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NONPARAMETRIC LEAST SQUARES ESTIMATION OF A
MULTIVARIATE CONVEX REGRESSION FUNCTION

BY EMILIO SEIJO AND BODHISATTVA SEN1

Columbia University

This paper deals with the consistency of the nonparametric least squares
estimator of a convex regression function when the predictor is multidimen-
sional. We characterize and discuss the computation of such an estimator via
the solution of certain quadratic and linear programs. Mild sufficient condi-
tions for the consistency of this estimator and its subdifferentials in fixed and
stochastic design regression settings are provided.

1. Introduction. Consider a closed, convex set X ⊂ R
d , for d ≥ 1, with

nonempty interior and a regression model of the form

Y = φ(X) + ε,(1)

where X is a X-valued random vector, ε is a random variable with E(ε|X) = 0,
and φ : Rd → R is an unknown convex function. Given independent observations
(X1, Y1), . . . , (Xn,Yn) from such a model, we wish to estimate φ by the method of
least squares, that is, by finding a convex function φ̂n which minimizes the discrete
L2 norm (

n∑
k=1

|Yk − ψ(Xk)|2
)1/2

among all convex functions ψ defined on the convex hull of X1, . . . ,Xn. In this pa-
per we characterize the least squares estimator, provide means for its computation,
study its finite sample properties and prove its consistency.

The problem just described is a nonparametric regression problem with known
shape restriction (convexity). Such problems have a long history in the statistical
literature with seminal papers like Brunk (1955), Grenander (1956) and Hildreth
(1954) written more than 50 years ago, albeit in simpler settings. The former two
papers deal with the estimation of monotone functions while the latter discusses
least squares estimation of a concave function whose domain is a subset of the
real line. Since then, many results on different nonparametric shape restricted re-
gression problems have been published; see, for instance, Brunk (1970) and, more
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recently, Zhang (2002) for literature concerning isotonic regression. In the par-
ticular case of convex regression, Hanson and Pledger (1976) proved the consis-
tency of the least squares estimator introduced in Hildreth (1954). Some years later,
Mammen (1991) and Groeneboom, Jongbloed and Wellner (2001) derived, respec-
tively, the rate of convergence and asymptotic distribution of this estimator. Some
alternative methods of estimation that combine shape restrictions with smoothness
assumptions have also been proposed for the one-dimensional case; see, for ex-
ample, Birke and Dette (2006) where a kernel-based estimator is defined and its
asymptotic distribution derived.

Although the asymptotic theory of the one-dimensional convex regression prob-
lem is well understood, not much has been done in the multidimensional scenario.
The absence of a natural order structure in R

d , for d > 1, poses a natural imped-
iment in such extensions. A convex function on the real line can be character-
ized as an absolutely continuous function with increasing first derivative [see, e.g.,
Folland (1999), Exercise 42.b, page 109]. This characterization plays a key role in
the computation and asymptotic theory of the least squares estimator in the one-
dimensional case. By contrast, analogous results for convex functions of several
variables involve more complicated characterizations using either second-order
conditions [as in Dudley (1977), Theorem 3.1, page 163] or cyclical monotonicity
[as in Rockafellar (1970), Theorems 24.8 and 24.9, pages 238 and 239]. Interest-
ing differences between convex functions on R and convex functions on R

d , for
d > 1, are given in Johansen (1974) and Brons̆teı̆n (1978).

Recently there has been considerable interest in shape restricted function esti-
mation in multidimension. In the density estimation context, Cule, Samworth and
Stewart (2010) deal with the computation of the nonparametric maximum likeli-
hood estimator of a multidimensional log-concave density, while Cule and Sam-
worth (2010), Schuhmacher, Hüsler and Dümbgen (2009) and Schuhmacher and
Dümbgen (2010) discuss its consistency and related issues. Seregin and Wellner
(2009) study the computation and consistency of the maximum likelihood estima-
tor of convex-transformed densities. This paper focuses on estimating a regression
function which is known to be convex. To the best of our knowledge this is the first
attempt to systematically study the characterization, computation and consistency
of the least squares estimator of a convex regression function with multidimen-
sional covariates in a completely nonparametric setting.

In the field of econometrics some work has been done on this multidimen-
sional problem in less general contexts and with more stringent assumptions.
Estimation of concave and/or componentwise nondecreasing functions has been
treated, for example, in Banker and Maindiratta (1992), Matzkin (1991, 1993),
Beresteanu (2007) and Allon et al. (2007). The first two papers define maxi-
mum likelihood estimators in semiparametric settings. The estimators in Matzkin
(1991) and Banker and Maindiratta (1992) are shown to be consistent in Matzkin
(1991) and Sarath and Maindiratta (1997), respectively. A maximum likelihood
estimator and a sieved least squares estimator have been defined and techniques
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for their computation have been provided in Allon et al. (2007) and Beresteanu
(2007), respectively.

The method of least squares has been applied to multidimensional concave re-
gression in Kuosmanen (2008). We take this work as our starting point. In agree-
ment with the techniques used there, we define a least squares estimator which can
be computed by solving a quadratic program. We argue that this estimator can be
evaluated at a single point by finding the solution to a linear program. We then
show that, under some mild regularity conditions, our estimator can be used to
consistently estimate both the convex function and its subdifferentials.

Our work goes beyond those mentioned above in the following ways: our
method does not require any tuning parameter(s), which is a major drawback
for most nonparametric regression methods, such as kernel-based procedures. The
choice of the tuning parameter(s) is especially problematic in higher dimensions;
for example, kernel based methods would require the choice of a d × d matrix of
bandwidths. The sets of assumptions that most authors have used to study the esti-
mation of a multidimensional convex regression function are more restrictive and
of a different nature than the ones in this paper. As opposed to the maximum like-
lihood approach used in Banker and Maindiratta (1992), Matzkin (1991), Allon
et al. (2007) and Sarath and Maindiratta (1997), we prove the consistency of the
estimator keeping the distribution of the errors completely unspecified; for exam-
ple, in the i.i.d. case we only assume that the errors have zero expectation and finite
second moment. The estimators in Beresteanu (2007) are sieved least squares es-
timators and assume that the observed values of the predictors lie on equidistant
grids of rectangular domains. By contrast, our estimators are unsieved and our
assumptions on the spatial arrangement of the predictor values are much more re-
laxed. In fact, we prove the consistency of the least squares estimator under both
fixed and stochastic design settings; we also allow for heteroscedastic errors. In
addition, we show that the least squares estimator can also be used to approximate
the gradients and subdifferentials of the underlying convex function.

It is hard to overstate the importance of convex functions in applied mathemat-
ics. For instance, optimization problems with convex objective functions over con-
vex sets appear in many applications. Thus, the question of accurately estimating
a convex regression function is indeed interesting from a theoretical perspective.
However, it turns out that convex regression is important for numerous reasons
besides statistical curiosity. Convexity also appears in many applied sciences. One
such field of application is microeconomic theory. Production functions are of-
ten supposed to be concave and componentwise nondecreasing. In this context,
concavity reflects decreasing marginal returns. Concavity also plays a role in the
theory of rational choice since it is a common assumption for utility functions,
on which it represents decreasing marginal utility. The interested reader can see
Hildreth (1954), Varian (1982) or Varian (1984) for more information regarding
the importance of concavity/convexity in economic theory.
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The paper is organized as follows. In Section 2 we discuss the estimation pro-
cedure, characterize the estimator and show how it can be computed by solving
a positive semidefinite quadratic program and a linear program. Section 3 starts
with a description of the deterministic and stochastic design regression schemes.
The statements and proofs of our main results are also included in Section 3. In
Section 4 we provide the proofs of some technical lemmas used to prove the main
theorem. Although we have omitted the proofs of some auxiliary results, they can
be found in the supplemental document [Seijo and Sen (2010)].

2. Characterization and finite sample properties. We start with some nota-
tion. For convenience, we will regard elements of the Euclidean space R

m as col-
umn vectors and denote their components with upper indices, that is, any z ∈ R

m

will be denoted by z = (z1, z2, . . . , zm)′. The symbol R will stand for the extended
real line. Additionally, for any set A ⊂ R

d we will denoted as Conv(A) its convex
hull and we will write Conv(X1, . . . ,Xn) instead of Conv({X1, . . . ,Xn}). Finally,
we will use 〈·, ·〉 and | · | to denote the standard inner product and norm in Eu-
clidean spaces, respectively.

For X = {X1, . . . ,Xn} ⊂ X ⊂ R
d , consider the set K X of all vectors z =

(z1, . . . , zn)′ ∈ R
n for which there is a convex function ψ :X → R such that

ψ(Xj) = zj for all j = 1, . . . , n. Then, a necessary and sufficient condition for

a convex function ψ to minimize the sum of squared errors is that ψ(Xj) = Z
j
n for

j = 1, . . . , n, where

Zn = arg min
z∈K X

{
n∑

k=1

|Yk − zk|2
}
.(2)

The computation of the vector Zn is crucial for the estimation procedure. We
will show that such a vector exists and is unique. However, it should be noted that
there are many convex functions ψ satisfying ψ(Xj) = Z

j
n for all j = 1, . . . , n. Al-

though any of these functions can play the role of the least squares estimator, there
is one such function which is easily evaluated in Conv(X1, . . . ,Xn). For compu-
tational convenience, we will define our least squares estimator φ̂n to be precisely
this function and describe it explicitly in (7) and the subsequent discussion.

In what follows we show that both the vector Zn and the least squares estimator
φ̂n are well defined for any n data points (X1, Y1), . . . , (Xn,Yn). We will also
provide two characterizations of the set K X and show that the vector Zn can be
computed by solving a positive semidefinite quadratic program. Finally, we will
prove that for any x ∈ Conv(X1, . . . ,Xn) one can obtain φ̂n(x) by solving a linear
program.

2.1. Existence and uniqueness. We start with two characterizations of the
set K X . The developments here are similar to those in Allon et al. (2007) and
Kuosmanen (2008).
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LEMMA 2.1 (Primal characterization). Let z ∈ R
n. Then, z ∈ K X if and only

if for every j = 1, . . . , n, the following holds:

zj = inf

{
n∑

k=1

θkzk :
n∑

k=1

θk = 1,

n∑
k=1

θkXk = Xj, θ ≥ 0, θ ∈ R
n

}
,(3)

where the inequality θ ≥ 0 holds componentwise.

PROOF. Define the function g : Rd → R by

g(x) = inf

{
n∑

k=1

θkzk :
n∑

k=1

θk = 1,

n∑
k=1

θkXk = x, θ ≥ 0, θ ∈ R
n

}
,(4)

where we use the convention that inf(∅) = +∞. By Lemma 2.1 in Seijo and Sen
(2010), g is convex and finite on the Xj ’s. Hence, if zj satisfies (3), then zj =
g(Xj ) for every j = 1, . . . , n and it follows that z ∈ K X .

Conversely, assume that z ∈ K X and g(Xj ) 
= zj for some j . Note that g(Xk) ≤
zk for any k from the definition of g. Thus, we may suppose that g(Xj ) < zj . As
z ∈ K X , there is a convex function ψ such that ψ(Xk) = zk for all k = 1, . . . , n.
Then, from the definition of g(Xj ) there exist θ0 ∈ R

n with θ0 ≥ 0 and θ1
0 + · · · +

θn
0 = 1 such that θ1

0 X1 + · · · + θn
0 Xn = Xj and

n∑
k=1

θk
0 ψ(Xk) =

n∑
k=1

θk
0 zk < zj = ψ(Xj) = ψ

(
n∑

k=1

θk
0 Xk

)
,

which leads to a contradiction because ψ is convex. �

We now provide an alternative characterization of the set K X based on the dual
problem to the linear program used in Lemma 2.1.

LEMMA 2.2 (Dual characterization). Let z ∈ R
n. Then, z ∈ K X if and only if

for any j = 1, . . . , n we have

zj = sup{〈ξ,Xj 〉 + η : 〈ξ,Xk〉 + η ≤ zk ∀k = 1, . . . , n, ξ ∈ R
d, η ∈ R}.(5)

Moreover, z ∈ K X if and only if there exist vectors ξ1, . . . , ξn ∈ R
d such that

〈ξj ,Xk − Xj 〉 ≤ zk − zj ∀k, j ∈ {1, . . . , n}.(6)

PROOF. According to the primal characterization, z ∈ K X if and only if the
linear programs defined by (3) have the zj ’s as optimal values. The linear programs
in (5) are the dual problems to those in (3). Then, the duality theorem for linear
programs [see Luenberger (1984), page 89] implies that z ∈ K X if and only if the
zj ’s are the optimal values to the programs in (5).

To prove the second assertion let us first assume that z ∈ K X . For each j ∈
{1, . . . , n} take any solution (ξj , ηj ) to (5). Then by (5), ηj = zj −〈ξj ,Xj 〉 and the



1638 E. SEIJO AND B. SEN

inequalities in (6) follow immediately because we must have 〈ξj ,Xk〉+ηj ≤ zk for
any k ∈ {1, . . . , n}. Conversely, take z ∈ R

n and assume that there are ξ1, . . . , ξn ∈
R

d satisfying (6). Take any j ∈ {1, . . . , n}, ηj = zj − 〈ξj ,Xj 〉 and θ to be the
vector in R

n with components θk = δkj , where δkj is the Kronecker δ. It follows
that 〈ξj ,Xk〉 + ηj ≤ zk ∀k = 1, . . . , n so (ξj , ηj ) is feasible for the linear program
in (5). In addition, θ is feasible for the linear program in (3) so the weak duality
principle of linear programming [see Luenberger (1984), Lemma 1, page 89] im-
plies that 〈ξ,Xj 〉 + η ≤ zj for any pair (ξ, η) which is feasible for the problem in
the right-hand side of (5). We thus have that zj is an upper bound attained by the
feasible pair (ξj , ηj ) and hence (5) holds for all j = 1, . . . , n. �

Both the primal and dual characterizations are useful for our purposes. The
primal plays a key role in proving the existence and uniqueness of the least squares
estimator. The dual is crucial for its computation.

LEMMA 2.3. The set K X is a closed, convex cone in R
n and the vector Zn

satisfying (2) is uniquely defined.

PROOF. That K X is a convex cone follows trivially from the definition of the
set. Now, if z /∈ K X , then there is j ∈ {1, . . . , n} for which zj > g(Xj ) with the
function g defined as in (4). Thus, there is θ0 ∈ R

n with θ0 ≥ 0 and θ1
0 +· · ·+ θn

0 =
1 such that θ1

0 X1 + · · · + θn
0 Xn = Xj and

∑n
k=1 θk

0 zk < zj . Setting δ = 1
2(zj −∑n

k=1 θk
0 zk) it is easily seen that for all ζ ∈ ∏n

k=1(z
k − δ, zk + δ) we still have∑n

k=1 θk
0 ζ k < ζ j and thus ζ /∈ K X . Thus, we have shown that for any z /∈ K X there

is a neighborhood U of z with U ⊂ R
n \ K X . Therefore, K X is closed and the

vector Zn is uniquely determined as the projection of (Y1, . . . , Yn) ∈ R
n onto the

closed convex set K X [see Conway (1985), Theorem 2.5, page 9]. �

We are now in a position to define the least squares estimator. Given obser-
vations (X1, Y1), . . . , (Xn,Yn) from model (1), we take the nonparametric least
squares estimator to be the function φ̂n : Rd → R defined by

φ̂n(x) = inf

{
n∑

k=1

θkZk
n :

n∑
k=1

θk = 1,

n∑
k=1

θkXk = x, θ ≥ 0, θ ∈ R
n

}
(7)

for any x ∈ R
d . Here we are taking the convention that inf(∅) = +∞. This func-

tion is well defined because the vector Zn exists and is unique for the sample. The
estimator is, in fact, a polyhedral convex function [i.e., a convex function whose
epigraph is a polyhedral; see Rockafellar (1970), page 172] and satisfies, as a con-
sequence of Lemma 2.1 in Seijo and Sen (2010),

φ̂n(x) = sup
ψ∈K X ,Zn

{ψ(x)},
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where K X ,Zn is the collection of all convex functions ψ : Rd → R such that
ψ(Xj) ≤ Z

j
n for all j = 1, . . . , n. Thus, φ̂n is the largest convex function that

never exceeds the Z
j
n’s. It is immediate that φ̂n is indeed a convex function (as the

supremum of any family of convex functions is itself convex). The primal charac-
terization of the set K X implies that φ̂n(Xj ) = Z

j
n for all j = 1, . . . , n.

2.2. Finite sample properties. In the following lemma we state some of the
most important finite sample properties of the least squares estimator defined
in (7). For a proof see Lemma 2.2 of Seijo and Sen (2010).

LEMMA 2.4. Let φ̂n be the least squares estimator obtained from the sample
(X1, Y1), . . . , (Xn,Yn). Then:

(i)
∑n

k=1(ψ(Xk) − φ̂n(Xk))(Yk − φ̂n(Xk)) ≤ 0 for any convex function ψ

which is finite on Conv(X1, . . . ,Xn);
(ii)

∑n
k=1 φ̂n(Xk)(Yk − φ̂n(Xk)) = 0;

(iii)
∑n

k=1 Yk = ∑n
k=1 φ̂n(Xk);

(iv) the set on which φ̂n < ∞ is Conv(X1, . . . ,Xn);
(v) for any x ∈ R

d the map (X1, . . . ,Xn,Y1, . . . , Yn) ↪→ φ̂n(x) is a Borel-
measurable function from R

n(d+1) into R.

2.3. Computation of the estimator. Once the vector Zn defined in (2) has been
obtained, the evaluation of φ̂n at a single point x can be carried out by solving the
linear program in (7). Thus, we need to find a way to compute Zn. And here the
dual characterization proves of vital importance, since it allows us to compute Zn

by solving a quadratic program.

LEMMA 2.5. Consider the positive semidefinite quadratic program

min
n∑

k=1

|Yk − zk|2 subject to 〈ξk,Xj − Xk〉 ≤ zj − zk

(8)
∀k, j = 1, . . . , n, ξ1, . . . , ξn ∈ R

d, z ∈ R
n.

Then, this program has a unique solution Zn in z, that is, for any two solutions
(ξ1, . . . , ξn, z) and (τ1, . . . , τn, ζ ) we have z = ζ = Zn. This solution Zn is the
only vector in R

n which satisfies (2).

PROOF. From Lemma 2.2, if (ξ1, . . . , ξn, z) belongs in the feasible set of this
program, then z ∈ K X . Moreover, for any z ∈ K X there are ξ1, . . . , ξn ∈ R

d such
that (ξ1, . . . , ξn, z) belongs to the feasible set of the quadratic program. Since the
objective function only depends on z, solving the quadratic program is the same
as getting the element of K X which is the closest to Y . This element is, of course,
the uniquely defined Zn satisfying (2). �
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FIG. 1. The scatterplot and nonparametric least squares estimator of the convex regression func-
tion when (a) φ(x) = |x|2 (left panel); (b) φ(x) = −x1 + x2 (right panel).

The quadratic program (8) is positive semidefinite. This implies certain computa-
tional complexities, but most modern nonlinear programming solvers can handle
this type of optimization problems. Some examples of high-performance quadratic
programming solvers are CPLEX, LINDO, MOSEK and QPOPT. Here we present
two simulated examples to illustrate the computation of the estimator when d = 2.
The first one, depicted in Figure 1(a), corresponds to the case where φ(x) = |x|2.
Figure 1(b) shows the convex function estimator when the regression function is
the hyperplane φ(x) = −x1 + x2. In both cases, n = 256 observations were used
and the errors were assumed to be i.i.d. from the standard normal distribution.
All the computations were carried out using the MOSEK optimization toolbox for
Matlab and the run time for each example was less than 2 minutes on a standard
desktop PC. We refer the reader to Kuosmanen (2008) for additional numerical
examples (although the examples there are for the estimation of concave, compo-
nentwise nondecreasing functions, the computational complexities are the same).

3. Consistency of the least squares estimator. The main goal of this paper
is to show that in an appropriate setting the nonparametric least squares estimator
φ̂n described above is consistent for estimating the convex function φ on the set X.
In this context, we will prove the consistency of φ̂n in both fixed and stochastic
design regression settings.

Before proceeding any further we would like to introduce some notation. For
any Borel set X ⊂ R

d we will denote by BX the σ -algebra of Borel subsets of X.
Given a sequence of events (An)

∞
n=1 we will be using the notation [An i.o.] and

[An a.a.] to denote limAn and limAn, respectively.
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Now, consider a convex function f : Rd → R. This function is said to be proper
if f (x) > −∞ for every x ∈ R

d . The effective domain of f , denoted by Dom(f ),
is the set of points x ∈ R

d for which f (x) < ∞. The subdifferential of f at a point
x ∈ R

d is the set ∂f (x) ⊂ R
d of all vectors ξ satisfying the inequalities

〈ξ,h〉 ≤ f (x + h) − f (x) ∀h ∈ R
d .

The elements of ∂f (x) are called subgradients of f at x [see Rockafellar (1970)].
For a set A ⊂ R

d we denote by A◦, A and ∂A its interior, closure and bound-
ary, respectively. We write Ext(A) = R

d \ A for the exterior of the set A and
diam(A) := supx,y∈A |x − y| for the diameter of A. We also use the sup-norm
notation, that is, for a function g : Rd → R we write ‖g‖A = supx∈A |g(x)|.

To avoid measurability issues regarding some sets, especially those involving
the random set-valued functions {∂φ̂n(x)}x∈X◦ , we will use the symbols P∗ and P∗
to denote inner and outer probabilities, respectively. We refer the reader to Van der
Vaart and Wellner (1996), pages 6–15, for the basic properties of inner and outer
probabilities. In this context, a sequence of (not necessarily measurable) functions
(�n)

∞
n=1 from a probability space (�, F ,P) into R is said to converge to a func-

tion � almost surely [see Van der Vaart and Wellner (1996), Definition 1.9.1(iv),
page 52], written �n

a.s.−→ � , if P∗(�n → �) = 1. We will use the standard nota-
tion P(A) for the probabilities of all events A whose measurability can be easily
inferred from the measurability of the random variables {φ̂n(x)}x∈X, established in
Lemma 2.4.

Our main theorems hold for both fixed and stochastic design schemes, and the
proofs are very similar. They differ only in minor steps. Therefore, for the sake
of simplicity, we will denote the observed values of the regressor variables always
with the capital letters Xn. For any Borel set X⊂ R

d , we write

Nn(X) = #{1 ≤ j ≤ n :Xj ∈ X}.
The quantities Xn and Nn(X) are nonrandom under the fixed design but random
under the stochastic one.

3.1. Fixed design. In a “fixed design” regression setting we assume that the
regressor values are nonrandom and that all the uncertainty in the model comes
from the response variable. We will now list a set of assumptions for this type
of design. The one-dimensional case has been proven, under different regularity
conditions, in Hanson and Pledger (1976).

(A1) We assume that we have a sequence (Xn,Yn)
∞
n=1 satisfying

Yk = φ(Xk) + εk,

where (εn)
∞
n=1 is an i.i.d. sequence with E(εj ) = 0, E(ε2

j ) = σ 2 < ∞ and

φ : Rd → R is a proper convex function.
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(A2) The nonrandom sequence (Xn)
∞
n=1 is contained in a closed, convex set X ⊂

R
d with X◦ 
= ∅ and X ⊂ Dom(φ).

(A3) We assume the existence of a Borel measure ν on X satisfying:
(i) {X ∈ BX :ν(X) = 0} = {X ∈ BX :X has Lebesgue measure 0}.

(ii) 1
n
Nn(X) → ν(X) for any Borel set X⊂ X.

Condition (A1) may be replaced by the following:

(A4) We assume that we have a sequence (Xn,Yn)
∞
n=1 satisfying

Yk = φ(Xk) + εk,

where φ : Rd → R is a proper convex function and (εn)
∞
n=1 is an independent

sequence of random variables satisfying:
(i) E(εn) = 0 ∀n ∈ N and lim 1

n

∑n
k=1 E(|εk|) > 0.

(ii)
∑∞

n=1
Var(ε2

n)

n2 < ∞.

(iii) supn∈N{E(ε2
n)} < ∞.

Under these conditions we define σ 2 := limn→∞ 1
n

∑n
j=1 E(ε2

j ).

The raison d’etre of condition (A4) is to allow the variance of the error terms to
depend on the regressors. We make the distinction between (A1) and (A4) because
in the case of i.i.d. errors it suffices to require a finite second moment to ensure
consistency.

3.2. Stochastic design. In this setting we assume that (Xn,Yn)
∞
n=1 is an i.i.d.

sequence from some Borel probability measure μ on R
d+1. Here we make the

following assumptions on the measure μ:

(A5) There is a closed, convex set X ⊂ R
d with X◦ 
= ∅ such that μ(X × R) = 1.

Also, ∫
X×R

y2μ(dx, dy) < ∞.

(A6) There is a proper convex function φ : Rd → R with X ⊂ Dom(φ) such that
whenever (X,Y ) ∼ μ we have E(Y − φ(X)|X) = 0 and E(|Y − φ(X)|2) =
σ 2 < ∞. Thus, φ is the regression function.

(A7) Denoting by ν(·) := μ((·) × R) the x-marginal of μ, we assume that

{X ∈ BX :ν(X) = 0} = {X ∈ BX :X has Lebesgue measure 0}.
Observe that conditions (A5)–(A7) allow for stochastic dependency between

the error variable Y − φ(X) and the regressor X. Although some level of depen-
dency can be put to satisfy conditions (A2)–(A4), the measure μ allows us to take
into account some cases which would not fit in the fixed design setting (even by
conditioning on the regressors).
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3.3. Main results. We can now state the two main results of this paper. The
first result shows that assuming only the convexity of φ, the least squares estimator
can be used to consistently estimate both φ and its subdifferentials ∂φ(x).

THEOREM 3.1. Under any of (A1)–(A3), (A2)–(A4) or (A5)–(A7) we have:

(i) P(supx∈X{|φ̂n(x) − φ(x)|} → 0 for any compact set X⊂ X◦) = 1.

(ii) For every x ∈ X◦ and every ξ ∈ R
d

lim
n→∞ lim

h↓0

φ̂n(x + hξ) − φ̂n(x)

h
≤ lim

h↓0

φ(x + hξ) − φ(x)

h
almost surely.

(iii) Denoting by B the unit ball (w.r.t. the Euclidean norm) we have

P∗
(
∂φ̂n(x) ⊂ ∂φ(x) + εB a.a.

) = 1 ∀ε > 0,∀x ∈ X◦.

(iv) If φ is differentiable at x ∈ X◦, then

sup
ξ∈∂φ̂n(x)

{|ξ − ∇φ(x)|} a.s.−→ 0.

Our second result states that assuming differentiability of φ on the entire X◦
allows us to use the subdifferentials of the least squares estimator to consistently
estimate ∇φ uniformly on compact subsets of X◦.

THEOREM 3.2. If φ is differentiable on X◦, then under any of (A1)–(A3),
(A2)–(A4) or (A5)–(A7) we have

P∗
(

sup
ξ∈∂φ̂n(x)

x∈X

{|ξ − ∇φ(x)|} → 0 for any compact set X⊂ X◦) = 1.

3.4. Proof of the main results. Before embarking on the proofs, one must no-
tice that there are some statements which hold true under any of (A1)–(A3), (A2)–
(A4) or (A5)–(A7). We list the most important ones below, since they will be used
later.

• For any set X⊂ X we have

Nn(X)

n

a.s.−→ ν(X).(9)

• The strong law of large numbers implies that for any Borel set X ⊂ X with
positive Lebesgue measure we have

1

Nn(X)

∑
Xk∈X

1≤k≤n

(
Yk − φ(Xk)

) a.s.−→ 0(10)
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and also

lim
n→∞

1

n

∑
1≤k≤n

(
Yk − φ(Xk)

)2 = σ 2 a.s.(11)

We would like to point out that in the case of condition (A4), (A4)(iii) allows us
to obtain (10) from an application of a version of the strong law of large number
for uncorrelated random variables, as it appears in Chung (2001), page 108,
Theorem 5.1.2. Similarly, condition (A4)(ii) implies that we can apply a version
the strong law of large numbers for independent random variables as in Williams
(1991), Lemma 12.8, page 118, or in Folland (1999), Theorem 10.12, page 322,
to obtain (11).

• For any Borel subset X⊂ X with positive Lebesgue measure,

#{n ∈ N :Xn ∈ X} a.s.−→ +∞.(12)

PROOF OF THEOREM 3.1. We will only make distinctions among the design
schemes in the proof when we use any property besides (9), (10), (11) or (12). For
the sake of clarity, we divide the proof in steps.

Step I: We start by showing that for any set with positive Lebesgue measure
there is a uniform band around the regression function (over that set) such that φ̂n

comes within the band at least at one point for all but finitely many n’s. This fact
is stated in the following lemma (proved in Section 4.1).

LEMMA 3.1. For any set X⊂ X with positive Lebesgue measure we have

P
(

inf
x∈X{|φ̂n(x) − φ(x)|} ≥ M i.o.

)
= 0 ∀M >

σ√
ν(X)

.

Step II: The idea is now to use the convexity of both φ and φ̂n, to show that the
previous result in fact implies that the sup-norm of φ̂n is uniformly bounded on
compact subsets of X◦. We achieve this goal in the following two lemmas [whose
proofs are given in Sections 1.1 and 1.2 of Seijo and Sen (2010), resp.].

LEMMA 3.2. Let X⊂ X◦ be compact with positive Lebesgue measure. Then,
there is a positive real number KX such that

P
(

inf
x∈X{φ̂n(x)} ≤ −KX i.o.

)
= 0.

LEMMA 3.3. Let X ⊂ X◦ be a compact set with positive Lebesgue measure.
Then, there is KX > 0 such that

P
(
sup
x∈X

{φ̂n(x)} ≥ KX i.o.
)

= 0.
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Step III: Convex functions are determined by their subdifferential mappings [see
Rockafellar (1970), Theorem 24.9, page 239]. Moreover, having a uniform upper
bound KX for the norms of all the subgradients over a compact region X imposes
a Lipschitz continuity condition on the convex function over X [see Rockafellar
(1970), Theorem 24.7, page 237], the Lipschitz constant being KX. For these rea-
sons, it is important to have a uniform upper bound on the norms of the subgra-
dients of φ̂n on compact regions. The following lemma [proved in Section 1.3 of
Seijo and Sen (2010)] states that this can be achieved.

LEMMA 3.4. Let X ⊂ X◦ be a compact set with positive Lebesgue measure.
Then, there is KX > 0 such that

P∗(
sup

ξ∈∂φ̂n(x)
x∈X

{|ξ |} > KX i.o.
)

= 0.

Step IV: For the next results we need to introduce some further notation.
We will denote by μn the empirical measure defined on R

d+1 by the sample
(X1, Y1), . . . , (Xn,Yn). In agreement with Van der Vaart and Wellner (1996), Def-
inition 2.1.5, page 83, given a class of functions G on D ⊂ R

d+1, a seminorm ‖ · ‖
on some space containing G and ε > 0 we denote by N(ε, G,‖ · ‖) the ε-covering
number of G with respect to ‖ · ‖.

Although Lemmas 3.5 and 3.7 may seem unrelated to what has been done so far,
they are crucial for the further developments. Lemma 3.5 (proved in Section 4.2)
shows that the class of convex functions is not very complex in terms of entropy.
Lemma 3.7 is a uniform version of the strong law of large numbers which proves
vital in the proof of Lemma 3.8.

LEMMA 3.5. Let X⊂ X◦ be a compact rectangle with positive Lebesgue mea-
sure. For K > 0 consider the class GK,X of all functions of the form ψ(X)(Y −
φ(X))1X(X) where ψ ranges over the class DK,X of all proper convex functions
which satisfy:

(a) ‖ψ‖X ≤ K ;
(b)

⋃
ξ∈∂ψ(x),x∈X{ξ} ⊂ [−K,K]d .

Then, for any ε > 0 we have

lim
n→∞N

(
ε, GK,X,L1(X× R,μn)

)
< ∞ almost surely,

and there is a positive constant Aε < ∞, depending only on (X1, . . . ,Xn), K and
X, such that the covering numbers N(ε

n

∑n
j=1 |Yj −φ(Xj )|, GK,X,L1(X×R,μn))

are bounded above by Aε , for all n ∈ N, almost surely.

The proofs of Lemmas 3.7 and 3.8 (given in Sections 4.4 and 4.5, resp.) are the
only parts in the whole proof where we must treat the different design schemes
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separately. To make the argument work, a small lemma (proved in Section 4.3)
for the set of conditions (A2)–(A4) is required. We include it here for the sake of
completeness and to point out the difference between the schemes.

LEMMA 3.6. Consider the set of conditions (A2)–(A4) and a subsequence
(nk)

∞
k=1 such that

lim
k→∞

1

nk

nk∑
j=1

E(ε2
j ) = σ 2.

Let (Xm)∞m=1 be an increasing sequence of compact subsets of X satisfying
ν(Xm) → 1. Then,

lim
m→∞ lim

k→∞
1

nk

∑
{1≤j≤nk : Xj∈Xm}

E(ε2
j ) = σ 2.

We are now ready to state the key result on the uniform law of large numbers.
We refer the reader to Section 4.4 for a complete proof.

LEMMA 3.7. Consider the notation of Lemma 3.5 and let X⊂ X◦ be any finite
union of compact rectangles with positive Lebesgue measure. Then,

sup
ψ∈DK,X

{∣∣∣∣1

n

∑
{1≤j≤n : Xj∈X}

ψ(Xj)
(
Yj − φ(Xj )

)∣∣∣∣
}

a.s.−→ 0.

Step V: With the aid of all the results proved up to this point, it is now possible
to show that Lemma 3.1 is in fact true if we replace M by an arbitrarily small
η > 0. The proof of the following lemma is given in Section 4.5.

LEMMA 3.8. Let X⊂ X◦ be any compact set with positive Lebesgue measure.
Then:

(i) P(infx∈X{φ(x) − φ̂n(x)} ≥ η i.o.) = 0 ∀η > 0,
(ii) P(supx∈X{φ(x) − φ̂n(x)} ≤ −η i.o.) = 0 ∀η > 0.

Step VI: Combining the last lemma with the fact that we have a uniform bound
on the norms of the subgradients on compacts, we can state and prove the con-
sistency result on compacts. This is done in the next lemma (proof included in
Section 4.6).

LEMMA 3.9. Let X ⊂ X◦ be a compact set with positive Lebesgue measure.
Then:

(i) P(infx∈X{φ̂n(x) − φ(x)} < −η i.o.) = 0 ∀η > 0,
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(ii) P(supx∈X{φ̂n(x) − φ(x)} > η i.o.) = 0 ∀η > 0,
(iii) supx∈X{|φ̂n(x) − φ(x)|} a.s.−→ 0.

Step VII: We can now complete the proof of Theorem 3.1. Consider the class
C of all open rectangles R such that R ⊂ X◦ and whose vertices have ratio-
nal coordinates. Then, C is countable and

⋃
R∈C R = X◦. Observe that Lemmas

3.2 and 3.3 imply that for any finite union A := R1 ∪ · · · ∪ Rm of open rectan-
gles R1, . . . , Rm ∈ C there is, with probability 1, n0 ∈ N such that the sequence
(φ̂n)

∞
n=n0

is finite on Conv(A). From Lemma 3.9 we know that the least squares
estimator converges at all rational points in X◦ with probability 1. Then, Theo-
rem 10.8, page 90 of Rockafellar (1970) implies that (i) holds if X◦ is replaced
by the convex hull of a finite union of rectangles belonging to C. Since there are
countably many of such unions and any compact subset of X◦ is contained in one
of these unions, we see that (i) holds. An application of Theorem 24.5, page 233
of Rockafellar (1970) on an open rectangle C containing x and satisfying C ⊂ X◦
gives (ii) and (iii). Note that (iv) is a consequence of (iii). �

PROOF OF THEOREM 3.2. To prove the desired result we need the following
lemma [whose proof is provided in Section 3 in Seijo and Sen (2010)] from convex
analysis. The result is an extension of Theorem 25.7, page 248 of Rockafellar
(1970), and might be of independent interest.

LEMMA 3.10. Let C ⊂ R
d be an open, convex set and f a convex function

which is finite and differentiable on C . Consider a sequence of convex functions
(fn)

∞
n=1 which are finite on C and such that fn → f pointwise on C . Then, if

X⊂ C is any compact set,

sup
x∈X

ξ∈∂fn(x)

{|ξ − ∇f (x)|} → 0.

Defining the class C of open rectangles as in the proof of Theorem 3.1, one can
use a similar argument to obtain Theorem 3.2 from an application of Theorem 3.1
and the previous lemma. �

4. Proofs of some lemmas. Here we show some of the lemmas involved in
the proof of the main theorem. We omit the proofs of Lemmas 3.2, 3.3, 3.4 and
3.10 since they are based on technical arguments from convex analysis and matrix
algebra. They can be found in the supplement to this paper, Seijo and Sen (2010).

4.1. Proof of Lemma 3.1. We will first show that the event [infx∈X{φ̂n(x) −
φ(x)} ≥ M i.o.] has probability zero. Under this event, there is a subsequence
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(nk)
∞
k=1 such that infx∈X{φ̂nk

(x) − φ(x)} ≥ M ∀k ∈ N. Then (10) implies that for
this subsequence, with probability 1, we have

lim
k→∞

1

Nnk
(X)

∑
Xj∈X

{Yj − φ̂nk
(Xj )} ≤ −M.(13)

On the other hand, it is seen [by solving the corresponding quadratic programming
problems; see, e.g., Exercise 16.2, page 484 of Nocedal and Wright (1999)] that
for any η > 0, m ∈ N,

inf
{

1

m

∑
1≤j≤m

|ξj |2 :
1

m

∑
1≤j≤m

ξj ≥ η, ξ ∈ R
m

}
= η2,(14)

inf
{

1

m

∑
1≤j≤m

|ξj |2 :
1

m

∑
1≤j≤m

ξj ≤ −η, ξ ∈ R
m

}
= η2.(15)

For 0 < δ < M , using (15) with η = M − δ together with (12) and (13) we get that,
with probability 1, we must have

lim
k→∞

1

nk

nk∑
j=1

(
Yj − φ̂nk

(Xj )
)2 ≥ ν(X)(M − δ)2.

Letting δ → 0, we actually get

lim
k→∞

1

nk

nk∑
j=1

(
Yj − φ̂nk

(Xj )
)2

≥ ν(X)M2 > σ 2 = lim
k→∞

1

nk

nk∑
j=1

(
Yj − φ(Xj )

)2 a.s.,

which is impossible because φ̂nk
is the least squares estimator. Therefore,

P
(

inf
x∈X{φ̂n(x) − φ(x)} ≥ M i.o.

)
= 0.

A similar argument now using (14) gives

P
(
sup
x∈X

{φ̂n(x) − φ(x)} ≤ −M i.o.
)

= 0,

which completes the proof of the lemma.

4.2. Proof of Lemma 3.5. The result is obvious for conditions (A1)–(A3) and
(A5)–(A7) when σ 2 = 0. So we assume that σ 2 > 0 for (A1)–(A3) and (A5)–(A7).
Let ε > 0 and M = supx∈X{|x|}. Choose δ > 0 satisfying

ε

(2(2M + K
√

d + 1)/n)
∑n

j=1|Yj − φ(Xj )|
(16)

< δ <
ε

((2M + K
√

d + 1)/n)
∑n

j=1

|Yj − φ(Xj )|
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for n large. Notice that δ is well defined and the quantity on the left is positive,
finite and bounded away from 0 as lim 1

n

∑n
j=1 |Yj − φ(Xj )| > 0 a.s. under any

set of regularity conditions [for (A2)–(A4), conditions (A4)(i) and (A4)(iii) imply
that we can apply the version of the strong law of large numbers for uncorrelated
random variables, as it appears in Chung (2001), page 108, Theorem 5.1.2, to the
sequence (|εj |)∞j=1; for (A1)–(A3) and (A5)–(A7) this is immediate as σ 2 > 0].
The definition of the class DK,X implies that all its members are Lipschitz func-
tions with Lipschitz constant bounded by K

√
d , a consequence of Rockafellar

(1970), Theorem 24.7, page 237. Hence, (16) implies that

sup
|x−y|<δ

x,y∈X,ψ∈DK,X

{|ψ(x) − ψ(y)|} ≤ ε

(1/n)
∑n

j=1|Yj − φ(Xj )| .

Now, define Nn ∈ N by Nn = �diam(X)
δ

� ∨ �2K
√

d
δ

�, where �·� denotes the ceiling
function. Observe that (16) implies

Nn − 1 ≤ (
diam(X) ∨ 2K

√
d
)2(2M + K

√
d + 1)

ε

(
1

n

n∑
j=1

|Yj − φ(Xj )|
)
.(17)

Then, we can divide the rectangles X and [−K,K]d in Nd
n subrectangles, all of

which have diameters less than δ. In other words, we can write

[−K,K]d = ⋃
1≤j≤Nd

n

Rj ,

X= ⋃
1≤j≤Nd

n

Vj

with diam(Rj ) < δ and diam(Vj ) < δ ∀j = 1, . . . ,Nd
n . In the same way, we can

divide the interval [−K,K] in Nn subintervals I1, . . . , INn each having length
less than δ. For each j = 1, . . . ,Nd

n , let ξj and xj be the centroids of Rj and Vj ,
respectively, and for j = 1, . . . ,Nn let ηj be the midpoint of Ij . Consider the class
of functions Hn,ε defined by

Hn,ε =
{

max
(s,t,j)∈S

{〈ξs, · − xt 〉 + ηj } : S ⊂ {1, . . . ,Nd
n }2 × {1, . . . ,Nn}

}
.

Observe that the number of elements in the class Hn,ε is bounded from above by
2N2d+1

n . Now, take any ψ ∈ DK,X. Pick any �j ∈ ∂ψ(Xj ). Then, for any j such that
Xj ∈ X, there are sj , tj ∈ {1, . . . ,Nd

n } and τj ∈ {1, . . . ,Nn} such that |�j − ξsj |,|Xj − xtj | and |ψ(xtj ) − ητj
| are all less than δ. We then have that

sup
x∈X

{∣∣〈ξsj , x − xtj 〉 + ητj
− (〈�j,x − Xj 〉 + ψ(Xj)

)∣∣}
(18)

≤ 2M|ξsj − �j | + K
√

d|xtj − Xj | + δ <
(
2M + K

√
d + 1

)
δ
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by an application of the Cauchy–Schwarz inequality. But then, (16) implies that if
we define the functions ψ̃ and g as

ψ̃(x) = max
Xj∈X{〈�j,x − Xj 〉 + ψ(Xj)},

g(x) = max
Xj∈X{〈ξsj , x − xtj 〉 + ητj

},
then we have

ψ̃(Xj ) = ψ(Xj) for j such that Xj ∈ X,(19)

‖g − ψ̃‖X ≤ ε

(1/n)
∑n

j=1|Yj − φ(Xj )| [from (18)],(20)

g ∈ Hn,ε.(21)

Note that (19) follows from the definition of subgradients. All these facts put to-
gether give that for any f (x, y) = ψ(x)(y − φ(x)) ∈ GK,X, ψ ∈ DK,X, there is
g ∈ Hn,ε such that∫

X

∣∣f (x, y) − g(x)
(
y − φ(x)

)∣∣μn(dx, dy) < ε

and hence

N
(
ε, GK,X,L1(X× R,μn)

) ≤ #Hn,ε ≤ 2N2d+1
n .

But then, the strong law of large numbers and (17) give that limNn < ∞
a.s. Furthermore, by replacing ε with ε

n

∑n
j=1|Yj − φ(Xj )| in the entire con-

struction just made, we can see that the covering numbers N(ε
n

∑n
j=1|Yj −

φ(Xj )|, GK,X,L1(X× R,μn)) depend neither on the Y ’s nor on φ. Taking Bε =
(diam(X) ∨ K

√
d)2(2M+K

√
d+1)

ε
+ 1 and Aε = 2B2d+1

ε , it is seen that the second
part of the result holds.

4.3. Proof of Lemma 3.6. Note that for every m, we have

1

nk

∑
1≤j≤nk

E(ε2
j ) ≤ 1

nk

∑
Xj∈Xm

1≤j≤nk

E(ε2
j ) + Nnk

(X \ Xm)

nk

sup
j∈N

{E(ε2
j )}.

Taking limit inferior on both sides as k → ∞, we get

σ 2 ≤ lim
k→∞

1

nk

∑
Xj∈Xm

1≤j≤nk

E(ε2
j ) + ν(X \ Xm) sup

j∈N

{E(ε2
j )}.

Now taking the limit as m → ∞ we get the result because the opposite inequality
is trivial.

4.4. Proof of Lemma 3.7. We may assume that X is a compact rectangle. Here
we need to make a distinction between the design schemes. In the case of the
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stochastic design, the proof is an immediate consequence of Lemma 3.5 and The-
orem 2.4.3, page 123 of Van der Vaart and Wellner (1996). Thus, we focus on the
fixed design scenario.

For notational convenience, we write M = supj∈N{E(ε2
j )} and

∑
Xj∈X instead

of the more cumbersome
∑

1≤j≤n : Xj∈X. Letting εj = Yj − φ(Xj ) (and using the
same notation as in the proof of Lemma 3.7), first observe that the random quantity

sup
ψ∈DK,X

{∣∣∣∣1

n

∑
{Xj∈X}

ψ(Xj)εj

∣∣∣∣
}

= sup
m∈N

{
sup

g∈Hn,1/m

{∣∣∣∣1

n

∑
{Xj∈X}

g(Xj )εj

∣∣∣∣
}}

by (19), (20) and (21) and is thus measurable.
All of the following arguments are valid for both (A1)–(A3) and (A2)–(A4).

Lyapunov’s inequality (which states that for any random variable X and 1 ≤ p ≤
q ≤ ∞ we have ‖X‖p ≤ ‖X‖q ) and the strong law of large numbers imply

lim
m→∞

1

m

∑
1≤j≤m

|εj | = lim
m→∞

1

m

∑
1≤j≤m

E(|εj |) ≤ √
M a.s.(22)

Let η > 0. From Lemma 3.5 we know that the covering numbers an :=
N(

η
n

∑n
j=1 |Yj − φ(Xj )|, GK,X,L1(X × R,μn)) are not random and uniformly

bounded by a constant Aη. Therefore, for any n ∈ N we can find a class An ⊂ DK,X

with exactly an elements such that {ψ(x)(y −φ(x))}ψ∈An forms an (
η
n

∑n
j=1 |Yj −

φ(Xj )|)-net for GK,X with respect to L1(X× R,μn). It follows that

sup
ψ∈DK,X

{∣∣∣∣1

n

∑
Xj∈X

ψ(Xj)εj

∣∣∣∣
}

≤ η

n

∑
1≤j≤n

|εj | + sup
ψ∈An

{∣∣∣∣1

n

∑
Xj∈X

ψ(Xj)εj

∣∣∣∣
}
.(23)

With (23) in mind, we make the following definitions:

Bn = sup
ψ∈An

{∣∣∣∣1

n

∑
Xj∈X

ψ(Xj)εj

∣∣∣∣
}
,

Cn = sup
ψ∈An

{∣∣∣∣1

n

∑
1≤j≤�√n�2 : Xj∈X

ψ(Xj)εj

∣∣∣∣
}
,

Dn = sup
ψ∈Ak

n2≤k<(n+1)2

{∣∣∣∣1

k

∑
n2<j≤k : Xj∈X

ψ(Xj)εj

∣∣∣∣
}
,

where �·� denotes the floor function. Now, pick δ > 0 and observe that

P(Bn > δ) = P
( ⋃

ψ∈An

[∣∣∣∣ ∑
Xj∈X

ψ(Xj)εj

∣∣∣∣ > nδ

])

≤ ∑
ψ∈An

1

n2δ2 M
∑

Xj∈X
ψ(Xj)

2 ≤ K2MAη

nδ2 .
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The Borel–Cantelli lemma then implies that P(Bn2 > δ i.o.) = 0. Letting δ → 0
through a decreasing sequence gives

Bn2
a.s.−→ 0.(24)

On the other hand, the definition of Cn implies that

Cn ≤ �√n�2

n
B�√n�2 + η

n

∑
1≤j≤�√n�2

|εj |,(25)

which together with (24) and (22) gives

limCn ≤ η
√

M almost surely.(26)

Note that (25) is a consequence of the fact that for any ψ ∈ An, there exists g ∈
A�√n�2 such that if Jn = {1 ≤ j ≤ �√n�2 :Xj ∈ X}, then∣∣∣∣1

n

∑
j∈Jn

ψ(Xj )εj

∣∣∣∣ ≤
∣∣∣∣1

n

∑
j∈Jn

(
ψ(Xj) − g(Xj )

)
εj

∣∣∣∣ +
∣∣∣∣1

n

∑
j∈Jn

g(Xj )εj

∣∣∣∣
≤

(�√n�2

n

)
η

�√n�2

∑
1≤j≤�√n�2

|εj | + �√n�2

n
B�√n�2 .

Now, an argument similar to the one used in (24) gives

P(Dn > δ) = P
( ⋃

ψ∈Ak

n2≤k<(n+1)2

[∣∣∣∣ ∑
n2<j≤k : Xj∈X

ψ(Xj)εj

∣∣∣∣ > kδ

])

≤ ∑
ψ∈Ak

n2≤k<(n+1)2

P
(∣∣∣∣ ∑

n2<j≤k : Xj∈X
ψ(Xj)εj

∣∣∣∣ > kδ

)
(27)

≤ ∑
ψ∈Ak

n2≤k<(n+1)2

K2M(k − n2)

k2δ2 ≤ K2MAη(2n + 1)2

n4δ2 .

Again, one can use (27) and the Borel–Cantelli lemma to prove that P(Dn > δ

i.o.) = 0 and then let δ → 0 through a decreasing sequence to obtain

Dn
a.s.−→ 0.(28)

Finally, one sees that

sup
ψ∈An

{∣∣∣∣1

n

∑
Xj∈X

ψ(Xj)
(
Yj − φ(Xj )

)∣∣∣∣
}

= Bn ≤ Cn + D�√n�,
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which combined with (26) and (28) gives

limBn ≤ η
√

M almost surely.

Taking (23) into account we get

lim
n→∞ sup

ψ∈DK,X

{∣∣∣∣1

n

∑
1≤j≤n : Xj∈X

ψ(Xj)
(
Yj − φ(Xj )

)∣∣∣∣
}

≤ 2η
√

M almost surely.

Letting η → 0, we get the desired result.

4.5. Proof of Lemma 3.8. We can assume, without loss of generality, that X is
a finite union of compact rectangles. Consider a sequence (Xm)∞m=1 satisfying the
following properties:

(a) X⊂ Xm ⊂ X◦ ∀m ∈ N.
(b) ν(Xm) > 1 − 1

m
∀m ∈ N.

(c) Xm ⊂ Xm+1 ∀m ∈ N.
(d) Every Xm can be expressed as a finite union of compact rectangles with posi-

tive Lebesgue measure.

The existence of such a sequence follows from the inner regularity of Borel proba-
bility measures on R

d and from the fact that since X◦ is open, for any compact set
F ⊂ X◦ we can find a finite cover composed by compact rectangles with positive
Lebesgue measure and completely contained in X◦. Also, from Lemmas 3.2, 3.3
and 3.4 and the fact that X ⊂ Dom(φ), for any m ∈ N we can find Km > 0 such
that

‖φ‖Xm ≤ Km and P(‖φ̂n‖Xm > Km i.o.) = 0;(29)

sup
x∈Xm

ξ∈∂φ(x)

{|ξ |} ≤ Km and P∗(
sup
x∈Xm

ξ∈∂φ̂n(x)

{|ξ |} > Km i.o.
)

= 0.(30)

Fix η > 0 and consider the sets

A =
[

inf
x∈X{φ(x) − φ̂n(x)} ≥ η i.o.

]
,

B = [‖φ̂n‖Xm ≤ Km a.a.],
C =

[
sup
x∈Xm

ξ∈∂φ̂n(x)

{|ξ |} ≤ Km a.a.
]
.

Suppose now that A ∩ B ∩ C is known to be true. Then, there is a subsequence
(nk)

∞
k=1 such that infx∈X{φ(x) − φ̂nk

(x)} ≥ η ∀k ∈ N and 1
nk

∑nk

j=1 E(ε2
j ) → σ 2.
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Taking (29) and (30) into account, we have that for k large enough the inequality

1

nk

nk∑
j=1

(
Yj − φ̂nk

(Xj )
)2

≥ 1

nk

∑
Xj∈Xm

(
Yj − φ(Xj )

)2 + 2

nk

∑
Xj∈Xm

(
Yj − φ(Xj )

)(
φ(Xj ) − φ̂nk

(Xj )
)

+ 1

nk

∑
Xj∈Xm

(
φ(Xj ) − φ̂nk

(Xj )
)2

implies

1

nk

nk∑
j=1

(
Yj − φ̂nk

(Xj )
)2

≥ 1

nk

∑
Xj∈Xm

(
Yj − φ(Xj )

)2 + Nnk
(X)

nk

η2

− 4 sup
ψ∈DKm,Xm

{∣∣∣∣ 1

nk

∑
{1≤j≤nk : Xj∈Xm}

ψ(Xj)
(
Yj − φ(Xj )

)∣∣∣∣
}
.

Thus, from Lemma 3.7 we can conclude that

lim
k→∞

1

nk

∑
1≤j≤nk

(
Yj − φ̂nk

(Xj )
)2 ≥ ν(Xm)σ 2 + ν(X)η2 if (A1)–(A3) hold.

Under (A2)–(A4) and (A5)–(A7) the left-hand side of the last display is bounded
from below by

lim
k→∞

1

nk

∑
Xj∈Xm

(
Yj − φ(Xj )

)2 + ν(X)η2

and ∫
Xm

(
y − φ(x)

)2
μ(dx, dy) + ν(X)η2,

respectively.
Finally, using (a)–(d), the strong law of large numbers [for (A2)–(A4) we can

apply a version of the strong law of large numbers for independent random vari-
ables thanks to condition (A4)(ii); see Williams (1991), Lemma 12.8, page 118, or
Folland (1999), Theorem 10.12, page 322] and Lemma 3.6 we can let m → ∞ to
see that, under any of (A1)–(A3), (A2)–(A4) or (A5)–(A7),

lim
k→∞

1

nk

∑
1≤j≤nk

(
Yj − φ̂nk

(Xj )
)2 ≥ σ 2 + ν(X)η2,
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which is impossible because φ̂nk
is the least squares estimator.

Therefore P∗(A ∩ B ∩ C) = 0 and, since P∗(B ∩ C) = 1,

P(A) = P
(

inf
x∈X{φ(x) − φ̂n(x)} ≥ η i.o.

)
= 0.

This finishes the proof of (i). The second assertion follows from similar arguments.

4.6. Proof of Lemma 3.9. We can assume, without loss of generality, that X is
a finite union of compact rectangles. Pick KX such that

sup
x∈X

ξ∈∂φ(x)

{|ξ |} ≤ KX and P∗(
sup
x∈X

ξ∈∂φ̂n(x)

{|ξ |} > KX i.o.
)

= 0.

Let η > 0 and δ = η
3KX

. We can then divide X in M subrectangles {C1, . . . , CM} all
having diameter less than δ. Define the events

A =
[ ⋂

1≤k≤M

inf
x∈Ck

{φ̂n(x) − φ(x)} <
η

3
a.a.

]
,

B =
[

sup
x∈X

ξ∈∂φ̂n(x)

{|ξ |} ≤ KX a.a.
]
.

We will show that A ∩ B ⊂ [supx∈X{φ̂n(x) − φ(x)} ≤ η a.a.]. Suppose A ∩ B is
true. Then, there is N ∈ N such that for any n ≥ N we can find �n,k ∈ Ck such that
φ̂n(�n,k) − φ(�n,k) <

η
3 . Moreover, we can make N large enough such that for

any n ≥ N , KX is an upper bound for all the subgradients of φ̂n on X. Then, for
any ξ ∈ Ck we obtain from the Lipschitz property

φ̂n(ξ) − φ(ξ) = (
φ̂n(�n,k) − φ(�n,k)

) + (
φ(�n,k) − φ(ξ)

)
+ (

φ̂n(ξ) − φ̂n(�n,k)
)

≤ η

3
+ KXδ + KXδ ≤ η.

Therefore,

sup
x∈Ck

{φ̂n(x) − φ(x)} ≤ η ∀1 ≤ k ≤ M,∀n ≥ N,

which implies

sup
x∈X

{φ̂n(x) − φ(x)} ≤ η ∀n ≥ N.

Considering Lemmas 3.8(ii) and 3.4; A∩B ⊂ [supx∈X{φ̂n(x)−φ(x)} ≤ η a.a.] and
P∗(A ∩ B) = 1 we obtain (ii). The first assertion follows from similar arguments
and (iii) is a direct consequence of (i) and (ii).
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BRONS̆TEĬN, E. M. (1978). Extremal convex functions. Sibirsk. Mat. Zh. 19 10–18. MR0482540
BRUNK, H. D. (1955). Maximum likelihood estimates of monotone parameters. Ann. Math. Statist.

26 607–616. MR0073894
BRUNK, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical

Inference 177–197. Cambridge Univ. Press, New York. MR0277070
CHUNG, K. L. (2001). A Course in Probability Theory. Academic Press, San Diego, CA.

MR1796326
CONWAY, J. (1985). A Course in Functional Analysis. Springer, New York. MR0768926
CULE, M. and SAMWORTH, R. (2010). Theoretical properties of the log-concave maximum likeli-

hood estimator of a multidimensional density. Electron. J. Stat. 4 254–270. MR2645484
CULE, M., SAMWORTH, R. and STEWART, M. (2010). Maximum likelihood estimation of a multi-

dimensional log-concave density. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 545–607.
DUDLEY, R. M. (1977). On second derivatives of convex functions. Math. Scand. 41 159–174.

MR0482164
FOLLAND, G. (1999). Real Analysis: Modern Techniques and Their Applications. Wiley, New York.

MR1681462
GRENANDER, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39

125–153. MR0093415
GROENEBOOM, P., JONGBLOED, G. and WELLNER, J. (2001). Estimation of a convex function:

Characterizations and asymptotic theory. Ann. Statist. 29 1653–1698. MR1891742
HANSON, D. L. and PLEDGER, G. (1976). Consistency in concave regression. Ann. Statist. 4 1038–

1050. MR0426273
HILDRETH, C. (1954). Point estimates of ordinates of concave functions. J. Amer. Statist. Assoc. 49

598–619. MR0065093
JOHANSEN, S. (1974). The extremal convex functions. Math. Scand. 41 61–68. MR0346517
KUOSMANEN, T. (2008). Representation theorem for convex nonparametric least squares.

Econom. J. 11 308–325.

http://dx.doi.org/10.1214/10-AOS852SUPP
http://www.ams.org/mathscinet-getitem?mr=2370975
http://www.pitt.edu/~arie/shape.pdf
http://www.ams.org/mathscinet-getitem?mr=2346646
http://www.ams.org/mathscinet-getitem?mr=0482540
http://www.ams.org/mathscinet-getitem?mr=0073894
http://www.ams.org/mathscinet-getitem?mr=0277070
http://www.ams.org/mathscinet-getitem?mr=1796326
http://www.ams.org/mathscinet-getitem?mr=0768926
http://www.ams.org/mathscinet-getitem?mr=2645484
http://www.ams.org/mathscinet-getitem?mr=0482164
http://www.ams.org/mathscinet-getitem?mr=1681462
http://www.ams.org/mathscinet-getitem?mr=0093415
http://www.ams.org/mathscinet-getitem?mr=1891742
http://www.ams.org/mathscinet-getitem?mr=0426273
http://www.ams.org/mathscinet-getitem?mr=0065093
http://www.ams.org/mathscinet-getitem?mr=0346517


MULTIVARIATE CONVEX REGRESSION 1657

LUENBERGER, D. (1984). Linear and Nonlinear Programming. Addison-Wesley, Reading, MA.
MAMMEN, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann.

Statist. 19 741–759. MR1105842
MATZKIN, R. L. (1991). Semiparametric estimation of monotone concave utility functions for poly-

chotomous choice models. Econometrica 59 1351–1327. MR1133036
MATZKIN, R. L. (1993). Nonparametric identification and estimation of polychotomous choice

models. J. Econometrics 58 137–168. MR1230983
NOCEDAL, J. and WRIGHT, S. (1999). Numerical Optimization. Springer, New York. MR1713114
ROCKAFELLAR, T. R. (1970). Convex Analysis. Princeton Univ. Press, Princeton, NJ. MR0274683
SARATH, B. and MAINDIRATTA, A. (1997). On the consistency of maximum likelihood estimation

of monotone and concave production frontiers. J. Productiv. Anal. 8 239–246.
SCHUHMACHER, D. and DÜMBGEN, L. (2010). Consistency of multivariate log-concave density

estimators. Statist. Probab. Lett. 80 376–380. MR2593576
SCHUHMACHER, D., HÜSLER, A. and DÜMBGEN, L. (2009). Multivariate log-concave distribu-

tions as a nearly parametric model. Technical report, Univ. Bern. Available at http://arxiv.org/abs/
0907.0250.

SEIJO, E. and SEN, B. (2011). Supplement to “Nonparametric least squares estimation of a multi-
variate convex regression function.” DOI:10.1214/10-AOS852SUPP.

SEREGIN, A. and WELLNER, J. (2010). Nonparametric estimation of multivariate convex-
transformed densities. Ann. Statist. 38 3751–3781. MR2766867

VAN DER VAART, A. and WELLNER, J. (1996). Weak Convergence and Empirical Processes.
Springer, New York. MR1385671

VARIAN, H. (1982). The nonparametric approach to demand analysis. Econometrica 50 945–973.
MR0666119

VARIAN, H. (1984). The nonparametric approach to production analysis. Econometrica 52 579–597.
MR0740302

WILLIAMS, D. (1991). Probability with Martingales. Cambridge Univ. Press, Cambridge.
MR1155402

ZHANG, C. H. (2002). Risk bounds in isotonic regression. Ann. Statist. 30 528–555. MR1902898

DEPARTMENT OF STATISTICS

COLUMBIA UNIVERSITY

1032 AMSTERDAM AVENUE

NEW YORK, NEW YORK 10027
USA
E-MAIL: emilio@stat.columbia.edu

bodhi@stat.columbia.edu
URL: http://www.stat.columbia.edu/~emilio

http://www.stat.columbia.edu/~bodhi

http://www.ams.org/mathscinet-getitem?mr=1105842
http://www.ams.org/mathscinet-getitem?mr=1133036
http://www.ams.org/mathscinet-getitem?mr=1230983
http://www.ams.org/mathscinet-getitem?mr=1713114
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=2593576
http://arxiv.org/abs/0907.0250
http://dx.doi.org/10.1214/10-AOS852SUPP
http://www.ams.org/mathscinet-getitem?mr=2766867
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=0666119
http://www.ams.org/mathscinet-getitem?mr=0740302
http://www.ams.org/mathscinet-getitem?mr=1155402
http://www.ams.org/mathscinet-getitem?mr=1902898
mailto:emilio@stat.columbia.edu
mailto:bodhi@stat.columbia.edu
http://www.stat.columbia.edu/~emilio
http://www.stat.columbia.edu/~bodhi
http://arxiv.org/abs/0907.0250

	Introduction
	Characterization and finite sample properties
	Existence and uniqueness
	Finite sample properties
	Computation of the estimator

	Consistency of the least squares estimator
	Fixed design
	Stochastic design
	Main results
	Proof of the main results

	Proofs of some lemmas
	Proof of Lemma 3.1
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Lemma 3.7
	Proof of Lemma 3.8
	Proof of Lemma 3.9

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

