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Structural equation models are multivariate statistical models that are de-
fined by specifying noisy functional relationships among random variables.
We consider the classical case of linear relationships and additive Gaussian
noise terms. We give a necessary and sufficient condition for global identi-
fiability of the model in terms of a mixed graph encoding the linear struc-
tural equations and the correlation structure of the error terms. Global iden-
tifiability is understood to mean injectivity of the parametrization of the
model and is fundamental in particular for applicability of standard statistical
methodology.

1. Introduction. A mixed graph is a triple G = (V ,D,B) where V is a finite
set of nodes and D,B ⊆ V ×V are two sets of edges. The edges in D are directed,
that is, (i, j) ∈ D does not imply (j, i) ∈ D. We denote and draw such an edge
as i → j . The edges in B have no orientation; they satisfy (i, j) ∈ B if and only
if (j, i) ∈ B . Following tradition in the field, we refer to these edges as bidirected
and denote and draw them as i ↔ j . (In figures, we will draw bidirected edges
also as dashed edges for better visual distinction.) We emphasize that in this setup
the bidirected part (V ,B) is always a simple graph, that is, at most one bidirected
edge may join a pair of nodes. Moreover, neither the bidirected part (V ,B) or the
directed (V ,D) contain self-loops, that is, (i, i) /∈ D ∪ B for all i ∈ V . In the main
part of this work, the considered mixed graphs are acyclic, which means that the
directed part (V ,D) is a directed graph without directed cycles.

Enumerate the vertex set as V = [m] := {1, . . . ,m}. Let RD be the set of matri-
ces � = (λij ) ∈ Rm×m with λij = 0 if i → j is not in D. Write RD

reg for the subset
of matrices � ∈ RD for which I − � is invertible, where I denotes the identity
matrix. Let PD(m) be the cone of positive definite m×m matrices. Define PD(B)

to be the set of matrices � = (ωij ) ∈ PD(m) with ωij = 0 if i �= j and i ↔ j is not
an edge in B . Write Nm(μ,�) for the multivariate normal distribution with mean
μ ∈ Rm and covariance matrix �.
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DEFINITION 1. The linear structural equation model M(G) associated with
an acyclic mixed graph G = (V ,D,B) is the family of multivariate normal distri-
butions Nm(0,�) with

� = (I − �)−T �(I − �)−1

for � ∈ RD
reg and � ∈ PD(B).

The set of parents of a node i, denoted pa(i), comprises the nodes j with j → i

in D. The graphical model just defined is most naturally motivated in terms of a
system of linear structural equations:

Yj = ∑
i∈pa(j)

λijYi + εj , j = 1, . . . ,m.(1.1)

If ε = (ε1, . . . , εm) is a random vector following the multivariate normal distri-
bution N (0,�) and � ∈ RD

reg, then the random vector Y = (Y1, . . . , Ym) is well
defined as a solution to the equation system in (1.1) and follows a centered multi-
variate normal distribution with covariance matrix (I − �)−T �(I − �)−1.

REMARK 1. Assuming centered distributions presents no loss of generality.
An arbitrary mean vector could be incorporated by adding an intercept constant
λi0 to each equation in (1.1). The results discussed below would apply unchanged.

Linear structural equation models are ubiquitous in many applied fields, most
notably in the social sciences where the models have a long tradition. Recent re-
newed interest in the models stems from their causal interpretability; compare [11,
13]. While current research is often concerned with non-Gaussian generalizations
of the models, there remain important open problems about the linear Gaussian
models from Definition 1. These include the following fundamental problem,
which concerns the global identifiability of the model parameters.

QUESTION 1. For which mixed graphs G = (V ,D,B) is the rational parame-
trization

φG : (�,�) �→ (I − �)−T �(I − �)−1

an injective map from RD
reg × PD(B) to the positive definite cone PD(m)?

According to our first theorem, proven later on in Section 7, we can restrict
attention to acyclic mixed graphs.

THEOREM 1. If G is a mixed graph for which the parametrization φG is in-
jective, then G is acyclic.
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FIG. 1. Acyclic mixed graph inducing a singular model.

The nodes of an acyclic mixed graph G = (V ,D,B) can be ordered topolog-
ically such that i → j ∈ D only if i < j . Under a topological ordering of the
nodes, all matrices in RD are strictly upper-triangular. Hence, RD

reg = RD because

det(I − �) = 1 for all � ∈ RD . Moreover, the parametrization φG is a polynomial
map in the entries of � and � when G is acyclic.

Characterizing the graphs with injective parametrization is important because
failure of injectivity can lead to failure of standard statistical methods. We briefly
exemplify this issue for the models considered here and point the reader to [7] and
references therein for a more detailed discussion. Briefly put, the problem is due to
the fact that failure of injectivity can result in parameter spaces that are not smooth
manifolds; compare in particular the examples in Section 1 of [7].

EXAMPLE 1. Consider the graph G = (V ,D,B) from Figure 1. Let � = (λij )

be the matrix in RD with

λ12 = 3, λ23 = −1
2 , λ34 = λ45 = 1.

Let � = (ωij ) be the matrix in PD(B) with all diagonal entries equal to 2 and

ω14 = ω15 = ω24 = ω35 = 1.

It can be shown that at the specified point (�,�) the map φG is not injective
and the image of φG has a singularity. Suppose we use the likelihood ratio test
for testing the model M(G) against the saturated alternative given by all multi-
variate normal distributions on Rm. The standard procedure would compare the
resulting likelihood ratio statistic to a chi-square distribution with two degrees of
freedom. Figure 2 illustrates the problems with this procedure. What is plotted
are histograms of p-values obtained from the chi-square approximation. Each his-
togram is based on simulation of 20,000 samples of size n = 100 or n = 1000. The
samples underlying the two histograms in Figure 2(a), (b) are drawn from the mul-
tivariate normal distribution with covariance matrix � = φG(�,�) for the above
parameter choices. Many p-values being large, it is evident that the test is too con-
servative. For comparison, we repeat the simulations with λ23 = 1/2 and all other
parameters unchanged. There is no identifiability failure in this second scenario,
the image of φG is smooth in a neighborhood of the new covariance matrix and,
as shown in Figure 2(c), (d), the expected uniform distribution for the p-values
emerges in reasonable approximation.
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(a) (b)

(c) (d)

FIG. 2. Histograms of p-values for a likelihood ratio test.

Call a directed graph with at least two nodes an arborescence converging to
node i if its edges form a spanning tree with a directed path from any node j �= i

to i. In other words, i is the unique sink node. For a mixed graph G = (V ,D,B)

and a subset of nodes A ⊂ V , let DA = D ∩ (A × A) be the set of directed edges
with both endpoints in A. Similarly, let BA = B ∩ (A × A), and define the mixed
subgraph induced by A to be GA = (A,DA,BA). Our main result provides the
following answer to Question 1.

THEOREM 2. The parametrization φG for an acyclic mixed graph G =
(V ,D,B) fails to be injective if and only if there is an induced subgraph GA,
A ⊆ V , whose directed part (A,DA) contains a converging arborescence and
whose bidirected part (A,BA) is connected. If φG is injective, then its inverse
is a rational map.
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FIG. 3. The two unlabeled graphs on four nodes with noninjective parametrization.

An acyclic mixed graph G = (V ,D,B) is simple if there is at most one edge
between any pair of nodes, that is, if D∩B = ∅. Theorem 2 states in particular that
only simple acyclic mixed graphs may have an injective parametrization. Indeed,
two edges i ↔ j and i → j , respectively, connect and yield an arborescence in the
subgraph G{i,j}.

COROLLARY 1. If the acyclic mixed graph G has at most three nodes, then
φG is injective if and only if G is simple. There are exactly two unlabeled simple
acyclic mixed graphs on four nodes with φG not injective.

PROOF. An arborescence involving three nodes contains two edges. The bidi-
rected part of a simple mixed graph can only be connected if there are two further
edges. However, a simple graph with three nodes has at most three edges. The two
examples on four nodes are shown in Figure 3. �

A possibly cyclic mixed graph G = (V ,D,B) is simple if there is at most one
edge between any pair of nodes, that is, if D ∩ B = ∅ and the presence of an
edge i → j in D implies the absence of j → i. As shown in the next lemma, it is
easy to give a direct proof of the fact that only simple graphs can have an injective
parametrization. The lemma also clarifies that noninjectivity can be recognized in
subgraphs, which is a fact that is important for later proofs.

LEMMA 1. Suppose the map φG given by a mixed graph G is injective. Then
G is simple, and φH is injective for any (not necessarily induced ) subgraph H

of G.

PROOF. If H = (V ′,D′,B ′) is a subgraph of G = (V ,D,B), that is, V ′ ⊆ V ,
D′ ⊆ D and B ′ ⊆ B , then φH is injective if and only if φG is injective at points that
have all parameters λij and ωij zero for edges (i, j) ∈ D\D′ or (i, j) ∈ B \B ′. If G

is not simple, then there exist two distinct indices i, j for which the graph contains
at least two of the three possible edges i → j , j → i and i ↔ j . If V = {i, j}, then
φG is not injective because it maps the at least 4-dimensional set RD

reg × PD(B)

to the 3-dimensional cone of positive definite 2 × 2 matrices. If |V | > 2, then the
claim follows by passing to the subgraph induced by {i, j}. �

The remainder of the paper is organized as follows. Section 2 reviews the con-
nection of our work to the existing literature on identifiability of structural equation
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models. Section 3 lays out the natural stepwise approach to inversion of the para-
metrization φG in the case where the underlying graph is acyclic. Necessity and
sufficiency of the graphical condition from our main Theorem 2 are proven in Sec-
tions 4 and 5, respectively. In Section 6, we collect three lemmas used in the proof
of sufficiency. Theorem 1 about directed cycles is proven in Section 7. Concluding
remarks are given in Section 8.

2. Prior work. Identifiability properties of structural equation models are a
topic with a long history. A review of classical conditions, which do not take into
account the finer graphical structure considered here, can be found, for instance,
in the monograph [2]. A more recent sufficient condition for global identifiability
of the linear structural equation models from Definition 1 is due to [9, 12]. It re-
quires the presence of a bidirected edge i ↔ j to imply the absence of directed
paths from j to i (and from i to j ). Following [12], we call an acyclic mixed graph
with this property ancestral. It is clear that an ancestral mixed graph is simple. We
revisit the result about ancestral graphs in Corollary 2 below.

Other recent work, such as [3], considers a weaker identifiability requirement
for the model M(G) associated with a mixed graph G = (V ,D,B). For a pair of
matrices �0 ∈ RD

reg and �0 ∈ PD(B), define the fiber

F (�0,�0) = {(�,�) :φG(�,�) = φG(�0,�0),� ∈ RD
reg,� ∈ PD(B)}.(2.1)

The map φG is injective if and only if all its fibers contain only a single point.
If it holds instead that for generic choices of � ∈ RD

reg and � ∈ PD(B), the fiber
F (�,�) contains only the single point (�,�), then we say that the map φG is
generically injective and the model M(G) is generically identifiable. Requiring a
condition to hold for generic points means that the points at which the condition
fails form a lower-dimensional algebraic subset. In particular, the condition holds
for almost every point (in Lebesgue measure), and some authors thus also speak
of an almost everywhere identifiable model; compare the lemma in [10]. When
the substantive interest is in all parameters of a model, generic identifiability con-
stitutes a minimal requirement. However, generically but not globally identifiable
models can have nonsmooth parameter spaces and thus present difficulties for sta-
tistical inference; recall Example 1 that treats a generically identifiable model.

The main theorem of [3], which we reprove in Corollary 3, states that φG is
generically injective for every simple acyclic mixed graph G. The graph being
simple and acyclic, however, is far from necessary for generic injectivity of φG.
A classical counterexample is the instrumental variable model based on the graph
with edges 1 → 2 → 3 and 2 ↔ 3. Cyclic models may also be generically identi-
fiable; for instance, see Example 3.6 in [7]. For recent work on the topic, see [16]
and references therein. To our knowledge, characterizing the mixed graphs G with
generically injective parametrization φG remains an open problem.

The linear structural equation models M(G) considered in this paper are closely
related to latent variable models known as semi-Markovian causal models. These
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nonparametric models are obtained by subdividing the bidirected edges, that is,
each edge i ↔ j is replaced by two directed edges i ← uij → j , where uij is a
new node. Each node uij added to the vertex set corresponds to a latent variable;
compare also [11, 12, 17]. Using results from [15], the work of [14] gives graph-
ical conditions for when (univariate or multivariate) intervention distributions in
acyclic semi-Markovian causal models are identified. This work is based on ma-
nipulating recursive density factorizations involving latent variables. If G is an
acyclic mixed graph and the structural equation model M(G) is contained in the
semi-Markovian model for G, then M(G) is globally identified provided that in
the semi-Markovian model we can identify, for every node i, the univariate inter-
vention distribution for i and intervention set pa(i); see also Chapter 6 in [15].

For an acyclic mixed graph G = (V ,D,B), we may define a Gaussian model
M′(G) by assuming that both the observed and the latent variables in the semi-
Markovian model for G have a joint multivariate normal distribution. This creates
an explicit connection to linear structural equation models, and it is indeed possi-
ble that M′(G) = M(G). For instance, if there are no directed edges (D = ∅),
then M′(G) = M(G) if and only if the bidirected part (V ,B) is a forest of trees;
see Corollary 3.4 in [8]. If D = ∅ and (V ,B) is not a forest of trees, then M(G)

is strictly larger than M′(G). Therefore, other nonnormal constructions would be
required in order for the theorems in [14] to furnish sufficient conditions for global
identifiability of linear structural equation models. We are unaware, however, of
literature providing a connection between semi-Markovian causal models and the
linear structural equation models from Definition 1 when non-Gaussian distribu-
tions are assumed for the latent variables.

Finally, the existing counterexamples to identifiability of semi-Markovian mod-
els involve binary variables and thus cannot be used to prove necessity of an iden-
tifiability condition for the Gaussian models M(G). However, despite this fact
and the difficulties in relating the models M(G) to semi-Markovian models, our
graphical condition from Theorem 2, which we first found by experimentation with
computer algebra software, coincides with that of [14]; the term “y-rooted C-tree”
is used there to refer to a mixed graph whose directed part is an arborescence con-
verging to node y and whose bidirected part is a tree. A reader familiar with the
work in [15] will also recognize similarities between the higher-level structure of
the proofs given there and those in Section 5 of this paper.

3. Stepwise inversion. Throughout this section, suppose that G = (V ,D,B)

is an acyclic mixed graph with vertex set V = [m]. The map φG is injective if
all its fibers contain only a single point; recall the definition of a fiber in (2.1).
Let � = φG(�0,�0) for two matrices �0 ∈ RD and �0 ∈ PD(B). This section
describes how to find points (�,�) in the fiber F (�0,�0). In particular, we show
in Lemma 2 that an algebraic criterion can be used to decide whether the map φG

is injective. The lemma is proven after we describe a natural inversion approach
that uses the acyclic structure of the graph G in a stepwise manner. We remark that
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this stepwise inversion is closely related to the idea of pseudo-variable regression
used in the iterative conditional fitting algorithm of [6].

For each i ≤ m−1, let P(i) = pa(i +1) be the parents of node i +1, and S(i) =
{j ≤ i : j ↔ i + 1 ∈ B} the siblings of i + 1. (In other related work, the nodes
incident to a bidirected edge i ↔ j have also been called “spouses” of each other
but we find “siblings” to be natural terminology given that a common parent to the
two nodes is introduced when subdividing the edge as discussed in Section 2.)

LEMMA 2. Suppose G = (V ,D,B) is an acyclic mixed graph with its nodes
labeled in a topological order. Then the parametrization φG is injective if and only
if the rank condition

rank
(
�[i]\S(i),[i](I − �)−1

[i],P (i)

) = |P(i)|
holds for all nodes i = 1, . . . ,m − 1 and all pairs � ∈ RD and � ∈ PD(B).

REMARK 2. In this paper, matrix inversion is always given higher priority
than an operation of forming a submatrix. For any invertible matrix M and index
sets A,B , the matrix M−1

A,B = (M−1)A,B is thus the A×B submatrix of the inverse
of M .

Computing points (�,�) in the fiber F (�0,�0) means solving the polynomial
equation system given by the matrix equation

� = (I − �)−T �(I − �)−1.(3.1)

For topologically ordered nodes, (3.1) implies that σ11 = ω11 and that the first
column in the strictly upper-triangular matrix � contains only zeros. Hence, these
are uniquely determined for all matrices in the fiber.

Let i ≥ 1, and assume that we know the [i] × [i] submatrices of � and � of a
solution to equation (3.1). Partition off the (i + 1)st row and column of the subma-
trices

(I − �)[i+1],[i+1] =
(


 −λ

0 1

)
, �[i+1],[i+1] =

(
� ω

ωT ωi+1,i+1

)
.

The matrices 
 and � are known, λ[i]\P(i) = 0 and ω[i]\S(i) = 0. The inverse of
I − � can be written as a block matrix as

(I − �)−1
[i+1],[i+1] =

(

−1 
−1λ

0 1

)
.(3.2)

In this notation, the part of equation (3.1) that pertains to the [i + 1] × [i + 1]
submatrix of � is(

�[i],[i] �[i],{i+1}
σi+1,i+1

)

=
(


−T �
−1 
−T �
−1λ + 
−T ω

ωi+1,i+1 + λT 
−T �
−1λ + 2ωT 
−1λ

)
,
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where only the upper-triangular parts of the symmetric matrices are shown. Hence,
given the values of 
 and � , the choice of λ and ω is unique if and only if the
equation

�[i],{i+1} = 
−T �
−1 · λ + 
−T · ω(3.3)

has a unique solution. Clearly, any feasible choice of a solution (λ,ω) to the equa-
tion in (3.3) leads to a unique solution ωi+1,i+1 via the equation

σi+1,i+1 = ωi+1,i+1 + λT 
−T �
−1λ + 2ωT 
−1λ.(3.4)

Since λ[i]\P(i) = 0 and ω[i]\S(i) = 0, equation (3.3) can be rewritten as

�[i],{i+1} = (

−T �
−1

[i],P (i)

) · λP(i) + (

−1

S(i),[i]
)T · ωS(i).

It has a unique solution if and only if the matrix[

−T �
−1

[i],P (i)

(

−1

S(i),[i]
)T ]

has full column rank |P(i)|+ |S(i)|. The matrix 
 is invertible because it is upper-
triangular with ones along the diagonal. Thus, the condition is equivalent to


T
[

−T �
−1

[i],P (i)

(

−1

S(i),[i]
)T ]

=
[
�
−1

[i],P (i) I[i],S(i)

]
having full column rank. The second block is part of an identity matrix. We deduce
that the condition is equivalent to requiring that �[i]\S(i),[i]
−1

[i],P (i), the submatrix
obtained by removing the rows and columns with index in S(i), has rank |P(i)|.
Note that

�[i]\S(i),[i]
−1
[i],P (i) = �[i]\S(i),[i](I − �)−1

[i],P (i)

is the matrix appearing in Lemma 2.

PROOF OF LEMMA 2. Consider a feasible pair (�,�). If the rank condition
for this pair holds for all nodes i = 1, . . . ,m − 1, then it follows from the stepwise
inversion procedure described above that the fiber F (�,�) contains only the sin-
gle point (�,�). Therefore, the rank condition holding for all nodes and all matrix
pairs implies that all fibers are singletons, or in other words, that the map φG is
injective.

Conversely, assume that the rank condition fails for some node i ≤ m − 1 and
matrix pair (�,�). If i = m − 1, then the considered fiber F (�,�) is positive-
dimensional, and φG not injective. If i < m − 1, then it follows analogously that
the parametrization φH for the induced subgraph H = G[i+1] is not injective. By
Lemma 1, φG cannot be injective either. �

If the rank condition in Lemma 2 holds at a particular pair (�,�), then the fiber
F (�,�) contains only the pair (�,�). However, the converse is false in general,
that is, failure of the rank condition at a particular pair (�,�) and vertex i < m

need not imply that the fiber F (�,�) contains more than one point. This may
occur even for a simple acyclic mixed graph.



874 M. DRTON, R. FOYGEL AND S. SULLIVANT

FIG. 4. Graph with noninjective parametrization (see Example 2).

EXAMPLE 2. Consider the graph in Figure 4, set λ12 = λ23 = λ34 = 1, and
choose the positive definite matrix

� =

⎛
⎜⎜⎜⎜⎝

2 0 −1 −1 −1
0 1 0 −1 0

−1 0 1 0 0
−1 −1 0 3 0
−1 0 0 0 3

⎞
⎟⎟⎟⎟⎠ .

The rank condition for this pair (�,�) fails at node i = 3. Nevertheless, the fiber
F (�,�) is equal to {(�,�)}. If we set ω15 = 0, however, then F (�,�) be-
comes one-dimensional. Using terminology from econometrics/causality, the vari-
able corresponding to node 5 behaves like an “instrument;” compare, for instance,
[11].

Lemma 2 allows us to give simple proofs of two established results in the graph-
ical models literature. The proof of Corollary 2 emphasizes the special structure
exhibited by ancestral graphs. The proof of Corollary 3 demonstrates that the iden-
tity matrix always has a singleton as a fiber under the parametrization associated
with a simple acyclic mixed graph.

COROLLARY 2. If the acyclic mixed graph G is ancestral then the parame-
trization φG is injective.

PROOF. Recall that if G = (V ,D,B) is ancestral and i ↔ j is a bidirected
edge in G, then there is no directed path from i to j or j to i. Suppose V = [m] is
topologically ordered, and let i be some node smaller than m. Pick a node j ∈ S(i).
Then there may not exist a directed path from j to a node in P(i). It follows that

�[i]\S(i),[i](I − �)−1
[i],P (i) = �[i]\S(i),[i]\S(i)(I − �)−1

[i]\S(i),P (i).

The latter matrix is the product of a principal and thus positive definite submatrix
of � and a matrix that contains the P(i) × P(i) identity matrix. It follows that
this product has full column rank |P(i)| for all feasible pairs (�,�) and all nodes
i ≤ m − 1. By Lemma 2, φG is injective. �
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If the acyclic mixed graph G is simple, then P(i) ⊆ [i] \ S(i) for all nodes
i ≤ m − 1. Hence, the matrix product appearing in the rank condition always has
at least as many rows as columns. The next generic identifiability result follows
immediately; recall the definitions in Section 2.

COROLLARY 3. If G = (V ,D,B) is a simple acyclic mixed graph, then the
map φG is generically injective.

PROOF. We need to show that for generic choices of � ∈ RD and � ∈ PD(B),
the fiber F (�,�) is equal to the singleton {(�,�)}. Set � = 0 and choose � to
be the identity matrix. Then each of the matrix products

�[i]\S(i),[i](I − �)−1
[i],P (i), i = 1, . . . ,m − 1,(3.5)

has the identity matrix as P(i) × P(i) submatrix. The rank condition from
Lemma 2 thus holds for all i ≤ m − 1. Since the matrices in (3.5) have polyno-
mial entries, existence of a single pair (�,�) at which the m − 1 matrices in (3.5)
have full column rank implies that the set of pairs (�,�) for which at least one
of the matrices fails to have full column rank is a lower-dimensional algebraic set;
compare [5], Chapter 9, for background on such algebraic arguments. �

In order to prepare for arguments turning the algebraic condition from Lemma 2
into a graphical one, we detail the structure of the inverse (I − �)−1 for a matrix
� = (λij ) ∈ RD . Let P(i, j) denote the set of directed paths from i to j in the
considered acyclic graph.

LEMMA 3. The entries of the inverse (I − �)−1 are

(I − �)−1
ij = ∑

π∈P(i,j)

∏
k→l∈π

λkl, i, j ∈ [m].

PROOF. This well-known fact can be shown by induction on the matrix size m

and using the partitioning in (3.2) under a topological ordering of the nodes. �

Note that adopting the usual definition that takes an empty sum to be zero and
an empty product to be one, the formula in Lemma 3 states that (I − �)−1

ij = 0 if

i �= j and P(i, j) = ∅, and it states that (I − �)−1
ii = 1 because P(i, i) contains

only a trivial path without edges.

4. Necessity of the graphical condition for identifiability. We now prove
that the graphical condition in Theorem 2, which states that there be no induced
subgraph whose directed part contains a converging arborescence and whose bidi-
rected part is connected, is necessary for the parametrization φG to be injective.
By Lemma 1, it suffices to consider an acyclic mixed graph whose directed part is
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a converging arborescence and whose bidirected part is a spanning tree. In light of
Lemma 2, the necessity of the graphical condition in Theorem 2 then follows from
the following result.

PROPOSITION 1. Let G = (V ,D,B) be an acyclic mixed graph with topolog-
ically ordered vertex set V = [m + 1]. If (V ,D) is an arborescence converging to
m + 1 and (V ,B) is a spanning tree, then there exists a pair of matrices � ∈ RD

and � ∈ PD(B) with

kernel
(
�[m]\S(m),[m](I − �)−1

[m],P (m)

) �= {0}.

Let L(�) ⊆ Rm be the column span of (I − �)−1
[m],P (m). We formulate a first

lemma that we will use to prove Proposition 1.

LEMMA 4. If V = [m+ 1] and (V ,D) is an arborescence converging to node
m + 1, then the union of the linear spaces L(�) for all � ∈ RD contains the set
(R∗)m = (R \ {0})m of vectors with all coordinates nonzero.

PROOF. In the arborescence, there is a unique path π(i) from any vertex i ∈
[m] \ P(m) to the sink node m + 1. Let k(i) be the unique node in P(m) that lies
on this path. Let � ∈ RD and α ∈ R|P(m)|, and define the vector

β(�,α) = (I − �)−1
[m],P (m)α ∈ Rm.

Since the principal submatrix (I − �)−1
P(m),P (m) is an identity matrix (because the

directed graph is a converging arborescence), β(�,α)i = αi for all i ∈ P(m). For
i ∈ [m] \ P(m), we use Lemma 3 to obtain

β(�,α)i = αk(i)

∏
j→l∈π(i)

λjl = λijβ(�,α)j ,(4.1)

where i → j ∈ G is the unique edge originating from i.
Let x be any vector in (R∗)m. Our claim states that there exist a matrix � ∈ RD

and vector α such that x = β(�,α). Clearly, α has to be equal to the subvector
xP(m). The associated unique choice of � is obtained by recursively solving for
the entries λij using the relationship in (4.1). �

Let R(m) = [m] \ S(m) be the “rest” of the nodes. We are left with the problem
of finding a matrix � ∈ PD(B) for which some vector in (R∗)m lies in the kernel
of the submatrix

�R(m),[m] = [
�R(m),R(m) �R(m),S(m)

]
.

Proposition 1 now follows by combining Lemma 4 with the next result.
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LEMMA 5. If (V ,B) is a tree on V = [m + 1], then there exists a matrix
� ∈ PD(B) such that the vector 1 = (1, . . . ,1)T is in the kernel of the submatrix
�R(m),[m].

PROOF. Let T be the set of all nodes in R(m) that are connected to some node
in S(m) by an edge in B . If � ∈ PD(B), then the submatrix �R(m),S(m) has only
zero entries in rows indexed by nodes i ∈ R(m) \ T . If i ∈ T , then the ith row of
�R(m),S(m) has at least one entry that is not constrained to zero and may take any
real value. Hence, we can choose a matrix �R(m),S(m) that has row sum

∑
j∈S(m)

ωij =
{−1, if i ∈ T ,

0, if i ∈ R(m) \ T .
(4.2)

Let H = (R(m),BR(m)) be the induced subgraph of G on vertex set R(m).
The Laplacian of H , L(H) = (lij ), is the symmetric R(m) × R(m) matrix whose
diagonal entries are the degrees of the nodes in H and whose off-diagonal entries
lij are equal to −1 if i ↔ j is an edge in H and 0 otherwise. The Laplacian is well
known to be positive semidefinite with all row sums zero. For a subset C ⊂ [m], let
1C ∈ Rm be the vector with entries equal to one at indices in C and zero elsewhere.
The kernel of L(H) is the direct sum of the linear spaces spanned by the vectors
1C for the connected components C of the graph H ; compare [4], Chapter 1.

Let DT = (dij ) be the diagonal matrix that has diagonal entry dii = 1 if i ∈ T

and dii = 0 otherwise. Both L(H) and DT are positive semidefinite matrices and
thus the kernel of L(H) + DT is equal to kerL(H) ∩ kerDT . Since (V ,B) is a
connected graph, each connected component of H contains a node in T . Therefore,
none of the vectors 1C are in the kernel of DT , where C ranges over all connected
components of H . This implies that the ker(L(H) + DT ) = {0}, and hence this
matrix is positive definite.

Let � be any matrix in PD(B) whose submatrix �R(m),S(m) satisfies (4.2) and
whose principal submatrix �R(m),R(m) is the positive definite matrix L(H) + DT .
The matrix � ∈ PD(B) has the desired property because

�R(m),[m]1 = (
L(H) + DT

)
1 + �R(m),S(m)1 = 1T − 1T = 0.

Such matrices exist because we can choose �S(m),S(m) to be, for instance, a di-
agonal matrix with very large diagonal entries. Principal minors of � that are not
submatrices of �R(m),R(m) will be dominated by these diagonal entries and hence
be positive. All other principal minors are positive since �R(m),R(m) = L(H)+DT

was shown to be positive definite. �

5. Sufficiency of the graphical condition for identifiability. In this section,
we prove that the graphical condition in Theorem 2, which requires an acyclic
mixed graph G to have no induced subgraph whose directed part contains a con-
verging arborescence and whose bidirected part is connected, is sufficient for the
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parametrization φG to be injective. Proposition 4 below shows that if φG is not
injective and G does not contain an induced subgraph with both a converging ar-
borescence and a bidirected spanning tree, then there is a subgraph G′ with fewer
nodes such that φG′ still fails to be injective. The sufficiency of the graphical con-
dition then follows immediately. To see this, note that a graph G with noninjective
parametrization φG must contain some minimal induced subgraph G′ with nonin-
jective φG′ . Applying the contrapositive of Proposition 4 to G′, we conclude that
the directed part of G′ contains a converging arborescence and the bidirected part
of G′ is connected.

In preparing for the proof of Proposition 4, we first treat the case when there
is no arborescence; this gives Proposition 2. The case when there is no bidirected
spanning tree is treated in Proposition 3. In either case, we reduce a given graph
G = (V ,D,B) to the subgraph GW induced by a subset W � V . We use the nota-
tion �̃, �̃, P̃ (i), S̃(i), P̃(i, j) to denote the counterparts to �, �, P(i), S(i) and
P(i, j), when performing this reduction of G to GW .

PROPOSITION 2. Let G = (V ,D,B) be an acyclic mixed graph with topolog-
ically ordered vertex set V = [m+1], with some � ∈ RD , � ∈ PD(B) and nonzero
α ∈ R|P(m)|, such that

�[m]\S(m),[m](I − �)−1
[m],P (m)α = 0.

Suppose the directed part of G does not contain an arborescence converging to
m + 1. Let A be the set of nodes i ≤ m with some path of directed edges from i to
m + 1, and W = A ∪ {m + 1}. Then W � V and φGW

is not injective.

PROOF. Since G does not have a converging arborescence, A � [m] and
W � V .

Denote the induced subgraph as GW = (W, D̃, B̃). Let �̃ = �W,W ∈ RD̃ and
�̃ = �W,W ∈ PD(B̃). Note that P(m) ⊆ A by definition, and so P̃ (m) = P(m).
Suppose j ∈ P(m). Then for each i ∈ [m] \ A, P(i, j) = ∅ by definition, and so
(I − �)−1

ij = 0 by Lemma 3. For each i ∈ A, and for any path i → v1 → ·· · →
vk → j in G, each intermediate vertex v1, . . . , vk is in A by definition of A (since
there is an edge j → m + 1). Therefore, P̃(i, j) = P(i, j), and it follows that
(I − �̃)−1

ij = (I −�)−1
ij . In other words, when the nodes outside of W are removed

from G, the remaining entries of (I − �)−1 are unchanged, while the removed
entries in the columns indexed by P(m) = P̃ (m) are all zero. We obtain that∑

i∈A

�̃
A\S̃(m),i

(I − �̃)−1
i,P̃ (m)

α = ∑
i∈A

�A\S(m),i(I − �)−1
i,P (m)α

= ∑
i∈[m]

�A\S(m),i(I − �)−1
i,P (m)α

= �A\S(m),[m](I − �)−1
[m],P (m)α.
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By assumption, the last quantity is zero. By Lemma 2, φGW
is not injective. �

We next prove a similar proposition for graphs whose bidirected part is not
connected. The proof uses Lemmas 6 and 8, which are derived in Section 6.

PROPOSITION 3. Let G = (V ,D,B) be an acyclic mixed graph with topo-
logically ordered vertex set V = [m + 1], with some � ∈ RD , � ∈ PD(B), and
nonzero α ∈ R|P(m)|, such that

�[m]\S(m),[m](I − �)−1
[m],P (m)α = 0.

Suppose the bidirected part of G is not connected. Let A be the set of nodes i ≤ m

with some path of bidirected edges from i to m + 1, and W = A ∪ {m + 1}. Then
W � V and φGW

is not injective.

PROOF. Since the bidirected part is not connected, A � [m] and W � V .
Denote the induced subgraph as GW = (W, D̃, B̃). Let �̃ = �W,W ∈ RD̃ and

�̃ = �W,W ∈ PD(B̃). If i ∈ S(m), then it holds trivially that i ∈ A and thus S̃(m) =
S(m). By Lemma 8 below,

�̃
A\S̃(m),A

(I − �̃)−1
A,P̃ (m)

α
P̃ (m)

= �̃A\S(m),A(I − �)−1
A,P (m)α

= �̃A\S(m),[m](I − �)−1
[m],P (m)α

− �̃A\S(m),[m]\A(I − �)−1
[m]\A,P (m)α.

By hypothesis, the first term in the last line is zero. By Lemma 6 below, (I −
�)−1

[m]\A,P (m)α = 0, and so the second term in the last line is zero as well. There-
fore,

�̃A\S(m),A(I − �̃)−1
A,P̃ (m)

α
P̃ (m)

= 0.

It remains to be shown that α
P̃ (m)

�= 0. Suppose instead that α
P̃ (m)

= 0. Then,
using Lemma 6, we obtain that

0 = (I − �)−1
[m]\A,P (m)α

= (I − �)−1
[m]\A,P̃ (m)

α
P̃ (m)

+ (I − �)−1
[m]\A,P (m)\P̃ (m)

α
P (m)\P̃ (m)

= 0 + (I − �)−1
[m]\A,P (m)\P̃ (m)

α
P (m)\P̃ (m)

.

However, P(m) \ P̃ (m) ⊆ [m] \ A and thus (I − �)−1
[m]\A,P (m)\P̃ (m)

is a subma-

trix of (I − �)−1
[m]\A,[m]\A, which is a full rank matrix as it is upper triangular

with ones on the diagonal. Therefore, (I − �)−1
[m]\A,P (m)\P̃ (m)

is full rank, and so

α
P(m)\P̃ (m)

= 0. It follows that α = 0, which is a contradiction. We conclude that
α

P̃ (m)
�= 0 and, by Lemma 2, that φGW

is not injective. �
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PROPOSITION 4. Let G = (V ,D,B) be an acyclic mixed graph with topo-
logically ordered vertex set V = [m + 1], such that the parametrization φG is not
injective. If either the directed part of G does not contain an arborescence con-
verging to m + 1, or the bidirected part of G is not connected, then there is some
proper induced subgraph GW of G for which the parametrization φGW

is not in-
jective.

PROOF. From Lemma 2, for some i ≤ m, � ∈ RD and � ∈ PD(B),

rank
(
�[i]\S(i),[i](I − �)−1

[i],P (i)

)
< |P(i)|.(5.1)

Suppose i < m. Take W = [i + 1], and denote the induced subgraph as GW =
(W, D̃, B̃). It holds trivially that �̃ := �[i+1],[i+1] ∈ RD̃ and �̃ := �[i+1],[i+1] ∈
PD(B̃), and furthermore (I − �̃)−1 = (I − �)−1

[i+1],[i+1]. It is then clear that, by
Lemma 2, φGW

is not injective.
Next suppose instead that (5.1) is true for i = m. If the directed part of G does

not contain an arborescence converging to m + 1, then apply Proposition 2 to pro-
duce a proper induced subgraph GW with φGW

noninjective. If instead the bidi-
rected part of G is not connected, then apply Proposition 3 to produce a proper
induced subgraph GW with φGW

noninjective.
In all cases, we have constructed a subset W � V with φGW

not injective. �

6. Proofs of lemmas in Section 5.

LEMMA 6. Let G, �, �, α, and A be as in the statement of Proposition 3.
Then (I − �)−1

[m]\A,P (m)α = 0.

PROOF. If i ∈ [m] \ A and j ∈ A, then, by definition of A, it holds that
�i,j = 0. Therefore, �[m]\A,A = 0 and we obtain that

�[m]\A,[m]\A(I − �)−1
[m]\A,P (m)α = �[m]\A,[m](I − �)−1

[m],P (m)α = 0.

For the last equality, observe that [m] \ A ⊂ [m] \ S(i) since S(i) ⊂ A. Since
�[m]\A,[m]\A is positive definite, the claim follows. �

For a directed path π in the graph G, we write π �⊂ GA to indicate that not all
the nodes of π lie in A. Also, by convention, P(j, j) is a singleton set containing
the trivial path at j ; in this case π has no edges and we define

∏
a→b∈π λab = 1.

LEMMA 7. Let G, �, �, α, and A be as in the statement of Proposition 3.
Then for every i ≤ m,

∑
k∈P(m)

αk

( ∑
π∈P(i,k),π �⊂GA

∏
a→b∈π

λab

)
= 0.
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PROOF. First, we prove the claim for i /∈ A. Working from Lemma 6, we have
that

0 = (I − �)−1
i,P (m)α = ∑

k∈P(m)

(I − �)−1
ik αk

(6.1)

= ∑
k∈P(m)

αk

( ∑
π∈P(i,k)

∏
a→b∈π

λab

)
.

Since i /∈ A, any path π ∈ P(i, k) for any k necessarily satisfies π �⊂ GA. Hence,
we can rewrite (6.1) as∑

k∈P(m)

αk

( ∑
π∈P(i,k),π �⊂GA

∏
a→b∈π

λab

)
= 0.

Next, we address the case i ∈ A. Inducting on i in decreasing order, we may
assume that the claim holds for all j ∈ {i + 1, i + 2, . . . ,m}. [As a base case, we
can set i = m because, by the assumed topological order, P(m, k) = ∅ for all
nodes k < m.] The quantity claimed to be vanishing is∑

k∈P(m)

αk

( ∑
π∈P(i,k),π �⊂GA

∏
a→b∈π

λab

)
(6.2)

= ∑
k∈P(m)

αk

[ ∑
j : i→j

( ∑
π ′∈P(j,k),π ′ �⊂GA

λij

∏
a→b∈π ′

λab

)]
.

This last equality is obtained by splitting any path π = i → v1 → ·· · → vn → k

into i → j := v1 and π ′ = j → v2 → ·· · → vn → k. (Note that the path of length
zero at i is not in the sum, since this path would not satisfy π �⊂ GA.) Since we
assume i ∈ A, it holds that π �⊂ GA if and only if π ′ �⊂ GA. Interchanging the order
of the summations in (6.2), we obtain that∑

k∈P(m)

αk

( ∑
π∈P(i,k),π �⊂GA

∏
a→b∈π

λab

)

= ∑
j : i→j

[ ∑
k∈P(m)

αk

( ∑
π ′∈P(j,k),π ′ �⊂GA

λij

∏
a→b∈π ′

λab

)]

= ∑
j : i→j

λij

[ ∑
k∈P(m)

αk

( ∑
π ′∈P(j,k),π ′ �⊂GA

∏
a→b∈π ′

λab

)]
.

Working with a topologically ordered set of nodes, the presence of an edge i → j

implies i < j . The inductive hypothesis thus yields that∑
k∈P(m)

αk

( ∑
π∈P(i,k),π �⊂GA

∏
a→b∈π

λab

)
= ∑

j : i→j

λij · 0 = 0,

which completes the inductive step and the proof of the lemma. �
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LEMMA 8. Let G, �, �, α and A be as in the statement of Proposition 3.
Then for all i ∈ A,

(I − �̃)−1
i,P̃ (m)

α
P̃ (m)

= (I − �)−1
i,P (m)α.

PROOF. The right-hand side of the above equation can be rewritten as

(I − �)−1
i,P (m)α = ∑

k∈P(m)

(I − �)−1
ik αk = ∑

k∈P(m)

αk

( ∑
π∈P(i,k)

∏
a→b∈π

λab

)

= ∑
k∈P(m)

αk

( ∑
π∈P(i,k),π⊂GA

∏
a→b∈π

λab

)

+ ∑
k∈P(m)

αk

( ∑
π∈P(i,k),π �⊂GA

∏
a→b∈π

λab

)
.

Consider the two sums in the last line above. By Lemma 7, the second sum is
equal to zero. Note also that if k ∈ P(m) \ A, then there is no path π ∈ P(i, k)

with π ⊂ GA. Therefore, the first sum can be indexed over k ∈ P̃ (m). We thus
obtain that, as claimed,

(I − �)−1
i,P (m)α = ∑

k∈P̃ (m)

αk

( ∑
π∈P(i,k),π⊂GA

∏
a→b∈π

λab

)

= ∑
k∈P̃ (m)

αk(I − �̃)−1
ik = (I − �̃)−1

i,P̃ (m)
α

P̃ (m)
.

�

7. Cyclic models. In this section, we prove Theorem 1 from the Introduction,
which states that only acyclic mixed graphs may yield globally identifiable models.
By Lemma 1, the theorem holds if we can show that the parametrization φG is not
injective when G is a simple directed cycle, that is, when G is isomorphic to the
cycle

1 → 2 → ·· · → m → 1(7.1)

for some m ≥ 3. This noninjectivity is shown in the next lemma. Recall the defin-
ition of a fiber in (2.1).

LEMMA 9. Let G = (V ,D,B) be a simple directed cycle on m ≥ 3 nodes,
� ∈ RD

reg and � ∈ PD(B). Then the cardinality of the fiber F (�,�) is at most two
and is equal to two for generic choices of � and �.

In order to prepare the proof of Lemma 9, note that for directed graphs the set
PD(B) = PD(∅) contains exactly the diagonal matrices with positive diagonal
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entries. This set being invariant under matrix inversion, it is convenient to consider
the polynomial map

κG : (�,�) �→ (I − �)�(I − �)T

that parametrizes the inverse of the covariance matrix of the distributions in the
structural equation model. Since κG(�,�) = φG(�,�−1)−1 for � ∈ RD

reg and
� ∈ PD(∅), the fibers of κG and φG are in bijection with each other.

PROOF OF LEMMA 9. Without loss of generality, assume G to be the graph
with the edges in (7.1). For shorter notation, we let λi = �i,i+1, the parameter on
the edge i → i + 1. Throughout, indices are read cyclically with m + i := i for
i ≥ 1. The matrix (I −�) is invertible if and only if

∏m
i=1 λi �= 1. Let δi = �ii , the

inverse of the positive variance parameter associated with node i. Treating κG as a
function of a pair of vectors (λ, δ) ∈ Rm × Rm+, we obtain that κG(λ, δ) is equal to⎛

⎜⎜⎜⎜⎜⎜⎜⎝

δ1 + δ2λ
2
1 −δ2λ1 0 · · · 0 −δ1λm

−δ2λ1 δ2 + δ3λ
2
2 −δ3λ2 · · · 0 0

0 −δ3λ2 δ3 + δ4λ
2
3 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · δm−1 + δmλ2

m−1 −δmλm−1

−δ1λm 0 0 · · · −δmλm−1 δm + δ1λ
2
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Fix a pair (λ0, δ0) ∈ Rm × Rm+ with
∏m

i=1 λ0
i �= 1. We wish to describe the fiber

{(λ, δ) ∈ Rm × Rm+ :κG(λ, δ) = κG(λ0, δ0)}.(7.2)

Let K0 := κG(λ0, δ0). The equation κG(λ, δ) = K0 determining membership in
the fiber amounts to the system of the 2m polynomial equations

δi + δi+1λ
2
i = K0

i,i ,(7.3a.i)

−δi+1λi = K0
i,i+1(7.3b.i)

for i = 1, . . . ,m. We split the problem into two cases, for which the algebraic
degree of the equation system given by (7.3a.i) and (7.3b.i) differs.

Case (i): Suppose λ0
i = 0 for some i. Without loss of generality, λ0

1 = 0 such
that K0

12 = 0 and K0
11 = δ0

1 . As a consequence, the two equations (7.3a.i) and
(7.3b.i) for i = 1 reduce to δ1 = δ0

1 and λ1 = 0 = λ0
1. This provides the basis for

solving the remaining equations recursively in the order i = m, . . . ,2. Each time
the equation pair reduces to the linear equations δi = δ0

i and λi = λ0
i , and the fiber

in (7.2) is seen to be the singleton {(λ0, δ0)}. Note that the problem has become the
same as parameter identification in the model based on the acyclic graph obtained
by removing the edge 1 → 2 from G. Note further that the equation system is of
degree one in this case.
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Case (ii): Assume now that λ0
i �= 0 for all i. We claim that the fiber in (7.2) then

also contains the pair (λ1, δ1) that has coordinates

δ1
i = δ0

i + (
∏m

j=1 δ0
j )[

∏m
j=1((λ

0
j )

2 − 1)]
det(K0−i)

,

λ1
i = −K0

i,i+1

δi+1

for i = 1,2, . . . ,m. Here K0−i is the matrix obtained from K0 by removing the ith
row and column. Note that (δ1, λ1) �= (δ0, λ0) if and only if

∏m
j=1 λ0

j �= −1; recall
that the product is assumed to be different from 1 to ensure that I −� is invertible.
It is not very difficult to check that (δ1, λ1) is indeed in the fiber; the m equations
in (7.3b.i) are satisfied trivially, and the m equations in (7.3a.i) can be checked by
plug-in. For this an explicit expression of det(K0−i ) in terms of (λ0, δ0) is needed.
Using the Cauchy–Binet formula, one can show that

det(K0−i ) =
(

m∏
j=1

δ0
j

)(
1

δ0
i

+
i−1∑
j=1

1

δ0
j

i−1∏
k=j

(λ0
k)

2 +
m∑

j=i+1

1

δ0
j

m+i−1∏
k=j

(λ0
k)

2

)
.

We furthermore claim that the fiber contains no points other than (λ0, δ0) and
(λ1, δ1). We outline the proof of this claim, again leaving out some of the details.

Solve for λ1 in equation (7.3b.i) for i = 1 and plug the resulting expression
in δ2 into the equation (7.3a.i) for i = 1. This equation can be solved for δ2 to
give an expression in δ1. Continue on in this fashion for the indices i = 2, . . . ,m

always obtaining an expression in δ1 after solving (7.3a.i). Let [j :k] := {j, . . . , k}
for integers j < k. We find that, after the ith step,

δi = (K0
i−1,i)

2 · det(K0[1 : i−2],[1 : i−2]) − det(K0[2 : i−2],[2 : i−2])δ1

det(K0[1 : i−1],[1 : i−1]) − det(K0[2 : i−1],[2 : i−1])δ1
,

where we define det(K0[1 : 0]) = det(K0[2 : 1]) = 1 and det(K0[2 : 0]) = 0. The last step
of this procedure, namely, plugging the expression for δm into the equation (7.3a.i)
for i = m produces a rational equation in the single variable δ1. Clearing denomi-
nators we obtain a quadratic equation in δ1 whose leading coefficient for δ2

1 simpli-
fies to det(K0−1) and thus is nonzero. Therefore, the polynomial equation system
in (7.3a.i)–(7.3b.i) has degree two and the fiber in (7.2) contains precisely (λ0, δ0)

and (λ1, δ1). Note that the fiber has cardinality one (with a point of multiplicity
two) if

∏m
j=1 λ0

j = −1. �

8. Conclusion. Our Theorems 1 and 2 fully characterize the mixed graphs
for which the associated linear structural equation model is globally identifiable.
Globally identifiable models have smooth manifolds as parameter spaces, which
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implies in particular that maximum likelihood estimators are asymptotically nor-
mal for all choices of a true distribution in the model. Similarly, likelihood ratio
statistics for testing two nested globally identifiable models are asymptotically chi-
square. Example 1 demonstrates that these properties may fail in models that are
only generically identifiable. The resulting inferential issues are also not so easily
overcome using bootstrap methods; compare [1]. Nevertheless, generically identi-
fiable models appear in various applications, and characterizing the mixed graphs
that yield generically identifiable linear structural equation models remains an im-
portant open problem.
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