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ON MULTIVARIATE QUANTILES UNDER PARTIAL ORDERS

BY ALEXANDRE BELLONI AND ROBERT L. WINKLER

Duke University

This paper focuses on generalizing quantiles from the ordering point
of view. We propose the concept of partial quantiles, which are based on
a given partial order. We establish that partial quantiles are equivariant under
order-preserving transformations of the data, robust to outliers, characterize
the probability distribution if the partial order is sufficiently rich, generalize
the concept of efficient frontier, and can measure dispersion from the partial
order perspective.

We also study several statistical aspects of partial quantiles. We provide
estimators, associated rates of convergence, and asymptotic distributions that
hold uniformly over a continuum of quantile indices. Furthermore, we pro-
vide procedures that can restore monotonicity properties that might have been
disturbed by estimation error, establish computational complexity bounds,
and point out a concentration of measure phenomenon (the latter under inde-
pendence and the componentwise natural order).

Finally, we illustrate the concepts by discussing several theoretical ex-
amples and simulations. Empirical applications to compare intake nutrients
within diets, to evaluate the performance of investment funds, and to study
the impact of policies on tobacco awareness are also presented to illustrate
the concepts and their use.

1. Introduction. The quantiles of a univariate random variable have proved
to be a valuable tool in statistics. They provide important notions of location and
scale, exhibit robustness to outliers, and completely characterize the random vari-
able. Moreover, quantiles also play a significant role in applications. Naturally,
the quantiles of a multivariate random variable are also of interest, and the search
for a multidimensional counterpart of the quantiles of a random variable has at-
tracted considerable attention in the statistical literature. Various definitions have
been proposed and studied.

Barnett [3], Serfling [50] and Koenker [32] provide valuable comparisons and
surveys of different methods. Some interesting recent work is presented in Hallin,
Paindaveine and Siman [24] (with discussions [25, 52, 59]), Kong and Mizera
[34] and Serfling [51]. A substantial part of the literature focuses on developing
relevant measures to characterize location and scale information of the multivariate
random variable of interest. This is usually accomplished by defining a suitable
nested family of sets. As discussed below, our focus will be on a given partial
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order between points instead. The incorporation of this additional information is
the distinctive feature of this work. Therefore, our approach is different and hence
complementary to previous work that focuses on location and scale measures.

The fundamental difficulty in reaching agreement on a suitable generalization of
univariate quantiles is arguably the lack of a natural ordering in a multidimensional
setting. Serfling [50] points out that, as a result, “various ad hoc quantile-type mul-
tivariate methods have been formulated, some vector-valued in character, some
univariate, and the term “quantile” has acquired rather loose usage” (page 214).
The simplest notion of a multivariate quantile is that of a vector of the correspond-
ing univariate quantiles, but this fails to reflect any multivariate features of the ran-
dom vector. More often than not, attempts to take into account such multivariate
features have been influenced by the justifiable temptation to exploit some geo-
metric structure of the underlying space. For example, many approaches are based
on the use of specific metrics to collapse the multivariate setting into a univari-
ate measure. Many definitions of multivariate quantiles that use notions such as
the distance from a central measure, norm minimization, or gradients immediately
make the values relevant. In contrast, for univariate quantiles only the ordering
matters, and the actual values of the variable away from the quantile of interest are
irrelevant.

In our work, within the definition of multivariate quantiles, the crux is the con-
cept of ordering, which might or not be related to geometric notions of the under-
lying space. Our starting point will be to detach our concept from the geometry
of the random variable, and assume that a partial order is provided which will be
used to define the partial quantiles. This allows our work to focus on the mini-
mum structure for which the problem makes sense. With a general partial order,
as opposed to a complete order, we recognize that some points simply cannot be
compared. Our key insight is to rely on a family of conditional probabilities in-
duced by the partial order to circumvent the lack of comparability. Such approach
yields a distinguishing feature of the proposed partial quantiles: the reliance on
the partial order. Our analysis is close in spirit to, but still quite different from,
the important work of Einmahl and Mason [18], who proposed a broad class of
generalized quantile processes. We defer a detailed discussion to Section 4 but we
anticipate that our definitions do not fit within the framework of [18] and most of
our results have no parallels in [18].

Our main contributions are as follows. First, we propose a generalization of
quantiles based on a given partial order on the space of values of the random
variable of interest. Index, point, surface, and comparability notions of the partial
quantiles are studied. We establish that these partial quantiles have several desir-
able features: equivariance under monotone mappings with respect to the chosen
partial ordering (an instrumental feature of the univariate case); generalization of
the efficient frontier concept; meaningfulness not only in high-dimensional Euclid-
ean spaces but also in arbitrary sets (relevant for decision making, where metrics
are not available); and applicability even to general binary relations.
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Second, we investigate statistical estimation and inference based on finite sam-
ples. We derive results on rates of convergence that hold uniformly over infinitely
many quantile indices. In the analysis of the estimation problems, we have to ac-
commodate discontinuous criterion functions, potential nonuniqueness of the true
parameter, and a restricted identification condition. These difficulties lead to non-
standard rates of convergence. Also, we derive the asymptotic distribution for the
partial quantile indices process (indexed by a subset of the underlying space) and
for the partial quantile comparability where non-Gaussian limits are possible due
to nonuniqueness.

Several other results are established. Partial quantile indices and probabilities
of comparisons are robust to outliers and we study when they characterize the
underlying probability distribution, both important properties of univariate quan-
tiles. Due to sampling error, the estimated partial quantile points could violate
the partial order, as can happen with (univariate) quantile regression [32]. In
quantile regression, Chernozhukov, Fernández-Val and Galichon [10, 11] based
on rearrangement, Dette amd Volgushev based on smoothing and monotoniza-
tion [14], and Neocleous and Portnoy [39] based on interpolation, show how to
obtain monotone estimates of quantile curves. In the context of partial quantiles
within lattice spaces, we propose a new procedure to correct for this estimation
error that leads to partial quantile point estimates that are monotone with respect
to the partial order. (Under the componentwise natural ordering, we build upon the
use of rearrangement in Chernozhukov, Fernández-Val and Galichon [10, 11] to
achieve an improvement on the estimation under suitable mild conditions.) Under
independence and the componentwise natural ordering, we also point out a con-
centration of measure and a possible “curse of dimensionality” for comparisons.
We also define dispersion measures based on partial quantile regions. Moreover,
we study the computational requirements associated with approximating partial
quantiles. We provide interesting primitive conditions under which computation
can be carried out efficiently. Finally, we illustrate these concepts through applica-
tions to evaluate the intake of nutrients within diets, the performance of investment
funds, and the impact of different policies on tobacco awareness.

2. Partial quantiles. In this section, we propose a generalization of quantiles
and derive basic probabilistic properties implied by the definition of partial quan-
tiles.

2.1. Definitions. Let X denote an S -valued random variable defined on a
probability space (�, A,P ), where S is an arbitrary set. Moreover, let � denote
a partial order defined on S (x � y if x precedes y). Throughout the paper, we
assume that for all x ∈ S , the events {X � x} and {X � x} are A-measurable. We
begin by defining the set of points that can be compared with a fixed element x ∈ S
given the partial order.
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DEFINITION 1. For any x ∈ S , the set of points comparable with x under the
partial order � is defined as C(x) = {y ∈ S :y � x or y � x}. Let px = P(X ∈
C(x)) denote the probability of comparison of x.

COMMENT 2.1. It follows that all definitions and results can be derived for
general binary relations �. We focus on partial orders since these binary relations
encompass our applications and to simplify the exposition. A binary relation � is
a partial order if it is (i) reflexive (x � x), (ii) transitive (x � y and y � z implies
x � z) and (iii) antisymmetric (x � y and y � x implies x = y). Unless otherwise
noted, we will assume that the binary relation � is a partial order.

The probability of comparison px is simply the probability of drawing a point
comparable with x. The usefulness of C(x) relies on the fact that conditional on
the event {ω ∈ � :X(ω) ∈ C(x)}, which hereafter we denote simply by C(x), we
have

P
(
X � x|C(x)

)+ P
(
X ∼ x|C(x)

)+ P
(
X ≺ x|C(x)

)= 1.

That is, conditioning on C(x) avoids points that are incomparable with x making
the partial order � “complete” with respect to x [for every y ∈ C(x) either x � y

or y � x]. Under this conditioning, a sensible definition for x being a quantile of X

should involve P(X � x|C(x)) and P(X � x|C(x)), the probabilities of drawing a
point preceding x and succeeding x, respectively, under the partial order. Next, we
formally define the concept of partial quantile surfaces and indices.

DEFINITION 2. For each x ∈ S , we define its partial quantile index as

τx = P
(
X � x|C(x)

)
.(2.1)

Moreover, for τ ∈ (0,1), the τ -partial quantile surface is defined as

Q(τ ) = {
x ∈ S :P

(
X � x|C(x)

)≥ (1 − τ),P
(
X � x|C(x)

)≥ τ
}
.(2.2)

Partial quantile indices provide an ordering notion for each element of S relative
to its comparable points. Definition 2 also defines a subset of S associated with
each quantile index τ ∈ (0,1). In the case of a univariate random variable under
the natural ordering, Q(τ ) is simply the set of τ -quantiles of X. Note that we can
have x ∈ Q(τ ) for more than one value of τ only if P(X ∼ x|C(x)) > 0. (The
same would happen in the univariate quantile case.)

Next, we select a meaningful representative point, called a τ -partial quantile
point, from each τ -partial quantile surface. To do that, we use the criterion of
maximizing the probability of drawing a comparable point.
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DEFINITION 3. For τ ∈ (0,1), a τ -partial quantile point, or simply a τ -partial
quantile, is defined as any maximizer of px over Q(τ ), namely,

xτ ∈ arg max
x∈S

px s.t. x ∈ Q(τ ).(2.3)

Also, for each τ ∈ (0,1), let pτ = pxτ = P(X ∈ C(xτ )) be the probability measure
of the points comparable with any τ -partial quantile xτ . The set of all τ -partial
quantile points is denoted by Q∗(τ ) = {x ∈ Q(τ ) :px = pτ }.

The lack of a complete order in S is exploited to select a representative point
within the partial quantile surface. This approach is detached from any geometric
aspect of S , yet it reflects the multivariate nature of the situation as well as the
partial order. Also, note that if we have a complete order, in which px = 1 for all
x ∈ S , then any x ∈ Q(τ ) is a τ -partial quantile. This is exactly what happens in
the univariate case, where multiplicity can also occur.

Partial quantile points xτ can also be interpreted as “approximate quantiles” in
the sense that

P(X � xτ ) ≥ pxτ · τ and P(X � xτ ) ≥ pxτ · (1 − τ)

and that the balance is “correct” within comparable points

P
(
X � xτ |C(xτ )

)≥ τ and P
(
X � xτ |C(xτ )

)≥ (1 − τ).

In fact, xτ is the “best approximate quantile” since it is the maximizer of the prob-
ability of comparisons given the restrictions.

The probability of comparison plays an important role in our definitions and,
consequently, in the interpretation of partial quantiles. It will allow us to quantify
the gap between the interpretation of partial quantiles and the interpretation of
traditional quantiles where all points are comparable to each other. We will focus
on the following quantity that characterizes the overall comparability of partial
quantile points uniformly over different quantiles.

DEFINITION 4. The partial quantile comparability is the minimum probabil-
ity of comparison associated with partial quantile points, namely

℘ = min
τ∈(0,1)

pτ .(2.4)

When the comparability ℘ is large, the interpretation of partial quantile points
is very similar to traditional quantiles. On the other hand, if ℘ is small, there are
partial quantile indices for which the interpretation of partial quantile points devi-
ates considerably from that for the traditional quantile since drawing a point that
is incomparable to at least some τ -partial quantile point is likely. Clearly, if the
binary relation � is a complete order, like univariate quantiles, we have ℘ = 1.
As a side note, (2.4) can be written as ℘ = minτ∈(0,1) maxx∈Q(τ ) px , so that ℘ is a
saddle point of the probability of comparison.
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2.2. Structural properties. Next, we move to structural properties implied by
the definition. It is notable that interesting and useful properties can be derived
within the general case.

We say that a mapping h : S → S is order-preserving if x � y implies h(x) �
h(y) and x � y implies h(x) � h(y).

PROPOSITION 1 (Equivariance and invariance). Let h : S → S be a order-
preserving mapping. For an S -valued random variable X, let xX

τ , QX(τ), τX
x , pX

x ,
pX

τ and ℘X denote the partial quantile quantities.
Then partial quantile points and surfaces are equivariant under h, namely

xh(X)
τ = h(xX

τ ) and Qh(X)(τ ) = h(QX(τ)),

and partial quantile indices and probability of comparisons are invariant under h,
namely

τ
h(X)
h(x) = τX

x , p
h(X)
h(x) = pX

x , ph(X)
τ = pX

τ and ℘h(X) = ℘X.

Proposition 1 is simple but very useful. As with univariate quantiles under the
natural ordering, any order-preserving transformation of the data can be dealt with
by transforming the partial quantiles of X. For concreteness, consider S = Rd

with a � b only if a ≥ b componentwise. In this case, common examples of in-
variant transformations are: translation (x 	→ x + z), positive scaling (x 	→ tx,
where t > 0), and componentwise monotonic transformation [e.g., xj 	→ ln(xj ),
where xj > 0]. Note that no assumption on the probability distribution was made
in Proposition 1.

In order to show symmetry, we also require assumptions on the probability dis-
tribution.

PROPOSITION 2 (Symmetry). Assume that the probability distribution of X is
invariant over a order-preserving mapping m : S 	→ S , that is, P(A) = P(m(A))

for every measurable A ⊂ S . Then if xτ is a partial quantile point, m(xτ ) is also a
partial quantile point; if z ∈ Q(τ ), then m(z) ∈ Q(τ ); and τx = τm(x).

The next lemma shows that transitivity in the partial order is automatically trans-
ferred to the partial quantile indices.

PROPOSITION 3 (Transitivity). Assume that the binary relation � is transitive.
Then we have that x � x′ implies that τx ≥ τx′ .

3. Estimation of partial quantiles. Up to now, we have studied properties
of the partial quantiles when the probability distribution of the random variable
of interest is known. Next, we focus on exploring sample-based partial quantiles
viewed as estimates of their population counterparts. Following standard notation
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in the empirical process literature, we let Pn(A) = 1
n

∑n
i=1 1{xi ∈ A}. Also, we let

Pn(A|B) = Pn(A ∩ B)/Pn(B) if Pn(B) > 0 and zero otherwise. We carry out all
of the asymptotic analysis as n → ∞. We use the notation a � b to denote that
a = O(b), that is, a ≤ cb for all sufficiently large n, for some constant c > 0 that
does not depend on n, and we use a �P b to denote that a = OP (b). We also use
the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}.

3.1. Assumptions. We base our analysis in this and the next section on high-
level conditions E.1–E.6. These high-level conditions are implied by a variety of
more primitive conditions as discussed below.

E.1. Random sampling. The data Xi , i = 1, . . . , n, are an i.i.d. sequence of
S -valued random variables.

The next condition imposes regularity on the family of sets induced by the par-
tial relation

T = {
C(x), {y ∈ S :y � x}, {y ∈ S :y � x} :x ∈ S

}
.(3.1)

E.2. Regular partial order. For p̄ ∈ (0,1), there is a positive number v(p̄)

such that

sup
x∈S,px≥p̄

∣∣∣∣Pn(Xi � x) − P(X � x)

px

∣∣∣∣∨ ∣∣∣∣Pn(Xi � x) − P(X � x)

px

∣∣∣∣∨ ∣∣∣∣ p̂x − px

px

∣∣∣∣
�P

√
v(p̄)/n.

Condition E.2 ensures that the partial order is well-behaved for a uniform law
of large numbers to hold over the sets {X � x}, {X � x}, and C(x) for all x in

Cp̄ = {x ∈ S :px ≥ p̄},(3.2)

that is, over points with a minimum requirement on the probability of comparison.
Condition E.2 is implied by several more primitive conditions on T [e.g., if T
is a Vapnik–Černonenkis class with VC index v(T ) < ∞ and mild measurability
conditions]. We refer to Alexander [1], Pollard [43] and Giné and Koltchinskii
[22] for several results on deriving bounds for v(p̄) under primitive assumptions.
A technical remark is that we require the normalization factor to be px for all three
terms, which is considerably weaker than using P(X � x) and P(X � x).

Alternatively, we could derive all of our results under the condition

sup
A∈T

|Pn(A) − P(A)| �P

√
v(T )/n.(3.3)

However, (3.3) might not lead to results as sharp as E.2 achieves when px is small.
We refer to Dudley [16] and van der Vaart and Wellner [57] for a complete treat-
ment to derive bounds on v(T ) leading to (3.3). Note that if condition (3.3) holds,
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then condition E.2 is satisfied with v(p̄) = v(T )/p̄2. It is convenient to keep in
mind the case 0 < p̄ ≤ ℘/2, for which all partial quantile points xτ are contained
in Cp̄ and therefore covered by condition E.2.

Next, we consider conditions the following identification and regularity condi-
tions relating probability of comparisons and a metric d(·, ·) for S .

E.3. Identification condition. There are positive constants c and α ≥ 1 such
that for every x ∈ Q(τ ), we have

pτ − px � c ∧ inf
xτ ∈Q∗(τ )

d(xτ , x)α.

E.4. Continuity of partial quantile points. For a compact set of quantile in-
dices U ⊂ (0,1), let τ ∈ U and let τ ′ be in a neighborhood of τ . For every
xτ ∈ Q∗(τ ), there exists xτ ′ ∈ Q∗(τ ′) such that:

(i) |pτ − pτ ′ | � |τ − τ ′|γ and (ii) d(xτ , xτ ′) � |τ − τ ′|.
E.5. Empirical error of probability of comparisons. We have that

sup
τ∈U

sup
xτ ∈Q∗(τ )

sup
y∈S,d(xτ ,y)≤r

|p̂xτ − pxτ − (p̂y − py)| �P φn(r)/
√

n,

where φn : R+ → R+ is such that r 	→ φn(r) is nondecreasing and concave, and
r 	→ φn(r)/rκ is decreasing for some κ < α.

Condition E.3 is a restricted identification condition, that is, xτ is a maximizer
of the probability of comparison only over Q(τ ). Moreover, it allows for partially
identified models in the spirit of Chernozhukov, Hong and Tamer [12]. Condi-
tion E.4 requires that the set-valued mapping τ 	→ Q∗(τ ) of partial quantile points
is a continuous correspondence over U . However, it does not restrict Q∗(τ ) to be
a singleton, convex, or even bounded. Condition E.5 is a standard condition on the
criterion function for deriving rates of convergence of M-estimators (see, e.g., van
der Vaart and Wellner [57], Theorem 3.2.5). Bounds for φn are available in the
literature for a variety of classes of functions (see van der Vaart and Wellner [57]).

Finally, in order to establish functional central limit theorems, the following
mild assumption is is imposed on the class of sets T as defined in (3.1).

E.6. Gaussian process in T . For each n ≥ 1, the process indexed by T
αn(A) = √

n
(
Pn(A) − P(A)

)
, A ∈ T ,

converges weakly in 
∞(T ) to a bounded, mean zero Gaussian process ZP , in-
dexed by T with covariance function P(A ∩ B) − P(A)P (B) for A,B ∈ T .

Condition E.6 is directly satisfied if the class of sets T satisfies uniform entropy
or bracketing conditions and mild measurability conditions (see [57]).

Next, we verify these conditions for our main motivational examples.
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EXAMPLE 1 (Convex cone partial order). Let X be an Rd -valued random
variable with a bounded and differentiable probability density function. Consider
the partial order given by a � b only if a − b ∈ K , where K is a proper con-
vex cone (nonempty interior, and does not contain a line). In this case, we have
P(X � x) = P(x + K) and P(X � x) = P(x − K).

LEMMA 1. Consider the convex cone partial order setup with a compact set
U ⊂ (0,1), and X be an Rd -valued random variable bounded and differentiable
probability density function. Then, under i.i.d. sampling of X (condition E.1),
we have that E.2 with v(p̄) � d/p̄2, E.5 with φn(r) � (r1/2 + n−1/4)

√
logn and

d(x, y) = ‖x − y‖ and E.6 hold. Assume further that X has convex support and
the probability density function is strictly positive in the interior of the support.
Then E.3 holds with d(x, y) = ‖x − y‖ and α = 2, E.4(i) holds with γ = 1, and
the mapping τ 	→ Q∗(·) is upper semi-continuous.

EXAMPLE 2 (Acyclic directed graph partial order). Let X be an S -valued ran-
dom variable where |S| < ∞. The partial order is described by an acyclic directed
graph, that is, x � y if there is a directed path from x to y in the graph.

LEMMA 2. Consider a space S , with |S| < ∞, a partial order defined over S
by an acyclic directed graph, and let X be an S -valued random variable. Then, un-
der i.i.d. sampling of X (condition E.1), we have that E.2 with v(p̄) � (log |S|)/p̄2.
Moreover, for d(x, y) = 1{x �= y}, we have that E.3 with any α ≥ 0, E.5 with
φn(r) � 1{r > 0}√log |S| and E.6 hold. Moreover, E.4 holds with any γ > 0 if
the compact set U does not contains a particular finite set of indices.

In Section 5, we discuss other examples where conditions E.1–E.6 hold.

3.2. Rate for partial quantile indices. We start by considering the estimation
of the partial quantile indices τx associated with each x ∈ S , as defined in (2.1). In
order to estimate this parameter, we define the estimator

τ̂x = Pn

(
Xi � x|C(x)

)
for each x ∈ S.(3.4)

A fundamental departure from the univariate case arises from the lack of com-
parability between some points. This will oblige us to restrict the set on which
uniform convergence is achieved. The next result establishes that the convergence
of partial quantile indices is uniform over Cp̄ , which from (3.2) is the set of points
for which the probability of drawing a comparable point is at least p̄.

THEOREM 1 (Uniform rate for partial quantile indices). Assume that condi-
tions E.1 and E.2 hold. Then for any p̄ ∈ (0,1), we have

sup
x∈S,px≥p̄

|τ̂x − τx | �P

√
v(p̄)/n.
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The convergence is uniform over the set Cp̄ under the condition that v(p̄) =
o(n), which allows for v(p̄) to grow, that is, for p̄ to diminish, as a function of
the sample size. That is of interest to achieve convergence in the whole space as
n grows, and for increasing-dimension frameworks as proposed by Huber [27].
Theorem 1 allows for the estimation of extreme partial quantile indices as long as
they have a reasonable probability of comparison.

This result highlights the difficulty of estimating properly the quantile τx of
points for which comparable points are rare. Intuitively, if px ≤ 1/n there is a
nonnegligible probability that our sample might miss C(x) completely, since

P
(
Xi /∈ C(x), i = 1, . . . , n

)= (1 − px)
n ≥

(
1 − 1

n

)n

≥ 1

3
,

which creates ambiguity regarding the choice of the partial quantile index of x.
Within Cp̄ , the estimation of the probability of comparison px holds uniformly

directly from E.2. However, it is typical for this to hold uniformly over S in many
cases of interest.

For τ ∈ (0,1), the natural sample analog of partial quantile surfaces (2.2) is
given by

Q̂(τ ) = {
x ∈ S : Pn

(
Xi � x|C(x)

)≥ (1 − τ),Pn

(
Xi � x|C(x)

)≥ τ
}
.(3.5)

From Theorem 1 it follows that if x ∈ Q(τ ) and px ≥ p̄, x ∈ Q̂(τ ′), where |τ −
τ ′| �P

√
v(p̄)/n.

3.3. Rate for partial quantile points. Next, we turn to the estimation of partial
quantile points. We are also interested in deriving rates uniformly over a set of
quantile indices. We will consider uniform estimation over a compact set U ⊂
(0,1). Note that, by definition, for any τ ∈ U we have pτ ≥ ℘. Intuitively, this
ensures that observations are likely to be on the comparable set of partial quantile
points as long as ℘ is not too small. We consider the following estimator:

x̂τ ∈ arg max
x∈S

p̂x

s.t. Pn(Xi � x) ≥ (1 − τ) · p̂x − εn,(3.6)

Pn(Xi � x) ≥ τ · p̂x − εn,

where εn is a slack parameter that goes to zero (see Comment 3.1 below). We
denote the optimal value in (3.6) by

p̂τ = p̂x̂τ = Pn(C(x̂τ )).

COMMENT 3.1. The introduction of εn aims to ensure that the feasible set
in (3.6) is nonempty uniformly over τ ∈ U with high probability. It suffices to
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choose εn to bound discontinuities of functions in T associated with partial quan-
tile points, namely

εD
n := 2 sup

τ∈U
sup

xτ ∈Q∗(τ )

lim sup
x→xτ

|Pn(Xi � x) − Pn(Xi � xτ )|

∨ |Pn(Xi � x) − Pn(Xi � xτ )| ∨ |p̂x − p̂xτ |.
In the convex cone partial order described in Example 1, if X is an Rd -valued ran-
dom variable with no point mass, with probability one it follows that ε0

n ≤ 2d/n.
In the case of discrete spaces like Example 2, we can take εn = 0 for n suf-
ficiently large. In more general cases, it also suffices to choose εn to majorize
εD′
n := supx∈S,px≥℘ |τ̂x − τx |. Under E.1 and E.2, Theorem 1 ensures that εD′

n �P√
v(℘)/n. The latter simplifies the analysis considerably and does not affect the

final rate of convergence of the estimator, but could introduce a
√

n-bias in the
partial quantile index of the estimator of the partial quantile point (see Theorem 2
and Corollary 2 below). We explicitly allow for either choice in Theorem 2 since
it automatically leads to practical choices of εn in cases of interest, including Ex-
ample 1.

In contrast to the estimation of partial quantile indices, where the convergence
is independent of the underlying space S , the estimation in (3.6) brings forth the
need to work with a metric to measure the distance in S between the estimated and
true parameters. It must be noted that the choice of metric might be application
dependent. A possible choice of metric that relies completely on the partial order
to avoid the geometry of S is given by

d0(w, z) = P({X � w} � {X � z}) + P({X � w} � {X � z}),(3.7)

where A � B = (A ∩ Bc) ∪ (B ∩ Ac) denotes the symmetric difference between
two sets. A typical choice of metric in many applications when S = Rd , which is
connected to the geometry, is given by the 
2-norm d(w, z) = ‖w − z‖. Moreover,
some identification condition with respect to the particular metric needs to hold, in
our case E.3.

In the analysis of the rate of convergence, one needs to account for nonstandard
issues: the underlying parameter might not be unique, the empirical criterion func-
tion lacks continuity, a restricted identification condition, and the constraints in
(3.6) define a random set. For instance, the lack of continuity of indicator func-
tions will lead to φn(r) � (r1/2 + n−1/4)

√
logn in many cases of interest and

would not allow for the usual
√

n-rate in general. Examples of nonstandard rates
of convergence are given in Kim and Pollard [31] and van der Vaart and Well-
ner [57]. Moreover, for each quantile τ ∈ (0,1), the identification condition holds
only within Q(τ ) instead of over the entire space S . That can lead to a slower rate
of convergence since the partial quantile surface Q(τ ) is unknown and needs to be
replaced by a parameter set that is random.
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THEOREM 2 (Uniform rate for partial quantile points). Consider a compact
set of quantiles U ⊂ (0,1) and let εn ≥ εD

n ∧ εD′
n . Assume that conditions E.1–E.5

hold for U and some metric d(·, ·). Then, provided that v(℘) = o(n℘2), we have

sup
τ∈U

inf
xτ ∈Q∗(τ )

d(xτ , x̂τ ) �P

(
v(℘)

n
+ ε2

n

℘2

)1/2∧γ /(2α)

∨ r−1
n ,

where

rα
n φn(1/rn) ≤ √

n.

In the typical case of φn(r) � (r1/2 + n−1/4)
√

logn, if γ /α = 1/2, we have an
n1/4-rate of convergence, and if γ /α = 1 we have an (n/ logn)1/3-rate of conver-
gence. Under mild regularity conditions, the logarithmic term can be removed in
the later case if we are interested on a single quantile index recovering a n1/3-rate
of convergence, as in [31]. However, it is instructive to revisit Theorem 2 in the
case of a complete order, for which it turns out that Theorem 2 implies a

√
n-rate

of convergence.

COROLLARY 1. Under E.1, E.2 and E.4(ii), if the binary relation is a com-
plete ordering, for a compact set U ⊂ (0,1) and εn := εD

n ∧ εD′
n , we have

sup
τ∈U

inf
xτ ∈Q∗(τ )

d(xτ , x̂τ ) �P

√
v(1)/n.

The presence of a complete order resolves the issues with the restricted iden-
tification condition and discontinuity of the criterion function since the criterion
function becomes constant, namely p̂x = px = 1 for all x ∈ S . Also, in this case,
the multiplicity of partial quantiles is the same multiplicity as in the univariate
quantile under the natural ordering, Q∗(τ ) = Q(τ ).

Finally, we note that in discrete spaces S with |S| < ∞, like Example 2, for n

sufficiently large, with high probability we perfectly recover the partial quantile
points associated with most indices [a consequence of Lemma 2 and the metric
d(x, y) = 1{x �= y}].

3.4. Asymptotic distributions. In this section, we discuss the derivation of as-
ymptotic distributions of quantities defined in this paper.

THEOREM 3 (Asymptotic distribution of partial quantile indices). Let p̄ > 0
be fixed, and assume that conditions E.1, E.2 and E.6 hold. Then, if v(p̄) = o(n),
for any x ∈ Cp̄

√
n(τ̂x − τx) � N

(
0,

τx(1 − τx)

px

)
.
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Moreover, the process βn(x) = √
n(τ̂x − τx) indexed by Cp̄ converges weakly in


∞(Cp̄) to a bounded, mean zero Gaussian process GP indexed by Cp̄ with covari-
ance function given by

�z,y = τzτy

(
P(X � z ∩ X � y)

P (X � z)P (X � y)
+ P(C(z) ∩ C(y))

pzpy

− P(C(z) ∩ X � y)

pzP (X � y)
− P(X � z ∩ C(y))

P (X � z)py

)
for any z, y ∈ Cp̄ .

Theorem 3 characterizes the empirical process associated with the estimation of
partial quantile indices. Moreover, it allows us to make inference on the unknown
partial quantile index associated with the estimated partial quantile point process.

COROLLARY 2. Assume that the conditions of Theorem 2 and E.6 hold. Then,
uniformly over τ ∈ U , we have

√
n(τx̂τ − τ) = GP (x̂τ ) + oP (1) + √

n(τ̂x̂τ − τ),

where
√

n(τ̂x̂τ − τ) is observed.

We note that the quantity
√

n(τ̂x̂τ − τ) is observed in the estimation, so Corol-
lary 2 can be used for inference. In particular, if P(X � x), P(X � x) and
px are continuous in x, we have

√
n|τ̂x̂τ − τ | = OP (εn

√
n/℘). In that case, if

εn = o(℘/
√

n), it establishes that the partial quantile index of the estimated partial
quantile point is

√
n-consistent.

Finally, we turn to the estimation of the partial quantile comparability that aims
to characterize the overall comparability of points. We consider the estimator given
by

℘̂ = min
τ∈U

p̂τ ,(3.8)

where U ⊂ (0,1) is a compact set sufficiently large. The next result studies the
property of the estimator. It is interesting to note that one can estimate this quantity
at a

√
n-rate under mild regularity conditions.

We use the following notation. For τ ∈ (0,1), let

ZP (τ) = sup
xτ ∈Q∗(τ )

ZP (C(xτ )),

where ZP is a Gaussian process defined as in E.6.

THEOREM 4 (Asymptotic distribution of partial quantile comparability). Con-
sider a compact set of quantiles U ⊂ (0,1), let εn ≥ εD

n ∧ εD′
n , ε2

n = o(n−1/2), and
assume v(℘) = o(n℘2) and that E.1–E.6 hold. Assume that the function τ 	→ pτ
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is twice continuously differentiable with a unique minimum, that is, ℘ = pτ∗ for a
unique τ ∗ ∈ int U . Then √

n(℘̂ − ℘) = oP (1) + ZP (τ ∗).

Theorem 4 shows that we have a Gaussian limit for
√

n(℘̂ − ℘) only if the set
Q∗(τ ∗) is single-valued. Otherwise we should expect non-Gaussian limits. Simi-
lar findings of non-Gaussian limits within generalizations of quantiles have been
found in [18]; see Section 4 for a detailed discussion.

4. Additional issues. In this section, we discuss several other relevant issues.
First, we discuss robustness to outliers. Next, we study monotonicity properties of
the underlying partial quantiles and their sample counterparts. We provide condi-
tions under which partial quantile indices and probabilities of comparison charac-
terize completely the underlying probability distribution. Then we establish that
under independence and (Rd,≥), there is a concentration of measure for partial
quantile indices and points. We also develop dispersion measures based on partial
quantiles. Computational tractability of computing partial quantiles of a random
variable with known probability distribution is then considered. Finally, we have a
detailed comparison with the generalized quantile processes developed in [18].

4.1. Robustness to outliers. Next, we investigate robustness to outlier prop-
erties of partial quantile indices and probabilities of comparison. To do that, we
consider the influence function of these functions. Let F denote the distribution of
X and Fε denote a contaminated distribution by y ∈ S ,

Fε = εδy + (1 − ε)F.

Viewing the quantities as functions of the probability distribution, we have
τx(F ) = τx and px(F ) = px . Thus, τx(Fε) and px(Fε) are the partial quantile
index and probability of comparison associated with x for the contaminated distri-
bution. Recall that the influence function of a function θ(·) at F and y is defined
as

IFθ (y,F ) = lim
ε→0

θ(Fε) − θ(F )

ε
.

The following result follow (whose proof follows from direct calculation).

LEMMA 3 (Influence functions). The influence function for partial quantile
indices and probabilities of comparisons are given by

IFτx (y,F ) = 1{y � x} − τx1{y � x ∪ y � x}
px

and

IFpx (y,F ) = 1{y � x ∪ y � x} − px.
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As in the case of univariate quantiles, the influence functions do not depend
on the exact “place” of y. They only depend on whether y precedes x, y is in-
comparable to x, or x precedes y. Thus, an outlier cannot impact probabilities of
comparison much nor partial quantile indices if px is far from zero.

Note that partial quantile points are defined based on px and τx . Nonetheless,
the influential function associated with partial quantile points is not defined in the
generality of the paper. In particular, we cannot take differences between elements
of S unless additional structure is imposed. One could generalize the influence
function to limε→0 d(xτ (F ), xτ (Fε))/ε for some metric d defined in S . However,
extending the notion of the influence function is outside the scope of this work.

4.2. Characterization properties. One important question is whether the par-
tial quantile quantities characterize the underlying probability distribution, as uni-
variate quantiles do in the univariate case. The answer relies on the richness of the
partial order.

A family of sets E is said to be a determining class if for any two probabilities
measures μ,ν such that μ(E) = ν(E) for all E ∈ E , we have μ = ν. Reference
[17] contains properties and definitions of determining classes which is a well
studied topic in probability theory [2, 54, 55]. The classic example of a determining
class for probabilities measures is {x + Rd− :x ∈ Rd}.

By definition of probabilities of comparison and partial quantile indices, we
have the identity

pxτx = P(X � x).

Thus, if the family of sets {X � x}, x ∈ S , is a determining class, the probabilities
of comparison and partial quantile indices characterize the underlying measure.

THEOREM 5. If the family of sets M(�) = {{y ∈ S :y � x} :x ∈ S} is a
determining class, then partial quantile indices and probabilities of comparison
uniquely determines the probability distribution.

Below we show that partial orders described in Examples 1 and 2 lead to partial
quantiles that characterize the probability measure.

LEMMA 4. If y � x only if x − y ∈ K where K is a proper convex cone, as in
Example 1, we have that M(�) is a determining class.

LEMMA 5. If the partial order is given by an acyclic directed graph, as in
Example 2, we have that M(�) is a determining class.

Recall that a binary relation is said to be antisymmetric if x � y and y � x im-
plies that x = y. In general, it follows that antisymmetry is a necessary condition
for the probability measure to be characterized by the partial quantiles. Otherwise,
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any transfer of probability mass within indifferent points x ∼ y would not change
probabilities of comparison and partial quantile indices. Partial orders are antisym-
metric by definition.

4.3. Monotonicity and partial quantiles. Recall that for univariate quantiles
with the natural ordering, estimated quantiles are nondecreasing. In this section,
we consider monotonicity properties with respect to the partial order of the esti-
mated partial quantile surfaces and points. Similar to the standard univariate quan-
tile case, such properties are valuable for interpretation and applicability of the
partial quantile concept.

We start with a positive result for the estimation of partial quantile surfaces.
The following result states that the transitivity in the partial order translates into
monotonicity of the estimated partial quantile indices. Theorem 6 below is analo-
gous to Proposition 3 but deals with estimated partial quantile indices instead of
the true partial quantile indices.

THEOREM 6. Assume that the binary relation is transitive. Then, if x � y we
have τ̂x ≥ τ̂y .

Next, we turn to partial quantile points where monotonicity is more delicate. In
this section our interest lies in cases for which the true partial quantile points are
partial-monotone, that is,

xτ � xτ ′ if τ ≥ τ ′.(4.1)

In particular, under transitivity, this implies that xτ is unique for every τ ∈ (0,1). In
general, the true partial quantile points might not be partial-monotone with respect
to the partial order (e.g., Example 5).

However, even if the true partial quantile points are partial-monotone in the
sense of (4.1), the estimated partial quantile points might violate this partial-
monotonicity due to estimation error.1 A similar lack of monotonicity is observed
in quantile regression when conditional quantile curves are being estimated, see
Koenker [32]. The result of this section is motivated by techniques recently devel-
oped to correct the lack of monotonicity of estimated conditional quantile curves
in Chernozhukov, Fernández-Val and Galichon [10, 11] and Neocleous and Port-
noy [39].

Unlike the quantile index result mentioned above that makes no assumption in
the space, additional structure is needed on the pair (S,�). Based on the partial
order, define the operations

∨
and

∧
, which denote the least upper bound and the

1This can be observed in Figure 6 in Section 5, where the partial quantile points for the uniform
distribution over the unit square are estimated. A close inspection of Figure 6 shows that x̂0.35 =
(0.39,0.44) and x̂0.4 = (0.47,0.42), which violates the partial-monotonicity condition (4.1) although
the true partial quantile points satisfy (4.1), as can be seen from Example 4 in Section 5.
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greatest lower bound, respectively, of any two points in S (these are also referred
to as the “join” and the “meet”). We assume that (S,�) is a lattice space, that
is, S is closed under ∧ and ∨. For example, (Rd,≥) is a lattice space under the
operations

x
∧

y = (x1 ∧ y1, . . . , xd ∧ yd) and x
∨

y = (x1 ∨ y1, . . . , xd ∨ yd).

Given an initial estimator {x̂τ : τ ∈ (0,1)}, we define its majorant and minorant
as

x̂∧
τ = ∧

τ ′≥τ,τ ′∈(0,1)

x̂τ ′ and x̂∨
τ = ∨

τ ′≤τ,τ ′∈(0,1)

x̂τ ′ .(4.2)

Note that by construction, x̂∧
τ and x̂∨

τ are partial-monotones. They can be thought
as upper and lower envelopes constructed based on the initial estimator. Also note
that if x̂τ is partial-monotone, then we would have x̂τ = x̂∧

τ = x̂∨
τ .

4.3.1. Rearrangement and the case (Rd,≥). Due to its importance in appli-
cations, we carry over a monotonization scheme for the case of S = Rd with the
partial order being induced by the convex cone K = Rd+. The particular structure
of the cone is such that K = R+ × · · · × R+ is the cartesian product of the natural
order.

A possible monotonization scheme is given by a componentwise rearrangement,
namely

x̂r
τ,j = inf

y

{
y ∈ R :

∫ 1

0
1{x̂u,j ≤ y}du ≥ τ

}
, j = 1, . . . , d.

Note that x̂r
τ is such that x̂∧

τ ≤ x̂r
τ ≤ x̂∨

τ . We have the following result.

THEOREM 7. Assume that xτ is partial-monotone. Then, for any κ ≥ 1,∫ 1

0

d∑
j=1

|x̂r
τ,j − xτ,j |κ dτ ≤

∫ 1

0

d∑
j=1

|x̂τ,j − xτ,j |κ dτ

with probability one.

Chernozhukov, Fernández-Val and Galichon [10] had previously derived this
improvement in the estimation by using rearrangement in the estimation of
monotone functions (of which univariate conditional quantiles are a particular
case).

The usefulness of Theorem 7 is twofold. On the one hand, it states that we
always improve in terms of the Lκ -norm with respect to the original estimator. On
the other hand, it allows us to check if the partial-monotone assumption is valid.
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COROLLARY 3. Assuming that xτ is partial-monotone, for any κ ≥ 1 we have∫ 1

0

d∑
j=1

|x̂r
τ,j − x̂τ,j |κ dτ ≤ 2κ

∫ 1

0

d∑
j=1

|x̂τ,j − xτ,j |κ dτ.

Consequently, if(∫ 1

0

d∑
j=1

|x̂r
τ,j − x̂τ,j |κ dτ

)1/κ

> 2 sup
τ∈(0,1)

‖x̂τ − xτ‖κ ,

xτ is not partial-monotone.

Note that if conditions E.3 and E.4 are satisfied with d(x, y) = ‖x − y‖κ =
(
∑d

j=1|xj − yj |κ)1/κ , the right-hand side of the expression above can be bounded
by the rate of convergence of Theorem 2. Therefore, although Corollary 3 is not a
formal statistical test, it can provide evidence for the lack of partial-monotonicity
of partial quantile points since we can compute the Lκ distance between x̂r

τ

and x̂τ . The lack of partial-monotonicity of partial quantile points can arise due
to nonuniqueness of partial quantile points. (In general, it can also arise if the bi-
nary relation is not transitive.)

4.4. Independence, natural ordering and concentration of measure. Note that
in general, even if the components are independent, partial quantiles can reflect a
dependence created by the partial order. However, if the partial order is given by
the componentwise natural order, some independence carries over. The next result
specializes to the case where (S,�) is (Rd,≥) and X is an Rd -valued random
variable whose components are independent with no point mass. In the following,
let qX(τ) = (qX1(τ ), qX2(τ ), . . . , qXd

(τ ))′ denote the vector whose components
are the τ -quantiles of the components of X.

THEOREM 8 (Independence, concentration of measure and partial quantile
points). Consider an Rd -valued random variable X with no point mass and the
natural partial order ≥. If the components of X are independent, then the partial
quantile points (2.3) satisfy

xτ = qX

(
τ 1/d

τ 1/d + (1 − τ)1/d

)
and pτ = 1

(τ 1/d + (1 − τ)1/d)d

for all τ ∈ (0,1).

In particular, we have x0.5 = qX(0.5), and for any 
κ -norm we have

‖xτ − x0.5‖κ ≤ ‖qX(τ) − qX(0.5)‖κ for all τ ∈ (0,1).
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Theorem 8 leads to x0.5 = (qX1(0.5), qX2(0.5), . . . , qXd
(0.5))′, the vector with

componentwise medians, which is intuitively reasonable in terms of the geometry.
Moreover, we observe that for d ≥ 1,∣∣∣∣ τ 1/d

τ 1/d + (1 − τ)1/d
− 1

2

∣∣∣∣≤ ∣∣∣∣τ − 1

2

∣∣∣∣,
so that under independence, partial quantiles are always closer to the median than
univariate quantiles. Therefore, partial quantiles exhibit a concentration of mea-
sure phenomenon under independence and this partial order. However, the case of
τ = 0.5 also leads to ℘ = 1/2d−1, which decreases exponentially fast in the di-
mension d . In contrast, as τ becomes extreme (i.e., τ converges to zero or one),
pτ approaches one. The simplicity of the d = 1 case follows from the fact that all
points are comparable. We typically lose this advantage as soon as d > 1, and the
degree to which increases in d make comparisons less likely depends on the partial
order, the probability distribution, and the value of τ . This illustrates a “concentra-
tion of measure phenomenon” and a “curse of dimensionality for comparisons.”

COMMENT 4.1 [Impact of correlations under (Rd,≥)]. Under (Rd,≥), if the
components of X are positively correlated, the probabilities of comparison tend
to be larger than under independence. However, under negative correlation, the
probabilities of comparison tend to be smaller than under independence. These
reflect cases in which the distributions are more or less aligned with the partial
order.

COMMENT 4.2 (Perfect positive correlation). In the case (Rd,≥), if a
(strictly) monotone transformation of the components of X are perfectly positively
correlated, we have xτ = qX(τ) and pτ = 1 for every τ ∈ (0,1). This is a trivial
case in which multivariate partial quantiles collapse into the univariate quantiles.
Not surprising, the concentration of measure statement is satisfied with equality.

Next, we turn to partial quantile indices which also exhibit a concentration of
measure under independence.

THEOREM 9 (Independence, concentration of measure and partial quantile in-
dices). Consider a Rd -valued random variable X with no point mass and the
natural partial order ≥. If the components of X are independent, then the partial
quantile indices (2.1) satisfy

P(τX ≤ τ) = P

(
d∑

j=1

Zj ≤ log
(

τ

1 − τ

))
,

where Zj are independent logistic random variables with zero mean, and variance
π2/3.
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In particular, we have that P(τX ≥ 1/2) = 1/2 and that τX concentrates on ex-
treme quantiles with respect to the dimension. Namely, for any positive number C,

P(|τX − 0.5| ≤ 0.5 − Cd−1/2) ≤ 1/C.

Theorem 9 yields a concentration of measure for partial quantile indices under
independence. As the dimension grows, a realization of the random variable is
more likely to have an extreme partial quantile index. Equivalently, a realization
of the random variable is likely to belong to a partial quantile surface Q(τ ) for τ

close to zero or one. This has close connections to the concentration of measure for
a uniform distribution over the d-dimensional unit cube, where most of the mass
concentrates on corners. In our case, corners correspond to the extremes zero or
one.

COMMENT 4.3 [Q(τ ) as a partially-efficient frontier]. The notion of a partial
quantile surface can be connected with that of an efficient frontier. A point x ∈ S
is said to be in the efficient frontier of E with respect to a partial order if there is
no point x′ ∈ E that dominates x in terms of the partial order. The definition of
partial quantile surfaces allows us to generalize the concept of efficient frontiers
for random variables. In this case, the support of the possible realizations of X

plays the role of the set E. We can interpret the partial quantile surfaces Q(τ ) as
partially-efficient frontiers parametrized by τ , the probability of drawing a preced-
ing point conditional on it being a comparable point. Partially-efficient frontiers
for high values of τ are likely to be of particular interest. It might be quite diffi-
cult to reach a point on the efficient frontier but much easier to reach a point on a
partially-efficient frontier with τ close to but not equal to one (as shown by The-
orem 9 under independence). In such cases, the partially-efficient frontier notion
might be quite appealing. In particular, if the support of X is Rd , partially-efficient
frontiers are meaningful while the efficient frontier is empty.

4.5. Partial quantile regions. One common use of univariate quantiles is to
provide measures of dispersion. In this section, we propose an approach to build
such measures of dispersion based on the partial quantiles. Traditionally, a measure
of dispersion would be centered on the median and expanded to extreme quantiles.
In the univariate case, for instance, Serfling [50] advocates the interval

I (κ) =
[
q

(
1 − κ

2

)
, q

(
1 + κ

2

)]
, κ ∈ [0,1],(4.3)

to measure the dispersion of a random variable. With κ = 0, I (κ) is the median,
and as κ increases from zero to one we obtain an interval with probability at least κ .

In the extension to the multivariate case, we shift from “interval” to “region.”
Moreover, in order to use partial quantiles, we need to specify not only the quan-
tiles but also the minimum probability of comparison in which we are interested.
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We define the partial quantile region of levels θ ∈ [0,1] and η ∈ [0,1] as

R(θ, η) =
{
x ∈ S :P

(
X � x|C(x)

)≥ 1 − θ

2
,

(4.4)

P
(
X � x|C(x)

)≥ 1 − θ

2
,px ≥ (1 − η) · pτx

}
.

These regions consist of points that are “typical,” that is, nonextreme partial
quantiles with respect to the given partial order, which are more comparable to
other points. Thus, partial quantile regions can help characterize dispersion around
typical and comparable points.

The family of sets R is such that R(θ, η) ⊆ R(θ ′, η′) whenever θ ≤ θ ′ and
η ≤ η′. By definition, R(θ,0) contains only the partial quantile points for indices
τ ∈ [(1 − θ)/2, (1 + θ)/2]. On the other hand, R(θ,1) contains all the partial
quantile surfaces for indices τ ∈ [(1 − θ)/2, (1 + θ)/2]. Note that if we do not
constrain the probability of comparisons, we would obtain unbounded regions in
some situations. In the univariate case with the natural order (i.e., a complete order
holds), we recover (4.3) since px = 1 for every x ∈ R.

In order to endow the partial quantile region with some probability coverage, we
fix a nondecreasing function g : [0,1] → [0,1] such that g(0) = 0 and g(1) = 1.
(A simple rule would be to set η = θ .) Define

θ∗
κ = inf

{
θ :P

(
X ∈ R(θ, g(θ))

)≥ κ
}
,

and let the dispersion region

R(κ) = R(θ∗
κ , g(θ∗

κ )).

Therefore, the family {R(κ) :κ ∈ [0,1]} satisfies the following properties:

(i) Nested property. This family of sets is nested, R(0) = Q∗(0.5) and R(1) =
S ;

(ii) Coverage property. R(κ) is the smallest set in the family with probability
at least κ ;

(iii) Ordering property. Any element x ∈ R(κ) satisfies |τx − 0.5| ≤ θ∗
κ /2;

(iv) Comparability property. Any element x ∈ R(κ) satisfies px ≥ (1 −
g(θ∗

κ ))pτx .

COMMENT 4.4. With respect to the estimation of (4.4), results in Section 3
can be directly applied to estimate R(θ, η) uniformly on θ ∈ [0,1 − ε] and η ∈
[0,1 − ε], where ε > 0 is fixed or goes to zero sufficiently slowly.

4.6. Efficient computation. In this section, we turn our attention to the ques-
tion of whether the computation of the partial quantiles (2.3) can be performed
efficiently. The notion of efficiency we use is the one in the computational com-
plexity literature, that is, that it can be computed in polynomial time with the “size”
of the problem (usually the dimension of S ; see [4, 23, 38]).
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Such a question is usually tied to regularity conditions on the relevant objects
(in this case, on the probability distribution and on the partial order) and on the
representation of the relevant objects. For example, the partial order could be given
only by an oracle: for every two points in S , the oracle returns the better point or
reports that the points are incomparable. Alternatively, it could have an explicit
format that allows us to exploit additional structure (a similar idea holds for the
representation of the probability distribution of the random variable).

A simple result that pertains to the case when S has a finite number of elements.

LEMMA 6. Assume that the cardinality of S is finite, that we can compute
P({x}) for every x ∈ S , and that we can evaluate the partial order for any pair
of points in S . Then we can compute all the partial quantiles in at most O(|S|2)
operations.

Lemma 6 explicitly evaluates all points in S . Therefore, it might be problem-
atic to rely on it when the cardinality of S is large. Moreover, we emphasize that
Lemma 6 does not provide any information regarding the case where S is not fi-
nite. A simple discretization of S ⊂ Rd would typically suffer from the curse of
dimensionality (e.g., computational requirements would be larger than 1/εd ). It is
not surprising that the general case cannot be computed efficiently.

EXAMPLE 3. Let S = [0,1]d be the unit cube, and assume that the binary re-
lation is such that x and y are incomparable for all x, y different from an unknown
point x∗ ∈ S for which P(X � x∗|C(x)) = P(X � x∗|C(x)) = 1/2. With no addi-
tional information, it is not possible to approximate x∗ efficiently with any deter-
ministic method. On the other hand, probabilistic methods have an exponentially
small chance of ever being close to x∗. (This computational problem is equivalent
to maximizing a discontinuous function over the unit cube.)

Note that Example 3 is an extreme and, arguably, uninteresting case. There are
many interesting cases for which additional structure is available and can be ex-
plored. Here we will provide sufficient regularity/representation conditions on the
probability distribution and on the partial order to allow efficient computation of
partial quantiles that require the maximization of the probability of drawing a com-
parable point over a subset of S . These conditions cover many relevant cases.

Our analysis relies on the following two regularity conditions, one for the prob-
ability distribution and another for the partial order:

C.1. Condition on the probability density function. Let S = Rd and let the
probability density function f of the random variable X be log-concave. That is,
for every x, y ∈ S and λ ∈ [0,1], we have

f
(
λx + (1 − λ)y

)≥ f (x)λf (y)1−λ.
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C.2. Condition on the partial order. For every x, y ∈ S , we have

x � y only if x − y ∈ K,(4.5)

where K is a convex cone with nonempty interior.

In particular, condition C.1, log-concavity of f over S , implies that S is convex.
Moreover, a log-concave density function is unimodal, a useful property to achieve
computational tractability. This is needed because of the representation model we
will be using. Following the literature on computational complexity for Monte
Carlo Markov Chains (see Vempala [58] for a survey), we assume that we can
evaluate the density function f at any given point. Nonetheless, the class of log-
concave density functions covers many cases of interest, including Gaussian and
uniform distributions over convex sets. As illustrated by Example 3, the restriction
to log-concave distributions alone is not sufficient to ensure good computational
properties. Condition C.2 provides sufficient regularity conditions. The partial or-
ders allowed in (4.5) cover many cases of practical interest, with K being equal to
the nonnegative orthant or the cone of semi-definite positive matrices.

Now we can state a key equivalence lemma for partial quantile points under
these regularity conditions. It allows to replace the function px by a variable
p ∈ [0,1] in the formulation of partial quantile points under C.1 and C.2 which
simplifies the optimization problem considerable.

LEMMA 7. Assume that conditions C.1 and C.2 hold. Then the optimization
problem formulation in (2.3) is equivalent to the following optimization problem:

(pτ , xτ ) ∈ arg max
p,x

p

s.t. P(X � x) ≥ (1 − τ)p,
(4.6)

P(X � x) ≥ τp,

x ∈ S,0 ≤ p ≤ 1.

An important consequence of Lemma 7, due to the log-concavity assumption,
is that by a simple change of variable p = exp(v), (4.6) can be recast as a con-
vex programming problem. We will be interested in computing an ε-approximate
solution, that is, a point xε

τ such that |τxε
τ
− τ | ≤ ε and pxε

τ
≥ pτ (1 − ε).

It is helpful to first consider the case that a membership oracle to evaluate
P(X � x) and P(X � x) is available. In that case, because of Lemma 7, we can
directly use random walks and simulating annealing proposed in Kalai and Vem-
pala [29] and Lovász and Vempala [36] to compute an approximate maximizer.
Table 1 displays the efficient algorithm.

In the case that only a membership oracle for the probability density function f

is available, we can efficiently approximate P(X � x) and P(X � x) by a factor of
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TABLE 1
The hit-and-run method is a random walk that takes as input a covariance matrix Ti , an initial point

(V k
i ,Xk

i ), a probability density function gi , and a membership oracle for a convex set H(p̄).
The output is a random point whose distribution is approximately according to gi restricted

to H(p̄). The simulating annealing procedure changes the power to which the objective
function is raised, gi(v, x) = exp(aivi), so that the probability mass concentrates on

the maximum (starting from near uniform). The final output is a point X∗ ∈ H(p̄)

such that with probability 1 − δ, pX∗ ≥ (1 − ε)pτ . The optimization algorithm
is based on Kalai and Vempala [29] and Lovász and Vempala [36]

Optimization algorithm

Step 0. Let p̄ < pτ , δ ∈ (0,1), set m = �√d ln 2pτ (d+ln(1/δ))
p̄ε �, k = �cod log5 d� and

ai = p̄
pτ

(1 + 1√
d
)i and gi(v, x) = exp(aiv), for i = 1, . . . ,m.

Step 1. Let (V 1
0 ,X1

0), . . . , (V k
0 ,Xk

0) be independent uniform random points from

H(p̄) :=
⎧⎪⎨⎪⎩(v, x) ∈ R × S :

logP(X � x) ≥ log(1 − τ ) + v,

logP(X � x) ≥ log τ + v,

log p̄ ≤ v ≤ 0

⎫⎪⎬⎪⎭
and let T0 be their empirical covariance matrix.

Step 2. For i = 1, . . . ,m do the following:
Get independent random samples (V 1

i ,X1
i ), . . . , (Vi ,

k ,Xk
i ) from gi on H(p̄), using

hit-and-run with covariance matrix Ti , starting from (V 1
i−1,X1

i−1), . . . , (V k
i−1,Xk

i−1),
respectively. Set Ti+1 to be the empirical covariance matrix of X1

i , . . . ,Xk
i .

Step 3. Output maxj=1,...,k p
X

j
m

and the maximizer point X∗.

1 + ε again by random walks and simulating annealing as proposed in Lovász and
Vempala [36]. This can be used in the above algorithm to construct the following
result.

THEOREM 10. Assume that conditions C.1 and C.2 hold. If we have a mem-
bership oracle to evaluate the probability density function and to evaluate the par-
tial order, then for every precision ε > 0, with probability 1 − δ we can compute
an ε-solution for a τ -partial quantile polynomially in d , ln(1/δ) and 1/(pτ ε).

Theorem 10 establishes that conditions C.1 and C.2 are sufficient for the exis-
tence of an efficient probabilistic method to approximate partial quantile points.

4.7. Comparison with generalized quantile processes. At this point, it is clar-
ifying to discuss relations with the interesting work of Einmahl and Mason [18].
These authors proposed a broad class of generalized quantile processes

U(τ) = min{λ(A) :P(A) ≥ τ,A ∈ A}(4.7)

for τ ∈ (0,1), where λ is a continuous function (usually the volume function) and
A is a chosen family of sets. Formulation (4.7) does not cover the proposed ap-
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proach. In particular, the family of sets in (4.7) is nested in τ . One important differ-
ence is the incorporation of a partial order structure which raises issues of incom-
parability between points, leading to the use of conditional probabilities. More-
over, the focus of [18] is on the R-valued process {U(τ) : τ ∈ (0,1)}. In this work,
in additional to the process {pτ : τ ∈ (0,1)}, we are interested in other processes
such as {xτ : τ ∈ (0,1)} and {τx :x ∈ S}, which are, respectively, S -valued and
indexed by S .

The generalized quantile process U : (0,1) → R as defined in (4.7) is estimated
by

Un(τ) = inf{λ(A) : Pn(A) ≥ τ,A ∈ A}.(4.8)

Einmahl and Mason [18] establish an asymptotic approximation for the process
τ 	→ √

n(Un(τ) − U(τ)). However, their analysis does not apply to partial quan-
tiles. For instance, partial quantiles are built upon conditional probabilities in-
duced by the partial order instead of the original probabilities. (This is also very
different from that of Polonik and Yao [44], for which the conditioning is fixed
within the maximization.) In addition, note that (4.8) automatically implies that
Un(s) ≤ Un(t) for s ≤ t , which is likely to fail in our case. Their analysis relies on
a regularity condition that requires U to be strictly increasing. Regarding their as-
sumptions, they also impose E.1, E.2, E.4 and E.6. Note that condition E.5 does not
appear in Einmahl and Mason [18] because the objective function is deterministic.

In our context, we would like to estimate the mapping τ 	→ pτ by its sample
counterpart τ 	→ p̂τ . However, the monotonicity assumption cannot be invoked in
general. In fact, it does not hold in many cases of interest or under independence
as shown in Theorem 8. Moreover, our estimated partial quantiles involve an ob-
jective function that is data dependent, p̂x = Pn(C(x)), and not a fixed value as
the objective function in (4.8). In general, we will not be able to uniformly esti-
mate the entire function at a

√
n-rate due to the weaker identification condition,

which seems to introduce a bias even if the εn term is zero. As in [18] for the
process

√
n(Un(τ) − U(τ)), one should expect possibly non-Gaussian limits for√

n(p̂τ − pτ ) since the partial quantile points might be nonunique. Since Einmahl
and Mason [18] are interested in U , they did not study the convergence property
of the points (sets A ∈ A in their framework) that achieve the maximum, as Theo-
rem 2 does. Also, there are no analogs of partial quantile indices in [18].

Finally, note that it is potentially interesting to apply the machinery of the gen-
eralized quantile process of Einmahl and Mason [18] with λ(A) = volume(A) and
A = {R(κ) :κ ∈ [0,1]}, since the sets in A are nested. However, unlike in [18], the
sets in A are unknown a priori and also need to be estimated.

5. Illustrative examples. The following examples illustrate our definitions
in different settings, thereby illustrating some possible characteristics of partial
quantiles. Our intention is to provide some intuition regarding the behavior of τx ,
Q(τ ), xτ , px , pτ and ℘ in a variety of cases and to show that the interaction
between the partial order and the probability distribution plays a key role.



1150 A. BELLONI AND R. L. WINKLER

(a) (b)

FIG. 1. (a) Partial quantile indices and (b) probabilities of comparison for x ∈ [0,1]2 in Exam-
ple 4.

EXAMPLE 4 (Unit square in R2). Let X ∼ Uniform([0,1]2), with a � b only
if a ≥ b componentwise. Note that

P(X � x) = (1 − x1)(1 − x2), P (X � x) = x1x2

and

px = 1 − x1 − x2 + 2x1x2

characterize the partial quantile indices for every x ∈ [0,1]2. It follows that to
maximize px for x ∈ Q(τ ), the partial quantile points are on the diagonal x1 = x2
and are given by

xτ = τ 1/2

τ 1/2 + (1 − τ)1/2

(
1
1

)
with pτ = 1

1 + 2
√

τ(1 − τ)
.

Figure 1 illustrates the partial quantile indices τx and px for each x ∈ [0,1]2. The
shapes of the partial quantile surfaces can be inferred from the color bands of
partial quantile indices, with each band containing Q(τ ) for an interval of values
of τ . The symmetry leads to the partial quantiles being on the diagonal, and we
can see from the graph of values of px on the diagonal that pτ → 1 as τ → 0 or 1
and is minimized at the partial median x0.5 = (1/2,1/2), with ℘ = 1/2.

Since partial quantiles generalize univariate quantiles under the natural order-
ing, we must inherit some of its features. For example, multiplicity is possible.
However, we note that in a multidimensional setting with the additional freedom
of a partial order, the set of τ -partial quantiles for a given τ does not need to be
convex. Multiplicity and nonconvexity of the set of τ -partial quantiles for a given
τ are illustrated by the next example, which can be thought of as a mixture of two
populations. In the univariate case, mixtures, just as any other distributions, always
lead to convex collections of quantiles.
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(a) (b)

FIG. 2. (a) The potential nonuniqueness of the partial quantiles arising from the partial order
(Example 5). (b) The case of the partial order being aligned with the probability distribution (Exam-
ple 6).

EXAMPLE 5 (Nonuniqueness). Consider the random variable

X ∼ Uniform
(
(−1,1) × (1,3) ∪ (1,3) × (−1,1)

)
with a � b only if a ≥ b componentwise. In this case, no points in the square
(−1,1) × (1,3) can be compared with any point in the square (1,3) × (−1,1).
This situation leads to nonuniqueness of the partial quantiles. For τ ∈ (0,1), we
have

xτ ∈
{(−1 + 2τ

1 + 2τ

)
,

(
1 + 2τ

−1 + 2τ

)}
and pτ = (1 − τ)2 + τ 2

2
.

Here ℘ = 1/4 and pτ ≤ 1/2 for every τ ∈ (0,1), because the two squares are not
in alignment with the partial order. See Figure 2 for the representation. Moreover,
the set of τ -partial quantiles for a given τ is not convex. For example, the set of
τ -partial quantiles for τ = 1/2 is {(0,2)′, (2,0)′}. The intuitive geometric notion
of a spatial median would report the point (1,1)′, which is not a partial quantile
because it is not comparable with any point in the support of the distribution and
thus having p(1,1) = 0.

In the next example, which also involves a mixture of two populations, the prob-
ability distribution is better aligned with the partial order.

EXAMPLE 6 (Aligned distribution and partial order). Consider the random
variable

X ∼ Uniform([0,1]2 ∪ [1,2]2)
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with a � b only if a ≥ b componentwise. The probabilities of the events {X � x}
and {X � x} are

P(X � x) = 1 + (1 − x1)(1 − x2)

2
,

P (X � x) = x1x2

2
for x ∈ [0,1]2

and

P(X � x) = (2 − x1)(2 − x2)

2
,

P (X � x) = 1 + (x1 − 1)(x2 − 1)

2
for x ∈ [1,2]2.

The partial quantiles can be computed explicitly:

xτ =
√

1 + 4(1/(2τ ) − 1) − 1

2(1/(2τ ) − 1)

(
1
1

)
for τ < 1/2,

xτ =
(

1
1

)
for τ = 1/2

and

xτ =
(

2 −
√

1 + 4(1/(2(1 − τ)) − 1) − 1

2(1/(2(1 − τ)) − 1)

)(
1
1

)
for τ > 1/2.

Note that in contrast to Example 5, we have ℘ = 3/4 in this case since the ordering
is somewhat aligned with the distribution [see Figure 2(b)].

Examples 5 and 6 show the impact the alignment of the probability distribution
with the partial order can have on the partial quantiles and on pxτ . This alignment
is good in Example 6, and the partial quantiles are on the main diagonal. Any point
x ∈ Q(τ ) for some τ will have a lower px than xτ , the member of Q(τ ) on the
main diagonal. Here the maximization of the probability of drawing a comparable
point leads to partial quantiles that are consistent with what we might expect. In
Example 5, on the other hand, the maximization of the probability of drawing a
comparable point leads to two partial quantiles for each value of τ . Each of these
two partial quantiles seems reasonable in the context of the square that it is in.
Since the two squares are not in alignment with the partial order, however, the
two τ -partial quantiles for a given τ are disconnected. Results like this are to be
expected with such a lack of alignment. This is analogous to trying to identify a
mode with a bimodal distribution having widely separated modes.

There are extreme cases in which the probability distribution is not aligned at
all with the partial order, as illustrated by Example 7.
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EXAMPLE 7 (Noncomparable). Let X ∼ Uniform(�d−1), where d > 1,

�d−1 =
{
x ∈ Rd :x ≥ 0,

d∑
j=1

xj = 1

}

is the (d − 1)-dimensional simplex, and a � b only if a ≥ b componentwise.
In this case, no two points can be compared. Therefore, we have px = 0 and
P(X � x|C(x)) = P(X � x|C(x)) = 1 for all x ∈ �d−1. Definition 2 yields
Q∗(τ ) = Q(τ ) = �d−1 for all τ ∈ (0,1) and ℘ = 0.

Although Example 7 might suggest a departure from the traditional quantile
definition, it deals with the somewhat extreme case in which no points are com-
parable. This situation is in sharp contrast with the complete order that we are
accustomed to in the univariate case. Nonetheless, it provides a meaningful illus-
tration of a situation in which no point is better than any other if we rely only
on the partial order. This situation is analogous to trying to compare points on a
Pareto-efficient set, or an efficient frontier, where the points on the frontier domi-
nate other points below and to the left of the frontier but the partial order does not
allow us to say that any point on the efficient frontier is better than any other.

Next, we consider the case of a complete order in detail, as described earlier.
Note that many complete orders are not partial orders since antisymmetry might
fail. Nonetheless, all the quantities proposed here can be defined analogously.

EXAMPLE 8 (Complete order). Suppose that the binary relation � can be
represented by a real-valued measurable function, that is, x � y if and only if
u(x) ≥ u(y) for some u : S → R. This is a well-behaved case in which we have a
complete order in S . Therefore, we have

P(X � xτ ) = P
(
u(X) ≥ u(xτ )

)≥ (1 − τ) and P
(
u(X) ≤ u(xτ )

)≥ τ.

Consider the (standard) quantile curve qu(X) : (0,1) → R of the random vari-
able u(X). Then px = pτ = ℘ = 1, τx = q−1

u(X)(u(x)), Q(τ ) = u−1(qu(X)(τ )) and
Q∗(τ ) = Q(τ ).

The situation described in Example 8 is encountered, for example, in decision
analysis when the consequences in a decision-making problem are multidimen-
sional in nature and u might be represented by a payoff or utility function (e.g.,
Keeney and Raiffa [30]). We emphasize that the reparametrization allows us to re-
duce to the standard univariate case, but the partial quantiles in the original space

S would be given by the preimage of the function u and could have an arbitrary
geometry even if we have an interval (possibly a point) in terms of u.

In the following example, a random set is the random element of interest in the
appropriate space under the inclusion ordering (see Molchanov [37] for precise
definitions).
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EXAMPLE 9 (Interval covering). Let S be the set of all closed intervals on
[0,1], and let X be a closed random interval,

X = [ξ1, ξ2], ξj ∼ Uniform([0,1]) for j = 1,2.

The partial order is given by a � b only if b ⊂ a. Let x = [x1, x2] ⊂ [0,1] be an
interval. Then we have

P(X � x) = 2x1(1 − x2) and P(X � x) = |x2 − x1|2,
which characterize the partial quantile surfaces. Using Anderson’s lemma, and
letting a(τ) = √

2(1 − τ)/τ , one can show that partial quantiles are achieved on
symmetric intervals centered at 1/2 and given by

xτ =
[

1

2
− 1

2 + 2a(τ)
,

1

2
+ 1

2 + 2a(τ)

]
and

pτ =
(

1

1 + a(τ)

)2

+ 2
(

1

2
− 1

2 + 2a(τ)

)2

.

Next, we consider an example of a discrete set S .

EXAMPLE 10 (Partial order based on acyclic directed graphs). Let X be a
uniform random variable on S = {a, b, c, d, e, f, g,h, i, j, k}. The partial order
relation is given by an acyclic directed graph, as in Figure 3(a), and x � y if there
is a path from x to y in the graph. Figure 3(b) illustrates how the partial order
relation impacts the partial quantile indices and probabilities of comparison. Note
also that P(X � f ) ≥ 0.5 and P(X � f ) ≥ 0.5, making f the partial median.

We conclude the examples with a binary relation that is not transitive.

EXAMPLE 11 (Nontransitive binary relation). Let X be a random variable
with values in S = {a, b, c}, P(X = a) = 1/2, P(X = b) = 1/3 and P(X = c) =
1/6. The binary relation is given by a directed graph, as in Figure 4, and x � y if

FIG. 3. (a) Acyclic directed graph with x � y if there is a path from x to y. (b) Displays partial
quantile indices and probabilities of comparisons.
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FIG. 4. The cyclic directed graph with x � y if there is an arc from x to y. The cycle indicates that
the binary relation is not transitive. Moreover, there are no extreme partial quantiles in this example.

there is an arc from x to y in the graph. The cycle in the graph indicates that the
binary relation is not transitive. We note that in this particular example, there are
no extreme partial quantiles. That is, the partial quantile surfaces are Q(τ ) = ∅ for
τ sufficiently close to 0 or 1.

5.1. Illustration of estimation: The unit square example. In order to illustrate
previous results and statements from Sections 2, 3, 3.4 and 4, we consider Ex-
ample 4 in detail. In this case, S = [0,1]2, the probability distribution P is the
uniform distribution on [0,1]2, and the partial order is given by the a � b only
if a ≥ b (i.e., a1 ≥ b1 and a2 ≥ b2), which is a conic order with K = R2+. For
convenience, we denote the dimension of S be d = 2.

The class of sets T = {C(x), {y ∈ S :y � x}, {y ∈ S :y � x} :x ∈ S} is a VC
class of sets whose VC dimension is of the order d , so we have v(T ) � d . We
consider the metric to be the usual euclidian norm d(x, y) = ‖x − y‖. From The-
orem 8, we have ℘ = 1/2d−1.

Condition E.2 holds with v(p̄) � d/p̄2. Condition E.3 for τ ∈ (0,1) holds with
α = 2 and c = 1/2d (note that for τ ∈ {0,1} we would have α = 1). Condition E.4
holds with γ = 2 for τ = 0.5 and γ = 1 otherwise. Condition E.5 holds with
φn(r) � (r1/2 + n−1/4)

√
logn by applying maximal inequalities (the logn term

can be dropped if we are interested in a single quantile). Finally, condition E.6
holds by an uniform central limit theorem over T (see Dudley [16], Theorem 3.7.2,
or van der Vaart and Wellner [57], Theorem 2.5.2).

In Figures 5 and 6, we display the estimated partial quantile indices and points
for the case of d = 2 with a sample size of n = 5,000. Note that the graph of
the estimated partial quantile indices in Figure 5 looks very similar to the graph
of the true partial quantile indices in Figure 1. The difference between the true
and estimated values is also shown in Figure 5. In light of Theorem 1, the partial
quantile surface is estimated uniformly over Cp̄ at an n1/2-rate of convergence if
p̄ is fixed. We see from the difference between the true and estimated values in
Figure 5 that the convergence is slower at the top left and bottom right corners,
which correspond to points with small probabilities of comparison px .

Although the exact partial quantiles fall on the x1 = x2 diagonal, we can see
from the few quantiles labeled in Figure 6 that they are not evenly spaced along
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(a) (b)

FIG. 5. (a) Estimated partial quantile indices and (b) the difference between the estimated and true
partial quantile indices for uniform samples on the unit square.

the diagonal. Instead, they are closer together for τ near 0.5 and more spread out
as τ → 0 or 1. Moreover, the exact and estimated values of pτ are smaller for
τ near 0.5 (the minimum value of the exact pτ is p0.5 = 0.5) and grow larger as
τ → 0 or 1. The estimated quantiles in Figure 6 are close to but not equal to the
true quantiles. Also, there is a slight violation of monotonicity in the estimated
quantiles, a point we will expand upon later.

If we are interested in computing partial quantiles only for the case of U =
{1/2}, we can take γ = 2, which yields a n1/3-rate of convergence by Theorem 2.
Note that for U = {0,1} we have γ = 1 and α = 1, which also leads us to a n1/3-
rate of convergence by Theorem 2. On the other hand, if we are interested in com-
puting for a nondegenerate interval U of quantiles, we have that γ = 1, which leads
to an n1/4-rate of convergence.

(a) (b)

FIG. 6. (a) True and estimated partial quantiles and (b) true and estimated pτ as a function of τ

for uniform samples on the unit square.
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FIG. 7. The componentwise rearrangement procedure applied to the estimated partial quantiles
from Figure 6.

Figure 7 illustrates the application of the rearrangement procedure proposed
here to the estimated partial quantiles in Figure 6, which violated monotonicity
for τ ∈ [0.35,0.40]. The rearrangement results in estimated partial quantiles that
coincide with the original estimates except for τ ∈ [0.35,0.40], where they are
modified to eliminate the violation of monotonicity.

Exact and estimated dispersion regions with η = g(θ) = θ for Example 4 are
shown in Figure 8, corresponding to the exact and estimated partial quantile indices
given in Figures 1 and 5. The dispersion regions seem intuitively reasonable, and
the estimated regions are quite similar to the exact regions. The dispersion regions
for high values of θ extend out toward (0,1)′ and (1,0)′, to regions where the
probabilities of comparison are low.

(a) (b)

FIG. 8. (a) True and (b) estimated dispersion regions R(θ, θ) for Example 4, with the boundaries
of the regions labeled by θ .
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6. Applications. In this section, we use the concept of partial quantiles in two
empirical applications, one involving the intake of dietary components and the
other involving the performance of mutual funds. Our goal is not to do a detailed,
full-scale analysis in each case, but to briefly illustrate the use of partial quantiles
and show some of the capabilities of the concepts and measures discussed here. In
particular, partial quantiles provide useful graphical and quantitative summaries of
the data.

6.1. Intake nutrients within diets. Quantitative information regarding the in-
take distribution of several dietary components (e.g., calcium, iron, protein, Vita-
min A and Vitamin C) has been collected by the U.S. Department of Agriculture
(USDA) through periodic surveys. This information is used to formulate food as-
sistance programs, consumer education efforts, and food regulatory activities. One
important concept in analyzing food consumption data is the usual intake, defined
as the long-run average of daily intakes of dietary components by individuals.
Nusser et al. [42] propose an approach that assumes the existence of a transforma-
tion of the data such that both the original distribution and measurement errors are
normally distributed. Among other relevant statistics, they estimate the quantiles
of several dietary components, focusing on each component separately.

For simplicity, we consider only two dietary components, daily intakes of iron
(in milligrams) and protein (in grams), in our analysis. The partial order is the com-
ponentwise natural order. Partial quantiles are relevant in this situation because not
all pairs of diets (as summarized by their usual intakes) are necessarily compara-
ble in the sense that we can say that one of the pair is “better” than the other. If
one diet has more iron and the other has more protein, for example, they are not
comparable. We recognize that this partial order rule may not hold for all values
of the intakes. At extremely high levels of a component, it may be undesirable
to increase the intake yet further, but we will assume that the partial order holds
within the range of the data. Another factor that can be relevant is that intakes of
different dietary components are not independent. With this partial order, for ex-
ample, a positive correlation between iron intakes and protein intakes is more in
alignment with the partial order and will lead to higher probabilities of compari-
son than a negative correlation. Therefore, understanding this dependence can be
important in designing policies such as those mentioned above. Moreover, the in-
variance of partial quantiles under order-preserving transformations is important
since different components tend to have different scales.

The data we use are a subset of the data from the 1985 Continuing Survey
of Food Intakes by Individuals (CSFII) [56], a data source used in [42]. A scat-
ter diagram of the data is given in Figure 9, which indicates that the data are
quite well-aligned with the partial order. The estimated partial quantiles shown
on this scatter diagram are monotonically increasing (in terms of the partial or-
der) in τ . We would expect to see some diets that are not comparable. Different
people may tend to emphasize different types of foods, with different mixes of
nutrients, in their diets. Nonetheless, the data indicate that all of the estimated
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FIG. 9. (a) Data (scatter diagram) and partial quantiles, and (b) estimated probabilities of com-
parison p̂τ for the (multidimensional) iron and protein levels in food intakes.

partial quantiles x̂τ are comparable with more than 78% of the sampled diets, as
can be seen from Figure 9. This suggests that partial quantiles can be interpreted
very similarly to the usual univariate quantiles. For example, when deriving poli-
cies/activities/programs, the decision maker can consider the 0.5-partial quantile
to be a reasonable representation of the “median” individual. Table 2 and Figure 10
display comparisons of estimated univariate quantiles and partial quantiles. In this
case, the partial quantiles are slightly more concentrated around central values than
are the univariate quantiles. This reflects the intuitive notion that it is too extreme
to interpret a componentwise univariate quantile as its multidimensional counter-

TABLE 2
Comparison between estimated univariate quantiles and partial quantiles for iron and

protein intakes

Quantile Univariate quantile Partial quantile

Index (τ ) Iron (mg) Protein (g) Iron (mg) Protein (g)

0.1 4.51 25.95 4.69 25.97
0.2 5.99 35.62 6.16 37.51
0.25 6.61 39.89 6.74 41.83

0.3 7.12 43.53 7.33 44.72
0.4 8.11 49.63 8.21 50.49
0.5 9.12 56.48 9.09 59.14
0.6 10.29 63.61 9.97 62.03
0.7 11.47 70.81 10.85 67.80

0.75 12.30 75.50 11.44 73.57
0.8 13.25 80.82 12.61 76.45
0.9 16.30 95.34 15.84 87.99



1160 A. BELLONI AND R. L. WINKLER

(a) (b)

FIG. 10. Estimated partial quantiles and univariate quantiles for intakes of (a) iron and (b) protein.

part. We note that the univariate quantiles in Table 2 differ from those for the same
nutrients in [42] because we present the standard sample quantiles, whereas a mea-
surement error model and assumptions of normality are used to generate estimated
quantiles in [42].

Figure 11 gives more details, showing the estimated partial quantile indices
τx and the probabilities of comparison px for all x. The borders between col-
ors indicating the partial quantile indices capture the shape of the “quality” of the
diets in a comparative sense and show that the partial quantile surfaces appear
convex for these data. For example, a subject with levels of iron and protein of
(17.894,87.995) will be on the 0.95 partial quantile surface among diets that are
comparable with her diet, since her diet is on the upper right-hand border of the
light red band in Figure 11(a). This border can be thought of as a partially effi-
cient frontier of the intake of iron and protein at a 95% level in this application
since any diets on that border are better than 95% of the comparable diets. More-

(a) (b)

FIG. 11. (a) Estimated partial quantile indices and (b) estimated probabilities of comparison for
levels of iron and protein in food intakes.
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FIG. 12. The dispersion measure R(θ, θ) based on estimated partial quantiles for the (multidi-
mensional) iron and protein levels in food intakes. The boundaries of the regions are labeled by θ .

over, this partial quantile surface allows us to consider comparative statics of the
changes needed to stay at the same partial quantile level but with higher proba-
bilities of comparison. Note that the graph of the probabilities of comparison is
roughly symmetric, with px decreasing as we move away from the rough “axis
of symmetry” along a particular partial quantile surface. This is consistent with
the location of the partial quantiles in Figure 9. Figure 12 provides yet additional
information by showing the regions R(θ, θ) from the dispersion measure in (4.4)
for selected values of θ .

6.2. Evaluating investment funds. Next, we consider evaluating the perfor-
mance of investment funds. Several indices have been considered toward this end
in the Finance literature. A central approach is to regress the return of the fund
(RF ) above the return on the risk free asset (r) against the return of the market
(RM ) above the return on the risk free asset

(RF − r) = α + β(RM − r),

which arises from a standard CAPM model (e.g., [53]). The exposure with respect
to β should not be rewarded, and higher values of the intercept α, the risk adjusted
return (i.e., the expected return on the fund when the market yields a return of zero)
should be rewarded.

An emerging literature within finance advocates that in addition to the risk-
adjusted return, market timing should also be rewarded (see [13, 26, 28, 60] and
the references therein). The difference between returns on the market and returns
on the fund can be broken down by whether they are positive or negative to capture
market timing [13]:

(RF − r) = α + β+ max{RM − r,0} + β− min{RM − r,0}.(6.1)

Note that max{RM −r,0} ≥ 0 and min{RM −r,0} ≤ 0; a better performance would
have β+ positive (the more positive the better) and β− negative (the more negative
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FIG. 13. Data, estimated partial quantiles, and estimated probabilities of comparison for the per-
formance of investment funds.

the better). Therefore, in the model (6.1), the quantity � := β+ − β− captures the
market timing ability of the fund. Once again, the partial order that we will use for
the pair (α,�) is the componentwise natural order.

We use the data used by Andrade in [13]. Figure 13 shows the data, the estimated
partial quantiles, and the associated probabilities of comparison. Since the partial
order is not complete, we expect to have funds that are noncomparable. In contrast
to the previous application, the data are not well-aligned with the partial order. It
appears that α and � have a strong negative correlation. As a result, the estimated
values for the probabilities of comparison pτ are very small, always below 0.20
and with ℘̂ = 0.00651.

Figure 14(a) shows that the partial quantile surfaces for different values of τ are
quite close to each other and, except for extreme values of τ , follow a pattern that is
linear with a negative slope. This narrow band passes through a region with proba-

(a) (b)

FIG. 14. (a) Estimated partial quantile indices and (b) estimated probabilities of comparison for
the performance of investment funds.
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FIG. 15. The componentwise rearrangement procedure applied to the estimated partial quantile
points for the performance of investment funds. The difference is 2.141.

bilities of comparison quite low everywhere, consistent with the above observation
regarding Figure 13. Therefore, small random variation can cause potentially large
shifts in partial quantile indices. As a result, the estimated partial quantiles are not
monotonic. When we apply the rearrangement procedure from Section 4, we get
the results shown in Figure 15. The rearranged partial quantiles are monotonic,
but note that many fall outside the support of the data. Moreover, the 
2(U ) dis-
tance between the rearranged and the original estimator of the partial quantile point
process is 2.141 within the range of τ ∈ (0.1,0.9). These observations provide
strong evidence that the true partial quantiles are not partial-monotone in the sense
of (4.1).

How can we interpret the results for this evaluation of investment funds? We
suggest that the results provide some evidence that most (if not all) of the funds
may actually be optimizing their choices and (up to random fluctuation) perform-
ing on the efficient frontier. Therefore, their performance is not dominated by many
other funds, and when it is, the differences in performance are slight and seem
consistent with random variation. Similarly, their performance does not dominate
many other firms. This lack of much domination in the data set would explain the
low probabilities of comparability. Since funds have different targets for the ideal
trade-off between risk and return, we should not be surprised to observe many
points on or near different portions of the efficient frontier in the data, and the data
seem to be consistent with this expectation. To some extent, this is very similar in
spirit to Example 7, where no point is comparable with any other point.

6.3. Tobacco and health knowledge scale (THKS). We consider the Television
School and Family Smoking Prevention Cessation Project (TVSFP) study (Flay et
al. [19] and Gibbons and Hedeker [21]), which was designed to test the effects
of a school-based social resistance classroom curriculum and a media (television)
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TABLE 3
Tobacco and health knowledge scale postintervention results

subgroups frequencies (and percentages) [21]

Subgroup THKS score

CC TV Pass Fail Total

No No 175 246 412
(41.6) (58.6)

No Yes 201 215 416
(48.3) (51.7)

Yes No 240 140 380
(63.2) (36.8)

Yes Yes 231 152 383
(60.3) (39.7)

Total 847 753 1,600
(52.9) (47.1)

intervention program in terms of tobacco use prevention and cessation. We refer
the reader to [21] for the details of the experiment, and we report the data collected
in Table 3.

The partial order of the policy maker is to obtain a “Pass” over “Fail” regardless
of the subgroup. For the same result of the THKS, given cost and political con-
siderations, it is preferred not to have used social resistance classroom curriculum
(CC) or a media (television) intervention (TV). However, the subgroup with no CC
and TV is not comparable to CC and no TV. The partial order is summarized by
the acyclic directed graph in Figure 16.

Based on the data of Table 3 and the partial order described in Figure 16, we
compute the partial quantile indices and probabilities of comparison, see Figure 17.

In this application we note the high values of the probability of compar-
isons. That makes the interpretation of partial quantiles very similar to tradi-
tional quantiles. In particular, the outcome “CC TV Pass” is such that P(X �
“CC TV Pass”) ≥ 1/2 and P(X � “CC TV Pass”) ≥ 1/2 making “CC TV Pass”
the (partial) median.

FIG. 16. The partial order represented by an acyclic directed graph. We have that a � b if there is
a directed path from a to b.
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FIG. 17. The figure displays partial quantile indices and probabilities of comparisons. Ac-
cording to the partial order of the policy maker we have P(X � “CC TV Pass”) ≥ 1/2 and
P(X � “CC TV Pass”) ≥ 1/2 making “CC TV Pass” the (partial) median.

7. Conclusions. We propose a new generalization of quantiles to the multi-
variate case based on a given partial order. An important feature of our defini-
tion is that it is based only on the probability distribution and on the partial or-
der, which might or not on the geometry of the underlying space. It leads to a
concept that has several desirable properties, including robustness to outliers and
equivatiance/invariance under transformations that preserve the partial order. Sev-
eral issues regarding estimation and computability are investigated and discussed.
In particular, rates of convergence are derived, as are asymptotic distributions of
many quantities, and efficient computation is shown for an important subclass of
distributions and partial orders.

The partial order is the additional structure exploited in this work. It is clear
that partial quantiles depend crucially on the choice of the partial order. There-
fore, their interpretation will also depend heavily on the partial order. We advocate
that the choice of the partial order is application dependent. Thus, the relevance of
these concepts for a particular application is linked with how meaningful the par-
tial order is for that application. An alternative approach would be to choose the
partial order to achieve partial quantiles with a desired property. For instance, one
might want partial quantiles with high probabilities of comparison (which can be
achieved with any binary relation that is a complete order), or partial quantiles that
characterize the probability distribution (which can be achieved if the partial order
induces a determining class), etc. Although these types of goals can be achieved
by the appropriate choice of a partial order, it is very important for the partial order
to make sense in the context of the specific application because the interpretation
of all the concepts will be tied with that partial order.

Many extensions of the concept of partial quantiles are possible. For instance,
the idea of embedding the partial quantile notion within a regression framework
is of interest, as in [7–9, 24, 33]. Another possibility is to study the pattern of
partial quantile surfaces conditional on covariates, since partial quantile surfaces
also provide a meaningful generalization of the concept of an efficient frontier.

Censored models have a wide range of applications and have attracted consid-
erable interest due to their connection with quantiles observed by Powell [46–49]
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and others [6, 40, 41, 45, 61]. However, typical data exhibit censoring in more than
one variable. Due to the equivariance under order-preserving transformations, the
proposed generalization of quantiles is suitable to be applied to censored multidi-
mensional data.

Moreover, another motivation to consider partial orders, or more general pref-
erences, is the connection with the literature of decision theory. For example, the
identification of axioms on the preferences that allow for statistical inference, com-
putational tractability, etc., is of interest. Similarly, the identification of classes of
decision problems for which partial quantiles play an important role in optimal
strategies would be very valuable. Although the pursuit of these extensions is out-
side the scope of this paper, we believe that they provide questions of interest for
future research.

APPENDIX A: SECTION 2 PROOFS

PROOF OF PROPOSITION 1. This follows from the equivalence between the
events {h(X) � h(Y )} and {X � Y }, and the events {h(X) � h(Y )} and {X � Y }.

�

PROOF OF PROPOSITION 2. If m is an invariance mapping, it follows that
C(m(x)) = m(C(x)) and X � m(x) = m(X � x). Therefore,

P
(
X � m(x)|C(m(x))

)= P(X � m(x))

P (C(m(x)))
= P(m(X � x))

P (m(C(x)))

= P(X � x)

P (C(x))
= P

(
X � x|C(x)

)
.

This implies that if x ∈ Q(τ ), then m(x) ∈ Q(τ ), and if x is a τ -partial quantile,
so is m(x). �

PROOF OF PROPOSITION 3. Since the binary relation is transitive, {X � x} ⊆
{X � x′} and {X � x} ⊇ {X � x′}, so that P(X � x′) ≥ P(X � x) ≥ 0 and P(X �
x) ≥ P(X � x′) ≥ 0. Therefore,

τx = P
(
X � x|C(x)

)
= P(X � x)

P (X � x) + P(X � x)
≥ P(X � x′)

P (X � x′) + P(X � x)

≥ P(X � x ′)
P (X � x′) + P(X � x′)

= τx′ . �

APPENDIX B: SECTION 3 PROOFS

PROOF OF LEMMA 1. We can assume that X has a compact support to en-
sure that integrals are well defined (and standard approximation arguments yields
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the full result, or we are establishing probabilistic bounds and the compact set is
chosen to control the probability).

Since K is a convex set, the associated class of functions T is measurable and
∂K has zero Lebesgue measure by Lemma 2.4.3 in Dudley [16]. Moreover, T is
a VC class of sets with VC index at most 3d + 4. Therefore, condition E.2 holds
with v(p̄) = (3d + 4)/p̄2.

Let σ0 denote the surface measure on ∂K . To establish E.5, let

μ := sup
x∈Rd

∫
∂(−K∪K)

f (x + y)dσ0(y) < ∞,

since the support of X is compact. Next, note that d(x, y) = ‖x − y‖ ≥ E[|1{X ∈
C(x)} − 1{X ∈ C(y)}|2]/μ. Then E.5 holds with φn(r) � (

√
μr + n−1/4)

√
logn

by Theorem 2.14.17 of van der Vaart and Wellner [57]. If U is a singleton, we
can improve the bound to φn(r) � √

μr + n−1/4 using arguments in Kim and
Pollard [31].

Since T is a VC class and K is a convex set which ensures enough measurabil-
ity, E.6 holds by Theorem of 2.6.8 in van der Vaart and Wellner [57].

To establish E.3, building upon Section 5 in Kim and Pollard [31], note that

∇τx = 1

px

∫
∂(−K)

f (x + y)n(−K)(y) dσ0(y)

− τx

px

∫
∂(−K∪K)

f (x + y)n(−K∪K)(y) dσ0(y)

and

∇2px =
∫
∂(−K∪K)

∇f (x + y)n(−K∪K)(y)′ dσ0(y),

where nA(y) is the outward pointing unit vector normal to ∂A at y. Letting B1 =
∂(−K ∪ K) ∩ ∂(−K), B2 = ∂(−K ∪ K) \ ∂(−K) ⊂ ∂K , we have

px∇τx =
∫
∂(−K)\B1

f (x + y)n(−K)(y) dσ0(y)

+ (1 − τx)

∫
B1

f (x + y)n(−K)(y) dσ0(y)

− τx

∫
B2

f (x + y)n(−K∪K)(y) dσ0(y)

=
∫
∂(−K)

(
1{y ∈ Bc

1} + (1 − τx)1{y ∈ B1} + τx1{y ∈ −B2})
× f (x + y)n(−K)(y) dσ0(y).

Since −K is a convex cone with nonempty interior, the normal vectors cannot
be (positively) linearly dependent. Therefore, we have ∇τx �= 0 for any x in the
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interior of the support of the random variable X. Therefore, Q(τ ) = τ−1
x (τ ) is a

continuously differentiable hypersurface for every τ ∈ (0,1) by the Global Implicit
Function theorem. The smoothness of px and Q(τ ) yields condition E.3 with α = 2
for all τ ∈ U .

Also, px = ∫
−K∪K f (x + y)dy and τx = (1/px)

∫
−K f (x + y)dy are twice

differentiable functions. Therefore, pτ is Lipschitz for τ ∈ U since U ⊂ (0,1) is
compact and ℘ > 0 under our conditions. Thus, condition E.4(i) is satisfied with
γ = 1. Moreover, continuity of px and τx also implies that the mapping Q∗(τ ) is
upper-semi continuous. �

PROOF OF LEMMA 2. The bound on E.2 follows from the union bound. Con-
dition E.3 follows from the finite cardinality of S since for x ∈ Q(τ ) \ Q∗(τ )

we have px < pτ and for x ∈ Q∗(τ ) we have px = pτ . Take c = minτ∈U pτ −
maxx∈Q(τ )\Q∗(τ ) px > 0 since U is compact. Condition E.5 follows similarly
to E.2, noting that for d(x, y) < 1 we have x = y. Condition E.6 follows trivially.
Finally, E.4 follows by noting that pτ and xτ are piecewise constant mappings with
a finite number of jumps. Thus, if U does not include the indices corresponding to
these jumps, E.4 holds trivially. �

PROOF OF THEOREM 1. For convenience, let Wx = {X � x}. Then, for all
x ∈ S such that px ≥ p̄ we have, by condition E.2,

|τ̂x − τx | =
∣∣∣∣Pn(Wx) − P(Wx)

px

+ Pn(Wx)

(
1

p̂x

− 1

px

)∣∣∣∣
=
∣∣∣∣Pn(Wx) − P(Wx)

px

+ τ̂x

(
px − p̂x

px

)∣∣∣∣
≤
∣∣∣∣Pn(Wx) − P(Wx)

px

∣∣∣∣+ τ̂x

∣∣∣∣px − p̂x

px

∣∣∣∣
�P

√
v(p̄)/n. �

LEMMA 8 (Technical lemma). Let 0 < ε1 ∨ ε2 < ε3 < 1/2 and f,g,h : [0,

1] → [0,1], such that for all t ∈ [0,1],
lim sup

tk→t

f (tk) ≤ f (t) + ε1, lim sup
tk→t

g(tk) ≤ g(t) + ε1 and

(B.1)
lim inf
tk→t

h(tk) ≥ h(t) − ε1.

Moreover, assume that ε2 < ε3 mint∈[0,1] h(t), and for every t ∈ [ε3,1 − ε3]:
(i) |f (t) − th(t)| ≤ ε2,

(ii) |g(t) − (1 − t)h(t)| ≤ ε2 and
(iii) f (t) + g(t) ≥ h(t).
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Then, for every τ ∈ (3ε3,1 − 3ε3) there is t̄ such that f (t̄) ≥ τh(t̄) − 2ε1 and
g(t̄) ≥ (1 − τ)h(t̄) − 2ε1.

PROOF. Let t̄ = supt∈[ε3,1−ε3] t :g(t) ≥ (1 − τ)h(t). We have that g(2ε3) ≥
(1 − 2ε3)h(2ε3) − ε2 = (1 − τ)h(2ε3) + (τ − 2ε3)h(2ε3) − ε2 ≥ (1 − τ)h(2ε3)

by the assumption on ε2 and τ . Similarly, g(1 − 2ε3) ≤ 2ε3h(1 − 2ε3) − ε2 <

(1 − τ)h(2ε3). So t̄ ∈ [2ε3,1 − 2ε3].
Moreover, the condition (B.1) on g and h implies that g(t̄) ≥ (1 − τ)h(t̄) − 2ε1

and, by the definition of t̄ , g(t̄ + μ) < (1 − τ)h(t̄ + μ) for every μ > 0. Thus,
f (t̄ + μ) > τh(t̄ + μ) for every μ > 0 by (iii). In turn, condition (B.1) for f and
h yields f (t̄) ≥ τh(t̄) − 2ε1, which establishes the result. �

PROOF OF THEOREM 2. The proof proceeds in steps. Step 1 establishes feasi-
bility of a “near” partial quantile point. Step 2 derives the main arguments. Step 3
concludes the proof.

Step 1. Feasibility of near partial quantile point. Note that for any point x that
is feasible for (3.6) we have |τ − τ̂x | ≤ εn/p̂x . Moreover, by Theorem 1, if also
px ≥ ℘, we have |τ̂x − τx | �P

√
v(℘)/n, so that |τ − τx | �P un := √

v(℘)/n +
εn/℘.

Assume that εn ≥ εD
n . Pick an arbitrary xτ ∈ Q∗(τ ). By condition E.4, there is a

continuous path of quantile points, P = {xτ ′ : τ ′ ∈ (0,1)}, that passes through xτ .
Let ε1 = εn/2, ε2 = √

v(℘)/n and ε3 = (1/6)minu∈U u ∧ (1 − u), so that f (t) =
Pn(X � xt ), g(t) = Pn(X � xt ), and h(t) = p̂xt satisfies condition (B.1), (i) and
(ii) by Theorem 1 and (iii) by definition. By Lemma 8, there exists xτ∗ ∈ P that is
feasible for (3.6). Since pτ∗ ≥ ℘, we have |τ − τ ∗| �P un. On the other hand, if
εn ≥ εD′

n , xτ ∈ Q∗(τ ) is itself feasible with high probability. We can take xτ∗ = xτ

and the relation |τ − τ ∗| �P un would still hold.

Step 2. Main argument. We will derive the rate of convergence by bounding

pτx̂τ
− px̂τ = pτx̂τ

− pτ + pxτ − px̂τ

from above using E.5 and the optimality of x̂τ , and from below using the restricted
identification condition E.2.

To establish the upper bound first note that by optimality of x̂τ , we have p̂xτ∗ ≤
p̂x̂τ and using E.5,

pxτ − px̂τ �P φn(d(x̂τ , xτ ))/
√

n + p̂xτ − p̂x̂τ

�P φn(d(x̂τ , xτ ))/
√

n + p̂xτ − p̂xτ∗ .

Applying E.5 one more time, and using that |τ ∗ − τ | �P un so that d(xτ∗, xτ ) �P

un and pxτ − pxτ∗ �P u
γ
n ,

pxτ − px̂τ �P φn(d(x̂τ , xτ ))/
√

n + φn(d(xτ , xτ∗))/
√

n + pxτ − pxτ∗

�P φn(d(x̂τ , xτ ))/
√

n + φn(un)/
√

n + uγ
n .
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Also, since |τx̂τ − τ | �P un, by E.4, pτx̂τ
− pτ �P u

γ
n .

Note that if d(x̂τ , xτ ) �P u
γ
n we are done. Therefore, the relations above yields

pτx̂τ
− px̂τ �P φn(d(x̂τ , xτ ))/

√
n + uγ

n .

By E.3, we can minorate the left-hand side and obtain

c ∧ inf
z∈Q∗(τx̂τ )

d(x̂τ , z)
α �P φn(d(x̂τ , xτ ))/

√
n + uγ

n .

Since the argument holds for all xτ ∈ Q∗(τ ), we have

c ∧ inf
z∈Q∗(τx̂τ )

d(x̂τ , z)
α �P φn

(
inf

xτ ∈Q∗(τ )
d(x̂τ , xτ )

)/√
n + uγ

n .

Next note that the minimum in the left-hand side cannot be c as n grows [since
φn(d(x̂τ , xτ )) can be bounded by 2

√
v(℘/2) = o(n1/2) by Theorem 1].

Step 3. Conclusion of the proof. Using that α ≥ 1 by E.3, E.4(ii), and the last
relation in Step 2,

inf
xτ ∈Q∗(τ )

d(x̂τ , xτ )

≤ inf
xτ ∈Q∗(τ ),z∈Q∗(τx̂τ )

d(x̂τ , z) + d(z, xτ )

� inf
z∈Q∗(τx̂τ )

d(x̂τ , z) + |τ − τx̂τ |

�P φ1/α
n

(
inf

xτ ∈Q∗(τ )
d(x̂τ , xτ )

)/
n1/2α + uγ/α

n + un

�P un ∨ uγ/α
n ∨ φ1/α

n

(
inf

xτ ∈Q∗(τ )
d(x̂τ , xτ )

)/
n1/2α.

The rate result follows as in [57]. �

PROOF OF COROLLARY 1. Since the order is complete, px = p̂x = 1 for
every x ∈ S . In particular, condition E.5 is satisfied with φn(r) = 0, E.4 with γ = α

and E.3 with any positive α since Q∗(τ ) = Q(τ ). In this case εn := εD
n ∧ εD′

n ≤
εD′
n �P

√
v(1)/n. �

PROOF OF THEOREM 3. For convenience, let Wx = {X � x} and Cx =
C(x). By E.6 we have

√
n(Pn(Wx) − P(Wx)) � N(0,P (Wx)(1 − P(Wx))) and√

n(p̂x − px) � N(0,px(1 − px)).
Moreover, we have

τ̂x − τx = Pn(Wx)

p̂x

− P(Wx)

px

= Pn(Wx)

p̂x

− Pn(Wx)

px

+ Pn(Wx) − P(Wx)

px

= Pn(Wx)

(
1

p̂x

− 1

px

)
+ Pn(Wx) − P(Wx)

px
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= Pn(Wx)

p̂x

px − p̂x

px

+ Pn(Wx) − P(Wx)

px

= −τ̂x

p̂x − px

px

+ Pn(Wx) − P(Wx)

px

= (τx − τ̂x)
p̂x − px

px

− τx

p̂x − px

px

+ Pn(Wx) − P(Wx)

px

.

By Condition E.2, | p̂x−px

px
| �P

√
v(p̄)/n = oP (1), so that(

1 + oP (1)
)
px(τ̂x − τx) = −τx(p̂x − px) + Pn(Wx) − P(Wx)

= 1√
n

Gn(1{Wx} − τx1{Cx}).

Therefore, we have px

√
n(τ̂x − τx) =P Gn(1{Wx} − τx1{Cx}). That converges to

a zero mean normal distribution with variance

E[(1{Wx} − τx1{Cx})2] = P(Wx) + τ 2
x px − 2τxP (Wx)

= P(Wx)(1 − τx) + τx

(
τxpx − P(Wx)

)
= P(Wx)(1 − τx)

using Wx ⊆ Cx and τx = P(Wx)/px . Finally, we get

√
n(τ̂x − τx) � N

(
0,

τx(1 − τx)

px

)
.

Note that within Cp̄ , all the functions are bounded by 2/p̄ with high probability
for large enough sample size. Therefore, a multidimensional central limit theorem
applies and the covariance structure of a pair x, y ∈ S is given by

�x,y = E
[
(1{Wx} − τx1{Cx})

px

(1{Wy} − τy1{Cy})
py

]
.

After simplification, we obtain

�x,y = P(Wx ∩ Wy)

P (Cx)P (Cy)
− τx

P (Cx ∩ Wy)

P (Cx)P (Cy)
− τy

P (Cy ∩ Wx)

P (Cx)P (Cy)
+ τxτy

P (Cx ∩ Cy)

P (Cx)P (Cy)

= τxτy

(
P(Wx ∩ Wy)

P (Wx)P (Wy)
− P(Cx ∩ Wy)

pxP (Wy)
− P(Wx ∩ Cy)

P (Wx)py

+ P(Cx ∩ Cy)

pxpy

)
.

Finally, asymptotic equicontinuity of βn(x) follows directly from the asymptotic
equicontinuity of αn(x) implied by E.6 and p̄ > 0 being fixed. �

PROOF OF COROLLARY 2. The proof of the second result builds upon argu-
ments in [15, 18]. Based on Theorem 3, we have that for C℘/2 = {x ∈ S,px ≥
℘/2}, the process βn(x) := √

n(τ̂x − τx) converges weakly in 
∞(C℘/2) to a
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bounded, mean zero Gaussian process GP . By the Skorohod–Dudley–Wichura
representation theorem, there exists a probability space (�̃, Ã, P̃ ) carrying ver-
sions G̃P and β̃n of GP and βn such that supx∈C℘/2

|β̃n(x) − G̃P (x)| → 0 as n

grows. Next, note that for all τ ∈ U , x̂τ ∈ C℘/2 provided that
√

v(℘)/n = o(℘).
Thus,√

n(τx̂τ − τ) = −β̃n(x̂τ ) + √
n(τ̂x̂τ − τ) = o(1) + G̃P (x̂τ ) + √

n(τ̂x̂τ − τ). �

PROOF OF THEOREM 4. Let τ ∗ and τ̂ ∗ be such that ℘ = pτ∗ and ℘̂ = p̂τ̂∗ .
Thus, we have x̂τ̂∗ and x̂τ∗ satisfying p̂τ̂∗ = p̂x̂τ̂∗ and p̂τ∗ = p̂x̂τ∗ . Moreover, let
un := √

v(℘)/n + εn/℘ � n−1/2 by assumption.
First, note that since ℘̂ ≤ p̂τ∗ , and pτx̂τ∗ ≥ px̂τ∗ , we have, by E.5,

℘̂ − ℘ ≤ p̂τ∗ − pτ∗ = p̂x̂τ∗ − pxτ∗

= p̂x̂τ∗ − px̂τ∗ − (p̂xτ∗ − pxτ∗ ) + px̂τ∗ − pxτ∗ + p̂xτ∗ − pxτ∗

�P φn(d(x̂τ∗, xτ∗))/
√

n + pτx̂τ∗ − pxτ∗ + p̂xτ∗ − pxτ∗ .

Note also that by Step 1 in the proof of Theorem 2 we have |τx̂τ∗ − τ ∗| �P un.
Moreover, pτ is locally quadratic around τ ∗. Therefore,

℘̂ − ℘ �P φn(d(x̂τ∗, xτ∗))/
√

n + u2
n + p̂xτ∗ − pxτ∗ .

Since it holds for any xτ∗ ∈ Q∗(τ ∗),

℘̂ − ℘ �P φn

(
inf

xτ∗∈Q∗(τ∗)
d(x̂τ∗, xτ∗)

)/√
n

+ un + max
xτ∗∈Q∗(τ∗)

{p̂xτ∗ − pxτ∗ }(B.2)

�P o(n−1/2) + max
xτ∗∈Q∗(τ∗)

{p̂xτ∗ − pxτ∗ }

since u2
n = o(n−1/2), and infxτ∗∈Q∗(τ∗) d(x̂τ∗, xτ∗) = oP (1) by Theorem 2.

Next, by Step 1 in the proof of Theorem 2, for every xτ̂∗ there is a partial quantile
point xτ̄ , d(xτ̂∗, xτ̄ ) � un that is feasible for (3.6) with τ̂ ∗. Thus, p̂x̂τ̂∗ ≥ p̂xτ̄

. Using
this inequality, E.5, and that pτ̂∗ ≥ pτ∗ by definition (2.4),

℘̂ − ℘ ≥ p̂xτ̄
− pxτ∗

= p̂xτ̄
− pxτ̄

− (p̂xτ∗ − pxτ∗ ) + pxτ̄
− pxτ∗ + p̂xτ∗ − pxτ∗

(B.3)
�P − φn(d(xτ̄ , xτ∗))/

√
n + pxτ̂∗ − pxτ∗ + p̂xτ∗ − pxτ∗

≥ −φn(d(xτ̄ , xτ∗))/
√

n + p̂xτ∗ − pxτ∗ ,

where xτ̄ was chosen to be close to xτ∗ , namely d(xτ̄ , xτ∗) ≤ d(xτ̄ , xτ̂∗) +
d(xτ̂∗, xτ∗) �P un + |τ̂ ∗ − τ ∗|. Therefore, (B.3) holds for any xτ∗ ∈ Q∗(τ ∗) and
d(xτ̂∗, xτ∗) � |τ̂ ∗ − τ ∗| = oP (1) by Lemma 9 below. Thus,

℘̂ − ℘ ≥ −oP (n−1/2) + max
xτ∗∈Q∗(τ∗)

{p̂xτ∗ − pxτ∗ }.(B.4)
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Combining (B.4) and (B.2), we obtain
√

n(℘̂ − ℘) = oP (1) + ZP (τ ∗). �

LEMMA 9. Under the assumptions of Theorem 2, and that τ 	→ pτ is a twice
differentiable function, let ℘ = pτ∗ and ℘̂ = p̂τ̂∗ . Then |τ̂ ∗ − τ ∗| = oP (1).

PROOF. Consider the twice differentiable function τ 	→ pτ . Since pτ∗ is its
strict minimum at the interior of U , we have pτ − pτ∗ � |τ − τ ∗|2 for τ ∈ U .

By Step 1 of the proof of Theorem 2, for every τ ∈ U we have that there is an
xτ̄ that is feasible and |τ̄ − τ | �P un = oP (1). Thus,

p̂τ = p̂x̂τ ≥ p̂xτ̄
�P pτ̄ −

√
v(℘)/n �P pτ −

√
v(℘)/n − uγ

n = oP (1) + pτ .

Similarly, since |τxτ̄
− τ | �P un,

p̂τ �P px̂τ +
√

v(℘/2)/n �P pτxτ̄
+
√

v(℘/2)/n

�P pτ +
√

v(℘/2)/n + uγ
n = oP (1) + pτ .

Therefore, using that p̂τ̂∗ ≤ p̂τ∗ ,

|τ̂ − τ ∗|2 ≤ pτ̂∗ − pτ∗ = oP (1) + v − p̂τ∗ = oP (1). �

APPENDIX C: SECTION 4 PROOFS

PROOF OF LEMMA 4. This follows if support 1̂K = Rd , where 1̂K is the
Fourier transform of the indicator function of the set K , see [2], Proposition 3.1.
(We proceed as in Proposition 3.2 in [2] with the necessary modifications.)

Step 1. Let 0 �= f ∈ L1(Rd) such that supportf ⊆ K , f̂ (w) = ∫
Rd e−iw′x ×

f (x) dx = ∫
K e−iw′xf (x) dx, and Ko = {y ∈ Rd :y′x ≤ 0 for all x ∈ K} denote

the polar cone of K . Define the regions (in the complex space Cd )

H = {z ∈ Cd : Im(z) ∈ Ko} and H0 = {z ∈ Cd : Im(z) ∈ intKo}.
It follows from the definition that f̂ can be extended to a bounded function g in the
region H [because K is a proper convex cone, for any w ∈ H0 and x ∈ K , we have
Re(−iw′x) ≤ 0]. Moreover, g is analytic in H0 and continuous in H . Therefore,
f̂ is the restriction of the bounded analytic function g on the boundary of H [5].
Consequently, f̂ cannot be identically zero on an open subset of Rd (which would
imply that f̂ = 0 and, thus, f = 0), equivalently, support f̂ = Rd .

Step 2. Next, we consider 1K which is a nonzero bounded Borel function which
is not in L1(Rd). By contradiction, assume that 1̂K vanishes on a nonempty open
set U of Rd , that is, (support 1̂K) ∩ U = ∅. Let x0 and ε > 0 such that B(x0,

2ε) ⊂ U .
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Let 0 �= h1 ∈ L1(Rd) such that ĥ1 is a C∞ function and support ĥ1 ⊂ B(0, ε).
Then

support ̂(h1 · 1K) = support(ĥ1 ∗ 1̂K) ⊆ support ĥ1 + support 1̂K ⊂ Rd \ B(x0, ε),

where “∗” denotes the convolution operator.
On the other hand, h1 · 1K ∈ L1(Rd) with support(h1 · 1K) ⊂ K . Therefore, by

Step 1, h1 · 1K = 0 almost everywhere on Rd . In turn, ĥ1 is a C∞-function of
compact support, so h1 is the restriction of an entire function to Rd , and hence
h1(x) �= 0 almost everywhere in Rd . Thus, 1K is zero almost everywhere which
give us a contradiction since K is a proper convex cone. �

PROOF OF LEMMA 5. Without loss of generality, we can consider only con-
nected graphs (otherwise we proceed with each connected component separately).
We provide an algorithm.

For each node, we have τxpx = P(X � x). If there is no incoming arc on x,
we have that P(X � x) = P(X = x). For a general node x, if we already
computed P(X = y) for all y �= x, y � x, then we have P(X = x) = τxpx −∑

y �=x,y�x P (X = y). Otherwise, “backtrack” to consider a y �= x, y � x for which
P(X = y) is not known. Since there are no cycles, we can only “backtrack” at most
|S| < ∞ before computing a probability for some y. Thus the procedure terminates
in a finite number of steps with all probabilities. �

PROOF OF THEOREM 7. The proof follows from the inequality of Lorentz
[35] applied to each component individually. This follows the strategy of Cher-
nozhukov, Fernández-Val and Galichon [10] that previously used this inequality to
prove a similar result. �

PROOF OF COROLLARY 3. If xτ is partial-monotone, by Theorem 7 we have∣∣∣∣∫ 1

0
‖x̂r

u − x̂u‖κ du

∣∣∣∣1/κ

≤
∣∣∣∣∫ 1

0
‖x̂r

u − xu‖κ du

∣∣∣∣1/κ

+
∣∣∣∣∫ 1

0
‖x̂u − xu‖κ du

∣∣∣∣1/κ

≤ 2
∣∣∣∣∫ 1

0
‖x̂u − xu‖κ du

∣∣∣∣1/κ

.

The second follows by a triangular inequality. �

PROOF OF THEOREM 8. Note that by independence and no point mass,
we have P(X � x) = ∏d

j=1(1 − Fj (xj )), P(X � x) = ∏d
j=1 Fj (xj ) and px =

P(X � x) + P(X � x). Thus, xτ ∈ arg max{∏d
j=1(1 − Fj (xj )) +∏d

j=1 Fj (xj ) :

τ
∏d

j=1(1 − Fj (xj )) = (1 − τ)
∏d

j=1 Fj (xj )}. By the independence, we can write

aj = Fj (xj ) and recast the problem as maxa{∏d
j=1 aj + ∏d

j=1(1 − aj ) : (1 −
τ)
∏d

j=1 aj = (1 − τ)
∏d

j=1(1 − aj ),0 ≤ aj ≤ 1}. By inspection, we have that
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0 < aj < 1, j = 1, . . . , d , at the optimal. By the optimality conditions, there is
a λ such that we have for every k = 1, . . . , d

0 = ∏
j �=k

aj − ∏
j �=k

(1 − aj ) − λ(1 − τ)
∏
j �=k

aj + λτ
∏
j �=k

(1 − aj ).

This implies that for every j = 1, . . . , d , we have 1−λτ
1−λ(1−τ)

= τ
1−τ

· 1−ak

ak
.

Therefore, a∗
k = a(τ) for every k = 1, . . . , d . On the other hand, by feasibility

we must have
∏d

j=1[a∗
j /(1 − a∗

j )] = a(τ)d/(1 − a(τ))d = τ/(1 − τ). Therefore,

a(τ)/(1 − a(τ)) = (τ/(1 − τ))1/d , which yields the result. �

PROOF OF THEOREM 9. By Proposition 1 with h(x) = (F1(x1),F2(x2), . . . ,

Fd(xd)), we have τX = τh(X) so that we can assume that X is a uniform (0,1)

random variable. Therefore,

P(τX ≤ τ) = P

(
d∏

j=1

xj ≤ τ

[
d∏

j=1

xj +
d∏

j=1

(1 − xj )

])
= P

(
d∏

j=1

xj

1 − xj

≤ τ

1 − τ

)
.

The first result follows by taking logs and noting that Zj := log(xj /(1 − xj )) is
distributed as a logistic random variable with zero mean and variance π2/3 when
xj is a uniform (0,1) random variable.

Next, since Zj is symmetric around zero, P(τX ≥ 1/2) = P(
∑d

j=1 Zj ≥ 0) =
1/2. Finally, let Z(d) := d−1/2∑d

j=1 Zj and denote its probability density function

by fd . It follows that maxz fd(z) = fd(0) ≤ 1/2. Since Z(d) is symmetric, we
have, for t ∈ (0,1/2),

P(|τX − 0.5| ≥ t) = 2P(τX ≥ 0.5 + t) = 2P

(
Z(d) ≥ d−1/2 log

(
0.5 + t

0.5 − t

))
.

Thus, using that log(1 + x) ≤ x and fd(z) ≤ 1/2,

P(|τX − 0.5| ≥ t) ≥ 2P

(
Z(d) ≥ 2td−1/2

0.5 − t

)
≥ 1 − 2

∫ 2td−1/2/(0.5−t)

0
fd(z) dz

≥ 1 − 2td−1/2

0.5 − t
.

Using t := 0.5 − Cd−1/2 in the expression above,

P(|τX − 0.5| ≥ 0.5 − Cd−1/2) ≥ 1 − 2(0.5 − Cd−1/2)d−1/2

Cd−1/2 ≥ 1 − 1/C. �

PROOF OF LEMMA 6. We can compute the partial order and the probabilities
P(X � x|C(x)) and P(X � x|C(x)), which are bounded by O(|S|) for every fixed
x ∈ S . Varying over all choices of |S|, we obtain O(|S|2) operations. �
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PROOF OF LEMMA 7. First, note that under C.2, we have that K is a convex
cone with nonempty interior. Therefore, K has a strict recession direction, that
is, ∃w �= 0 such that K + w ⊂ intK . Moreover, if K ∩ −K is full dimensional,
K = Rd and we have x � y for every x, y ∈ Rd and the result holds trivially.
Therefore, we can assume that K ∩ −K is not full dimensional.

Since K ∩−K is not full dimensional and X has no point mass, we have P(X �
x � X) = 0 for every x ∈ S . Therefore px = P(X � x) + P(X � x). Moreover,
px , P(X � x) and P(X � x) are continuous in x.

Note that any pair (p, x) such that x ∈ Q(τ ) and p = px is feasible for problem
(4.6). By the log-concavity of the probability density function, P(X � x) = P(x −
K) and P(X � x) = P(x + K) are log-concave functions of x by the Prékopa–
Leindler inequality (e.g., see [20]). This shows that (4.6) can be recast as a convex
programming problem.

Next, we will show that the solution to (4.6) also solves (2.3). If p∗ = px∗ , then
both constraints are active at the optimal point, and the result follows. Note that at
least one constraint must be active at (p∗, x∗).

Suppose p∗ < px∗ , in which case x∗ /∈ Q(τ ). Without loss of generality, assume
that P(X � x∗) > (1 − τ)p∗. Define the continuous functions u(t) = P(X � x∗ +
td) and 
(t) = P(X � x∗ + td), which are, respectively, decreasing and increasing
in t . For some t > 0, we have u(t) > (1 − τ)p∗ and 
(t) > τp∗, which contradicts
the optimality of (p∗, x∗). �

PROOF OF THEOREM 10. From Lemma 7, it follows that we can recast the
problem as the convex programming problem defined in (4.6). For p̄ < pτ , define
the convex set

H(p̄) := {(v, x) ∈ R × S : logP(X � x) ≥ log(1 − τ) + v,

logP(X � x) ≥ log τ + v, log p̄ ≤ v ≤ 0},
where v = logp for p in (4.6). For an arbitrary ε > 0, note that for every x we can
approximate P(X � x) and P(X � x) up to a multiplicative factor of 1 + ε using
the integration procedure for log-concave distributions based on random walks
proposed by Lovász and Vempala [36]. Relying on these results, we can construct
and ε0-approximate a membership oracle whose complexity is given by

O

(
d4 log3 d log(1/δ)

ε2
0

)
,

where ε0 = pτε. Note that by controlling the error in the computation of P(X � x)

and P(X � x) by a factor of 1 + ε, we control the error in the computation of τx

by an additive error of ε.
Based on this membership oracle, we can apply the results in [36] for optimiza-

tion, which requires O∗(d4.5) calls of the constructed membership oracle. �
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