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Selection Sampling from Large Data Sets for
Targeted Inference in Mixture Modeling

Ioanna Manolopoulou∗, Cliburn Chan† and Mike West‡

Abstract. One of the challenges in using Markov chain Monte Carlo for model
analysis in studies with very large datasets is the need to scan through the whole
data at each iteration of the sampler, which can be computationally prohibitive.
Several approaches have been developed to address this, typically drawing compu-
tationally manageable subsamples of the data. Here we consider the specific case
where most of the data from a mixture model provides little or no information
about the parameters of interest, and we aim to select subsamples such that the
information extracted is most relevant. The motivating application arises in flow
cytometry, where several measurements from a vast number of cells are available.
Interest lies in identifying specific rare cell subtypes and characterizing them ac-
cording to their corresponding markers. We present a Markov chain Monte Carlo
approach where an initial subsample of the full dataset is used to guide selection
sampling of a further set of observations targeted at a scientifically interesting, low
probability region. We define a Sequential Monte Carlo strategy in which the tar-
geted subsample is augmented sequentially as estimates improve, and introduce a
stopping rule for determining the size of the targeted subsample. An example from
flow cytometry illustrates the ability of the approach to increase the resolution of
inferences for rare cell subtypes.

Keywords: Flow cytometry, large data sets, mixture models, rare events, resam-
pling, selection sampling, sequential Monte Carlo

1 Introduction

Advances in technology in biological research, as in other fields, are challenging our abil-
ity to routinely analyse increasing large data sets. In the motivating application area of
flow cytometry, routine assays generate multiple measurements on cell surface markers
on each of tens of thousands to millions of individual cells (Chan et al. 2008). Mixture
models are applied for cell subtype classification and discrimination, and specific inter-
ests often relate to characteristics of rather rare subtypes. For example, polyfunctional
lymphocyte subsets that are of interest in predicting vaccine efficacy (Seder et al. 2008)
may have frequencies of 0.01% or less of the total blood cell population. Markov chain
Monte Carlo is a powerful tool for drawing inferences in mixture models, but its use
requires computations on the full dataset at each iteration. This is a drawback in cases
of very large datasets, so some approaches have been developed to focus on randomly
drawn subsamples of data. For example, Ridgeway and Madigan (2003) proposed a
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two-step algorithm of drawing subsamples via Sequential Monte Carlo, and this was im-
proved upon by Balakrishnan and Madigan (2006) by introducing a rejuvenation step
based on a kernel smoothing approximation similar to Liu and West (2000). Here, the
observations of interest are rare, so that random subsamples typically contain very few
observations of the rare subtype, and new approaches are required.

Generally, we are interested in drawing inferences about low probability regions of
sample space in mixture model analyses of large datasets. We use traditional Bayesian
mixtures admitting uncertainty about the number of components (e.g. Müller et al.
1996; MacEachern 1998; Ishwaran and James 2002; Suchard et al. 2010). We focus on
inferences about a low probability mixture component, or a group of several low prob-
ability components that together represent a scientifically relevant subpopulation. Our
central idea is to use an initial random subsample of data in order to construct a weight
function directed around the region of interest, and use this to subsequently draw a tar-
geted subsample of data preferentially selected from that region of interest. This builds
on traditional ideas of selection and weighted sampling (e.g. Heckman 1979; Bayarri
and Berger 1998) and their application in discovery sampling (West 1994, 1996). Here
the use of non-parametric Bayesian mixture models allows us to link regions in sample
space with specific components of the model and naturally identify subsets of observa-
tions which are relevant to the scientific question at hand through a component-driven
weight function. We implement a two-step Markov chain Monte Carlo approach that
first uses the random subsample to obtain an initial posterior, then adds the targeted
subsample to draw component-specific inferences. We extend the method to a Sequen-
tial Monte Carlo algorithm whereby the targeted subsample is augmented sequentially,
guided by a stopping rule, to successively refine inferences on the rare subpopulation,
to the extent feasible.

2 Modelling and posterior distributions

In contexts such as our motivating flow cytometry applications, Gaussian mixtures are
used as flexible overall models and scientifically relevant subpopulations are identified
by (typically, small) subsets of Gaussian components that can reflect non-Gaussianity
within subpopulations (Chan et al. 2008). Hence, with no loss of generality here, we
consider a Gaussian mixture for p−variate data, with N samples xi, (i = 1, . . . , N),
defining a data set X. The density of the mixture is

f(xi|µ, Σ) =
K∑

k=1

πkN(xi |µk, Σk),

and we adopt a standard truncated Dirichlet process model to define the prior over the
mixing probabilities based on some (large) upper bound K (Ishwaran and James 2002).
Let

θ = {α, π1:K , φ1:K}, φk = {µk, Σk}. (1)

The mixture model can be realized through the configuration indicators zi for each
observation xi with prior p(zi = k |π) = πk, so that we obtain the standard hierarchical
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model

(xi | zi = k, φk) ∼ N(xi |φk), (φk |G) ∼ G, (G |α, G0) ∼ DP (α, G0), (2)

where G(·) is an uncertain distribution function, G0(·) is the prior mean of G(·) and
α > 0 the total mass, or precision of the DP. From the Pólya urn scheme,

φk |φ1, . . . , φk−1 ∼ α

k − 1 + α
G0(·) +

1
k − 1 + α

k−1∑

i=1

δφi
(·). (3)

The truncated Dirichlet process prior is such that π1 = V1 and πk = Vk ×
∏k−1

i=1 (1 −
Vi), k > 1, where Vi ∼ Be(1, α), i < K independently over i and VK = 1. Prior spec-
ification for each component k is completed with a traditional normal-inverse Wishart
form,

G0(µk, Σk) = N(µk |µ0, t0Σk)IW (Σk | s0, S0) (4)

and with a Gamma prior for the Dirichlet concentration parameter α ∼ Ga(η1, η2).
Placing a prior on α (see Ishwaran and James 2002) allows us to draw inferences about
the number of mixture components through the role of α of the Pólya urn scheme as
the prior number of observations in each component. Finally, we label components in
decreasing weight π as an identifiability criterion to address the label-switching problem.

In general, a scientific question may define focus on a specific region of sample space.
Here we take one key example, that of identifiable regions of low probability but of high
scientific importance. For specificity, we assume this is defined by a low probability
component of the mixture. In more general versions, this could be defined by a small
set of mixture components, or other devices. Hence, we focus on targeting inferences
about the parameters φk∗ = (µk∗ , Σk∗) of a low-probability component k∗.

The objective is to identify and analyze subsamples of the data which contain infor-
mation about the specific subset of the parameters of interest. The key idea is to obtain
a rough estimate of the low-probability component k∗ based on a random subsample,
which is subsequently used to draw weighted subsamples of the data that are more likely
to be relevant to our analysis, providing us with higher resolution about the structure
of the distribution in the region of interest.

The direct approach is to follow a two-step procedure of Markov chain Monte Carlo
samplers. We use an initial, randomly drawn subsample from the data in order to
obtain an estimate of the parameters, and use this estimate to draw a more informative
subsample. The two subsamples are then combined in a joint Markov chain Monte Carlo
sampler to provide us with a posterior distribution of φk∗ which will be an improved
estimate with respect to the total posterior based on the whole sample. Although
interest specifically lies in estimating the parameters of component k∗ given by µk∗ , Σk∗ ,
inference on the full set of µ, Σ is required in order to carry out the analysis.

We denote the two subsamples (random and targeted) XR and XT of size nR and
nT respectively, where nT ¿ nR throughout this paper. The first is drawn randomly
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from the data, whereas the second is drawn according to weights wi 1 ≤ i ≤ N . We
aim to choose the weights so that the targeted subsample is expected to be enriched in
observations from component k∗; one specific choice is to take

wi = N(xi |m,Sτ ),

the density of the normal distribution in which m,S are estimates of µk∗ , Σk∗ from
the initial analysis based on an initial random subsample, and Sτ = TST where
T = diag(τ1/2

1 , . . . , τ
1/2
p ) is a p × p diagonal matrix based on a set of positive vari-

ance multipliers τj , (j = 1, . . . , p). These allow us to concentrate (or expand) targeted
resampling differentially in different dimensions with due regard for correlation struc-
ture, if desired. We use the notations wi = w(xi) and wi = w(xi |m, τ, S), the latter
when the explicit dependence of the weight function on m, τ, S is to be high-lighted.

The likelihood of the data (XR, XT ) then takes the following form. For observations
in the random subsample:

f(xR
i |π, µ, Σ) =

K∑

k=1

πkN(xR
i |µk, Σk), i = 1, . . . , nR.

f(xR
i | zR

i = k, µ, Σ) = N(xR
i |µk,Σk), i = 1, . . . , nR,

(5)

The first expression provides the likelihood of the standard mixture model, whereas the
second expression represents the likelihood conditionally on the configuration indicator
zR
i , the component where observation xR

i belongs.

Similarly, for observations in the targeted subsample:

f(xT
i |π, µ, Σ,m, τ, S) =

K∑

k=1

π̃k(θ, m, τ, S)N(xT
i | µ̃k, Σ̃k), i = 1, . . . , nT , (6)

with

π̃k(θ, m, τ, S) =
πkN (µk |m, (Sτ + Σk))∑K

k=1 πkN (µk |m, (Sτ + Σk))
,

Σ̃k = (Σ−1
k + S−1

τ )−1,

µ̃k = Σ̃k(Σ−1
k µk + S−1

τ m),

(7)

and

f(xT
i | zT

i = k, µ, Σ, m, τ, S) ∝ w(xT
i |m, τ, S)N(xT

i |µk, Σk)

∝ N(xT
i | µ̃k, Σ̃k), i = 1, . . . , nT .

(8)

Note here that, conditional on all the parameters, targeted observations are inde-
pendent, using the infinite population assumption for the weights w(xi). This means
that we assume a very large number of observations within the region of non-negligible
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support of the weight function w(x), creating an inherent trade-off between the validity
of the infinite population assumption and the focus of the targeted subsample. These
can be monitored through the normalizing constant of the sampling weights

∑N
i=1 w(xi),

and tuned through the parameter vector τ (see Appendix for a more detailed analysis
of the role of τ).

The first Markov chain Monte Carlo sampler is a standard blocked Gibbs sampler
(Ishwaran and James 2002) to simulate p(α, π, µ, Σ |XR). In order to carry out the
second Markov chain Monte Carlo sampling based on the random and targeted sub-
samples combined, the posterior distributions of the parameters of α, π, µ, Σ have to
be re-calculated to define efficient proposals. Although conjugacy for µ,Σ, π is lost, we
keep the standard normal-inverse Wishart and Dirichlet priors for the mixture model.

The posterior for z for both subsamples is multinomial with probabilities

p(zi = k |XR, XT , π, µ, Σ) ∝ πkN(xi |µk, Σk). (9)

The posterior for π has density

p(π|XR, XT , z, µ, Σ,m, τ, S) =p(π|XR, zR, µ, Σ)
K∏

k=1

π̃
nT

k

k

= p(π|XR, zR, µ, Σ)
K∏

k=1


 πkN

(
µk|m,

(
S−1

τ + Σ−1
k

)−1
)

∑K
j=1 πjN(µj |m,

(
S−1

τ + Σ−1
j

)−1
)




nT
k

.

The contribution of the targeted subsample to the posterior distribution for π provides
little additional information about the distribution of π when the elements Sτ are small,
and becomes more significant as the elements of Sτ increase, allowing observations in
the targeted subsample to belong to components other than k∗.

The posterior for α only depends on the data through V and thus will have the usual
posterior distribution (see Ishwaran and James 2002)

α ∼ Ga

(
η1 + K − 1, η2 −

K−1∑

i=1

log(1− Vi)

)
. (10)

The posterior for µk can be calculated exactly as

µk |X, z, Σk,m, τ, S ∼ N(mµ
k , Sµ

k ), (11)

where Sµ
k ,mµ

k are given by

Sµ
k = Σk

(
1/t0 + nR

k + nT
k

(
S−1

τ Σk + I
)−1

)−1

,

mµ
k = Sµ

k

(
nkΣ−1

k x̄k − nT
k

(
S−1

τ Σk + I
)−1

S−1
τ m + µ0

)
,

(12)
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where nk is the total number of data points in component k and nT
k is the number of

data points in that component coming from the targeted subsample. Notice that the
contribution of the targeted subsample to the posterior variance of µk is nT

k (S−1
τ Σk +

I)−1, and since S is an estimate of Σk, this quantity has diagonal elements of the order
of nT

k τj(1 + τj)−1 for j = 1, . . . , p; a more concentrated weight function reduces the
information about µk.

The posterior for Σk has density

p(Σk |X, z, µk,m, τ, S) ∝ |Σk |−s0 |Σk |−nR
k /2 × |S−1

τ + Σ−1
k | nT

k /2

× exp
{
− S0Σ−1

k

2
−

nk∑

i=1

xT
i Σ−1

k xi

2
+ nRµT

k Σ−1
k x̄R − nR

k

2
µT

k Σ−1
k µk

− nT
k

2
µT

k

(
S−1

τ Σk + I
)−1

Σ−1
k µk − nT

k µT
k

(
S−1

τ Σk + I
)−1

S−1
τ m

− nT
k

2
m(Σ−1

k Sτ + I)−1Sτm
}

.

(13)

The non-standard posteriors (10) and (13) lead to the need for creative approxima-
tions to define efficient MCMC proposals, as now developed.

3 Markov chain Monte Carlo approach

We construct a MCMC sampler with stationary distribution p(µ, Σ, z, V, α |XR, XT ).
The chain is initialized by drawing µ, Σ, z, V, α from their priors, then iterates through
the following steps.

1. Update z by generating from the posterior given in Equation (9).

2. Update V through a Metropolis-Hastings step by generating from the posterior
based only on the initial random subsample,

p(Vk |XR) ∼ Be(1 + nR
k , α +

K∑

l=k+1

nR
k ), (14)

with VK = 1. Set πk = Vk

∏k−1
j=1 (1 − Vj) and accept the proposed move with

probability

min

(
1,

K∏

i=1

(
π̃′i(θ,m, τ, S)
π̃i(θ,m, τ, S)

)nT
i

)
.

Recall that π̃(θ, m, τ, S) given in Equation (7) corresponds to the component prob-
ability weights in the targeted subsample.

If the targeted subsample is indeed drawn such that most of its points belong to
component k∗, the acceptance probability will be ≈ 1.
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3. Update α from its posterior given V given in Equation (10).

4. Update each µk through a Gibbs step using

µk |X, z, Σk,m, S ∼ N(mµ
k , Sµ

k ) (15)

given in Equation (11).

5. For each Σk, we construct a proposal q(Σ′k |XR, XT , z, µ) for a Metropolis-Hastings
step using the fact that

f(xT
i |XR, zi = k, µ, Σ, m, τ, S) = N(xT

i | µ̃k, Σ̃k).

We use the inverse transformation to obtain

x̃i | zi = k, µ, Σ,m, τ, S ∼ N(µk,Σk), (16)

where

x̃R
i = xR

i ,

x̃T
i = Σk

(
Σ̃−1

k xT
i − S−1

τ m
)

.
(17)

In practice, of course, Σk is not known. A similar transformation of XT can be
obtained using an estimate of Σk, providing a proposal distribution

q(Σ′k |XR, XT , z, µ) ∼ IW (Wk + S0, nk + s0 + p− 1), (18)

where
Wk =

∑

zi=k

x̃ix̃i
T − 1

nk

∑

zi=k

x̃i

∑

zi=k

x̃i
T . (19)

In order to increase the variance of the proposal kernel, a discount factor may also
be used.

The Markov chain Monte Carlo sampler sweeps through the updates described above,
yielding estimates for the posterior distribution of the parameters of interest. However,
due to the high number of parameters to be estimated and the difficulty in defining
efficient proposals, the acceptance rate quickly drops to zero for targeted subsamples of
moderate size.

4 Focusing on the low-probability component

The dimensionality of the problem, combined with the difficulty to construct efficient
proposals, results in Markov chain Monte Carlo samplers which require very long run-
ning times in order to reach stationarity with respect to the posterior distribution. At
the same time, the approach described above does not exploit the results from the ini-
tial run based on the random sample, except for extracting the estimates of µk∗ , Σk∗ .
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We describe how the dimensionality of the problem can be greatly reduced using the
posterior distribution estimates obtained from the initial Markov chain Monte Carlo
simulation.

Notice that the objective is to draw inferences about a region in the sample space
which has very low probability. Consequently, very few points in the initial random
sample will belong to that region. On the other hand, the targeted sample will, gen-
erally, contain observations from the low-probability region. This implies that the pos-
terior distribution of the parameters based on both the random and targeted samples
(XR, XT )

p(µ, Σ |XR, XT ) =
∑

zR

p(µ,Σ |XR, XT , zR)× p(zR |XR, XT ),

can be approximated as

p(π, µ, Σ |XR, XT ) =
∑

zR

p(π, µ, Σ |XR, XT , zR)︸ ︷︷ ︸
(a)

× p(zR |XR)︸ ︷︷ ︸
(b)

, (20)

using p(zR |XR, XT ) ≈ p(zR |XR). The approximation is reasonable since XT is cen-
tred around a specific region, implying that the component structure of most of the
sample space remains unchanged after introducing XT , while the number of observa-
tions in zR in the region of interest is far outnumbered by the zT s in that region. The
approximation (a) requires integrating over a much smaller set of parameters zT and
can be calculated much more efficiently, and (b) is known from the first Markov chain
Monte Carlo run, allowing us to update only zT and draw zR from the existing poste-
rior samples. This de-couples the z-dependence of the random and the targeted sample,
greatly reducing the dimensionality of the second analysis, since nT ¿ nR. By fixing
the configuration indicators of the random subsample, the component sums of XR and
updates of zR remain unchanged.

The second Markov chain Monte Carlo is then adapted to a set of chains run for a set
of samples. Each chain will provide posterior estimates for the parameters conditionally
on a fixed draw of zR, so that, marginally, we obtain a set of samples from the (approx-
imate) posterior distribution shown in Equation (20). Specifically, for chains l = 1 : L,
draw a sample from (z, π, µ, Σ)l |XR and apply the second sampler for each chain only
on π, zT , µ, Σ, α |XR, XT , (zR)l keeping ZR fixed, combining samples at the end. In
effect, the algorithm amounts to an Importance Sampler (Doucet et al. 2001). This ap-
proach greatly reduces both the complexity of the calculations per sweep, as well as the
total number of samples required in order to obtain a good approximation of the poste-
rior distribution. However, because the posteriors µk∗ , Σk∗ |XR and µk∗ , Σk∗ |XR, XT

may differ substantially, the sampler still suffers from very low acceptance rates and
with a moderately sized targeted subsample can fail to reach the region in parameter
space of high posterior probability.
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5 Sequential Monte Carlo approach

The focused approach drastically reduces the dimensionality of the algorithm, and as a
result the computational complexity. However, Metropolis-Hastings updates still show
low acceptance rates, since the posteriors conditional on XR and (XR, XT ), respectively,
can be very different in the subspace of parameters related to the targeted component. In
addition, the size of the targeted subsample is chosen manually rather than through an
automated procedure. Both drawbacks may be addressed drawing the targeted sample
through a Sequential Monte Carlo simulation rather than using a two-step procedure. A
large number of random samples (particles) is used to approximate the targeted sequence
of distributions, so that asymptotically this converges to the true target distribution; see
Doucet et al. (2001), Chopin (2002), Carvalho et al. (2010). We consider a sequential
scheme such that the targeted sample is selected B data points at a time, at each draw
updating parameter estimates for a set of particles.

For each of a set of particles j = 1 : J , draw a sample of (z, π, µ, Σ) |XR from the
posterior distribution estimates obtained in the Markov chain Monte Carlo sampler.
Then repeatedly augment the targeted subsample and mutate the parameter draws
through the following steps.

For j = 1 : J and for a fixed sequence of variance scaling vectors τ = t1, . . . , tJ :

1. Select a particle u uniformly at random and set mj = {µj
k∗}u and Sj = {Σj

k∗}u

where {φj
k∗}u is the sample of the uth particle at step j for component k∗.

2. Draw another batch of B targeted observations XT
j without replacement according

to weights wi ∝ w(xi |mj , tj , Sj).

3. Using a fixed number of Metropolis-Hastings steps following the iterates described
in the Markov chain Monte Carlo approach above, update the configuration indica-
tors zT , the weights π, the concentration parameter α and the component-specific
parameters µ, Σ by repeating the following updates:

(a) Update zT through update (9), π through update (14) and α through (10).

(b) Similar to the posterior distribution for µ given in (15), the posterior distri-
bution of µk now becomes

µk |XR, XT
1:j , z, Σk ∼ N(mµ

k , Sµ
k ), (21)

where

Sµ
k = (Σ−1

k /t0 + nR
k Σ−1

k + B

j∑

i=1

(
U−1

i Σk + I
)−1

Σ−1
k )−1

mµ
k = Sµ

k

(
nkΣ−1

k x̄k −B

j∑

i=1

(
U−1

i Σk + I
)−1

U−1
i mi + µ0

)
.

(22)

with Ui = Sτ at the values S = Si and τ = ti.
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(c) Update each Σk using a proposal distribution similar to (18), replacing m,S
in Equation (17) by

x̃R
i = xR

i ,

x̃T
i = Σk

(
Σ̃−1

k xT
i − U−1

batch(i)mbatch(i)

)
,

(23)

where batch(i) represents the batch of targeted observations that xT
i was

sampled in.

The sequential Monte Carlo algorithm described does not include a particle resampling
step; since each particle has a fixed zR, re-sampling would result in poor coverage
of the zR space. The algorithm can be classified as a Sequential Important Sampler
(Gordon et al. 1993). At each draw j, the samples of µ and Σ are obtained through a
Metropolis-Hastings kernel targeting the posterior p(µ,Σ |XR, XT

1:j ,m1:j , S1:j). In this
Sequential Importance Sampling setting, asymptotically (as the number of particles
becomes sufficiently large), the approximation will converge to the true posterior, since
each particle (provided a reasonable number of Metropolis-Hastings updates) is indeed
sampling from the posterior. A larger number of Metropolis-Hastings updates will be
needed when the component structure changes through the targeted sample in order
to fit the emerging components. The tuning parameter vector τ allows monitoring
of dispersal of the targeted sample and also the adequacy of the infinite population
sampling assumption (see Appendix 6).

Owing to the method in which the parameters m,S of the weight function are fixed
at each step of the re-sampling, weight functions located around different regions of
sample space may be chosen. When the low-probability component follows a mixture
distribution between different regions of sample space, this will be reflected in the esti-
mates obtained from each particle, resulting in each particle potentially corresponding
to a different component. Through our adaptive algorithm, the sample space is ex-
plored flexibly and posterior estimates of the parameters are updated incrementally as
the targeted subsample is augmented, allowing more efficient inferences.

This approach immediately poses the question of when to stop drawing observations
for the targeted subsample. Ideally, we would like the targeted sample to contain all
data points of component k∗. In order to address this, we introduce a decision rule
such that the targeted sample stops being augmented when no more data points in
the remaining original data show a high probability of belonging to component k∗. A
natural approach to use is the Bayes Factor for that component, using for example a
threshold of the order e2; see West and Harrison (1997). In other words, we introduce
an extra decision step, as follows:

5a. For each unsampled observation xi, define the Bayes Factor

BFk∗(xi) =
πk∗(xi)/(1− πk∗(xi))

πk∗/(1− πk∗)

where πk∗(xi) ∝ πk∗N(xi |µk∗ , Σk∗). Stop sampling if there are no observations
such that BFk∗(xi) > BFthreshold, a specified threshold.
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The calculation of the Bayes Factor is computationally demanding; as an alternative,
the stopping rule may be expressed purely as a function of the weights. In other words:

5b. If there are fewer than Nthreshold unsampled observations within a cthreshold con-
tour of the weight function, stop.

The threshold values are important for monitoring the impact of the infinite population
assumption on our inferences, representing the ‘number of points carrying significant
weight’. The values chosen will depend upon the number B of batched targeted ob-
servations drawn at each iteration of the sampler and the dimension of the data; for
example, one may use Nthreshold = 3B and cthreshold = exp(−p/4), where p is the
number of markers.

The Sequential Monte Carlo approach provides an efficient method of drawing in-
ferences about parameters relevant to a low probability region of sample space, at the
same time allowing the algorithm to automatically monitor the number of observations
in the region of interest.

5.1 Example: Synthetic dataset

We implement our methods on a 2-dimensional synthetic dataset with 5,000 observa-
tions from a Gaussian mixture model with 5 components. This serves to illustrate the
approach in a synthetic context where the relatively small sample size allows comparison
with posterior computations based on the full data set. The model structure, shown in
Figure 1, was chosen so that the component of interest can be visually separated from
the rest, at the same time having significant overlap with the remaining components.
The component k∗ is defined as centered within a certain region, and closest to its es-
timate of the mean after the initial samples from the posterior distribution based on
a random subsample of size 700. If no such component exists, the weight function is
initialized with m = m0, the centre of the pre-specified region, and S = S0/s0, the prior
mode of Σ. Using our sequential Monte Carlo approach, we draw B = 10 observations at
a time, fixing τj = 1, j = 1, . . . , p. We define the stopping rule using Nthreshold = 20 and
cthreshold = exp(−0.5), resulting in 200 targeted obervations. We carry out a standard
Gibbs sampler on the full dataset, and compare the results between the two methods.

The simulation results show that the posterior distribution conditional on a targeted
subsample of 900 observations, in addition to the random sample of 700 initial observa-
tions, shows an improvement of the posterior estimates comparable to those obtained
using the complete dataset, but using less than 20% of the total observations; this by
far exceeds the expected improvement using a random subsample of the same size, pro-
viding a much more efficient algorithm. For example, the boxplot shown in Figure 1
representing posterior inferences on the first dimension of the mean vector of compo-
nent k∗ is centered closer to the true mean with a much tighter posterior variance. As
expected, the posterior variance is still lower using the full data set: this is both because
there are more data in component k∗ (the stopping rule will always leave some data
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out in order to monitor the infinite popultion assumption), and because it carries more
information about the component weights π.
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Figure 1: On the left, a scatter plot of the 2 dimensional data. The full data are shown
in yellow, the random subsample in red, and the targeted subsample after the SMC
algorithm in blue. The contours show the component structure of a single draw from
the total posterior, with crosses at the mean and ellipses at one standard deviation in
each direction. On the right, three boxplots for the first coordinate of the posterior
mean of interest: conditional on the random subsample (700 observations), the random
plus targeted subsample (900 observations), and the full data (5000 observations). The
horizontal dotted line shows the true value of the component mean.

5.2 Example: Flow cytometry

The motivating example for this study is a problem arising in flow cytometry, where
cellular subtypes may be associated with one (or more) components of a Gaussian
mixture model (see Chan et al. 2008). Flow cytometers detect fluorescent reporter
markers that typically correspond to specific cell surface or intracellular proteins on
individual cells, and can assay millions of such cells in a fluid stream in minutes. Datasets
are typically very large, and as a result inference on the full data is computationally
prohibitive. Interest lies in identifying and characterizing rare cell subtypes using a
mixture model fitted on those markers. The ability to identify such rare cell subsets
plays important roles in many medical contexts - for example, the detection of antigen-
specific cells with MHC class I or class II markers, identification of polyfunctional T
lymphocytes that correlate with vaccine efficacy or host resistance to pathogens, or in
resolving variants of already low frequency cell types, e.g. subtypes of conventional
dendritic cells.

We use a dataset of 50,000 data points from human peripheral blood cells, with
6 marker measurements each: Forward Scatter (measure of cell size), Side Scatter
(measure of cell granularity), CD4 (marker for helper T cells), IFNg+IL-2 (effector
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cytokines), CD8 (a marker for cytotoxic T cells), CD3 (marker for all T cells)1. The
objective is to provide higher resolution on the structure and patterns of covariation
of cells of a specific cell subtype, specifically cells high in CD3 and/or CD8 secreting
IL-2/IFN-g when challenged with a specific viral antigen. In other words, we are par-
ticularly interested in observations with large values in the 4th dimension together with
the 5th and/or 6th. The data show a clear component structure for some of the markers
(see Figure 2), whereas in others the rare cell subtypes of interest are not separated. To
illustrate our methods and for ease of exposition, we adapt our algorithm by targeting
inferences towards the component with CD4 and IFNg+IL-2 (3rd and 4th dimension)
centred closest to a specific point, and set each τj to be very large, namely τj = 1000 for
all but the 4th dimension, focusing on the secretion of IFNg+IL-2. Here we set K = 200,
as we expect the maximum number of components to be far fewer than 200. Owing
to the structure of the model, using an upper bound much larger than the number of
components necessary does not affect the accuracy of the posterior estimates.
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Figure 2: Scatter plots of the data for the last 4 markers: CD4, IFNg, CD8 and CD3.
The complete data set is shown in yellow. We aim to use the random subsample (shown
in red) in order to obtain samples from the initial posterior p(µ, Σ, π, α |XR) and draw
the targeted subsample (shown in blue) using estimates of the distribution of the data
(superimposed as a contour plot).

1Data from an NIAID/BD IntraCellular Staining Quality Assurance Panel (ICS QAP) kindly pro-
vided by the Duke Center for AIDS Research (CFAR) Immune Monitoring Core
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An initial random subsample of size 5,000 is drawn, providing us with initial esti-
mates m, S for the mean and covariance of the component closest to the high CD4+
region. Due to the strong covariation between the markers, several components are
needed (see Figure 3) in order to capture the inhomogeneity of the data. Using initial
weights w(x) = N(x |m,Sτ ), we apply our sequential Monte Carlo algorithm to obtain
a complete targeted subsample in terms of the stopping rule as well as posterior sam-
ples for all our parameters. We draw 30 observations at a time so that B = 30, with
cthreshold = 0.2 and Nthreshold = 30, resulting in a total of 390 targeted observations.

Figure 3 shows estimated posterior distributions for the total number of components
based on the initial random subsample, and subsequently after the SMC sampler given
both the random and targeted subsamples. We observe the efficacy of the targeted ap-
proach, reflected in part through improved identification of the structure of the model
density in the targeted region (Figure 4). More specifically, observing samples from the
mixture model (see Figure 3) in the CD4 and IFNg/IL-2 markers before and after the
targeted subsample, we see that the targeted approach has led to finer resolution on the
mixture structure in the region of the targeted rare cell subtypes, providing higher res-
olution about the structure and covariation of their markers. Importantly, this revealed
components in the low probability subregion which emerge due to the covariation with
the remaining markers. This is confirmed by the analysis on the full dataset, shown in
Appendix 6, where several more components are inferred. The improvement of the es-
timates obtained using our selection sampling approach on a total subsample (random
and targeted) of size 5390 by far exceeds the expected improvement using a random
subsample of the same size. The findings agree with the biologists’ expectation that
cell subtypes often have a non-Gaussian structure, (see Chan et al. 2008; Pyne et al.
2009), and provide an efficient method of detecting and drawing inferences about rare
populations in the presence of very large datasets.
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Figure 3: Flow cytometry data analysis via using the Sequential Monte Carlo targeted
re-sampling algorithm: sample realization of the mixture model (a) based on the random
subsample and (b) based on both the random subsample and the targeted subsample.
Crosses are shown at the mean of each component, with 50% contours drawn.
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Figure 4: Posterior distributions for the number of components in the Gaussian mixture
model, given only the random subsample p(k |XR) shown in black and given both the
random and targeted subsample p(k |XR, XT ) shown in white.

6 Discussion

One of the key aspects of this work consists in defining the low probability region of
interest and specifying the weight function used in the targeted sample. Naturally, the
low probability region in sample space is strongly driven by the scientific question in
hand. Based on that, and taking into account algorithmic tractability and efficiency,
different weight functions may be used. In this work we presented methods relating to
inferences about a specific component, defined in terms of an identifying criterion. In
the flow cytometry example used in this paper, this was chosen as the component with
mean closest to a specific point. Although the weight function used had a Gaussian
shape, the analysis revealed a non-Gaussian structure in the region of interest; using
mixtures of components as a weight function would be a straightforward extension of
our methods. In fact, using a hierarchical model of mixtures of Gaussian mixtures may
provide a better fit to the non-Gaussian inhomogeneous structure of the flow cytometry
data; our targeted subsampling approach can be implemented using such models at
little additional computational cost.

In the case of the flow cytometry data, an alternative to the identifying criterion of
the component of interest would be to use the component containing a specific cell of
known rare cell subtype. A natural extension to the weight functions used in this work
stems from the fact that, in the original flow cytometry data, the identifying criterion
for the component of interest is not defined on a fixed number of dimensions. Instead,
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it is defined as the set of markers which are significant in identifying the component in
the region of low probability in sample space, which itself is unknown. In other words,
the Gaussian mixture may be defined only on a subset of the p markers (unknown),
such that we draw inferences about the parameters of the mixture p(θq |X) xi ∈ Rq

corresponding to variable dimensions 1 : q, q ≤ p. The targeted learning about θq

can be incorporated in the analysis such that, within the sequential design, the weight
function w(x) ∝ N(x |m,S) is updated at each round of re-sampling both in terms of
the mean m and covariance S of the Gaussian distribution, but also in terms of the
markers over which the weight function is defined. In the case of flow cytometry data,
this can be viewed as soft gating of cells into cell subtypes, based on both the values of
the individual markers, but also the set of significant markers.

One of the main challenges in drawing inferences about targeted subsamples is con-
structing efficient proposals for the parameters of interest, as the convergence of the al-
gorithms is influenced by several factors. The size of the targeted subsample in relation
to the random subsample plays a significant role. This becomes especially important
when the assumption of a large number of observations within the region of interest is
breached, as this would lead to a likelihood used for the targeted subsample which de-
viates severely from the true likelihood because of sampling without replacement. The
multiplicative elements of τ also play significant roles in constructing a weight function
which is wide enough to not violate the infinite weights assumption, at the same time
targeting the region of interest.

Furthermore, the size of the initial subsample affects the posterior variance of the
estimators. In fact, the random subsample may contain no observations in the low prob-
ability region. The weight function can be treated as having a prior mean and variance,
used if no more information is available in the random subsample. As more observa-
tions are drawn sequentially from the specific region, this weight function is updated
to include further information. Although the posterior estimates will be comparable, a
very small initial subsample will strongly affect the efficiency of the proposal kernels,
and possibly require overall longer running times to obtain similar results.
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Appendix

A: Flow cytometry data

In the case of the flow cytometry dataset under study, MCMC inference on the full
dataset is feasible. The results are shown below in Figure 5, comparing the 3 relevant
GMM structures in the case of (a) a random subsample (b) a random and a targeted
subsample and (c) the full data. Here it’s not possible to draw a direct comparison be-
tween the posterior distributions of the component k∗, because the component structure
in the random, targeted and full dataset case changes significantly (with a much larger
number of components in the full dataset case, as is expected by the Dirichlet process
prior). The comparison shows that, indeed, there are more components in the region of
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Figure 5: Samples of the Gaussian mixture model structure in the case of the (a)
random subsample (b) random and targeted subsample and (c) full data. Red points
represent randomly selected observations while blue represent targeted observations.
Components are shown with a ‘+’ at the mean and ellipses at one standard deviation
in each direction.

interest using the full data, as is also suggested by our targeted approach.

B: Weight functions

In both the Markov chain Monte Carlo and Sequential Monte Carlo approaches de-
scribed above, the targeted sample was weighted according to w(x) = N(x |m,Sτ ),
where m and S are estimates of the mean and covariance of the low-probability compo-
nent k∗, and Sτ = TST where T = diag(τ1/2

1 , . . . , τ
1/2
p ) is a p×p diagonal matrix based

on a set of positive variance multipliers τj , (j = 1, . . . , p). The τj are tuning parame-
ters. Larger values will allow for wider dispersal of the targeted sub-sample, accounting
for uncertainty of the initial estimate of φk∗ . As elements τj decrease, the weights wi

in the targeted sample become more concentrated and so favour fewer potential data
points. One result of this is that it the assumption of an infinite number of points
with non-negligible weight becomes invalid. If our initial estimate of (µk∗ , Σk∗) is poor,
small elements τj will restrict the targeted sample to a region away from the full low
probability region of interest. Within the context of the Metropolis-Hastings updates,
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as elements τj increase, the acceptance rate for µ,Σ increases, since the targeted sample
looks more like the random sample. In that case, the posterior distribution of φk∗ is
not pulled too far from the proposed values. At the same time, as elements τj increase,
acceptance rates for π decrease since the information about π given by the targeted sam-
ple becomes significant, and the proposed values (which are based only on the random
subsample) become less acceptable.

Consider the one-dimensional case where Sτ = τS so that w(xi) ∝ N(xi |m, τS).
Assume that µ, Σ, π are known and that there is an infinite number of data points. The
weight function becomes w(xi) ≈ N(xi |µk∗ , τΣk∗), and the coefficient τ (here scalar)
may be chosen such that the probability of drawing data points from the low-probability
component is maximized. An example is shown in Figure 6.
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Figure 6: Example in one dimension, here the blue curve represents the mix-
ture f(x |π, µ,Σ) and the red line the density of the low-probability component
N(x |µk∗ , Σk∗). The black curve then represents the weight function N(x |µk∗ , τΣk∗),
and the green curve the mixture distribution of the targeted sample, f̃(x | π̃, µ̃, Σ̃). Ide-
ally we want the common area of the green and red curve to be maximized.

Considering the overlap between the distribution of the targeted subsample and the
low-probability component, we plot the common area, denoted by A(τ), for varying τ ,
and obtain the graph shown in Figure 7. As is seen from Figure 7, in terms of maximizing
the overlap between the low probability component and the targeted subsample, the
optimum value of τ varies. Specifically, the closer the remaining components are to the
component of interest (and similarly the higher their variance) yields a lower value for
the optimum τ , and the same happens when the weight of the component of interest
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Figure 7: Example of A(τ) for several values of (µk∗ , πk∗), using a numerical approxi-
mation of the integral in order to calculate the common area.

decreases.

Combining the above results with the fact that a large τ will improve the acceptance
rate for µ, Σ but reduce the acceptance rate for π, and taking into account uncertainty
on the S = Σ̂k∗ , it is apparent that the optimum coefficient τ is not uniquely 1, and
plays a significant role which affects many levels of the analysis.

C: Software

Matlab code implementing the analysis described here, with examples, is available at
http://ftp.stat.duke.edu/WorkingPapers/09-26.html.
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