we estimate point estimates for the parameters.

These point estimates typically include posterior means or modes, though one should
be careful. We note that it was demonstrated by Kleibergen and Van Dijk (2009) or
Bauwens and Lubrano (1996) that in many popular CVAR Bayesian models, certain
choices of prior result in a proper posterior yet it may not have finite moments of any
order. Some alternatives are proposed by Strachan and Inder (2004).

Bayesian Model Averaging (BMA)
In this section we consider the problem of estimating for example an integral of a quan-
tity or function of interest, φ({β, B,Σ}), with respect to the posterior distribution of the
parameters, e.g. moments of the posterior. Since we have chosen to work with a poste-
rior distribution p(β, B,Σ, r|Y ) we can estimate this integral quantity whilst removing
the model risk associated with rank uncertainty. This is achieved by approximating

n∑
r=1

∫
φ({β, B,Σ|r})p(β, B,Σ|Y, r)p(r|Y )dβdBdΣ ≈

n∑
r=1

M∑
j=1

φ({βj , Bj ,Σj |rj})p(rj |Y ).

(9)
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Prediction Incorporating Model Risk
Here we perform prediction whilst removing model uncertainty related to the rank. This
is possible under a Bayesian Model Averaging (BMA) framework using,

p(Y ∗|Y ) =
n∑
r=1

∫
p(Y ∗|β, B,Σ, r)p(β, B,Σ|Y, r)p(r|Y )dβdBdΣ. (10)

We will compare the predictive performance of the MMSE estimate or mean of the esti-
mated distribution for p(Y ∗|Y ) under the BMA versus BMOS approach which involves,

p(Y ∗|Y ) =
∫
p(Y ∗|β, B,Σ, r̂MAP)p(β, B,Σ|Y, r̂MAP)dβdBdΣ. (11)

6 Simulation Experiments

Analysis of the methodology developed is in three parts: the first part contains simula-
tions performed on synthetic data sets, comparing performance of the proposed model
sampling methodology; the second part contains two real data set examples; and the
third part involves analysis of predictive performance BMOS and BMA using real data.

6.1 Synthetic Experiments

In this section the intention will be to develop a controlled setting in which the true
model parameters are known and the data is generated from the true model. This will
allow us to assess performance of each of the proposed estimation procedures. In doing
this we take an identical model to the simple model studied in Sugita (2009), Sugita
(2002) [p.4] for our analysis.

Analysis of samplers

The first analysis is to compare the performance of the two adaptive samplers. To
achieve this we generate 20 realizations of data sets of length T = 100 from the rank
r = 2 model. Then conditional on knowledge of the rank r = 2 we sample J = 20, 000
samples from the joint posterior p (B,Σ,β|Y, r = 2) and discard the first 10,000 samples
as burnin. We perform this analysis for each of the data realizations under both of the
proposed samplers, Algorithm 1 and Algorithm 2, and then we present average MMSE
estimates and average posterior standard deviations from each sampler in Table 1. In
particular we present the averaged posterior point estimates for: the unrestricted β
parameters; the average trace of the posterior estimate of the covariance Σ; the average
of each of the intercept terms; and the averaged first element of the unrestricted α.

Note, the pre-tuning of the local random walk proposal standard deviation for Algo-
rithm 1 is performed offline using an MCMC run of length 20,000. Additionally, the prior

parameters were set to be: forB|Σ the prior parameters were set as P =
(
Ŵ ′Ŵ

)−1

ŴY ,
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Parameter Estimates Algorithm 1 Algorithm 2 Truth

Ave. MMSE β1,r+1 -0.002 (0.001) -0.034 (0.002) 0

Ave. Posterior Stdev. β1,r+1 0.018 (0.006) 0.010 (0.003) -

Ave. MMSE β2,r+1 -0.819 (0.051) -0.862 (0.045) -1

Ave. Posterior Stdev. β2,r+1 0.032 (0.005) 0.020 (0.003) -

Ave. MMSE β1,n 0.033 (0.025) -0.024 (0.023) 0

Ave. Posterior Stdev. β1,n 0.030 (0.012) 0.026 (0.010) -

Ave. MMSE β2,n -0.752 (0.098) -0.774 (0.082) -1

Ave. Posterior Stdev. β2,n 0.038 (0.013) 0.028 (0.006) -

Ave. Mean acceptance probability β 0.352 (0.010) 0.232 (0.029) -

Ave. MMSE tr (Σ) 4.945 (0.331) 4.432 (0.332) 4

Ave. Posterior Stdev. tr (Σ) 0.420 (0.049) 0.416 (0.048) -

Ave. MMSE µ1 0.07 (0.051) 0.065 (0.043) 0.1

Ave. Posterior Stdev. µ1 0.236 (0.028) 0.226 (0.026) -

Ave. MMSE µ2 -0.027 (0.041) -0.034 (0.024) 0.1

Ave. Posterior Stdev. µ2 0.183 (0.041) 0.181 (0.010) -

Ave. MMSE µ3 -0.080 (0.084) -0.061 (0.045) 0.1

Ave. Posterior Stdev. µ3 0.199 (0.020) 0.187 (0.015) -

Ave. MMSE µ4 0.024 (0.049) 0.030 (0.029) 0.1

Ave. Posterior Stdev. µ4 0.184 (0.010) 0.185 (0.011) -

Ave. MMSE α1,1 -0.223 (0.015) -0.224 (0.016) -0.2

Ave. Posterior Stdev. α1,1 0.070 (0.006) 0.068 (0.005) -

Ave. MMSE α1,2 0.201 (0.013) 0.202 (0.013) 0.2

Ave. Posterior Stdev. α1,2 0.053 (0.002) 0.052 (0.002) -

Table 1: Sampler Analysis - Algorithm 1 is the pretuned mixture proposal of Global
ML move and local pretuned MCMC move; Algorithm 2 is the Global adaptively learnt
MCMC proposal. Averages and a standard error are taken for the Bayesian point
estimators over 20 data sets, the standard errors are presented in brackets (·). Note in
all simulations the initial Markov chain is started very far away from the true parameter
values.
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A = λ
(
Ŵ ′Ŵ

)
/T with λ = 1, Ŵ =

(
XZβ̂

)
and β̂ = [Ir,0]; for β the prior parameters

were set as E[β] = (Ir,0), Q = In, H = τZ ′Z and τ = 1/T ; for Σ the prior parameters
were set as S = τY ′Y and h = n+ 1.

These results demonstrate that both Algorithm 1 and Algorithm 2 perform well.
The MMSE estimates produced by both algorithms are accurate compared to the true
parameter values used to generate the data. Algorithm 1 which involved the mixture of
pretuned local moves and a Global move centered on the Maximum Likelihood param-
eter estimates required more computational effort than the adaptive MCMC approach
of Algorithm 2. Additionally, we point out that as discussed in Rosenthal (2008), the
sampler we developed in Algorithm 2 actually achieves optimal performance as n→∞.
Therefore it will be a far superior algorithm to the griddy Gibbs sampler approach which
will not be feasible in high dimensions. Hence, for an automated and computationally
efficient alternative to the griddy Gibbs sampler typically used we would recommend the
use of Algorithm 2. In the following studies, we utilize Algorithm 2, the adaptive MCMC
algorithm. To conclude, we also present the trace plots of the sample paths under the
adaptive MCMC algorithm, see Figure 1. This plot demonstrates rapid convergence
of the MMSE estimates of the parameters in the posterior, even when initialized far
from the true values. Additionally, one can see the behavior of the adaptive proposal,
learning the appropriate proposal variance.

Analysis of Adaptive MCMC sampler in high dimension

In this example we work with the Adaptive MCMC algorithm we developed for the
Bayesian CVAR model. In particular we consider the case in which n = 10, which
is a setting in which the standard approach of the griddy Gibbs sampler will become
excessively computational, due to the curse of dimensionality, since there are now several
hundred parameters to be sampled from the posterior.

All coefficients except for the cointegrating vectors are generated by uniform distri-
butions with a range between -0.4 to 0.4, and the error covariance was set to the identity.
We generate realizations of data of length T = 100 from the true rank r = 5 model in
which the cointegration vector has all terms in the matrix of β which are unrestricted
set to be 0, other than the last row, which is -1. Then conditional on knowledge of the
rank r = 5 we sample J = 20, 000 samples from the joint posterior p (B,Σ,β|Y, r = 5)
and discard the first 10,000 samples as burnin.

The sample paths of the cointegration vector parameters randomly selected to be
presented were β10,1, β10,4 which are shown in Figure 2. Clearly, again in this high
dimensional setting (310 dimensions), the adaptive MCMC algorithm performs suitably.
Even, though the Markov chain is initialized far from the true parameter values of
cointegration vector, we see the rapid convergence of our sampler. This is illustrated for
the two arbitrarily selected parameters which had true values of of -1 and -1. Note, in
this high dimensional setting, the algorithm was implemented in Matlab and took only
132sec to complete the simulation on an Intel Core 2 Duo at 2.40GHz, with 3.56Gb of
RAM.



480 Adaptive MCMC for Bayesian Cointegrated VAR Models.

0 2 4 6 8 10
x 104

12

10

8

6

4

2

0
Markov Chain for 1,3

0 2 4 6 8 10
x 104

12

10

8

6

4

2

0
Markov Chain for 2,3

0 2 4 6 8 10
x 104

2

3

4

5

6

7

8
Markov chain for tr( )

0 2 4 6 8 10
x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Markov Chain for B3,4

Figure 1: Sample paths for posterior parameters, using 100 data points, true rank of
r = 2 known and an adaptive MCMC algorithm.
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Figure 2: Sample paths for posterior parameters, using 100 data points, true rank of
r = 5 known and an adaptive MCMC algorithm.
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Model Rank Bayes Factors

r = 0 3 (0.84)

r = 1 16 (0.93)

r = 2 1 (0.92)

r = 3 0 (-)

r = 4 0 (-)

r = 0 0 (-)

r = 1 5 (0.89)

r = 2 13 (0.91)

r = 3 0 (-)

r = 4 2 (0.92)

r = 0 0 (-)

r = 1 0 (-)

r = 2 4 (0.89)

r = 3 6 (0.90)

r = 4 10 (0.94)

r = 0 0 (-)

r = 1 0 (-)

r = 2 0 (-)

r = 3 2 (0.87)

r = 4 18 (0.89)

Table 2: Between Model Analysis - The true model rank used to generate the
data is presented in bold. TDMCMC is the Trans-dimensional Markov chain Monte
Carlo algorithm utilizing adaptive MH within model moves and the global Independent
between model moves. The results represent the total number of times a given rank
is selected as the MAP estimate out of the 20 independent data sets, each of length
T=100, analyzed. Additionally, the average posterior model probability for these cases
is presented in brackets.

Analysis of model selection in the Bayesian CVAR model

In this section we study on synthetic data the performance of the Bayes Factor estimator
applied to estimate posterior model probabilities for the rank. To perform this analysis
we consider the model from Sugita (2009), Sugita (2002) [p.4] and we take data series
of length T = 100 and we simulate 50 independent data realizations for each possible
model rank r = 1, . . . , 4. Then for each rank r we count the number of times each model
is selected as the MAP estimate out of the total of the 50 simulations, one simulation
per generated data set. Note, the algorithm was run for 20,000 iterations with 10,000
samples used as burnin. The results of this analysis are presented in Table 2.

We note that the results of this section demonstrated the following interesting prop-
erties:

1. When the true rank used to generate the observations data was small, the BF
methodology was clearly able to detect the true model order as the MAP estimate
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Figure 3: S&P 500, Dow Jones and Nasdaq mini Index daily close price data between
01-May-08 to 18-Sep-08. Left column plots represent scaled raw prices; Right plots
represent difference data series.

in a high proportion of the tested data sets.

2. In all cases the averaged actual posterior model probabilities were very selective
of the correct model, indicating that at least under this synthetic data scenario,
there would not be great benefit in performing model averaging. However, we
will demonstrate later examples with actual data in which there is significant
ambiguity between possible model ranks, in these cases we also study the model
averaging results.

6.2 Financial Example 1 US mini indexes

Having assessed the proposed algorithms developed in this paper for synthetic data
generated from a CVAR model, we now work with a practical financial example. In this
example we will consider data series comprised of US indexes S&P mini, Nasdaq mini
and Dow Jones mini. The data obtained for each of these data series consists of 774
values corresponding to the close of market daily price from the 31-Aug-2005 through
to 30-Sep-2008. The time series data is presented in Figure 3.

We analyze this data using Algorithm 2 (adaptive MCMC) and estimate the rank
via Bayes Factor analysis, the results are presented in Table 3. We run 20 independent
samplers with different initializations, for each possible rank. This is performed for each
data set, and the total series is split into increasing subsets, each taking subsets of the
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Figure 4: 5, 10, 30 Year Notes - daily close price data between 01-May-08 to 18-Sep-
08. Left column plots represent scaled raw prices; Right plots represent difference data
series.

data from 50 data points through to 400 data points, in increases of 50 data points.
This allows us to study the change in the estimated rank as a function of time for each
of these time series. Clearly, if the true rank of our model was fixed, then as the total
amount of data we include increases, then we should see the posterior model probability
of the rank converge to 1 for one of the possible ranks. What we observed after doing
this analysis was that there was a clear variability in the predicted rank as we included
more data. In particular the model estimates showed preference most often to rank 1,
suggesting that 2 common stochastic trends are present in the series. Additionally, the
fact that in several cases, the model is less likely to distinguish between rank 1 and 2,
suggests it may be prudent to also perform a model averaging analysis, especially in the
case of CVAR models when used to perform algorithmic trading.

6.3 Financial Example 2 - US notes

Here we repeat the same procedure performed in Financial Example 1, for a different
data set. This time we consider data series comprised of Bond data for US 5 year, 10
year and 30 year notes over the same time period as the US mini index data. The time
series data is presented in Figure 4. We analyze this data using Algorithm 2 (adaptive
MCMC) and estimate the rank via Bayes Factor analysis, the results are presented in
Table 4. We set up this second data analysis in the same way as Financial Example 1,
with 20 independent samplers, each with different initializations, for each possible rank.
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This allows us to study the change in the estimated rank as a function of time for each
of these time series. Again, we observed that with this data, the model gave preference
most often to rank 1, suggesting that 2 common trends are present in the series we
are analyzing. However, there was much stronger evidence for a single co-integrating
relationship over time in this data, compared to the analysis of the US mini index data
over the same period. This suggests that the US bond data series is a more stable
series to fit the CVAR model too when assuming a constant number of co-integrating
relationships over time.

6.4 Financial Example 3

In this section we perform a predictive performance comparison using Bayesian Model
Selection versus Averaging. We take 2 series for the US bonds, 5 years and 10 years,
and we combine these series over the same period with the S& P 500 mini index.
We compare the MMSE estimate of the predicted series over 10 steps ahead which is
obtained from the distribution of the predicted data p (Y ∗|Y ), after we have integrated
out parameter and rank uncertainties. We demonstrate that in this actual data example,
the performance obtained by Bayesian Model Averaging represents the uncertainty in
the prediction more accurately than the Bayesian Model Order Selection setting.

This study is performed as follows. We begin by selecting randomly, with replace-
ment, 100 segments of the vector time series, each containing 50 days of data. For
each segment of the time series we fit our Bayesian model for each possible rank, also
estimating via Bayes Factors the posterior model probability for each rank. Then we
calculate the predictive posterior mean, corresponding to the MMSE estimate of the
predicted data series for the following 5 days, Y ∗. Finally, we take the squared differ-
ence between the actual data series over the proceeding 10 days post the 50 days for
the given segment and the posterior mean of the predicted data Y ∗.

In Figure 5 we present for each prediction day a boxplot of the squared difference be-
tween the actual data over the random sets of 5 days and the predictive posterior MMSE
estimators for the same 5 days. We compare here the performance under Bayesian model
selection and averaging. When performing Bayesian model averaging we are integrating
out uncertainty in the prediction due to the prediction of the unknown rank.

Clearly, the Bayesian model averaging approach will result in a greater uncertainty
in the prediction when compared to the Bayesian model selection. This is reflected
especially in the distribution of the prediction at 5 days where the model averaging
approach box-whisker plot covers a noticeably wider range than the model selection
equivalent. Though not presented here, we also assessed and confirmed this would
occur out to longer predictions of 10 days and 20 days.
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7 Conclusions

We have developed and demonstrated how one can utilize state of the art adaptive
MCMC methodology to solve a challenging high dimensional econometrics problem
based on cointegrated vector autoregressions. The challenging application involved a
posterior distribution which was matrix-variate and very high dimensional. We com-
pared the performance of the Adaptive Metropolis algorithm with an alternative based
on a mixture proposal of local and global moves centered on the the Maximum Likeli-
hood parameters. We then formulated the rank estimation as a Bayesian model selection
problem and performed analysis of the Bayes factors using our adaptive MCMC algo-
rithm. We concluded with analysis of real market data and performed Bayesian model
selection and model averaging, with respect to the unknown rank. In conclusion, the
adaptive MCMC methodology developed clearly allowed us to extend significantly the
dimension of the estimation problem in the Bayesian CVAR literature. It was shown to
be highly efficient and accurate.

From the perspective of developing a Bayesian CVAR model for algorithmic trading
we found that historically the US bond data we considered is a more stable series to fit
the CVAR model too when assuming a constant number of co-integrating relationships
over time. This will therefore impact the stability of trading performance under such
models. In addition when considering trading triples made up of the US bond data
series and the S&P mini index, it is beneficial to perform Bayesian model averaging for
the rank, rather than just selecting the most probable co-integration rank. The adaptive
MCMC based framework allows this to be done efficiently and in an automated fashion.
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Atchadé, Y. and Rosenthal, J. (2005). “On adaptive markov chain monte carlo algo-
rithms.” Bernoulli, 11(5): 815–828. 467, 472

Bauwens, L. and Giot, P. (1998). “A Gibbs sampling approach to cointegration.” Com-
putational Statistics, 13(3): 339–368. 466

Bauwens, L. and Lubrano, M. (1996). “Identification restrictions and posterior densities
in cointegrated Gaussian VAR systems.” Advances in Econometrics, 11: 3–28. 466,
471, 476

Chib, S. (1995). “Marginal Likelihood from the Gibbs Output.” Journal of the American
Statistical Association, 90(432). 475

Engle, R. and Granger, C. (1987). “Co-integration and error correction: representation,



G.W. Peters, B. Kannan, B. Lasscock, C. Mellen 489

estimation, and testing.” Econometrica: Journal of the Econometric Society , 55(2):
251–276. 468

Fan, Y., Peters, G., and Sisson, S. (2009). “Automating and evaluating reversible jump
MCMC proposal distributions.” Statistics and Computing , 19(4): 409–421. 471

Geweke, J. (1996). “Bayesian reduced rank regression in econometrics.” Journal of
Econometrics, 75(1): 121–146. 466, 468, 470

Giordani, P. and Kohn, R. (2010). “Adaptive independent Metropolis–Hastings by
fast estimation of mixtures of normals.” Journal of Computational and Graphical
Statistics, (ahead of print. doi:10.1198/jcgs.2009.07174): 1–17. 467

Granger, C. (1981). “Some properties of time series data and their use in econometric
model specification.” Journal of Econometrics, 16(1): 121–130. 468

Granger, C. and Weiss, A. (2001). “Time series analysis of error correction models.”
Spectral analysis, seasonality, nonlinearity, methodology and forecasting: collected
papers of Clive WJ Granger, 129 – 144. 468

Haario, H., Saksman, E., and Tamminen, J. (2001). “An adaptive Metropolis algo-
rithm.” Bernoulli, 7(2): 223–242. 467, 472

— (2005). “Componentwise adaptation for high dimensional MCMC.” Computational
Statistics, 20(2): 265–273. 467, 472

Kleibergen, F. and Paap, R. (2002). “Priors, posteriors and Bayes factors for a Bayesian
analysis of cointegration.” Journal of Econometrics, 111(2): 223–249. 475

Kleibergen, F. and Van Dijk, H. (2009). “On the shape of the likelihood/posterior in
cointegration models.” Econometric Theory , 10(3-4): 514–551. 466, 469, 470, 476

Koop, G., Strachan, R., Van Dijk, H., and Villani, M. (2006). “Bayesian approaches to
cointegration.” Palgrave Handbook on Econometrics, 1: 871–898. 466, 469, 476

Luetkepohl, H. (2005). New introduction to multiple time series analysis. Springer. 472

Peters, G., Kannan, B., Lasscock, B., and Mellen, C. (2009). “Model Selection and
Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model.” 475

Reinsel, G. and Velu, R. (1998). Multivariate reduced-rank regression. Springer New
York. 466, 469

Roberts, G., Gelman, A., and Gilks, W. (1997). “Weak convergence and optimal scaling
of random walk Metropolis algorithms.” The Annals of Applied Probability , 7(1):
110–120. 474

Roberts, G. and Rosenthal, J. (2001). “Optimal scaling for various Metropolis-Hastings
algorithms.” Statistical Science, 16(4): 351–367. 474



490 Adaptive MCMC for Bayesian Cointegrated VAR Models.

— (2009). “Examples of adaptive MCMC.” Journal of Computational and Graphical
Statistics, 18(2): 349–367. 465, 466, 471, 472, 474

Rosenthal, J. (2008). “Optimal Proposal Distributions and Adaptive MCMC.” Preprint
- Chapter for MCMC Handbook, S. Brooks, A. Gelman, G. Jones, and X.-L. Meng,
eds.. 479

Silva, R., Giordani, P., Kohn, R., and Pitt, M. (2009). “Particle filtering within adaptive
Metropolis Hastings sampling.” Arxiv preprint arXiv:0911.0230. 467

Strachan, R. and Inder, B. (2004). “Bayesian analysis of the error correction model.”
Journal of Econometrics, 123(2): 307–325. 476

Strachan, R. and van Dijk, H. (2003). “Bayesian model selection with an uninformative
prior.” Oxford Bulletin of Economics and Statistics, 65(1): 863–876. 475

— (2007). “Bayesian model averaging in vector autoregressive processes with an in-
vestigation of stability of the US great ratios and risk of a liquidity trap in the
USA, UK and Japan.” Econometric Institute Report, Erasmus University Rotter-
dam,Rotterdam, The Netherlands, 9: 47. 468, 475

Sugita, K. (2002). “Testing for cointegration rank using Bayes factors.” University of
Warwick, Department of Economics, Economic Research Papers.. 466, 468, 469, 470,
475, 477, 482

— (2009). “A Monte Carlo comparison of Bayesian testing for cointegration rank”.”
Economics Bulletin, 29(3): 2145–2151. 466, 468, 475, 477, 482

Verdinelli, I. and Wasserman, L. (1995). “Computing Bayes Factors Using a Gener-
alization of the Savage-Dickey Density Ratio.” Journal of the American Statistical
Association, 90(430): 614–618. 475

Vermaak, J., Andrieu, C., Doucet, A., and Godsill, S. (2004). “Reversible jump Markov
chain Monte Carlo strategies for Bayesian model selection in autoregressive pro-
cesses.” Journal of Time Series Analysis, 25(6): 785–809. 471



G.W. Peters, B. Kannan, B. Lasscock, C. Mellen 491

Appendix 1

We begin by calculating the log posterior model probabilities,

log (Pr (r|Y )) = log
(
BFr|0

)
+ log

(
BFmax|0

)
− log

(
n∑

j=0

exp
(
log
(
BFj|0

)
− log

(
BFmax|0

)))
,

(12)

where BFmax|0 = max{BF0|0, ..., BFn|0}. Additionally, we now consider the log of the
Bayes Factor for rank r and we apply the same numerical trick.

log
(
BFr|0

)
= log (p(α′ = 0r×n)) + log (Cr)− log (p(α′ = 0r×n|Y )) (13)

Now, considering each of the terms:

• The first term involves,

log (p(α′ = 0r×n)) = −nr
2

log(π) +
h

2
log (|S|) +

n

2
log (|A22.1|)

+
n∑
j=1

log

(
Γ(h+r+1−j

2 )

Γ(h+1−j
2 )

)
− h+ r

2
log (|S|)

• The second term involves,

log
(
p(α′ = 0r×n|Y )

)
= −log (N) + log

(
L(1)

max

)
− log

(
exp

(
N∑

i=1

log
(
L

(1)
i

)
− log

(
L(1)

max

)))
,

where L(1)
i = π−

nr
2 |S(i)

∗ |
t+h
2 |A(i)

∗22,1|
n
2
∏n
i=1

Γ( t+h+r+1−i
2 )

Γ( t+h+1−i
2 )

|S(i)
∗ +B(i)′

∗2 A
(i)
∗22.1B

(i)
∗2 |−

t+r
2

and L
(1)
max = max{L(1)

1 , ..., L
(1)
N }.

• The third term involves,

log (Cr) = −log(N) + log
(
L(2)
max

)
log

(
exp

(
N∑
i=1

log
(
L

(2)
i

)
− log

(
L(2)
max

)))
,

where L
(2)
i = p(α=0,Γ(i)|Σ(i))

p(Γ(i)|Σ(i))
and L

(2)
max = max{L(2)

1 , ..., L
(2)
N }. Note this sum

evaluated using samples from the Markov chain run in model r where, p(α =
0,Γ(i)|Σ(i)) and p(Γ(i)|Σ(i)) are obtained using knowledge of the specified prior,
p(B|Σ) = p(Γ,α|Σ) = p(µ,Ψ1:p−1,α|Σ).
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