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Error analysis for small angle neutron scattering
datasets using Bayesian inference

Charles R. Hogg∗, Joseph B. Kadane†, Jong Soo Lee‡ and Sara A. Majetich§

Abstract. We present a Bayesian methodology for extracting correlation lengths
from small-angle neutron scattering (SANS) experiments. For demonstration,
we apply the technique to data from a previous paper, which investigated the
presence of dipolar ferromagnetism in assemblies of ferromagnetic Co nanopar-
ticles. Bayesian analysis confirms the presence of multiparticle dipolar domains
even at zero magnetic field, but higher-field correlation lengths were found to be
much smaller than previously believed, yielding new information on the maximum
lengthscale which the instrument can reliably probe. We use two complementary
types of graph to visualize the results. Plots of standardized residual distributions
show quality of fit, and guide model refinement. These principles can be applied
to other types of sample, and even to other small-angle scattering techniques.

1 Introduction

A bar magnet is perhaps the most familiar magnetic object. As illustrated in Figure 1,
if placed in a magnetic field, the magnet rotates to line up with that field. Once aligned,
it moves in the direction where the field increases most rapidly. It also generates its own
magnetic field, whose pattern is shown in Figure 1(b). The bar magnet is a good example
of a more general class of magnetic objects, called magnetic dipoles (Figure 1(c)), which
behave in this way.

Despite their familiarity, important questions remain about their behaviour when
large numbers of magnetic dipoles interact. One key goal is to learn whether, in regular
assemblies of dipoles, large regions spontaneously order to share the same direction, a
phenomenon known as dipolar ferromagnetism (Luttinger and Tisza 1946). Though a
vague sense that “magnets prefer to align” might make this seem trivial, Figure 2 shows
that this is far from true. Dipoles lined up along the axis indeed prefer to align, but
adjacent dipoles prefer to anti -align, and the preference for dipoles at other angles can
be anywhere in-between.

Monodomain magnetic nanoparticles are an ideal test system to investigate this
phenomenon. Each nanoparticle consists of aligned atomic dipoles so that it behaves
effectively as a single giant dipole (Stoner and Wohlfarth 1948). Additionally, their
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2 Bayesian error analysis for SANS

Figure 1: Basic concepts relating to bar magnets and magnetic dipoles. (a) When
placed in a magnetic field (represented by the grey lines), the magnet rotates until the
lines point from the south to the north pole. It also moves in the direction where the
lines are densest, which is where the field is strongest. (b) The magnetic field of a bar
magnet. (c) A bar magnet and its equivalent magnetic dipole representation: an arrow
pointing from the south to the north pole.

Figure 2: Demonstration that the preferred orientation of one dipole (B) with respect
to another (A) depends on the angle between them. Dipole A is shown in the lower
left, along with its magnetic field. Along A’s dipole axis (position B1), the dipoles
preferentially align. Perpendicular to this axis (position B2), B prefers to anti -align
with A. At intermediate angles (e.g. position B3), the preferential alignment may be
anywhere in-between.
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highly regular size allows them to self-assemble into ordered two- and three-dimensional
structures (Murray et al. 1995; Talapin et al. 2001; Narayanan et al. 2004), as shown in
Figure 3.

Figure 3: A picture of a thin cobalt magnetic nanoparticle crystal, taken with a trans-
mission electron microscope (TEM). This particular crystal is only one monolayer thick,
so that individual particles are easily distinguished.

The homogeneous regions where nanoparticles are magnetized in the same direction
are called dipolar domains (Yamamoto et al. 2008), and the size of these domains is
the main quantity we are interested in. An example is given in Figure 4. Although
both samples have zero average magnetization, the domains in (a) are twice as large as
domains in (b). Instruments which measure only the total magnetization, called magne-
tometers, could not distinguish between these samples. However, scattering techniques
can determine the average domain size.

Figure 4: Two hypothetical magnetic samples, identical except for the domain structure.
A magnetometer would measure both to be demagnetized, but the correlation length in
(a) is twice as large as in (b).

The geometry of a general scattering experiment is shown in Figure 5. The sample
is placed in a beam of radiation, whose component particles1 it deflects (or scatters)

1All radiation is composed of particles, according to the “particle-wave duality” in quantum me-
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at an angle θ. The scattering of each individual particle is a stochastic event, whose
governing distribution is determined by the size of the ordered regions within the sample.
When many particles have been scattered, the intensity pattern built up on the detector
can be analyzed using theoretical models, yielding information about the parameters
characterizing the sample.

sampleincident

beam

2D

detector

2D detector scale

(a) (b) (c)

Figure 5: Schematic of a general transmission-geometry scattering experiment. (a)
The incident beam comes in from the left and strikes the sample, which deflects the
radiation at an angle θ towards a two-dimensional detector. Here, a single scattering
event is shown, but the detector records the total amount of radiation scattered into all
areas, as indexed by the scattering vector ~Q. (b) The definition of ~Q: the wavevector ~k
has the direction of the incident neutron, and magnitude 2π/λ, with λ the wavelength
of the radiation. (c) A sample pattern of scattered radiation which might be observed
on a detector.

The connection between characteristic sizes and scattered radiation can be briefly
illustrated by explaining Bragg’s Law (Kittel 2004), the most basic scattering relation.
Atoms in a crystal are arranged in planes, each of which reflects a small amount2 of the
incoming radiation, as in Figure 6. These reflected rays undergo interference when they
recombine at the detector, where a high intensity signal occurs only if they all have the
same phase. Rays reflected from deeper planes must travel a correspondingly longer
distance, ∆L = 2d sin θ (see Figure 6); accordingly, their phase is more advanced by an
amount 2π∆L/λ, with λ the wavelength of the radiation. Since a phase difference of
2π makes no difference, the first bright spot occurs when ∆L = λ, i.e.

λ = 2d sin θ. (1)

Equation 1 shows the connection between a measured size, d, and the angle θ where
radiation is strongly scattered. For many scattering experiments, λ is held constant, and
the scattered intensity is measured as a function of θ (Hammouda 2008). Since the right
side of Equation 1 must also be constant, structures with larger sizes d must scatter
at smaller angles θ. Though many systems exist whose scattering is not described

chanics.
2Since only a small fraction of the incident radiation is scattered, we neglect higher-order corrections

accounting for multiple scattering.
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by Bragg’s law, this inverse relationship between sizes and scattering angles is quite
generally true, as Figure 7 shows schematically.

Figure 6: An illustration of Bragg’s Law for scattering. The incident beam comes in
from the left and is partially reflected from each plane of atoms. The path lengths of
rays 1 and 2 differ by the amount ∆L, as shown in the figure.

1.1 Correlation lengths

The sizes measured by Bragg’s Law correspond to distances between nearest neighbours.
By contrast, we’re interested in measuring regions of order, which often extend across
many neighbours. The size of these ordered regions is measured by a quantity known as
the “correlation length”. The term, ‘correlation,’ is well-established in both the physics
and statistics communities, but the meanings differ.

In physics, correlation always refers to systems possessing some kind of order, and
the correlation length ξ measures how large the ordered regions tend to be (Yeomans
1992). In the case of our dipolar domains, the ordering is found in the normalized3

dipole orientation ~S on different nanoparticles. This ordering is measured as a function
of separation by means of the correlation function, G(r):

G(r) = 〈~Si · ~Sj〉r (2)

where the angle brackets denote averaging over all pairs of nanoparticles, i and j,
separated by a distance r.

The behavior of G(r) relates to ξ as follows. When r ¿ ξ, most pairs of locations
separated by r are within the same domain, so G(r) ∼ 1. On the other hand, when the
separation r is large (r À ξ), the magnetization in remote regions is just as likely to
point one way as the opposite way, so G(r) → 0. The correlation length ξ therefore sets

3By “normalized,” we mean that |~S| = 1.
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Figure 7: An illustration of the relationship between the scattering angle θ and the
size of ordered regions. In both cases, the sample is placed in the path of a neutron
beam, and it scatters the neutrons into a detector. The sample in (a) has larger ordered
regions than (b), and consequently scatters proportionately more neutrons at smaller
angles.

the scale of how quickly G(r) goes to zero, and it can be obtained by fitting to the rate
of damping of G(r).

Some systems, such as ours, require more than one correlation length for their com-
plete description (Bernhoeft 1999). Within each dipolar domain, smaller regions of
inhomogeneities (Figure 8) are found, where clusters of nanoparticles deviate slightly
from the average domain orientation (Michels et al. 2003). We denote the “domain
size” correlation length as ξS , and the “inhomogeneity” correlation length as ξL. These
correlation lengths are the parameters of greatest interest.

1.2 Small-angle neutron scattering

Neutrons have several key advantages for studies of condensed matter, particularly of
magnetic materials (Hammouda 2008; Squires 1997). They are uncharged, which allows
them to penetrate very deeply through most matter. “Slow” neutrons — those travelling
less than roughly v = 1 km/s — have wavelengths4,

λ =
h

mv
, (3)

suitable for scattering studies on structures of current interest (typically a few tens of
nm, where 1 nm is one billionth of a meter). Finally, each neutron also possesses a
magnetic moment, which enables it to interact magnetically with the sample.

In small-angle neutron scattering (SANS), theory predicts the relative scattered
4Here, m is the mass of the neutron, and h is Planck’s constant.
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Figure 8: An example configuration of dipoles in a nanoparticle array. The dipole ori-
entation is shown both by the central arrow and the color of the nanoparticle. Here,
three dipolar domains are shown, separated by thick solid lines: the downward domain
occupies the left half, and the right half supports a leftward domain on top and a
rightward domain on the bottom. Within each domain are shown smaller regions of in-
homogeneities, bounded by thin dashed lines, where subgroups of nanoparticles deviate
slightly from the average direction in the domain.

intensity as a function of the scattering vector ~Q, which was defined in Figure 5(b).
SANS scattering tends to be elastic, meaning that |~k′| = |~k|, and | ~Q| can be evaluated
based purely on geometry:

| ~Q| = 4π sin(θ/2)
λ

≈ 2πθ

λ
(4)

A key result of scattering theory is that the intensity I( ~Q) is simply related to G(~r) by
a Fourier transform (Van Hove 1954). This shows the connection between I( ~Q) (the
quantity measured experimentally) and ξ (the quantity of interest).

The two types of regions discussed in Section 1.1 each give rise to a distinctive
type of scattering. The correlation function for dipolar domain-like ordering decays like
exp(−r/ξS)/r (Sachan et al. 2008), and its Fourier transform has a Lorentzian-Squared
(“S”) lineshape:

IS(Q) ∝ 1

(κ2
S + Q2)2

, (5)

where we define the parameter κS = 1/ξS for convenience. Similarly, the inhomogeities
yield a correlation function like (Sachan et al. 2008) exp(−r/ξL), which Fourier trans-
forms to a Lorentzian (“L”) lineshape:

IL(Q) ∝ 1
κ2

L + Q2
, (6)
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again defining κL = 1/ξL. Adding in appropriate scaling constants ΣS and ΣL, the
total magnetic scattering at low Q becomes

I(Q) =
ΣS

(κ2
S + Q2

i )2
+

ΣL

κ2
L + Q2

i

. (7)

Changes in the ratio of ΣL to ΣS , from one run to another, indicate changes in the
relative prominence of domains versus the inhomogeneities within them.

2 The SANS Instrument

We now describe the SANS instrument, shown in Figure 9, in greater detail. The
workings of each major component are briefly explained, with emphasis on their con-
tributions to uncertainty. Readers desiring a more in-depth description are referred to
(Glinka et al. 1998).

Figure 9: The SANS instrument. Here, we show an abstracted view for simplicity, which
includes only the conceptual parts necessary to understand our model.

2.1 Instrument Components

Neutron source

The neutron source as we model it has two main stages: production, and moderation.
Production takes place in a nuclear fission reactor, where neutrons are liberated during
the splitting of heavy atomic nuclei. Moderation sets the wavelength distribution of
the resulting beam, both by changing the speeds5 of the neutrons, and by filtering out

5From Equation 3, the wavelength of the neutron is directly related to its speed.
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neutrons of certain speeds. The end result is that the beam has some measurable wave-
length distribution ϕ(λ) (Hammouda 2008, Chapter 12), where ϕ(λ) dλ is proportional
to the amount of neutrons in the beam having wavelengths between λ and λ+dλ. Typ-
ically, this distribution is reported in terms of the peak wavelength λ+, and a relative
wavelength spread σλ/λ+.

Rate Monitor

The output from the source varies, necessitating a rate monitor to measure it. A thin
235U plate, which has a low probability to capture each passing neutron, is inserted
immediately after the source. Captured neutrons are counted for a predetermined time,
and the totals are recorded in a datafile. The monitor averages roughly 106 counts per
minute.

Sample

The sample must be held in the path of the beam by a sample holder. The neutrons
scattered from this assembly constitute the measured signal. Though the holder is
necessary, its presence complicates data interpretation, as discussed in Section 2.2.

Beam Stop

Because the transmitted beam is very intense, and would quickly damage the detec-
tor, a beam stop is inserted which blocks the central portion of the detector. This
unfortunately renders the lowest-Q range inaccessible, but is necessary to protect the
detector. Datapoints close to the beamstop edge should be viewed with suspicion, and
are typically discarded.

Neutron Detector

The two-dimensional neutron detector consists of a 128 × 128-pixel grid, where each
pixel records the cumulative number of neutrons passing by its position. The grid is
comprised of horizontal and vertical wires, immersed in a high-pressure mixture of 3He
and CF4 gases. Passing neutrons have some probability to ionize this gas, and the
resulting charge is detected on the nearest wires: one horizontal, one vertical. Their
intersection defines the location of a pixel, whose counter is then incremented by one.

Each pixel i detects only some fraction of the neutrons which impinge upon it. This
fraction, known as the detection efficiency ηi, must be carefully measured before the
data can be quantitatively analyzed. Typically, this is done by staff scientists on a
regular basis, and the latest measured efficiencies are distributed to users.

The expected number of counts also depends on the solid angle βi which the pixel
covers, i.e. the apparent size of the pixel as viewed from the sample. Since all pixels
have the same area, solid angle is primarily determined by the distance from the sample
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to the detector. We define the detection capacity γi ≡ ηiβi as the product of detection
efficiency and solid angle.

We point out that each pixel corresponds to a given scattering angle θ, determined by
its displacement from the center and the detector’s distance from the sample. However,
the neutron count from each pixel is recorded at a specific ~Q-value. Equation 4 shows
that mapping θ onto Q is unique only if the wavelength λ is precisely defined. The fact
that the wavelength spread σλ/λ+ is nonzero means that each pixel actually contains a
probability distribution of Q-values, an effect known as smearing.

2.2 Instrument configurations

The sample signal is but one of three contributions to the measured I( ~Q). By recon-
figuring the instrument, the other two can be measured. We show these configurations
schematically in Figure 10, explaining below the contributions they account for.

The experimental room contains additional sources of neutrons which are indepen-
dent of the beam configuration, known collectively as the “background”. This back-
ground rate is measured by blocking the beam completely (Figure 10(a), “BGR”) and
counting neutrons. An empty sample holder (Figure 10(b), “EMP”) is next inserted, let-
ting us account for neutrons scattered by the holder. Finally, the sample is added inside
the holder (Figure 10(c), “SAM”), contributing both nuclear and magnetic scattering
to the measured signal.

The sample transmits undisturbed only some fraction of neutrons, and the holder’s
contribution is smaller by this amount. This fraction can be measured in transmission
mode, which only counts the neutrons in the transmitted beam: it is the ratio of the
intensity with the sample in the holder, to that with the sample removed.

Magnetic scattering

Accounting for the above effects permits isolation of the sample signal, which is the sum
of nuclear and magnetic scattering. To separate them, note that magnetic scattering
along the local magnetization direction is always zero (Squires 1997, chap. 7). By
applying a magnetic field large enough to saturate the sample, we obtain a purely nuclear
signal along the field direction. Since nuclear scattering is isotropic, the remaining
magnetic signal can be extracted in all directions.

3 SANS error analysis

This paper presents an alternative technique for error analysis of SANS data. We will
give an overview of the traditional method, before describing how we have applied
Bayesian techniques to SANS.
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Figure 10: A schematic showing the three contributions to the signal, and how they
are measured by including them one by one. (a) The beam is blocked, and only the
background contributes. (b) Scattering and transmission are measured for the empty
sample holder. (c) The sample is inserted into the holder, both attenuating the holder’s
signal and adding its own contribution. Neutrons scattered by both sample and holder
are neglected in the single-scattering approximation. (We emphasize that this is a
schematic; the paths show the history of the neutrons, and are not intended to represent
trajectories.)
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3.1 Traditional error analysis

Existing tools for SANS error analysis have relied upon traditional statistical methods.
These tools are mature and refined through years of heavy use with a variety of users
studying diverse types of systems. We illustrate using the package written by Steven
Kline at NIST (Kline 2006), where we performed our experiments.

Two separate steps are involved in analysis of SANS data: reduction, and fitting.
The former involves using the configurations described in Section 2.2 to compensate for
the undesired contributions. This procedure is inherently tied to the specific instrument
where the data was taken: reduction procedures are not generic. Traditional fitting
procedures, by contrast, can be quite generic, since the reduced data is expected to have
all major instrument-specific effects accounted for.

Figure 11 shows a diagram of the traditional reduction process. We applied it to
our data, and then converted the resulting 2-D function of ~Q to a 1-D function of Q,
by averaging a narrow range of angles perpendicular to the applied magnetic field. We
measured the nuclear signal as described in Section 2.2, and subtracted it off to yield
the magnetic data, which we fit to the sum of a Lorentzian and Lorentzian-squared.

Data fitting

The “best fit” is traditionally decided by minimizing the χ2 per degree of freedom,
as follows. Each datapoint yi is assigned a standard error syi , and associated with a
coordinate xi. The yi are assumed to be based on a model function f(x), such that
the deviations (f(xi) − yi) should be small compared to syi . These deviations are
called standardized residuals when normalized by syi . χ2 is the sum of squares of these
standardized residuals,

χ2 =
N∑

i=1

(
f(xi)− yi

syi

)2

, (8)

and the curve which minimizes χ2 is taken to be the “best fit” for a given model. The
model itself may be checked by examining the standardized residuals and looking for
trends. Figure 12 shows the results of applying this method to our data at H = 0; the
yi are shown in black, and f(x) is the green curve.

3.2 The Bayesian alternative

Bayesian analysis is an alternative methodology; (Lindley 2006) gives a very readable
general introduction, and (Agostini 2003) introduces Bayesian methods from a physi-
cist’s perspective.

We distinguish two types of quantities. Data (denoted by Latin letters) are directly
observed in the experiment, and parameters (denoted by Greek letters) are unobserved
quantities which affect the distribution of data. The sole reason for collecting the former
is to learn about the latter. We use ~y as shorthand for the set of all data values, and ~α
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Figure 11: The datafiles used in our Bayesian analysis, processed here using traditional
analysis. Note the horizontal and vertical lines visible in COR, which are removed by
the DIV correction.

for the set of all parameter values.

The information about ~α yielded by ~y is encoded in the posterior probability distri-
bution P (~α|~y). Bayesian analysis relates this to two other distributions through Bayes’
rule,

P (~α|~y) =
P (~y|~α)P (~α)∫

P (~y|~α′)P (~α′) d~α′
. (9)

The likelihood, P (~y|~α), gives the probability of obtaining the observed data, given a
particular set of values for the parameters. The prior, P (~α), summarizes all knowledge
of the sample before the experiment was performed. These two distributions constitute
the model. When combined with the observed data ~y0, they contain all statistical
information about the parameters ~α.

Calculations using P (~α|~y) involve integrals in a high-dimensional space (i.e. param-
eter space). We performed these integrals using a Markov chain Monte Carlo (MCMC),
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Figure 12: The results of traditional fitting methods applied to data from this experi-
ment (Sachan et al. 2008, Figure 3). The red Lorentzian-squared curve corresponds to
scattering from the dipolar domains, and the blue Lorentzian corresponds to magnetic
inhomogeneity scattering. Standardized residuals plotted at bottom show that the line
of best fit agrees with most datapoints within standard errors.

written in the R programming language (R Development Core Team 2008). The re-
sulting chain of MCMC steps was analyzed using the boa package, short for Bayesian
Output Analysis (Smith 2007). Both the code and the datafiles used in our analysis
are available online (Hogg 2009). We ran for 106 steps at each field, then used boa
to discard steps until the remaining chain represented equilibrium. The final MCMC
chains contained 4973 steps at H = 0 T, 2813 steps at H = 0.2 T, and 10987 steps at
H = 1.0 T. Execution took roughly 4 days on our computer cluster, but recoding in
C++ could yield a significant advantage in speed.

We now describe our model in greater detail.
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Abbreviation Name Purpose
BGR Background Measure background

neutron rate
EMP Empty holder Measure sample holder

scattering
SAM-n Sample (high field) scattering Measure the nuclear

(i.e. nonmagnetic)
contribution to the
scattering signal

SAM Sample (low field) scattering Contains the signal
of greatest interest

EMP-t Empty cell transmission
Measured sample transmission
ratio at different fields

SAM-n-t Sample (high field) transmission
SAM-t Sample (low field) transmission

Table 1: A list of the instrument configurations.

Data

Most data analyzed in this paper comes directly as a raw number of neutron counts in
some detector. Associated with instrument configuration X, we have a count N i

X for
each pixel i of the detector, and a monitor count MX. The different configurations are
listed in Table 1.

The only data not in the form of a raw number of neutron counts is the detector
efficiency data (Section 2.1). The efficiency ei of the ith pixel is based on raw data
from an isotropic scatterer, but the final values have been processed by instrument
scientists. We note in passing that the posterior distribution on the detector efficiencies
could be measured once by instrument scientists, and distributed to users desiring to
use Bayesian analysis.

Parameters

Our model requires 16 parameters to describe our system. Of these, the magnetic
correlation lengths ξS and ξL are the most important. A complete list of parameters is
given in Table 2.

Several additional parameters would be required for complete rigor, but have been
approximated as constants for this preliminary version. The relative detection efficiency
ηi of pixel i is not known with certainty, but assumed to be equal to the measured effi-
ciency ei. Similarly, the instantaneous reactor output during datafile v, Ωv, is assumed
to be equal to the number of monitor counts Mv. In both cases, the error introduced
by these simplifications is negligible compared with the uncertainty from other sources:
using Poisson statistics, it is less than 0.01 for η, and less than 0.001 for Ω. Nevertheless,
it is important to verify with each new experiment that the counts are high enough to
make these errors negligible compared to other sources of uncertainty.
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Name Description
σG Spread of the transmitted beam
µB Normalized, per-pixel mean rate of background neutrons
ΦE Normalized rate of incident neutrons reaching the sample holder,

which are either scattered or transmitted
ρE Fraction of neutrons which the sample holder transmits
ρn The transmission of the sample in high field
ρ The transmission of the sample in low field
Σ(E)

L Fraction of neutrons which the sample holder scatters with a
Lorentzian signal

Σ(n)
L Fraction of neutrons undergoing nuclear Lorentzian scattering

Σ(n)
S Fraction of neutrons undergoing nuclear Lorentzian-squared scat-

tering
ΣL Fraction of neutrons undergoing magnetic Lorentzian scattering
ΣS Fraction of neutrons undergoing magnetic Lorentzian-squared scat-

tering
κE Inverse correlation length for Lorentzian scattering from sample

holder
ξ
(n)
L Nuclear Lorentzian correlation length

ξ
(n)
S Nuclear Lorentzian-squared correlation length

ξL Magnetic Lorentzian correlation length (average size of magnetic
inhomogeneities)

ξS Magnetic Lorentzian-squared correlation length (average size of
dipolar domains)

Table 2: A list of parameters in our model, and a brief description of the role of each
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Likelihood

We make the assumption that the data are conditionally independent from one another,
given the parameters. It should be noted that this is equivalent to assuming that
there are no unaccounted-for parameters that influence multiple pixels. Under this
assumption, the likelihood can be decomposed into a product of likelihood functions
for each individual neutron count — whether from the rate monitor, or a pixel in the
two-dimensional detector.

We can simplify considerably by grouping pixels receiving the same number of in-
cident neutrons per solid angle. Because of this assumption, each such group may be
treated as a giant pixel P , whose detection capacity γP (Section 2.1) is the sum

∑
i∈P γi

of capacities of the pixels which comprise it. For example, the background neutron rate
is modeled as independent of location on the detector, so we can replace the separate
counts from all pixels by the single count NBGR =

∑Npixel
i=1 N

(i)
BGR. Another example is

the signal at the bottom of Figure 11, which only depends on the pixel’s distance Q
from the center; here, our groups would be the rings of pixels which have the same Q.
Subject to these reductions, the data we consider are

~y =
{

NBGR; ~NEMP; ~NSAM-n; ~NSAM; ~NEMP-t; ~NSAM-n-t; ~NSAM-t;

MBGR;MEMP;MSAM-n; MSAM; MEMP-t;MSAM-n-t;MSAM-t;~e}
(10)

where ~NEMP is shorthand for the set of all grouped neutron counts in the EMP config-
uration, and similarly for ~NSAM and ~NSAM-n.

With this notation, we use our assumption of conditional independence to write the
explicit form of the likelihood:

P (~y|~α) = [P (NBGR|~α)]× [P (NEMP|~α)]× [P (NSAM-n|~α)]× [P (NSAM|~α)]×
[P (NEMP-t|~α)]× [P (NSAM-n-t|~α)]× [P (NSAM-t|~α)]

(11)

Each factor in Equation 11 corresponds to one of the seven datafiles used in fitting.
Factors corresponding to the measured detector efficiencies ~e, or to any of the Mv, are
missing because we have approximated them as constants.

Each neutron count N is modeled with an underlying Poisson distribution (Hengart-
ner 2008), with mean ν:

N |ν ∼ νNe−ν

N !
(12)

Here, ν is proportional to the normalized mean µ, but also to the detection efficiency η,
the solid angle β which the pixel covers, and reactor output Ω, i.e. ν = µηβΩ. The sum
of independent Poisson-distributed random variables is another Poisson distribution,
with the aggregate mean given by the sum of the individual means, but η, β, and Ω
are the same for neutrons of all sources. Accordingly, the factor corresponding to each
datafile v can be described simply by giving the form of this aggregate mean, µv.

The functional forms for the µv are complicated by an additional source of ex-
perimental uncertainty, known as instrumental smearing. As discussed more fully in
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Appendix 5, neutrons at a given pixel correspond not to a single Q-value, but to a
distribution of Q-values. It is the unsmeared mean µ̄v which we model, but the smeared
mean µ̄

(Sm)
v which we measure, where the bar indicates that background neutrons are

excluded because they are not smeared, i.e.

µv = µB + µ̄(Sm)
v . (13)

We now give the associated unsmeared mean µ̄ for each of the seven factors listed
in Equation 11. The corresponding likelihood factor is given by:

P (N |µ(~α), η, β, Ω) =
(µ(~α)ηβΩ)N exp [µ(~α)ηβΩ]

N !
; (14)

here, the functions L(Q; κ), S(Q; κ), and G(Q) are defined precisely in Appendix 5:

µ̄BGR =0

µ̄EMP =ΦE

[
Σ(E)

L L(Q; κE) + Σ(E)
S S(Q; 1/Lt)

]

µ̄SAM-n =ΦE

{
ρn

[
Σ(E)

L L(Q; κE) + Σ(E)
S S(Q; 1/Lt)

]
+

ρE

[
Σ(n)

L L(Q; 1/ξ
(n)
L ) + Σ(n)

S S(Q; 1/ξ
(n)
S )

]}

µ̄SAM =ΦE

{
ρ

[
Σ(E)

L L(Q; κE) + Σ(E)
S S(Q; 1/Lt)

]
+

ρE

[
Σ(n)

L L(Q; 1/ξ
(n)
L ) + Σ(n)

S S(Q; 1/ξ
(n)
S ) + ΣLL(Q; 1/ξL) + ΣSS(Q; 1/ξS)

]}

µ̄EMP-t =ΦEρattρEG(Q)
µ̄SAM-n-t =ΦEρattρEρnG(Q)

µ̄SAM-t =ΦEρattρEρG(Q).
(15)

Priors

We decompose the parameters into disjoint independent subsets. The functional form
of the prior on each of these subsets is given, along with a brief justification of why we
believe its parameters are independent from all other parameters.

Background neutrons

Background neutrons are completely described in our model by the parameter µB , the
mean number of background neutrons arriving at each pixel per monitor count. We
do not expect this rate to be affected by the experimental setup in any way, so the
assumption of independence is well-justified. We turn to previous runs to elicit a prior:
for each BGR file, the total number of neutrons detected, divided by the monitor counts
for that file, gives an approximation for µB . We can calculate the sample mean and
variance of µB values obtained from several such runs, and use these as the mean and
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Filename BGR Neutron
Counts

Monitor Counts Count time µB Estimate

AUG07154.ASC 1486 23.91 ×106 20 min. 37.9 ×10−10

AUG07156.ASC 8094 23.92 ×106 20 min. 206.5 ×10−10

JUN08007.ASC 738 6.02 ×106 5 min. 74.8 ×10−10

Table 3: Total neutron counts, compared to monitor counts, for blocked-beam files from
different runs. The first two were taken on the same day with the detector at different
locations, and the third was taken almost a year later. Variation arises because the
background depends on the location of the detector in the room, and also on what other
neutron experiments are being run at the same time. Despite agreeing only to within an
order of magnitude, the background is overall a very small effect, and minimally affects
the parameters of greatest interest.

variance for our prior distribution. The specific form chosen is a Gamma distribution,
since its domain is the same as for µB : (0,∞). The results are shown in Table 3. The
rightmost column was obtained by dividing the total number of neutron counts by the
monitor counts for that datafile, then further dividing by the number of pixels (i.e.
214). The mean and standard deviation for our prior distribution are estimated using
the sample mean and sample standard deviation of these values:

sold
BGR =

√√√√ 1
N − 1

N∑

i=1

(xi − x̄)2. (16)

Values for µold
BGR and sold

BGR, along with all other values needed to describe our priors,
are found in Table 4.

Beam spread

Our transmitted beam is fit to a Gaussian form (Hammouda 2008). Since the beam
is centred around Q = 0, only the spread σG is needed to characterize its shape. We
expect that the transmitted beam will be insignificant outside the beamstop, whose
edge Qb should therefore be at least 2σG from the center. We use a Gaussian (normal)
prior having mean Qb/2 and standard deviation Qb/4.

Independence is justified because the intrinsic spread of the beam does not depend
on the sample holder, sample, or background rate.

Incident non-absorbed flux

We define ΦE as the rate of neutrons incident on the sample holder, considering only
neutrons which contribute to some measured signal in some way. Other incident neu-
trons are either absorbed or scattered at wide angles; since they have no effect on any
measured signal, we exclude them from ΦE . We have not performed an absolute cali-
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bration in this experiment, so we do not know the magnitude of ΦE . To express this,
we choose a prior which is uniform in log-space, subject to a cutoff X representing the
maximum order of magnitude we will probe:

P (ΦE) =
1

ΦE
Θ(X − |log10(ΦE)|) , (17)

where the theta-function Θ(x) is 1 if its argument is positive and zero otherwise.

All other parameters relating to the sample or holder are expressed as fractions of
the flux incident upon them; hence, we may treat ΦE as an independently adjustable
measure of this flux.

Partitioning of neutrons for sample holder alone

Consider all neutrons incident on the bare sample holder which are either scattered
at small angles or transmitted. The relative fractions transmitted and scattered are
intrinsic properties of the holder, and hence independent of all other parameters. Calling
the fraction transmitted ρE , the fraction undergoing Lorentzian scattering Σ(E)

L , and
the fraction undergoing Lorentzian-squared scattering Σ(E)

S , we have

ρE + Σ(E)
L + Σ(E)

S = 1, (18)

since we have disregarded all other neutrons. Because this constraint leaves only two
free parameters, we only explicitly specify ρE and Σ(E)

L . Our prior on these parameters
is a Dirichlet distribution, governed by the hyperparameters A

(E)
ρ , A

(E)
ΣL

, and A
(E)
ΣS

.

Partitioning of neutrons for sample (both high- and low-field)

These parameters partition the neutrons incident on the sample according to the type of
interaction they experience (i.e. magnetic Lorentzian-squared scattering, undisturbed
transmission, nuclear Lorentzian scattering, etc.). We divide them into three groups:
nuclear scattering, SAM, and SAM-n. Our strategy is to first specify the prior for the
nuclear scattering, which contributes to both SAM and SAM-n configurations. Param-
eters in the remaining two groups are independent of each other, given values for the
nuclear scattering parameters, so we can specify these two groups separately. All of
these parameters are intrinsic properties of the sample, justifying our assumption of
independence from all other parameters.

The prior for the nuclear scattering parameters is Dirichlet, governed by A
(n)
ΣL

, A
(n)
ΣS

,
and A(n). The remaining two priors are scaled Dirichlets, on the domain (0, F ), where
we define F = 1− (Σ(n)

L + Σ(n)
S ) for convenience. Conservation of neutrons is expressed

for SAM-n as
Σ(n)

L + Σ(n)
S + ρn < 1, (19)

and for SAM as
Σ(n)

L + Σ(n)
S + ρ + ΣL + ΣS < 1. (20)
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The total prior for these sample partitioning parameters is thus

P (Σ(n)
L , Σ(n)

S , ρn, ΣL, ΣS , ρ) =D(Σ(n)
L , Σ(n)

S , F ; A(n)
ΣL

, A
(n)
ΣS

, A(n))×
D(ρn/F, 1− ρn/F ; A(n)

ρ , A
(n)
δ )×

D(ΣL/F, ΣS/F, ρ/F ; AΣL
, AΣS

, Aρ).

(21)

Sample holder correlation lengths

We now turn our attention to correlation length-describing parameters. The normaliza-
tion described in Appendix 5 means that each of these should be a priori independent
of its corresponding Σ, and we have only to consider prior knowledge on any possible
relationship among the correlation lengths.

The prior for κE should be uniform in ξ
(E)
L = 1/κE , since any correlation length is

as likely as any other; hence,

P (κE) =
1

κ2
E

. (22)

We simulate the inverse length κE because that is what appears directly in L(Q).

The sample holder also has a Lorentzian-squared signal which is important at lower
Q. Because the holder is made from highly crystalline aluminum, we expect this cor-
relation length to be longer than this SANS instrument can probe. This limitation is
the transverse coherence length Lt. Setting ξ

(E)
S = Lt saves computation time without

compromising accuracy, as we verified by checking the fits at low Q.

Nuclear correlation lengths

The nuclear correlation lengths ξ
(n)
S and ξ

(n)
L describe the positional arrangement of

the elements in our sample. The nuclear data is known to be well-fit by the sum of a
Lorentzian and Lorentzian-squared, and that like any other correlation lengths they are
constrained to be less than Lt. Accordingly, the prior for each is uniform within the
region (0, Lt).

Magnetic correlation lengths

The magnetic correlation lengths are similar to their nuclear counterparts, except that
we identify ξL as the size of magnetic inhomogeneities within dipolar domains of size
ξS (Michels and Weissmuller 2008). This implies that ξS > ξL always. Additionally,
because our nanoparticles are single-domain, the domains can never be smaller than
the diameter dNP of a single nanoparticle. This allowed region roughly has the shape
of a triangle with the bottom corner snipped off, as shown in Figure 13. We choose our
prior to have uniform probability density inside this region and zero outside.

These are the parameters of greatest interest.
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Category Hyperparameter Value Description

Experimental
setup

Qb 0.04 nm−1 Q-value of the edge of the beamstop
λ 0.5 nm Mean wavelength of incident neu-

trons
Lt 1000 nm Transverse coherence length of neu-

tron beam
ρatt 0.0003 Transmission ratio of attenuator (in-

serted during tranmission mode)
dNP 8 nm Diameter of a single Co nanoparticle

Priors

µold
BGR 106× 10−10 Prior mean of µB

sold
BGR 89× 10−10 Prior standard deviation of µB

X 10 Cutoff order of magnitude for ΦE

A
(E)
ΣL

2 Dirichlet portion for Lorentzian scat-
tering from sample holder

A
(E)
ΣS

2 Dirichlet portion for Lorentzian-
squared scattering from sample
holder

A
(E)
ρ 16 Dirichlet portion for transmission

through sample holder
A

(n)
ΣL

2 Dirichlet portion for nuclear
Lorentzian scattering from sam-
ple

A
(n)
ΣS

2 Dirichlet portion for nuclear
Lorentzian-squared scattering
from sample

A(n) 6 Dirichlet portion for neutrons not
nuclearly scattered

AΣL
3 Dirichlet portion for magnetic

Lorentzian scattering from sample
AΣS 3 Dirichlet portion for magnetic

Lorentzian-squared scattering from
sample

Aρ 4 Dirichlet portion for neutrons trans-
mitted by sample in low field

Aδ 2 Dirichlet portion for remaining neu-
trons in low field (absorbed, high-
angle scattered, etc.)

A
(n)
ρ 4 Dirichlet portion for neutrons trans-

mitted by sample in high field
A

(n)
δ 8 Dirichlet portion for remaining neu-

trons in high field (absorbed, high-
angle scattered, etc.)

Table 4: List of hyperparameters which characterize our experimental setup or govern
the shape of our prior distributions, along with the values used in our analysis.
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Figure 13: Probability distribution for the length scales of the Lorentzian and
Lorentzian-squared terms, ξL and ξS . Lt is the transverse coherence length of the
beam, here 1000 nm; correlation lengths larger than this cannot be distinguished by the
instrument. Dparticle is the diameter of a single particle, here 8 nm. The probability
distribution is flat within the shaded region, and zero outside.

4 Results and Discussion

The data we fit are identical to those in (Sachan et al. 2008). The same datafiles were
used in both cases. Pixels have been grouped according to sector averaging within a ±5◦

range around the given direction: horizontal for the pure nuclear signal, and vertical
for the mixed nuclear-plus-magnetic signal. These pixels were subsequently binned to
match the Q-values from (Kline 2006), with the center of each Q-bin placed at the
corresponding Q-value from the traditional analysis.

The general picture which emerges is qualitative reproduction of general trends, with
significant quantitative differences. For direct comparison, Bayesian analysis can easily
reproduce the traditional style of uncertainty reporting, where the parameter mean is
given along with standard deviations. However, the richness of information available
in P (~α|~y) enables novel forms of presentation, capable of conveying deep insight into
uncertainty and correlation at a glance.

Among the parameters listed in Table 2, ξS and ξL are the two of overwhelmingly
greatest interest. Henceforth, our discussion concerns not the full posterior P (~α|~y), but
the marginal posterior P (ξL, ξS |~y), with all other parameters integrated out.

4.1 Separate marginal distributions on ξL and ξS

Table 1 of (Sachan et al. 2008) gave values for four different field configurations. Because
the final two gave very similar results, we focus on the first three. We calculated
uncertainty estimates of one standard deviation based on our MCMC results. For ease
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of comparison, the results from the original paper (“T.A.”, for “traditional analysis”),
are presented alongside the updated uncertainties (“B.A.”, for “Bayesian analysis”), in
Table 5.

Parameter Method H = 0 H=0.2 T H=1.0 T
ξL/nm T.A. 37± 8 9.1± 0.3 1.4± 0.1

B.A. 50 ± 10 11 .8 ± 0 .4 1 .68 ± 0 .04
ξS/nm T.A. 72± 9 91± 4 1000

B.A. 64 ± 1 102 ± 10 504 ± 34

Table 5: Traditional fit results (“T.A.”) presented alongside new Bayesian results
(“B.A.”). Bayesian uncertainty estimates represent one standard deviation of the pos-
terior distribution.

The agreement is best at H = 0, which is the configuration of greatest interest for
proving the existence of domains. Here the Bayesian results overlap the traditionally
obtained values, but with significantly smaller uncertainty for ξS . The fact that ξS(H =
0) À dNP indicates magnetic correlations extending over multiple particles, providing
strong supporting evidence for the presence of dipolar domains.

At higher fields, the agreement is more qualitative, and only the general trends in
ξS(H) are reproduced. In particular, correlations in the apparently-saturated sample
are closer to 500 nm than the nominal limit of 1000 nm. This shorter correlation length
may indicate that the sample is not fully saturated, but we feel this is unlikely, because
(Sachan et al. 2008) shows negligible change from 1 T to 5 T. A more likely explanation
is that the limit of what SANS can probe (i.e. the transverse coherence length Lt is
lower than we previously believed.

4.2 Joint posterior distribution on (ξL, ξS)

A plot of the full joint posterior distribution P (ξL, ξS |~y) is perhaps the most informative
way to present data. We used the hexbin package (Carr et al. 2008), without smoothing,
to estimate the posterior density by counting the number of MCMC steps within each
bin. The results are shown in Figure 14.

The most probable regions are darker. Moreover, correlations which are not straight-
forward to obtain in traditional analysis are readily apparent in these plots. For instance,
there is a high positive correlation between ξS and ξL at 0.2 T: in this regime, larger do-
mains are particularly likely to be found containing larger inhomogeneous regions. This
qualitative visual observation is supplemented by Table 6, which lists the calculated
correlation between the parameters at each field.

If we were to represent traditional uncertainty graphically, summarizing the two sep-
arate means and standard deviations, it might take the form of a box, with side lengths
given by the standard deviation. Depending on the number of standard deviations in-
cluded, we would be more or less “confident” to find the true parameter values within
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Figure 14: The joint posterior distribution P (ξL, ξS |~y), plotted for (a) H=0, (b)H=0.2
T, (c)H = 1.0 T. The red × marks the location of the best fit according to traditional
analysis, and the box represents the region within one standard deviation of the tra-
ditional fit. The diagonal line in (a) represents the constraint ξS > ξL; recall that the
prior is uniform above and to the left of this line. Note that in (c), the red bar has been
moved down from its actual location of ξS = 1000 nm, for ease of visualization.

H = 0 H=0.2 T H=1.0 T
Cor(ξL, ξS) 0.384 0.781 0.031

Table 6: Measured correlations between ξL and ξS at different applied field strengths.

the box, and more or less surprised to find them outside. It should be noted, however,
that the confidence bounds in the traditional analysis are frequency proportions of a
procedure, implemented in only a single instance. Thus their correct interpretation is
that, “repeating the procedure used to calculate these bounds many times, 68% of the
time the bounds calculated as these were would contain the parameter value.” Addition-
ally, reporting parameters separately from one another always implies an assumption
of independence, and this traditional method therefore cannot capture the correlations
which are so evident in, say, Figure 14b.

Note that Bayesian analysis has done more than simply refine the uncertainty esti-
mates. As Figure 14 starkly shows, it has shifted the estimates of the parameters, to the
point that the traditionally obtained values do not overlap for H > 0. In part, this may
be due to neglecting high-Q datafiles in the present work: ξL is always shifted in the
same direction, and the missing datafiles contain a Q-range which strongly constrains
the Lorentzian. But the main reason they differ is that a proper accounting of uncer-
tainty can have profound effects on the parameter values extracted from experimental
data.
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4.3 Representing fits graphically: “family of curves” and standard-
ized residual distributions

Though the joint posterior plots of Figure 14 are informative, they give no indication of
how well these parameters fit the data, only that they fit better than the others which
were explored. We consider the traditional method of representing variation in graphs,
then present an attractive Bayesian alternative.

Traditionally, datapoints are plotted along with error bars of of one standard devi-
ation, which represent the variation one might expect if the experiment were repeated
numerous times. Automated fitting routines then determine the “best fit” values of
the parameters, and the curve described by these parameters is plotted with the data,
hopefully passing nearer each datapoint than its associated error bar. Two things are
peculiar here. First, plotting a single curve gives no indication when other parameter
values might fit just as well. Second, associating uncertainty with data is misplaced,
since it inevitably refers to quantities which might have been observed, but in fact were
not. (If the experiment is repeated, all repetitions may be analyzed as part of the data.
If not, then statements about uncertainty should depend only on what was actually
observed.)

Bayesian analysis assigns no uncertainty to datapoints. Instead, variation may be
shown by taking a random subset of MCMC steps, plotting the curves corresponding to
each, and plotting the datapoints on top. As a bonus, correlations between datapoints
are automatically accounted for. (By contrast, two adjacent datapoints with errorbars
implies they are just as likely to vary oppositely as together, which is generally untrue.)

In this case, we see that the shape of the curve is quite tightly constrained, giving no
visual indication of the degree to which the parameters vary. Significant magnification
is required before the curves can be distinguished, suggesting the need for alternative
plots to show goodness of fit.

Standardized residuals fit this role, and can also show all MCMC steps simultane-
ously, like the joint posterior plots of Figure 14. The residual ∆s

i for pixel i at MCMC
step s is (Ni − νs

i ), where Ni is the observed number of neutrons, and νs
i the number

expected based on the parameter values at s. Considering all MCMC steps leads to a
residual distribution at each Q, shown in Figure 16.

The residual distributions at all fields exhibit wide variation at low Q, and become
narrow at higher Q. This trend is a consequence of the higher counts at low Q. The vari-
ation expected from Poisson statistics,

√
νs

i , is plotted in the middle row of Figure 16.
Dividing each residual (top) by the expected variation (middle) yields the standardized
residuals (bottom), δs

i = (Ni− νs
i )/

√
νs

i . These plots are the closest Bayesian analogue
to the bottom of Figure 12, but we caution against direct comparison, because different
data are being fit: traditional analysis processes the data first, while Bayesian analysis
models all contributions and fits the unaltered data.

The zero-field data lie within 2σ of most fits, but display clear systematic trends
as a function of Q. We attribute these trends to the extra contributions, and suggest
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Figure 15: The “family of curves” corresponding to a randomly chosen subset of 16
MCMC steps from the chain. In this case, the difference between curves is indistinct
when the plot is fully zoomed out, so a central portion has been expanded to show
the variation. (Note that in contrast to Figure 12, these data include contributions
from nuclear scattering, background, and the sample holder, making direct comparison
difficult.)

that refining the models for nuclear and holder scattering may mitigate these effects.
At intermediate field (H = 0.2 T), only the last several points disagree significantly.
The fits systematically and increasingly underestimate the data, but since data near
the detector edges are inherently less trustworthy, we expect the inclusion of higher-Q
datafiles to improve agreement in this region. The datapoints at the highest field (H=
1.0 T) agree well all around, generally within 1σ of most fits. Note that at all fields,
the residual distributions widen at lowest Q, even after standardization.

5 Conclusions

In conclusion, we have applied Bayesian analysis to data from a recently published
SANS paper (Sachan et al. 2008). Our analysis supports the main conclusions, that
dipolar domains existed in a Co colloidal crystal even at zero field, and grew larger as
higher fields were applied. Our new approach has put our uncertainty analysis on firmer
footing and yielded quantitative results.

More broadly, small-angle neutron scattering datasets can be analyzed using a
Bayesian approach, which yields the conditional posterior probability P (~α|~y). Correla-
tions between parameters can be made obvious by a glance at a plot of this posterior
distribution. Furthermore, since the MCMC explores all of parameter space, it often
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Figure 16: Residual distributions at each field. Each distribution is binned, with darker
bins having higher density, and black representing the most populous bin for each plot.
The top row shows a distribution at each Q of non-normalized residuals, i.e. the dif-
ference between the number of neutrons observed and the number expected for each
MCMC step. The expected variation is plotted in the middle row as the square root
of the fit function at each step. (Discontinuities correspond to changes in the num-
ber of grouped pixels.) The bottom row plots distributions on standardized residuals,
equivalent to dividing the top row by the middle row.
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finds possibilities in obscure regions, which traditional analysis might easily miss. Mod-
eling the system in detail requires eliciting reasonable priors for the parameters, and
often reveals important details about the system or key gaps in knowledge even before
the MCMC is run. Bayesian analysis is more computationally intensive than conven-
tional forms of data fitting, due to the need to run a Monte Carlo simulation. Finally,
the lack of a mature, versatile analysis package constitutes an additional barrier to sci-
entists who might otherwise make use of Bayesian analysis. We hope this work will
serve as the first step to the creation of just such a tool.

Appendix A: Normalization conventions

Our Σ parameters are intended to represent the total scattering from a given functional
form (i.e. Lorentzian or Lorentzian-squared). It is therefore important to normalize
these functional forms, much more so than for traditional fitting, where no model gives
meaning to the magnitudes of the relative scaling factors.

We begin by considering the Lorentzian function; the discussion for the Lorentzian-
squared is similar. When we say that the Lorentzian L(Q; κ) should be normalized,
we mean that it should represent the stochastic scattering pattern for an individual
neutron. In other words, since the neutron must be scattered with some ~Q, integration
over all allowed ~Q-values should yield unity:

∫

R

L(Q; κ) d~Q = 1, (23)

where R stands for the region of integration.

This equation is required to hold for all κ. The integral of the non-normalized
Lorentzian,

L̃(Q; κ) =
1

Q2 + κ2
, (24)

typically depends on κ; hence, the normalization factor must be some function of κ and
of the region R of integration, i.e.

L(Q; κ) = FL(κ;R)L̃(Q; κ) =
FL(κ; R)
Q2 + κ2

, (25)

where FL is the normalizing factor for the Lorentzian function.

Since SANS is an elastic technique, we normalize over all elastically scattered vectors.
This region takes the form of a sphere of radius 2π/λ, whose center is displaced from
the origin by this same amount. For radiation of wavelength λ scattered at an angle θ,
we have

Qelastic =
4π sin(θ/2)

λ
. (26)

In order to turn our integral from d~Q into dQ, we must weight the integrand by
the amount of ~Q-space available at each value of Q. The amount of ~Q-space available
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on the sphere at an angle θ is proportional to (4π2/λ) sin θ. Solving the geometry to
express everything in terms of Q, we find that the Q-dependent weighting factor is

W (Q) = 2πQ

√
1−

(
Qλ

4π

)
, (27)

Note that this reduces to 2πQ at small angles, as it must, before the curvature of the
sphere distorts this factor.

Putting it all together, we find

∫

R

L(Q; κ) d~Q =

4π/λ∫

0

W (Q)FL(κ; R)
Q2 + κ2

dQ = 1, (28)

which implies that

FL(κ; R) =




4π/λ∫

0

W (Q)dQ

Q2 + κ2




−1

. (29)

After carrying out this integration, along with a similar one for the Lorentzian-
squared S(Q; κ), we find the following normalized forms of the functions, defining the
dimensionless variable κ̃ = κλ/4π for convenience:

L(Q; κ) =
(

1
2π [(1 + κ̃2) arcsinh (κ̃−1)− 1]

)
1

Q2 + κ2

S(Q; κ) =

(
8π
√

1 + κ̃2

λ2
[
κ̃−2

√
1 + κ̃2 − arcsinh (κ̃−1)

]
)

1
(Q2 + κ2)2

(30)

It is these forms which we have used in our simulation.

Appendix B: Smearing corrections

Equation 4 makes the connection between the scattering vector ~Q, used in theory, and
the deflection angle θ which is experimentally measured. This connection is one-to-one
as long as only neutrons of a single wavelength are used. However, no single wavelength
gives enough neutrons to yield a detectable signal in a reasonable amount of time; in
other words, SANS is a flux-limited technique. In practice, we are forced to allow a
distribution of wavelengths, which means that each deflection angle θ corresponds to a
distribution of Q-values. This effect is known as smearing, and it distorts the measured
signal.

Traditional analysis uses one of two methods to account for smearing. The first
is to “desmear” the data, by attempting to invert the function. Desmearing has the
advantage that it only needs to be performed once, thus saving computation time.
However, smearing is not strictly invertible.
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The alternative is to smear the model function before fitting it to the measured
data. Smearing at every step incurs a considerable computational cost, but leaves the
experimental data inviolate. This latter option is very commonly done in traditional
analysis; in Bayesian analysis, it is the only option.

The technique for smearing correction is outlined in (Kline 2006). The fit function,
I(Q), is a continuous function determined by the values of its associated fit parameters
(i.e. ξL, ξS , . . . ). To calculate the smeared intensity Is(Qi), at the ith Q-value, one
takes a weighted average of the unsmeared intensity,

Is(Qi) =

∞∫

0

R(Q,Qi)I(Q) dQ (31)

where R(Q,Qi) is the resolution function of the instrument at the point Qi. This
resolution function is well approximated as a Gaussian

R(Q,Qi) ≡ fs(
2πσ2

Q

)1/2
exp

[
− (

Q− Q̄
)2

2σ2
Q

]
, (32)

characterized by a mean Q̄, standard deviation σQ, and a parameter fs which represents
the fraction not shadowed by the beamstop (typically, fs = 1 for all but the lowest-Q
points). Each of these parameters varies with the nominal Q (i.e. the angle θ), and
these values are measured by the instrument scientists and provided to the users.

To improve execution time, we have replaced the integral in Equation 31 by a sam-
pled Riemannian sum. A series of Q-values is generated, consisting of the original
Q-values plus F more between each pair. The unsmeared fit function is evaluated at
each Q-value in this new series. To calculate the smeared intensity at the original Q-
values, a cutoff C is supplied by the user, such that only points between (Q̄i − CσQ)
and (Q̄i + CσQ) are considered. These points are averaged according to

Is(Qi) = Ki

∑

j;|Qj−Q̄i|<CσQ

I(Qj)exp

[
− (

Qj − Q̄
)2

2σ2
Q

]
, (33)

where the normalizing factor

Ki = fs


 ∑

j;|Qj−Q̄i|<CσQ

exp

[
− (

Qj − Q̄
)2

2σ2
Q

]

−1

(34)

ensures that the weights sum to fs.

The results presented in this paper correspond to F = 5 and C = 3.
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