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Urn models have been widely studied and applied in both scientific and
social science disciplines. In clinical studies, the adoption of urn models in
treatment allocation schemes has proved to be beneficial to researchers, by
providing more efficient clinical trials, and to patients, by increasing the like-
lihood of receiving the better treatment. In this paper, we propose a new and
general class of immigrated urn (IMU) models that incorporates the immigra-
tion mechanism into the urn process. Theoretical properties are developed and
the advantages of the IMU models are discussed. In general, the IMU models
have smaller variabilities than the classical urn models, yielding more pow-
erful statistical inferences in applications. Illustrative examples are presented
to demonstrate the wide applicability of the IMU models. The proposed IMU
framework, including many popular classical urn models, not only offers a
unify perspective for us to comprehend the urn process, but also enables us
to generate several novel urn models with desirable properties.

1. Introduction.

1.1. Urn models and their applications. Urn models have long been con-
sidered powerful mathematical instruments in many areas, including the physi-
cal sciences, biological sciences, social sciences and engineering [Johnson and
Kotz (1977), Kotz and Balakrishnan (1997)]. For example, in medical science,
Knoblauch, Neitz and Neitz (2006) apply an urn model to study cone ratios in hu-
man and macaque retinas. In population genetics, Hoppe (1984) and Donnelly and
Kurtz (1996) employ a Pólya-like urn model to study Ewen’s sampling distribution
in neutral genetics models. Benaïm, Schreiber and Tarrès (2004) also make use of
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a class of generalized Pólya urn models to scrutinize evolutionary processes. In
economics, Beggs (2005) uses the models to capture the mechanism of reinforce-
ment learning. In addition, numerous examples of applications of urn models in
the areas of physics, communication theory and computer science are provided by
Milenkovic and Compton (2004).

In statistics, an important application of urn models is to randomize treatments
to patients in a clinical trial [Hu and Rosenberger (2006)]. Consider an urn con-
taining balls of K types, representing K treatments. Patients normally arrive se-
quentially, and treatment assignment based on urn models is usually an adaptive
scheme that depends on the urn composition and previous treatment outcomes. The
urn composition is also continuously revised according to treatment outcomes.

Early studies of urn models in statistics include the generalized Pólya urn mod-
els (GPU) of Athreya and Karlin (1968), Wei and Durham (1978) and Wei (1979).
Another renowned variation of the Pólya urn is the randomized Pólya urn (RPU)
proposed by Durham, Flournoy and Li (1998). These classic urn models have a
number of drawbacks. (i) They are usually proposed for binary (multinomial) re-
sponses. (ii) The urn process has a predetermined limit of urn proportions that
does not have any connection with formal optimal properties [Hu and Rosenberger
(2006)]. (iii) The urn process usually has higher variability than other types of pro-
cedures [Hu and Rosenberger (2003)] and is thus less powerful in statistical infer-
ences. (iv) The formulation of the asymptotic variability is usually quite complex,
and it is intricate to derive a reasonable estimate. For instance, the asymptotic vari-
abilities of the Pólya urn-type models are related to the variance of a complicated
Gaussian process. In particular, for the multi-treatment case, to derive the variabil-
ity requires extremely complicated calculations of matrices [cf. Smythe (1996),
Janson (2004), Bai and Hu (2005), Zhang, Hu and Cheung (2006), Higueras et al.
(2006)]. (v) The models are designed mainly for the comparison of two treatments,
so there is a shortage of methodology to handle cases with multiple treatments.

By embedding the urn process in a continuous-time birth and death process
[Ivanova et al. (2000), Ivanova and Flournoy (2001), Ivanova (2006)], Ivanova
(2003) formulates the drop-the-loser (DL) rule for a clinical trial with two treat-
ments. The DL rule utilizes the idea of immigration and has been shown to yield a
smaller variability among various urn models [Hu and Rosenberger (2003)]. The
DL rule is generalized by Zhang et al. (2007) to provide more flexible urn models.
However, these recent proposals are fragmented, offering only a partial solution to
the aforementioned drawbacks of the classic urn models. To supply a complete res-
olution, we seek to provide a comprehensive paradigm through which one will be
able to connect existing urn models, develop useful theoretic results, and compare
merits of different classes of urn models.

1.2. Objectives and organization of the paper. In this paper, we propose the
IMU framework that encompasses a wide spectrum of urn models and incorporates
the immigration process, offering a greater flexibility in the choice of appropriate
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urn models in applications. This framework includes many urn models in the lit-
erature and provides a basis for us to derive several new urn models, together with
their desirable properties. These new urn models are found to be capable of solving
the aforementioned problems of classic urn models.

In the literature, the asymptotic properties of urn models are usually obtained
by using Athreya and Ney’s (1972) technique of embedding the urn process in
a continuous-time branching process. However, this technique relies on the as-
sumption that the transition of urn composition is governed by the adding rules,
which are identical and nonrandom (homogeneous). This assumption is no longer
valid for the IMU models in general due to the possibility that the urn composition
may be generated by a nonhomogeneous immigration process. Hence, alternative
mathematical approaches have to be utilized. Another major theoretical intricacy
regarding the IMU process is that it depends on both the immigration rates and
the adding rules (refer to Section 2.1 for details). To overcome these mathemati-
cal difficulties, we put forward a feasible solution. First, the IMU process is ap-
proximated by using martingales, which can handle both immigration rates and
adding rules simultaneously; then, the IMU process is approximated by the Wiener
process. Based on the Wiener process, we will be able to obtain the asymptotic
properties of the IMU.

To summarize, the major contributions of this paper are as follows.

(a) It formulates a general framework of urn models (IMU models) that not
only encompasses most existing urn models for adaptive designs in the literature,
but also enables us to derive new urn models with desirable properties such as the
freedom to design an urn process according to pre-specified optimality require-
ments.

(b) The paper derives asymptotic properties of the IMU models, including
strong consistency and asymptotic normality of treatment allocation proportions.
These asymptotic properties cover many existing asymptotic properties of urn
models as special cases and form the basis for comparisons of different IMU mod-
els.

(c) The paper proposes and discusses several new IMU models that are useful
in clinical trial applications.

The general IMU models and their asymptotic properties are provided in Sec-
tion 2. In addition, several popular urn models that are members of the IMU class
are discussed. In Section 3, new IMU models are developed and their applications
are given. Concluding remarks are presented in Section 4. Finally, technical proofs
are provided in the Appendix.

2. The immigrated urn model.

2.1. The basic IMU framework. In a clinical trial, suppose that subjects arrive
sequentially to be randomized to one the K available treatments, and responses are
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obtained immediately after treatment. An IMU model is defined as follows. Con-
sider an urn that contains balls of K + 1 types. Balls of types 1, . . . ,K represent
treatments, and balls of type 0 are the immigration balls. The urn allows negative
and fractional number of balls.

Initially, there are Z0,i(≥ 0) balls of type i, i = 0, . . . ,K . Let Z0 = (Z0,0, . . . ,

Z0,K) be the initial urn composition. Immediately before the mth (m > 0) sub-
ject arrives to be randomized to a treatment, let the urn composition be Zm−1 =
(Zm−1,0, . . . ,Zm−1,K). To avoid a negative likelihood of selecting a treatment, we
adopt a slight adjustment to Zm−1 and let Z+

m−1,i = max(0,Zm−1,i), i = 1, . . . ,K ,
and Z+

m−1 = (Z+
m−1,0, . . . ,Z

+
m−1,K).

To randomize the mth subject, a ball is drawn at random without replace-
ment. The probability of selecting a ball of type i is Z+

m−1,i/|Z+
m−1|, i = 0,

1, . . . ,K . Here, |Z+
m−1| = ∑K

j=0 Z+
m−1,j , and Z+

m−1/|Z+
m−1| is defined to be

(0,1/K, . . . ,1/K) if |Z+
m−1| = 0. Hence, the balls with negative values in Zm−1

will have no chance of being selected unless all Z+
m−1,k , k = 0, . . . ,K , are ze-

ros, and when |Z+
m−1| = 0 (only for the particular case where the IMU model has

no immigration ball), a treatment ball is drawn with an equal probability of 1/K .
Now, consider the following two possibilities.

(a) If the selected ball is of type 0 (i.e., an immigration ball), no treat-
ment is assigned and the ball is returned to the urn. Am−1 = am−1,1 + · · · +
am−1,K additional balls, am−1,k(≥ 0) of treatment type k, k = 1, . . . ,K are added
to the urn. Then, a ball is drawn from this updated urn again until a treat-
ment ball is drawn. If the immigration ball is selected l times before a treat-
ment ball is drawn, the urn composition Zm−1 is updated to (Zm−1,0,Zm−1,1 +
lam−1,1, . . . ,Zm−1,K + lam−1,K) and the Z+

m−1 is updated to (Zm−1,0, (Zm−1,1 +
lam−1,1)

+, . . . , (Zm−1,K + lam−1,K)+).
(b) If a treatment ball is drawn (say, of type k, k = 1, . . . ,K), the mth subject

is given treatment k and the treatment outcome (response) ξm,k of this subject on
treatment k is observed. The ball is not replaced. Instead, Dm,kj = Dkj (ξm,k) balls
of type j are added to the urn, j = 1, . . . ,K . Dm,kj < 0 signifies the removal of
balls.

With the IMU, the number of immigration balls remains unchanged and a treat-
ment ball is dropped when it is drawn. The number of treatment balls that is added
to the urn depends on:

(a) the value of am,k when an immigration ball is drawn from the urn and
(b) the value of Dm,kj when a ball of treatment type k is selected.

Here, am,k’s represent the immigration rates and Dm,kj ’s represent the adding
rules. Both am,k and Dm,kj allow fractional values which enable us to define a de-
sign in a flexible manner for application. The IMU models unify many existing urn
models in the literature. Classic urn models, mainly designed for binary responses,
are members of the IMU family. Here we list a few popular models.
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(1) The randomized play-the-winner (RPW) rule [Wei and Durham (1978)].
When K = 2, Z0,0 = 0 or am,k = 0 for all m and k. Further, Dm,kk = 2 if the
response of the mth subject on treatment k is a success and Dm,kk = Dm,kj = 1
(j �= k) otherwise.

(2) Generalized Pólya urn models [Athreya and Karlin (1968), also called the
generalized Friedman’s urn]. When am,k = 0, we obtain the GPU models if one
chooses the adding rule Dm,kj as in Section 4.1 in Hu and Rosenberger (2006).
If Dm,kj is nonhomogeneous, we obtain the nonhomogeneous GPU models dis-
cussed by Bai and Hu (1999, 2005).

(3) The birth and death urn (BDU) [Ivanova et al. (2000)]. Suppose that am,k ≡
1, Dm,kj = 0 for j �= k. In addition, Dm,kk = 2 if the response of the mth subject
on treatment k is a success and Dm,kk = 0 otherwise. When K = 2, we obtain
the birth and death urn (BDU) [Ivanova et al. (2000)]. When K > 2, we obtain
generalized birth and death urn (BDU) for K treatments.

(4) The drop-the-loser (DL) rule [Ivanova (2003)]. Suppose that am,k ≡ 1,
Dm,kj = 0 for j �= k. In addition, Dm,kk = 1 if the response of the mth subject
on treatment k is a success and Dm,kk = 0 otherwise. When K = 2, we obtain the
DL rule [Ivanova (2003)]. When K > 2, we obtain DL rule for K treatments.

(5) The generalized drop-the-loser (GDL) rule [Zhang et al. (2007)]. Suppose
that am,k = ak (does not depend on m) are constants and Dm,kj = 0 for j �= k.
When K = 2, we obtain the GDL rule. When K > 2, we obtain GDL rules for K

treatments.
(6) Sequential estimated urn (SEU) models [Zhang, Hu and Cheung (2006)].

When Z0,0 = 0 or am,k = 0 for all m and k, and Dm,kj depends on estimation, we
obtain the SEU models proposed by Zhang, Hu and Cheung (2006) and the urn
models in Bai, Hu and Shen (2002).

In general, we can select suitable am,k and Dm,kj to obtain the desirable IMU
model for both binary and continuous responses (see examples in Section 3).

In clinical trials, let Nn,k be the number of subjects who have been assigned to
treatment k, k = 1, . . . ,K . Denote Nn = (Nn,1, . . . ,Nn,K). In clinical studies, the
proportions Nn,k/n, k = 1, . . . ,K , of patients being assigned to various treatments
are useful statistics. In fact, for urn model applications, there are several important
statistics, including:

(a) the urn proportion Zn,k/
∑K

k=1 Zn,k ;
(b) the allocation proportion Nn,k/n and
(c) the estimation of the unknown parameters in the model.

It is worthwhile noting that both am,k and Dm,kj depend on m. This allows
both the immigration rates and the adding rules to be expressed as functions of
all previous responses thus far in the clinical trial. Then, we are able to construct
desirable IMU models that can be used to suit pre-specified allocation proportion
targets. To reiterate, as both am,k and Dm,kj depend on m, it is impossible to use
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Athreya and Ney’s (1972) technique of embedding the urn process in a continuous-
time branching process.

It is also worth noting that Hoppe’s urn [Hoppe (1984)] and its extensions [see,
e.g., Donnelly and Kurtz (1996)] are not members of the IMU models. For Hoppe’s
urn, the number of ball types is increasing and random, but for an IMU model the
number of ball types is fixed (K + 1).

2.2. Notation and assumptions. Before the discussion of major asymptotic re-
sults regarding the IMU models, we introduce some basic notation and the neces-
sary assumptions. Suppose that ξm,k (k = 1, . . . ,K , m = 1,2,3, . . .) is the random
variable representing the response of the mth subject on treatment k. In practice,
we only observe one ξm,k for each m. Without loss of generality, we assume that
the unknown parameter θk is the mean of the outcome ξm,k and take the sam-
ple mean as its estimate. Write ξm = (ξm,1, . . . , ξm,K). For the adding rules, let
Dm = (Dm,kj ;k, j = 1, . . . ,K), D(k)

m = (Dm,k1, . . . ,Dm,kK), k = 1, . . . ,K , and
Hm = (hkj (m)) = EDm. Let θ̂m−1,k be the sample mean of the responses

θ̂m−1,k = c1 + Sm−1,k

c2 + Nm−1,k

,(2.1)

where Sm−1,k is the sum of the responses on treatment k of all the previous m − 1
subjects. Here, c1, c2 > 0 are used to avoid the nonsense case of 0/0. These two
constants play a minor role, only in the earlier stages of the clinical trial when
accumulated observations of the treatments are still very small. In general, many
estimators, such as the MLE, can be written in the form of (2.1) with Sm−1,k being
replaced by a sum of functions of the responses plus a negligible remainder [see
Hu and Zhang (2004a) for a detailed discussion].

As discussed in Section 2.1, the immigration rate am,k plays an important role in
the IMU models. Its significance will be illustrated in the later part of this section
when the theoretical properties of the IMU models are being reviewed. In clinical
trials, optimal allocation proportions usually depend on the unknown parameters θ

[see Rosenberger et al. (2001) and Tymofyeyev, Rosenberger and Hu (2007)]. To
achieve these proportions, one can select the immigration rates am,k as functions
of θ . In practice, as θ is unknown, one can use am−1,k = ak(̂θm−1) as the immi-
gration rates. The guidelines for the selection of the function ak will be given in
Section 3. In most applications, the adding rules Dm = (Dm,kj ;k, j = 1, . . . ,K)

normally depend on the response ξm, similar to those in the GPU models. Hence,
we need the following assumptions.

ASSUMPTION 2.1. Functions ak(·) > 0 are continuous and twice differen-
tiable at θ .
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ASSUMPTION 2.2. {(ξm,k,Dm,k1, . . . ,Dm,kK);m ≥ 1}, k = 1, . . . ,K , are K

sequences of i.i.d. random variables with

sup
m

E|Dm,kj |2+δ < ∞ and sup
m

E|ξm,k|2+δ < ∞
for some 0 < δ ≤ 2, k = 1, . . . ,K . Hence, let Hm = H, which does not depend
on m. Further assume that Dm,kk ≥ −C for some C, k = 1, . . . ,K , and also
Dm,kj ≥ 0 for k �= j .

The continuity of ak(·) in Assumption 2.1 is needed to show that 0 <

minm,k am,k ≤ maxm,k am,k < ∞ as given in Lemma A.5. The differentiability
of the function is required for the Taylor expansion. The moment condition in As-
sumption 2.2 is useful for applying the limit theorems and the approximation of
related martingales. Finally, the lower bound of Dm,kj implies that when a ball is
drawn, the maximum number of balls of that treatment type which can be removed
is C + 1. This condition is used to derive the lower bound of Zn,k , as given in
Lemma A.3.

2.3. Main asymptotic results. We now discuss the asymptotic properties re-
lated to urn proportions and model parameter estimators. Asymptotic results are
classified into one of following three possible cases, according to the expectation
of the adding rules.

1. H1′ < 1′ where 1 = (1, . . . ,1). Hence
∑K

j=1 hkj < 1 for all k = 1, . . . ,K . The
urn composition is mainly updated by the immigration balls because, on av-
erage, the number of added balls in each step according to the outcome of a
treatment is less than the number of dropped balls, which is 1. The derivation
of asymptotic results for this case is of the utmost importance and plays a cru-
cial role in this paper.

2. H1′ > 1′. The total number of balls in the urn gradually increases to infinity.
Hence, the probability of drawing an immigration ball drops to zero. For this
case, we will prove that the IMU model is asymptotically equivalent to the
generalized Pólya urn model without immigration (refer to Theorem 2.1).

3. H1′ = 1′. This is the borderline case in which both the treatment balls and the
immigration ball retain their roles in the urn updating process.

These three cases lead to very different asymptotic results. Let us first consider
the case of H1′ > 1′. The following theorem ensures that the IMU model behaves
asymptotically, the same as the generalized Pólya urn model, when H1′ > 1′. The
proof is given in the Appendix. Based on this theorem, we can obtain the as-
ymptotic properties, including the strong consistency, asymptotic normality and
Gaussian approximation, of the generalized Pólya urn model as discussed by
Janson (2004), Bai and Hu (2005), Zhang, Hu and Cheung (2006) and Zhang and
Hu (2009), among others.
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THEOREM 2.1. Suppose that Assumption 2.2 is satisfied, H1′ = γ 1′ with γ >

1 and 0 ≤ am,k ≤ Cm1/2−δ0 for some δ0 > 0 and all m,k. Let v = (v1, . . . , vK) be
the left eigenvalue vector of H that corresponds to the largest eigenvalue γ and
satisfies v1 + · · · + vK = 1, and denote H̃ = H−I

γ−1 − 1′v. Further, let λ2, . . . , λK

be the other K − 1 eigenvalues of H and λ = max{Re(λ2), . . . ,Re(λK)}. Assume
that λ−1 < (γ −1)/2. Then, there exist two independent standard K-dimensional
Wiener processes Bt1 and Bt2 such that

(Nn,1, . . . ,Nn,K) − nv = Gn1 + 1

γ − 1

∫ t

0

Gx2

x
dx(I − 1′v)

+ o(n1/2−ε) a.s.,

(Zn,1, . . . ,Zn,K) − (γ − 1)nv = (γ − 1)Gn1H̃ + Gn2 + o(n1/2−ε) a.s.

for some ε > 0, where Gt i is the solution of the equation

Gt i = Bt i�
1/2
i +

∫ t

0

Gxi

x
dx H̃

with �1 = diag(v) − v′v and �2 = ∑K
k=1 vkVar{D(k)

1 }. In particular,

Zn,0

Zn,0 + · · · + Zn,K

→ 0 a.s.,
Zn,k

Zn,0 + · · · + Zn,K

→ vk a.s.,

Nn,k

n
→ vk a.s.,

k = 1, . . . ,K , and

n1/2
(

Zn,1

(γ − 1)n
− v1, . . . ,

Zn,K

(γ − 1)n
− vK

)
D→ N(0,�1),

n1/2
(

Nn,1

n
− v1, . . . ,

Nn,K

n
− vK

)
D→ N(0,�2).

Here, the variance–covariance matrices �1 and �2 can be specified in line with
Bai and Hu (2005) and Zhang and Hu (2009) with Dm−I

γ−1 and H−I
γ−1 replacing Dm

and H, respectively. For details, one can refer to Proposition 3.4 of Zhang and Hu
(2009).

Now we consider the case in which H1′ < 1′. Different from the case
when H1′ > 1′ in which the urn proportion and the sample allocation pro-
portion have the same limit, the urn proportion may not have a limit in this
case. For the immigration rates, write ak = ak(θ). Let a = (a1, . . . , aK), u =
a(I − H)−1, s = a(I − H)−11′ = ∑K

k=1 uk and v = u/s. Further, denote �k =
Var{D(k)

1 }, �11 = ∑K
k=1 vk�k , �12 = (Cov{D1,kj , ξk}; j, k = 1, . . . ,K), �22 =

diag(Var{ξ1,1}, . . . ,Var{ξ1,K}) and

� =
(

�11 �12
�′

12 �22

)
=

(
�11 �12 diag(v)

diag(v)�′
12 �22 diag(v)

)
.(2.2)
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THEOREM 2.2. Suppose that Assumptions 2.1 and 2.2 are satisfied, H1′ < 1′
and Z0,0 > 0. Then

Zn,k = o(n1/2−ε) a.s., k = 1, . . . ,K,

for some ε > 0, and, one can define a 2K-dimensional Wiener processes
(W(t),B(t)) such that

Var{(W(t),B(t))} = t�(2.3)

and

Nn − nv = W(n)A +
∫ n

0

B(x)

x
dx diag

(
1

v

)
∂v(θ)

∂θ
+ o(n1/2−ε) a.s.(2.4)

for some ε > 0, where A = (I − H)−1(I − 1′v),

v = v(θ) = a(θ)(I − H)−1

a(θ)(I − H)−11′ and
∂v(θ)

∂θ
=

(
∂vk(θ)

∂θj

; j, k = 1, . . . ,K

)
.

Here, 1/v = (1/v1, . . . ,1/vK).

REMARK 2.1. Note that hij ≥ 0 for i �= j . The existence of (I − H)−1 is
implied by the assumption that H1′ < 1′. This assumption can be replaced by a
more general assumption in which there is a vector e = (e1, . . . , eK) such that
He′ < e′ and ei > 0, i = 1, . . . ,K .

Based on Theorem 2.2, we can see that the urn composition (
√

n)−1Zn,k con-
verges to 0 almost surely. It is because when H1′ < 1′, there will be a net loss
of balls from the urn on average if a treatment ball is drawn. The proof of Theo-
rem 2.2 is given in the Appendix. The consistency and asymptotic normality of Nn

can be derived by using (2.4) as follows.

COROLLARY 2.1. Under the assumptions in Theorem 2.2,

Nn − nv = O
(√

n log logn
)

a.s. and
√

n

(
Nn

n
− v

)
D→ N(0,�),(2.5)

where � = �D + 2�ξ + �Dξ + �′
Dξ and

�D = A′�11A, �Dξ = A′�12
∂v(θ)

∂θ
,

�ξ =
(

∂v(θ)

∂θ

)′
diag

(
Var{ξ1,1}

v1
, . . . ,

Var{ξ1,K}
vK

)
∂v(θ)

∂θ
.

In particular, if Dm ≡ const, then

√
n

(
Nn

n
− v

)
D→ N(0,2�ξ )
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and if am,k ≡ ak , k = 1, . . . ,K , do not depend on the estimates, then

√
n

(
Nn

n
− v

)
D→ N(0,�D).

PROOF. Note that (W(n),
∫ n

0
B(x)

x
dx) is a centered Gaussian vector with

W(n) = O
(√

n log logn
)

a.s.,∫ n

0

B(x)

x
dx = O(1) +

∫ n

e

O(
√

x log logx)

x
dx

= O
(√

n log logn
)

a.s.,

Var{W(n)} = n�11,

Var
{∫ n

0

B(x)

x
dx

}
= �22 diag(v)

∫ n

0

∫ n

0

x ∧ y

xy
dx dy = 2n�22 diag(v)

and

Cov
{

W(n),

∫ n

0

B(x)

x
dx

}
= �12 diag(v)

∫ n

0

x ∧ n

x
dx = n�12 diag(v).

Equation (2.5) follows from (2.4) immediately. �

REMARK 2.2. In practice, the responses in clinical trials are frequently not
available immediately before the treatment allocation of the next subject (delayed
response). The parameters can be estimated and the urn can be updated only by us-
ing all available observed responses. In the delayed response situation, let μk(m, l)

be the probability that the response of the mth subject on treatment k occurs after
at least another l subjects arrive. If μk(m, l) ≤ Cl−γ for some γ ≥ 2, then we can
show that the total sum of unobserved outcomes up to the nth assignment is with
a high order of

√
n and thus the conclusion in Theorem 2.2 remains true. It has

been shown that the delay mechanism does not effect the asymptotic properties for
many response-adaptive designs if the delay decays with a power rate [cf. Bai, Hu
and Rosenberger (2002), Hu and Zhang (2004b), Zhang et al. (2007)].

In many IMU models [such as special cases (3), (4) and (5) in Section 2], the
additional rule, Dm, is a diagonal matrix (Dm,kj = 0, j �= k). For this special case,
we have the following corollary that helps us to obtain the asymptotical limits and
covariance matrix of Nn easily.

COROLLARY 2.2. Suppose that Assumptions 2.1 and 2.2 are satisfied,
Dm,kj = 0 for j �= k and hk = 1 − ED1,kk > 0. Write h = (h1, . . . , hK),

vk(θ ,h) = ak(θ)/hk∑K
j=1 aj (θ)/hj

, k = 1, . . . ,K,
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v = v(θ ,h) = (v1(θ,h), . . . , vK(θ ,h)) and

∂v(θ ,h)

∂θ
=

(
∂vk(θ ,h)

∂θj

; j, k = 1, . . . ,K

)
,

∂v(θ ,h)

∂h
=

(
∂vk(θ ,h)

∂hj

; j, k = 1, . . . ,K

)
.

Then,

Nn

n
→ v a.s. and

√
n

(
Nn

n
− v

)
D→ N(0,�),(2.6)

where � = �D + 2�ξ + �Dξ + �′
Dξ ,

�D =
(

∂v(θ ,h)

∂h

)′
diag

(
σ 2

D1

v1
, . . . ,

σ 2
DK

vK

)
∂v(θ ,h)

∂h
,

�ξ =
(

∂v(θ ,h)

∂θ

)′
diag

(σ 2
ξ1

v1
, . . . ,

σ 2
ξK

vK

)
∂v(θ ,h)

∂θ
,

�Dξ = −
(

∂v(θ ,h)

∂h

)′
diag

(
σDξ1

v1
, . . . ,

σDξK

vK

)
∂v(θ ,h)

∂θ

and σ 2
Dk = Var{D1,kk}, σ 2

ξk = Var{ξ1,k}, σξDk = Cov{D1,kk, ξk,1}, k = 1,2, . . . ,K .

PROOF. It is easy to check that

�11 = diag(σ 2
D1v1, . . . , σ

2
DKvK), �12 = diag(σξD1, . . . , σξDK),

�22 = diag(σ 2
ξ1, . . . , σ

2
ξK), A = diag(1/h)(I − 1′v)

and ∂v(θ ,h)/∂h = −diag(v)A. Then, the results follow from Corollary 2.1 di-
rectly. �

To improve statistical efficiency, a suitable response adaptive randomization
procedure should be adopted because of variability [Hu and Rosenberger (2003)].
Hu, Rosenberger and Zhang (2006) studied the variability of a randomization pro-
cedure that targets any given allocation proportion. They obtained a lower bound of
the variability. For a large class of the IMU models in this paper, the lower bound
of the variability is attained. When the variance of IMU model attains the lower
bound, we can use the Cramér–Rao formula to compute the variance. In general,
we have the following theorem.

THEOREM 2.3. If each Dm,kj is a linear function of a random ηm,k , j =
1, . . . ,K , where ηm,k may be a function of ξm,k and for each k, ηm,k , m = 1,2, . . . ,
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are i.i.d. random variables with finite variances, then we have

�D =
(

∂v
∂d

)′
diag

(
Var{η1,1}

v1
, . . . ,

Var{η1,K}
vK

)
∂v
∂d

,(2.7)

�Dξ =
(

∂v
∂d

)′
diag

(
Cov{η1,1, ξ1,1}

v1
, . . . ,

Cov{η1,K, ξ1,K}
vK

)
∂v
∂θ

,(2.8)

where d = (d1, . . . , dK) = (Eη1,1, . . . ,Eη1,K). Further, if a(·) = const and
Var{η1,k} is the inverse of the Fisher information of dk , then the asymptotic
variance–covariance matrix of Nn/

√
n attains the following lower bound:(

∂v
∂d

)′
diag((v1I1)

−1, . . . , (vKIK)−1)

(
∂v
∂d

)
,(2.9)

where Ik is the Fisher information function of parameter dk .

PROOF. If we write D(k)
1 = αk + βkη1,k and K =

⎛⎝ β1
.
.
.

βK

⎞⎠, then

�11 =
K∑

k=1

vkVar{η1,k}β ′
kβk

= (diag(v)K)′ diag
(

Var{η1,1}
v1

, . . . ,
Var{η1,K}

vK

)
diag(v)K

and

�12 = (diag(v)K)′ diag
(

Cov{η1,1, ξ1,1}
v1

, . . . ,
Cov{η1,K, ξ1,K}

vK

)
.

However, ∂H/∂dk = diag(1k)K, where 1k has zero elements except the kth one
which is 1. In addition,

∂(I − H)−1

∂dk

= (I − H)−1 ∂H
∂dk

(I − H)−1 = (I − H)−1 diag(1k)K(I − H)−1.

It follows that

∂v
∂dk

= ∂a(I − H)−1/∂dk

a(I − H)−11′ − ∂a(I − H)−1/∂dk

(a(I − H)−11′)2 1′a(I − H)−1

= v diag(1k)K(I − H)−1(I − 1′v) = v diag(1k)KA,

that is, ∂v/∂d = diag(v)KA. Hence, (2.7) and (2.8) are proved by Corollary 2.1.
�

Corollary 2.2 and Theorem 2.3 are useful for deriving the asymptotic variance.
We will illustrate this idea by introducing several interesting examples in the next
section.
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REMARK 2.3. In Theorem 2.3, for simplicity of notation we assume that the
parameter dk is a one-dimensional parameter that corresponds to treatment k. The
theorem is still valid if reformulated using a vector parameter dk , without extra
assumptions.

Finally, we consider the case when H1′ = 1′. The following theorem, with proof
given in the Appendix, can be used to yield the consistency property of the alloca-
tion proportion. However, it is still unknown whether Nn is asymptotically normal.

THEOREM 2.4. Suppose that Assumptions 2.1 and 2.2 are satisfied, and
H1′ = 1′, Z0,0 > 0. Suppose further that 1 is a single eigenvalue of H. Then

Nn − nv = O
(√

n log logn
)

a.s. and Nn − nv = OP

(√
n
)
,

where v is the left eigenvalue vector of H that corresponds to the eigenvalue 1 and
satisfies v1 + · · · + vK = 1.

These theorems and corollaries are related to the sample allocation proportion
Nn/n. Regarding the estimator θ̂n, we have the following theorem.

THEOREM 2.5. Suppose that the assumptions in Theorems 2.1 or 2.2 or 2.4
are satisfied. We have

√
n(̂θn − θ) → N(0,�θ ),(2.10)

where

�θ = diag
(

Var{ξ1,1}
v1

, . . . ,
Var{ξ1,K}

vK

)
.

Note that Nn/n → v a.s. according to Theorems 2.1 or 2.2 or 2.4, so the proof
of this theorem is the same as that of Lemma 1 of Hu, Rosenberger and Zhang
(2006) and is thus omitted here.

3. Examples and applications. In this section, we apply the general asymp-
totic results in Section 3 to selected IMU models for illustrative purposes. In Sec-
tion 2.1, we listed several classic families of urn models as special cases of IMU
models. We can apply directly the theoretical results in Section 3 to these spe-
cial cases and obtain their asymptotic properties for both K = 2 (available in the
literature) and for the general value of K ≥ 3. In this section, we focus on the gen-
eration of new families of urn models from the IMU framework and discuss their
corresponding properties. Several illustrative examples are given. First, we con-
sider continuous-type responses that are frequently encountered in clinical studies,
even though there has been a lack of related studies in the literature.
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EXAMPLE 1 (Two treatments with continuous responses). Suppose that ξm,1

(m = 1,2,3, . . .) are i.i.d. random variables from N(μ1, σ
2
1 ), and ξm,2 (m =

1,2,3, . . .) are i.i.d. random variables from N(μ2, σ
2
2 ). Without the loss of gen-

erality, assume that the smaller the value of the response, the better the treatment.
We now introduce four IMU models.

(1.A) Let am,k ≡ 1, Dm,kj = 0 for j �= k. Let C be a constant such that
Dm,kk = 1 if the response of the mth subject on treatment k, ξm,k , is less than C

and Dm,kk = 0 otherwise.
(1.B) Suppose that there are two critical values C1 < C2 and if it is very de-

sirable to have the value of the response fall between C1 and C2, then the follow-
ing IMU model is appropriate. Take am,k ≡ 1, Dm,kj = 0 for j �= k. Further, let
Dm,kk = 1 if ξm,k < C1, Dm,kk = 0 if ξm,k > C2 and else Dm,kk = 1/2.

(1.C) If the power of statistical inferences is an important concern, the Neyman
allocation σ1/(σ1 + σ2) can be adopted to maximize the power of testing. Then,
consider the following IMU model. Let am,k = σ̂k , Dm,kj = 0 for all j, k. Here, σ̂ 2

k

is the current sample variance of the responses on treatment k, k = 1,2, and can
be used as estimates in the Neyman allocation rule.

(1.D) If the aim is to lower the proportion of subjects being assigned to the infe-
rior treatments for ethical reasons, the allocation target

√
μ2σ1/(

√
μ2σ1 +√

μ1σ2)

where μ1,μ2 > 0 [Zhang and Rosenberger (2006)] is an option. Let am,1 =√
μ̂2σ̂1, am,2 = √

μ̂1σ̂2, Dm,kj = 0 for all j, k. Here, μ̂k , σ̂ 2
k are the current sample

mean and sample variance of the responses on treatment k, respectively, k = 1,2.
To avoid the situation of μ̂k ≤ 0, simply replace μ̂2 by 1/m when such an occasion
arises.

Designs (1.A) and (1.B) cover a wide spectrum of potential applications. Note
that design (1.A) is equivalent to the DL rule for binary response if the critical
value C is used to classify responses into two categories. Designs (1.C) and (1.D)
incorporate pre-specified objectives of a clinical trial, depending on whether the
objective is to increase the testing power [as in (1.C)], or reduce the number of
patients being assigned to the inferior treatments [as in (1.D)]. Further, it would
not be difficult to generalize these four designs to studies with K > 2 treatments.

The asymptotic properties of the four designs can be obtained using Theo-
rem 2.2. For illustrative purposes, we discuss asymptotic normalities for design
(1.C). It is easy to verify that

σ̂ 2
k =: σ̂ 2

m,k = 1

Nm,k

m∑
j=1

Xj,k(ξj,k − μk)
2 − (μ̂k − μk)

2

= 1

Nm,k

m∑
j=1

Xj,k(ξj,k − μk)
2 + O

(
log logNm,k

Nm,k

)
a.s.
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By Corollary 2.1,

Nn,1

n
→ v1 a.s. and n1/2

(
Nn,1

n
− v1

)
D→ N(0, σ 2),

where v1 = σ1/(σ1 + σ2) and σ 2 equals to

2
(

∂v1

∂(σ 2
1 )

,
∂v1

∂(σ 2
2 )

)
diag

(
Var{(ξ1,1 − μ1)

2}
v1

,
Var{(ξ1,2 − μ2)

2}
1 − v1

)(
∂v1

∂(σ 2
1 )

,
∂v1

∂(σ 2
2 )

)′
.

After simplification, we have σ 2 = σ1σ2/(σ1 +σ2)
2. One can also use Theorem 2.5

to derive the asymptotic distribution of the estimators of the unknown parameters.

For example, in design (1.C),
√

n(σ̂ 2
n,k − σ 2)

D→ N(0,2σ 4
k /vk).

EXAMPLE 2 [Modified DL (MDL) rule]. We propose the MDL rule, which is
a modification of the DL rule. The procedure is similar to the DL rule in that when
a treatment ball is drawn, this ball is replaced only when the response is a success.
However, when an immigration ball is drawn, instead of adding an equal number
of treatment balls to the urn, we add Cp̂k (C > 0) balls of type k, k = 1, . . . ,K ,
where p̂k is the current estimate of the successful probability pk of treatment k,
and C is a constant. With this model, more balls are immigrated to treatments
with higher success rates, and subsequently, the limit proportions will be higher
for better treatments.

Regarding the asymptotic variance, it is straightforward to show that a =
(p1C, . . . ,pKC) and H = diag(p1, . . . , pK). The conditions in Corollary 2.2 are
satisfied for all cases with 0 < pk < 1 and k = 1, . . . ,K . Hence, the limit propor-
tions are vk = (pk/qk)/(

∑K
j=1 pj/qj ), k = 1, . . . ,K. The asymptotic variance–

covariance can be derived by the formulae in Corollary 2.2, in which θ =
(p1, . . . , pK), h = (q1, . . . , qK) and σ 2

Dk = σ 2
ξk = σDξk = pkqk , k = 1, . . . ,K . For

the two-treatment case,

Nn,1

n
→ v1 = p1/q1

p1/q1 + p2/q2
a.s. and

√
n(Nn,1/n − v1)

D→ N(0, σ 2),

where σ 2 = q1q2[p2
1(1 + q2

2 ) + p2
2(1 + q2

1 )]/(p2q1 + p1q2)
3. When the success

probabilities p1 and p2 are both high, the variability σ 2 is close to the lower bound
q1q2(p

2
1 + p2

2)/(p2q1 + p1q2)
3.

Unlike the generalized Pólya urn models without immigration in which the as-
ymptotic normality holds only when a very strict condition on eigenvalues of a
generating matrix is satisfied [cf. Bai and Hu (2005), Janson (2004), Zhang, Hu
and Cheung (2006)], the MDL rule allows asymptotic normality for all cases with
0 < pk < 1, k = 1, . . . ,K .

In most IMU models, the adding rule Dm is a diagonal matrix. Here we give
an example for the two-treatment case with dichotomous responses in which the
adding rule Dm is not a diagonal matrix.
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EXAMPLE 3 (Two treatments with dichotomous responses). Consider the two-
treatment case with dichotomous responses, success or failure. Let pk be the suc-
cess probability of treatment k and qk = 1 − pk , k = 1,2. We consider an immi-
grated urn in which am,1 = am,2 ≡ 1 and

Dm =
(

βξm,1 α(1 − ξm,1)

α(1 − ξm,2) βξm,2

)
,

where ξm,k = 1 if the outcome of the mth subject on treatment k is a success,
and 0 otherwise, k = 1,2, α ≥ 0. In this design, the draw of an immigration ball
generates a ball of each treatment type; when a treatment type ball is dropped,
β balls of the same treatment type are added if the outcome is a success and α

balls of the alternate treatment type are added if the outcome is a failure. Hence,

H =
(

βp1 αq1
αq2 βp2

)
.

Based on Theorems 2.1–2.5 of Section 2, we can derive the asymptotic properties
for the three cases: (i) H1′ > 1′; (ii) H1′ < 1′ and (iii) H1′ = 1′. The technical
details are omitted here. Nevertheless, it is worth noting that different choices of α

and β generate various members of the IMU family.

REMARK 3.1. The GDL rule of Zhang et al. (2007) is a member of the IMU
class with Dm,kj = 0, j �= k. In practice, the values of θk, k = 1, . . . ,K , are un-
known and have to be estimated by sample statistics. The derivation of the as-
ymptotic distributions of the treatment proportions Nn,k is usually difficult and is
not included by Zhang et al. (2007) if the estimates of θk, k = 1, . . . ,K , are used.
However, by applying Corollary 2.2, one can obtain the asymptotic properties of
Nn,k directly.

For example, if the optimal proportion v1 = √
p1/(

√
p1 + √

p2) is used for
comparing two treatments, we can select an IMU model with Dm ≡ 0, am,k =
C

√
p̂k , where p̂k is the current estimate of the successful probability pk of treat-

ment k, and C is a constant, k = 1,2. By Corollary 2.2, we have

√
n(Nn,1/n−v1)

D→ N(0, σ 2) where σ 2 = 1

2(
√

p1 + √
p2)3

(
p2q1√

p1
+ p1q2√

p2

)
.

Zhang, Hu and Cheung (2006) proposed the use of a GPU without immigration to
target this proportion (cf. their Example 2). The corresponding asymptotic variance
is √

p1p2

(
√

p1 + √
p2)2 + 3

2(
√

p1 + √
p2)3

(
p2q1√

p1
+ p1q2√

p2

)
,

which is at least triple the variance of this IMU model.

The IMU models, such as those given in the foregoing examples, can be applied
in clinical trials. We discuss the applications in three possible directions.
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(i) There are numerous applications of urn models in clinical trials. One can
apply the proposed IMU models with multiple objectives, such as ethical concerns
and design efficiency. For instance, Tamura et al. (1994) discussed the application
of the RPW rule, a member of the IMU family, to study the treatment of out-
patients suffering from depressive disorder. Later, in a simulation study (using the
same data), Bhattacharya (2008) showed that the DL rule, another member of the
IMU family, has a smaller variability and yields higher power than the RPW rule.
One can apply the asymptotics of the IMU model given in this paper to compare
various urn allocation methods instead of using only the simulation results given
by Bhattacharya (2008).

(ii) Urn models are also frequently employed in clinical studies to promote
balance [see Matthews et al. (2010) and the references therein]. In such circum-
stances, IMU models should be considered as useful candidates. The introduction
of the immigration urn will significantly improve these allocation schemes, mainly
in relation to the variability of the urn proportions. Furthermore, asymptotic dis-
tributions of IMU models can be derived, leading to a more comprehensive under-
standing of these urn processes.

(iii) For comparing K treatments, Tymofyeyev, Rosenberger and Hu (2007),
Zhu and Hu (2009) obtained optimal allocation proportions for both binary and
continuous responses. The IMU models are suitable choices due to their low vari-
ability and flexibility in targeting these optimal allocation proportions.

4. Conclusions. In this paper, we have proposed a general class of urn models
that incorporates immigration. The IMU framework unifies many existing classes
of urn models and provides crucial linkages among these models to enable us to
have a more comprehensive understanding of different urn processes and their im-
portant properties. Further, this framework facilitates the generation of new urn
models with desirable properties. Asymptotic properties of the IMU models, with
widely satisfied conditions, are given in Section 2. These important results serve
to connect existing asymptotic results about urn models. More importantly, the
asymptotic normality formula in this article can be employed to evaluate and com-
pare different urn models in terms of the distributions of treatment allocation pro-
portions. Under very mild conditions, the suggested IMU models always yield
relatively smaller asymptotic variances. In many cases, the asymptotic variance
attains the lower bound. Thus, the IMU models have smaller variabilities than the
corresponding generalized Pólya urn models.

In clinical trials, responses may not be available immediately after the patients
have been treated. However, there are no logistical difficulties in incorporating de-
layed responses into the IMU framework. One can update the urn when responses
become available. A moderate delay in response [see Hu and Zhang (2004b)] will
not affect the asymptotic properties of the IMU. In fact, it is straightforward to
modify the proof in the Appendix to incorporate delayed responses.
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The discussion of clinical applications has been the main focus of this article be-
cause adaptive designs using urn models have received much attention in statistics.
However, it is necessary to emphasize that our results are very general and should
also play an important role in other areas as well. For example, in quantum me-
chanics, Niven and Grendar (2009) use the Pólya urn to understand the generalized
probability distribution for Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac
statistics. With different colors in the urn, a ball is sampled, recorded and returned
to the urn. Then, c balls of the same color are added to the urn. In their formula-
tion, the choices of c are c > 0, c = 0 and c < 0. As c < 0 implies a decrease of
the number of balls in the urn, it would be interesting to explore the possibility of
using the IMU framework to avoid the distinction of balls of a particular type.

APPENDIX: PROOFS

The outline of the proofs is as follows. First, we prove Theorem 2.2, which is
our main result, and then Theorem 2.4. Finally we give a sketch of the proof of
Theorem 2.1.

Recall that Zm−1 = (Zm−1,0, Zm−1,1, . . . ,Zm−1,K) represent the numbers of
balls when the mth subject arrives to be randomized, Z+

m−1 = (Z+
m−1,0,Z

+
m−1,1,

. . . ,Z+
m−1,K) are the nonnegative numbers and |Z+

m−1| = Z+
m−1,0 +Z+

m−1,1 +· · ·+
Z+

m−1,K . Write Z̃m−1 = (Zm−1,1, . . . ,Zm−1,K). Because every immigration ball
is replaced, Z+

m−1,0 = Zm−1,0 = Z0,0 for all m. Let Xm be the result of the mth
assignment, where Xm,k = 1 if the mth subject is assigned to treatment k and 0
otherwise, k = 1, . . . ,K . Then, Nn = (Nn,1, . . . ,Nn,K) = ∑n

m=1 Xm. Further, we
denote am = (am,1, . . . , am,K), and νm to be the number of draws of type 0 balls
between the (m − 1)th assignment and the mth assignment.

Note that between the (m − 1)th assignment and the mth assignment, we have
drawn νm balls of type 0. Accordingly, we have added am−1,kνm balls of type k

to the urn. However, when a ball of type k is drawn, it is not replaced and another
Dm,kj balls of type j are added to the urn. Hence, the change in the number of
balls after the mth assignment is

Z̃m − Z̃m−1 = am−1νm + Xm(Dm − I).(A.1)

It follows that

Z̃n − Z̃0 =
n∑

m=1

am−1νm +
n∑

m=1

Xm(Dm − I)

=
n∑

m=1

am−1νm − Nn(I − H) +
n∑

m=1

Xm(Dm − E[Dm])(A.2)

= aNn,0 +
n∑

m=1

(am−1 − a)νm − Nn(I − H) + Mn,
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where Nn,0 = ∑n
m=1 νm is total number of draws of type 0 balls after the nth

assignment, and Mn = ∑n
m=1 Xm(Dm − E[Dm]) is a martingale.

To prove Theorem 2.2 we need two lemmas. Their proofs will be given later.

LEMMA A.1. Suppose that the assumptions in Theorem 2.2 are satisfied.
Then, for 0 < δ0 < 1

2 − 1
2+δ

,

Zn,k = o(n1/2−δ0) a.s., k = 1, . . . ,K.(A.3)

LEMMA A.2. Suppose that the assumptions in Theorem 2.2 are satisfied.
Then,

Nn,0 = n/s + O
(√

n log logn
)

a.s.,(A.4)

Nn,k = nvk + O
(√

n log logn
)

a.s., k = 1, . . . ,K,(A.5)

where s = a(I − H)−11′. Also, for each k = 1, . . . ,K ,

θ̂n,k → θk a.s.(A.6)

and

θ̂n,k − θk = Qn,k

nvk

+ o(n−1/2−δ0) a.s.,(A.7)

where Qn,k = ∑n
m=1 Xm,k(ξm,k − Eξm,k) is a martingale and Qn = (Qn,1, . . . ,

Qn,K).

Now we begin the proof of Theorem 2.2. Consider the 2K-dimensional martin-
gale {(Mn,Qn), An;n ≥ 1}, where An = σ(X1, . . . ,Xn, ξ1, . . . , ξn+1). According
to (A.5) we have

n∑
i=1

E[(�Mi )
′�Mi |Ai−1] =

K∑
k=1

Nn,k�k

(A.8)
= n�11 + O

(√
n log logn

)
a.s.,

n∑
i=1

E[(�Qi )
′�Qi |Ai−1] = �22 diag(Nn)

(A.9)
= n�22 + O

(√
n log logn

)
a.s.,

n∑
i=1

E[(�Mi )
′�Qi |Ai−1] = �12 diag(Nn)

(A.10)
= n�12 + O

(√
n log logn

)
a.s.
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By Corollary 1.1 of Zhang (2004), we can define the 2K-dimensional Wiener
processes (W(t),B(t)) with variance–covariance matrix � such that for some
ε > 0,

Mn = W(n) + o(n1/2−ε) a.s., Qn = B(n) + o(n1/2−ε) a.s.(A.11)

Without loss of generality, we assume that ε ≤ δ0, where δ0 is defined as it is in
Lemma A.1. Next, we need to show that (W(t),B(t)) satisfies (2.4). Combining
(A.2) and (A.3) yields

Nn(I − H) − aNn,0 = Mn +
n∑

m=1

(am−1 − a)νm + o(n1/2−δ0) a.s.(A.12)

Recall that A = (I − H)−1(I − 1′v), v = a(I − H)−1/(a(I − H)−11′) and note
that Nn1′ = n, aA = sv(I − 1′v) = 0. According to (A.12),

Nn − nv =
(

Mn +
n∑

m=1

(am−1 − a)νm

)
A + o(n1/2−δ0) a.s.(A.13)

For am − a, due to (A.7) and (A.11),

am − a = (̂θm − θ)
∂a(θ)

∂θ
+ O(‖θ̂m − θ‖2)

= Qm

m
diag

(
1

v

)
∂a(θ)

∂θ
+ o(m−1/2−δ0)(A.14)

= B(m)

m
diag

(
1

v

)
∂a(θ)

∂θ
+ o(m−1/2−ε).

Note that immigration occurs only when a type 0 ball is drawn. Let τm be the total
number of draws when the mth type 0 ball is drawn. At that time, τm − m sub-
jects have been assigned and the (τm − m + 1)th subject arrives to be randomized.
Hence, we add a(τm−m+1)−1,k balls of type k to the urn, k = 1, . . . ,K . It follows
that

n∑
j=1

aj−1,k · νj =
Nn,0∑
m=1

aτm−m,k,

that is,

n∑
m=1

(am−1 − a)νm =
Nn,0∑
m=1

(aτm−m − a).

It is easily seen that τm = min{n :Nn,0 ≥ m} + m. Due to (A.4),

τm − m = min{n :Nn,0 ≥ m} = sm + O
(√

m log logm
)

a.s.
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It follows that

aτm−m − a = B(τm − m)

τm − m
diag

(
1

v

)
∂a(θ)

∂θ
+ o(m−1/2−ε)

= B(sm)

sm
diag

(
1

v

)
∂a(θ)

∂θ
+ o(m−1/2−ε) a.s.

Using (A.4), we conclude that
n∑

m=1

(am−1 − a)νm

=
Nn,0∑
m=1

(
B(sm)

sm
diag

(
1

v

)
∂a(θ)

∂θ
+ o(m−1/2−ε)

)
(A.15)

=
∫ n/s

0

B(sx)

sx
dx diag

(
1

v

)
∂a(θ)

∂θ
+ o(n1/2−ε)

=
∫ n

0

B(x)

x
dx diag

(
1

v

)
1

s

∂a(θ)

∂θ
+ o(n1/2−ε) a.s.

However, it is easily checked that

1

s

∂a(θ)

∂θ
A = ∂v(θ)

∂θ
.(A.16)

Combining (A.11)–(A.16) the proof of (2.4) is complete.
Three more lemmas are needed before we prove Lemmas A.1 and A.2.

LEMMA A.3. Under Assumption 2.2 and Z0,0 > 0, we have

Z−
n,k = O(1) a.s., k = 1, . . . ,K.

PROOF. Note that |Z+
m| ≥ Z0,0 > 0 for all m and so that the balls with negative

numbers have no chance of being drawn. In addition, at most C + 1 balls of each
treatment type have the chance of being removed only when a ball of the same
type is drawn because of the Assumption 2.2. It follows that Zn,k ≥ −C − 1. �

LEMMA A.4. Let Fn = σ(X1, . . . ,Xn,Z1, . . . ,Zn) be the history sigma field,
and Am = ∑K

k=1 am,k . Suppose that Assumption 2.2 is satisfied. Then, A :=
minm Am > 0 implies

E[νp
n |Fn−1] ≤ cp

((
K∑

k=1

Zn−1,k

)−/
A

)p+1
Z0,0

|Z+
n−1|

a.s. ∀p ≥ 1,(A.17)

where cp > 0 is a random variable that is a function of Z0,0 and minm Am, partic-
ularly,

min
m

Am > 0 implies E[νp
n |Fn−1] = O(1) a.s.(A.18)
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PROOF. The event {νn = l} means that when the nth subject is assigned, we
have drawn l + 1 balls continuously in which the first l balls is of type 0 and the
last one is not. Hence, P(νn = 0|Fn−1) = 1 − Z0,0/|Z+

n−1|, and for l = 1,2, . . . ,

P(νn = l|Fn−1) = Z0,0

|Z+
n−1|

l−1∏
j=1

Z0,0

|(Zn−1 + jan−1)+|
(A.19)

×
(

1 − Z0,0

|(Zn−1 + lan−1)+|
)
.

Obviously, P(νn = l|Fn−1) ≤ Z0,0/|Z+
n−1|, l ≥ 1. Note that

|(Zn−1+jan−1)
+| = Z0,0+

K∑
k=1

(Zn−1,k +jan−1,k)
+ ≥ Z0,0+

K∑
k=1

Zn−1,k +jAn−1.

It follows that A > 0 and
∑K

k=1 Zn−1,k ≥ −LA imply for l ≥ L,

P(νn = l|Fn−1) ≤ Z0,0

|Z+
n−1|

l−1∏
j=L

Z0,0

Z0,0 + (j − L)A
≤ c0

Z0,0

|Z+
n−1|

e−2(l−L),(A.20)

where c0 > 0 depends only on A and Z0,0. So

E[νp
n |Fn−1] ≤

L∑
l=1

lp
Z0,0

|Z+
n−1|

+
∞∑

l=L+1

lpc0
Z0,0

|Z+
n−1|

e−2(l−L) ≤ cpLp+1 Z0,0

|Z+
n−1|

.

Taking L = [(∑K
k=1 Zn−1,k)

−/A] + 1 completes the proof of (A.17). Equation
(A.18) follows from (A.17) and Lemma A.3. �

LEMMA A.5. Suppose that Assumptions 2.1 and 2.2 are satisfied. Then

min
m,k

am,k > 0 and max
m,k

am,k < ∞ a.s.(A.21)

PROOF. By Lemma A.4 of Hu and Zhang (2004a), we have

Nn,k → ∞ implies θ̂n,k → θk a.s., k = 1, . . . ,K.(A.22)

Then, ak(y) > 0 for any y on closure{̂θm;m = 1,2, . . .} = ⊗K
k=1{θk, θ̂m,k;m =

1,2, . . .}. By the continuity of ak(·), (A.21) is satisfied. �

PROOF OF LEMMA A.1. By Lemma A.5,

A =: min
m

Am > 0 and A =: max
m

Am < ∞.(A.23)
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Note that Z̃n1′ = ∑K
k=1 Zn−1,k . By (A.17) and Lemma A.3, E[νn|Fn−1] ≤

C0Z0,0/|Z+
n−1|. So, according to (A.1) or (A.2), we have

Z̃n1′ = Z̃n−11′ + νnAn−1 − Xn(I − H)1′ + �Mn1′

≤ Z̃n−11′ + An−1E[νn|Fn−1] − h

+ An−1(νn − E[νn|Fn−1]) + �Mn1′(A.24)

≤ Z̃n−11′ + C0A
Z0,0

|Z+
n−1|

− h + �Un

≤ Z̃n−11′ + �Un − h/2 if Z̃n−11′ ≥ 2C0AZ0,0/h,

where h = mink(1−∑K
j=1 hkj ) > 0. Here, Un = ∑n

m=1 Am−1(νm−E[νm|Fn−1])+
Mn1′ is a real martingale. Let Sn = max{1 ≤ j ≤ n : Z̃j 1′ < 2C0AZ0,0/h}, where
max(∅) = 0. Then, according to (A.24),

Z̃n1′ ≤ Z̃n−11′ + �Un − h/2 ≤ · · ·
≤ Z̃Sn1′ + �USn+1 + · · · + �Un − (n − Sn)h/2(A.25)

≤ |Z0| ∨ (2C0AZ0,0/h) + Un − USn − (n − Sn)h/2.

For the martingale {Un, Fn;n = 1,2, . . .}, we have

E[|�Un|2+δ|Fn−1] ≤ C + C max
j

A2+δ
j = O(1)

due to Assumption 2.2 and (A.18). Accordingly, we can show that

Un = O
(√

n log logn
)

a.s.,(A.26)

max
m≤√

n logn

∣∣Un−[√n logn]+m − Un−[√n logn]
∣∣ = o

(
n1/(2+δ) logn

)
a.s.(A.27)

If n − Sn ≥ √
n logn, then for n large enough

Un − USn − (n − Sn)h/2 ≤ O
(√

n log logn
) − h

√
n logn/2 < 0

due to (A.26). Note that n ≥ Sn. If n − Sn <
√

n logn, then

Un − USn − (n − Sn)h/2 ≤ 2 max
m≤√

n logn

∣∣Un−[√n logn]+m − Un−[√n logn]
∣∣

= o
(
n1/(2+δ) logn

)
a.s.

by (A.27). It follows that
∑K

k=1 Zn,k ≤ o(n1/2−δ0) a.s. due to (A.25). However,
Z−

n,k = O(1) a.s. by Lemma A.3. Equation (A.3) is proved. �

PROOF OF LEMMA A.2. Recall Qn,k = ∑n
m=1 Xm,k(ξm,k −θk), k = 1, . . . ,K ,

and both {Mn,k, An;n ≥ 1} and {Qn,k, An;n ≥ 1} are martingales. According to
the law of the iterated logarithm for martingales, we have

Mn,k = O
(√

n log logn
)

and Qn,k = O
(√

n log logn
)

a.s.(A.28)
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However, for each k = 1, . . . ,K ,

θ̂n,k − θk = Qn,k + O(1)

Nn,k + c2
a.s.(A.29)

Equation (A.12) remains true by Lemma A.1. By (A.12) and (A.28) we have

Nn(I − H) =
n∑

m=1

am−1νm + o(n) a.s.(A.30)

Note that all elements of the vector
∑n

m=1 am−1νm are between aNn,0 and
aNn,0, where a = minm,k am,k and a = maxm,k am,k . Hence, it is obvious that
lim infn→∞ Nn,0/n > 0 a.s. because otherwise the limit of Nn/n may be 0 which
contradicts to Nn1′ = n. On the other hand, the kth element of Nn(I − H) does
no exceed (1 − hkk)Nn,k . It follows that lim infn→∞ Nn,k/n > 0 a.s. by (A.30),
which, together with (A.29) and (A.28), implies

θ̂n,k − θk = O

(
Qm,k + O(1)

n

)
= O

(√
log logn

n

)
→ 0 a.s.

Equation (A.6) is proved and also

am,k − ak = ak(̂θm) − ak(θ) = O(‖θ̂m − θ‖)
(A.31)

= O
(√

(log logm)/m
)

a.s.

Hence, by Theorem 2.18 of Hall and Heyde (1980) it is easy to check that∑n
m=1(am−1,k − ak)(νm − E[νm|Fm−1]) = o(

√
n) a.s. It follows that

n∑
m=1

(am−1,k − ak)νm =
n∑

m=1

(am−1,k − ak)E[νm|Fm−1] + o
(√

n
)

=
n∑

m=1

O

(√
log logm

m

)
O(1) + o

(√
n
)

(A.32)

= O
(√

n log logn
)

a.s.

by (A.18) and (A.31). Combining (A.12), (A.28) and (A.32) yields

Nn − Nn,0a(I − H)−1 = O
(√

n log logn
)

a.s.,

which, together with Nn1′ = n, implies (A.4) and (A.5). Then, combining (A.5),
(A.28) and (A.29) yields

θ̂n,k − θk = Qn,k + O(1)

nvk + O(
√

n log logn)
= Qn,k

nvk

+ o(n1/2−δ0) a.s.

Equation (A.7) is proved, and the proof of Theorem 2.2 is completed. �
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PROOF OF THEOREM 2.4. Note that Assumptions 2.1 and 2.2 are satisfied,
and Z0,0 > 0, H1′ = 1′. Similarly to (A.24),

Z̃n1′ = Z̃n−11′ + νnAn−1 + �Mn1′ ≤ Z̃n−11′ + C0A
Z0,0

|Z+
n−1|

+ �Un

≤ Z̃n−11′ + C0A/
√

n + �Un if Z̃n−11′ ≥ Z0,0
√

n.

It follows that

Z̃n1′ ≤ Z̃Sn1′ + �USn+1 + · · · + �Un + C0A(n − Sn)/
√

n

≤ 2C0A
√

n + Un − USn ≤ 2C0A
√

n + 2 max
m≤n

|Um|,

where Sn = max{1 ≤ j ≤ n : Z̃j 1′ < Z0,0/
√

n} and max(∅) = 0. Hence,

Z̃n = O
(√

n log logn
)

a.s. and = OP

(√
n
)

by the properties of a martingale and Lemma A.3. So, by (A.2) and the law of the
iterated logarithm of martingales, it follows that

Nn(I − H) = Mn +
n∑

m=1

am−1νm − Z̃n + Z̃0

n∑
m=1

am−1νm

+ O
(√

n log logn
)

a.s.

Multiplying by 1′ yields
∑n

m=1 νmAm−1 = O(
√

n log logn) a.s., and then Nn,0 =
O(

√
n log logn) a.s. and

∑n
m=1 am−1νm = O(

√
n log logn) a.s. by (A.21). So,

(Nn − nv)
(
I − (H − 1′v)

) = Nn(I − H) = O
(√

n log logn
)

a.s.

It follows that Nn −nv = O(
√

n log logn) a.s. because (I−(H−1′v)) is invertible.
The proof of Nn − nv = OP (

√
n) is similar. �

PROOF OF THEOREM 2.1. Recall (A.2); we have

Z̃n − Z̃0 =
n∑

m=1

am−1νm + Nn(H − I) + Mn.(A.33)

It follows that |Z̃n| = Z̃n1′ ≥ (γ − 1)n + Mn1′ by noticing H1′ = γ 1′. Hence,

lim inf
n→∞

|Z̃+
n |
n

≥ lim inf
n→∞

|Z̃n|
n

≥ γ − 1 > 0 a.s.

Without loss of generality we can thus assume that |Z̃+
n | ≥ cn > 0 for all n. Then,

the conclusion of Lemma A.3 remains true. By Lemma A.3, Z̃m = Z̃+
m +O(1) a.s.
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On the other hand, by (A.19) we have

P(νm = 1|Fm−1) = Z0,0

|Z+
m−1|

(
1 − Z0,0

|(Zm−1 + am−1)+|
)

≤ c/m a.s.,

P(νm ≥ 2|Fm−1) = Z0,0

|Z+
m−1|

Z0,0

|(Zm−1 + am−1)+| ≤
(

Z0,0

|Z+
m−1|

)2

≤ c/m2.

It follows that P(νm ≥ 2 i.o.) = 0 and
∑n

m=1 I {νm = 1} = O(log2 n) a.s. by The-
orem 3.3.9(ii) of Stout (1974). So by the assumption stated in Theorem 2.1 that
0 ≤ am,k ≤ Cm1/2−δ0 ,

n∑
m=1

am−1νm = O
(
max
m≤n

Am−1

)(
n∑

m=1

I {νm = 1} + O(1)

)
= o(n1/2−δ0/2) a.s.,

which means that the immigrated balls can be neglected. In addition,

P(Xm,k = 1|Fm−1) = Z+
m−1,k

Z0,0 + |Z̃+
m−1|

(
1 − Z+

0,0

Z0,0 + |Z̃+
m−1|

)
+ P(Xm,k = 1, νm ≥ 1|Fm−1)

= Z+
m−1,k

|Z̃+
m−1|

+ O

(
1

m

)
a.s.

It follows that

Z̃+
n = Z̃n + O(1) = Nn(H − I) + Mn + o(n1/2−δ0/2)

=
n∑

m=1

(Xm − E[Xm|Fm−1])(H − I) + Mn

+
n∑

m=1

E[Xm|Fm−1](H − I) + o(n1/2−δ0/2)

=
n−1∑
m=0

(Xm − E[Xm|Fm−1])(H − I) + Mn

+
n∑

m=1

[ Z̃+
m−1

|Z̃+
m−1|

+ O

(
1

m

)]
(H − I) + o(n1/2−δ0/2)

= (γ − 1)nv + (γ − 1)

n∑
m=1

(Xm − E[Xm|Fm−1])H̃ + Mn

+
n−1∑
m=0

Z̃+
m

|Z̃+
m|(γ − 1)H̃ + o(n1/2−δ0/2) a.s.



IMMIGRATED URN MODELS 669

The expansion for Z̃+
n is similar to that for Yn in (6.2) of Zhang and Hu (2009),

pages 1324–1421. Hence, the rest of the proof is omitted. �
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MR1790832

JANSON, S. (2004). Functional limit theorems for multitype branching processes and generalized
Pólya urns. Stochastic Process. Appl. 110 177–245. MR2040966

JOHNSON, N. L. and KOTZ, S. (1977). Urn Models and Their Applications. Wiley, New York.
MR0488211

KOTZ, S. and BALAKRISHNAN, N. (1997). Advances in urn models during the past two decades. In
Advances in Combinatorial Methods and Applications to Probability and Statistics (N. Balakr-
ishnan, ed.) 203–257. Birkhäuser, Boston. MR1456736

KNOBLAUCH, K., NEITZ, M. and NEITZ, J. (2006). An urn model of the development of L/M cone
ratios in human and macaque retinas. Visual Neuroscience 23 387–394.

MATTHEWS, E. E., COOK, P. F., TERADA, M. and ALOIA, M. S. (2010). Randomizing research
participants: Promoting balance and concealment in small samples. Research in Nursing and
Health 33 243–253.

MILENKOVIC, O. and COMPTON, K. J. (2004). Probabilistic transforms for combinatorial urn mod-
els. Combin. Probab. Comput. 13 645–675. MR2095977

NIVEN, R. K. and GRENDAR, M (2009). Generalized classical, quantum and intermediate statistics
and the Pólya urn model. Phys. Lett. A 373 621–626. MR2493686

ROSENBERGER, W. F., STALLARD, N., IVANOVA, A., HARPER, C. N. and RICKS, M. L. (2001).
Optimal adaptive designs for binary response trials. Biometrics 57 909–913. MR1863454

SMYTHE, R. T. (1996). Central limit theorems for urn models. Stochastic Process. Appl. 65 115–
137. MR1422883

STOUT, W. F. (1974). Almost Sure Convergence. Academic Press, New York. MR0455094
TAMURA, R. N., FARIES, D. E., ANDERSEN, J. S. and HEILIGENSTEIN, J. H. (1994). A case

study of an adaptive clinical trial in the treatment of out-patients with depressive disorder. J. Amer.
Statist. Assoc. 89 768–776.

TYMOFYEYEV, Y., ROSENBERGER, W. F. and HU, F. (2007). Implementing optimal allocation in
sequential binary response experiments. J. Amer. Statist. Assoc. 102 224–234. MR2345540

WEI, L. J. (1979). The generalized Pólya’s urn design for sequential medical trials. Ann. Statist. 7
291–296.

WEI, L. J. and DURHAM, S. D. (1978). The randomized play-the-winner rule in medical trials.
J. Amer. Statist. Assoc. 73 840–843.

ZHANG, L. J. and ROSENBERGER, W. F. (2006). Response-adaptive randomization for clinical trials
with continuous outcomes. Biometrics 62 562–569. MR2236838

ZHANG, L.-X. (2004). Strong approximations of martingale vectors and their applications in
Markov-chain adaptive designs. Acta Math. Appl. Sin. Engl. Ser. 20 337–352. MR2064011

ZHANG, L.-X. and HU, F. (2009). The Gaussian approximation for multi-color generalized Fried-
man’s urn model. Sci. China Ser. A 52 1305–1326. MR2520576

ZHANG, L.-X., CHAN, W. S., CHEUNG, S. H. and HU, F. (2007). A generalized urn model for
clinical trials with delayed responses. Statist. Sinica 17 387–409. MR2352516

ZHANG, L.-X., HU, F. and CHEUNG, S. H. (2006). Asymptotic theorems of sequential estimation-
adjusted urn models. Ann. Appl. Probab. 16 340–369. MR2209345

http://www.ams.org/mathscinet-getitem?mr=2255599
http://www.ams.org/mathscinet-getitem?mr=1790832
http://www.ams.org/mathscinet-getitem?mr=2040966
http://www.ams.org/mathscinet-getitem?mr=0488211
http://www.ams.org/mathscinet-getitem?mr=1456736
http://www.ams.org/mathscinet-getitem?mr=2095977
http://www.ams.org/mathscinet-getitem?mr=2493686
http://www.ams.org/mathscinet-getitem?mr=1863454
http://www.ams.org/mathscinet-getitem?mr=1422883
http://www.ams.org/mathscinet-getitem?mr=0455094
http://www.ams.org/mathscinet-getitem?mr=2345540
http://www.ams.org/mathscinet-getitem?mr=2236838
http://www.ams.org/mathscinet-getitem?mr=2064011
http://www.ams.org/mathscinet-getitem?mr=2520576
http://www.ams.org/mathscinet-getitem?mr=2352516
http://www.ams.org/mathscinet-getitem?mr=2209345


IMMIGRATED URN MODELS 671

ZHU, H. and HU, F. (2009). Implementing optimal allocation in sequential continuous response
experiments. J. Statist. Plann. Inference 139 2420–2430. MR2508003

L.-X. ZHANG

DEPARTMENT OF MATHEMATICS

ZHEJIANG UNIVERSITY

HANGZHOU 310027
PEOPLE’S REPUBLIC OF CHINA

E-MAIL: stazlx@zju.edu.cn

F. HU

DEPARTMENT OF STATISTICS

UNIVERSITY OF VIRGINA

113 HALSEY HALL

CHARLOTTESVILLE, VIRGINIA 22904-4135
USA
E-MAIL: fh6e@virginia.edu

S. H. CHEUNG

DEPARTMENT OF STATISTICS

THE CHINESE UNIVERSITY OF HONG KONG

SHATIN, N.T., HONG KONG

PEOPLE’S REPUBLIC OF CHINA

E-MAIL: shcheung@sta.cuhk.edu.hk

W. S. CHAN

DEPARTMENT OF FINANCE

THE CHINESE UNIVERSITY OF HONG KONG

SHATIN, N.T., HONG KONG

PEOPLE’S REPUBLIC OF CHINA

E-MAIL: chanws@cuhk.edu.hk

http://www.ams.org/mathscinet-getitem?mr=2508003
mailto:stazlx@zju.edu.cn
mailto:fh6e@virginia.edu
mailto:shcheung@sta.cuhk.edu.hk
mailto:chanws@cuhk.edu.hk

	Introduction
	Urn models and their applications
	Objectives and organization of the paper

	The immigrated urn model
	The basic IMU framework
	Notation and assumptions
	Main asymptotic results

	Examples and applications
	Conclusions
	Appendix: Proofs
	Acknowledgments
	References
	Author's Addresses

