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FUNCTIONAL SINGLE INDEX MODELS FOR
LONGITUDINAL DATA

BY CI-REN JIANG AND JANE-LING WANG1
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A new single-index model that reflects the time-dynamic effects of the
single index is proposed for longitudinal and functional response data, pos-
sibly measured with errors, for both longitudinal and time-invariant covari-
ates. With appropriate initial estimates of the parametric index, the proposed
estimator is shown to be

√
n-consistent and asymptotically normally distrib-

uted. We also address the nonparametric estimation of regression functions
and provide estimates with optimal convergence rates. One advantage of the
new approach is that the same bandwidth is used to estimate both the non-
parametric mean function and the parameter in the index. The finite-sample
performance for the proposed procedure is studied numerically.

1. Introduction. For univariate response variables Y with multivariate co-
variate Z ∈ R

p , the single-index model

E(Y |Z) = m(βT
0 Z)(1.1)

is an attractive dimension-reduction method to model the effect of multivariate co-
variates nonparametrically. Since m(·), known as the link function, is an unknown
smooth function, the scale of βT

0 Z may be determined arbitrarily. For identifiabil-
ity reasons, β0 is often assumed to be a unit vector with nonnegative first coor-
dinate. The primary parameter of interest is the coefficient β0 in the index βT

0 Z

since β0 makes explicit the relationship between the response variable Y and the
covariate Z. There are several different approaches to estimate β0 in (1.1), such
as the projection pursuit regression [Friedman and Stuetzle (1981), Hall (1989)],
average derivatives [Härdle and Stoker (1989), Ichimura (1993)] and partial least-
squares [Naik and Tsai (2000)] methods. Typically, the link function needs to be
undersmoothed in order to estimate β0 at the

√
n-rate. Härdle, Hall and Ichimura

(1993) showed that a
√

n-consistent estimator of β0 can be achieved without un-
dersmoothing the link function, that is, the same bandwidth can be used to esti-
mate both the parameter β0 and the nonparametric link function m(·). However,
their approach relies on a grid search to obtain the estimate for β0 and is time con-
suming when the dimension p is high. To overcome this drawback, and inspired
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by the sliced inverse regression method [Li (1991), Xia et al. (2002)] proposed a
new method, called “conditional minimum average variance estimation” (MAVE).
Unlike most previous methods, MAVE does not need to undersmooth the nonpara-
metric link function estimator to attain the

√
n-rate consistency for the parametric

index estimate. Also, it does not require strong assumptions on the distribution
of the covariates. Theoretical results for this approach to single-index models are
available in Xia (2006) and some extensions have been studied in Xia (2007) and
Kong and Xia (2007), among others. However, none of these works addresses lon-
gitudinal data, which is the focus of this paper.

Our goal is to extend MAVE to the following single-index models for func-
tional/longitudinal response data:

E(Y (t)|Z(t)) = μ(t, βT
0 Z(t)),(1.2)

where Y(t), t ∈ T , is a stochastic process on a compact time interval T , Z contains
p covariates, some or all of which may be stochastic functions over the time inter-
val T , and, to be identifiable, β0 is a unit vector with nonnegative first coordinate.
More specifically,

Y(t) = μ(t, βT
0 Z(t)) + ε(t,Z(t)),(1.3)

where μ is an unknown bivariate link function and ε(t,Z(t)) is a random function
with mean 0 that reflects the within-subject correlations of measurements and pos-
sibly measurement errors at different time points. Thus, there are two distinctive
features in the functional single-index model (1.2), as compared to the traditional
single-index model (1.1) considered in Xia (2006) and Xia et al. (2002). First,
the functional single-index model accommodates longitudinal response and lon-
gitudinal covariates, as well as vector covariates. Second, the effects of the single
index and, consequently, covariates Z, may change over the time dynamic through
a bivariate link function and this seems more realistic for longitudinal responses.

Recently, Bai, Fung and Zhu (2009) combined penalized splines and quadratic
inference functions to estimate the index coefficient and unknown link function
in a single-index model for longitudinal data. However, the link function in their
model is univariate and thus does not reflect the dynamic effects of the single
index. Moreover, their approach is restricted to generalized linear models, where
the variance function of the response is a known function of the mean function.
In contrast, the link function in our model is an unknown function of time and
the index, reflecting the dynamic feature of the effect of the single index, and the
structure of the variance function is not restricted in our approach.

The rest of this paper is organized as follows. Section 2 extends the original
MAVE method to longitudinal data. Asymptotic theory for the proposed estima-
tors is described in Section 3, with proofs in the Appendix. Practical implemen-
tations of the new approaches and simulation studies are presented in Section 4.
In Section 5, we apply our method to two AIDS data sets: one with time-invariant
covariate and the other also involving longitudinal covariates. Section 6 contains
our conclusions.
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2. Methodology. We begin with the setting of model (1.1) for univariate re-
sponse Y and multivariate covariate Z ∈ R

p . Let σβ(βT Z) be the conditional vari-
ance of Y given βT Z. The true direction β0 in (1.1) is the solution of β that mini-
mizes E{σβ(βT Z)} = E{Y − E(Y |βT Z)}2.

For a random sample, {(Yi,Zi), i = 1, . . . , n}, of (Y,Z), E(Y |βT Z) can be
approximated locally at βT Zj by a linear expansion, that is, E(Y |βT Z) ≈
aj + bT

j βT (Z − Zj). Empirically, σβ(βT Z) can be approximated at βT Zj

by
∑n

i=1[Yi − {aj + bT
j βT (Zi − Zj)}]2wij , where wij ≥ 0 are weights with∑n

i=1 wij = 1, for example, wij = Kh{βT (Zi − Zj)}/∑n
i=1 Kh{βT (Zi − Zj)},

where Kh(·) = h−dK(·/h) and d is the dimension of K(·). Therefore, we can
estimate β0 by solving the minimization problem

min
β,a,b

(
n∑

j=1

n∑
i=1

[Yi − {aj + bT
j βT (Zi − Zj)}]2wij

)
,(2.1)

where a = (a1, . . . , an) and b = (b1, . . . , bn). Given β , (2.1) is a local linear
smoother of the data {Yi, β

T (Zi − Zj)}, while, given a and b, (2.1) is just a
weighted least-squares problem for β . Consequently, the minimization in (2.1)
can be viewed as a combination of nonparametric function estimation and para-
metric direction estimation. Furthermore, the weights can be updated iteratively
via the relation w̃ij = Kh{β̂T (Zi − Zj)}/∑n

i=1 Kh{β̂T (Zi − Zj)}, using the cur-
rent estimate β̂ , then updating the estimate of β0 by minimizing (2.1) with wij

replaced by w̃ij . This could be repeated until β̂ converges and is called refined
MAVE (rMAVE) in Xia et al. (2002).

2.1. Estimation. Hereafter, the response will be longitudinal data, which typ-
ically consists of random fluctuations or measurement errors. Let Yij = Yi(Tij )

be the j th observation for the ith subject, made at a random time Tij ∈ T , where
T is an interval. Along with the responses, we have information on p covariates,
some of which may be longitudinal covariates. Since a univariate covariate can
be considered a special case of a longitudinal covariate with constant value, we
will adopt the notation for longitudinal covariates and define Zij = Zi(Tij ) ∈ R

p ,
i = 1, . . . , n and j = 1, . . . ,Ni , as the p-dimensional covariate for the ith sub-
ject evaluated at time Tij . The functional single-index model (1.3) applied to the
observed longitudinal and covariates data leads to

Yij = μ(Tij , β
T
0 Zij ) + ε(Tij ,Zij ).

For simplicity, we only consider bounded covariates Z when deriving theoretical
properties, even though our simulation study shows that the method could work
well for unbounded covariates. The bounded assumption is commonly adopted
in the literature, for example, in Härdle, Hall and Ichimura (1993) and Härdle and
Stoker (1989). Here, we assume that the measurement times Tij are a random sam-
ple of size Ni , assumed to be i.i.d. and independent of all other random variables.
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The two main steps in our approach are to estimate the direction β0 and the
mean function μ. In particular, we show how to estimate the parametric index
β0 by adapting rMAVE for longitudinal data. The asymptotic distribution of β̂ is
studied in Section 3 for both longitudinal and time-invariant covariates. The mean
function can then be estimated through a two-dimensional scatter plot smoother of
Yij on (Tij , β̂

T Zij ) when β̂ is available.
To estimate the parametric index efficiently, we extend rMAVE to longitudinal

data. For simplicity, and to avoid the curse of dimensionality, we only consider
a single index in our model. Therefore, β is a vector instead of a matrix. As in
MAVE, for any given (Tj�,Zj�), E(Yik|Tik, β

T Zik) can be approximated by a
linear expansion at (Tj�, β

T Zj�), that is, E(Yik|Tik, β
T Zik) ≈ aj� + bj�(Tik −

Tj�)+dj�β
T (Zik −Zj�). Similarly, the conditional covariance, σβ(Tik, β

T Zik) =
E{Yik − E(Yik|Tik, β

T Zik)}2, can be approximated by
∑n

i=1
∑Ni

k=1[Yik − {aj� +
bj�(Tik − Tj�) + dj�β

T (Zik − Zj�)}]2wikj�, where

wikj� = K((Tik − Tj�)/ht , (β
T (Zik − Zj�))/hz)∑n

i=1
∑Ni

k=1 K((Tik − Tj�)/ht , (βT (Zik − Zj�))/hz)
,

(2.2)
n∑

i=1

Ni∑
k=1

wikj� = 1.

Here, K(·) is a two-dimensional kernel function of order (0,2) defined in Appen-
dix C with compact support that is also a symmetric density function with finite
moments of all orders and bounded derivatives; ht and hz are the respective band-
widths for smoothing along the time (t) and single-index covariate (βT z) direction.
We can then estimate β0 by solving the minimization problem

min
β,a,b,d

(
n∑

j=1

Nj∑
�=1

n∑
i=1

Ni∑
k=1

[Yik − {aj� + bj�(Tik − Tj�)

(2.3)

+ dj�β
T (Zik − Zj�)}]2wikj�

)
.

Suppose that we have a current estimator β̂ of β0 and current refined weights w̃ikj�.
The estimate for β0 will be updated by minimizing equation (2.3) with wikj� re-
placed by w̃ikj�. This procedure will be repeated until β̂ converges. The final esti-
mate, β̂ , can then be used to estimate the mean function μ via a two-dimensional
smoother that has the same bandwidth as the weights in (2.3), that is,

μ̂(t, β̂T z) = b̂0 where, for b = (b0, b1, b2),

b̂ = arg min
b

n∑
i=1

Ni∑
j=1

K

{
t − Tij

ht

,
β̂T (z − Zij )

hz

}
(2.4)

× {Yij − b0 − b1(Tij − t) − b2β̂
T (Zij − z)}2.
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2.2. Algorithm. Let ht and hz be the bandwidths for T and βT Z, respectively,
and let σ̂ 2

β denote the quantity to be minimized in (2.3), which is within the paren-
theses. Define Kh(t, z) = K(t/ht , z/hz)/(hthz).

1. Start with an initial value of β , say β̂(0).
2. Use the current estimate β̂(m) and weighted least-squares method to obtain

(â, b̂, d̂) = arg mina,b,d σ̂ 2
β(m)

, where

wikj� = Kh

{
(tik − tj�), β̂

T
(m)(zik − zj�)

}
/ n∑

i=1

Ni∑
k=1

Kh

{
(tik − tj�), β̂

T
(m)(zik − zj�)

}
.

3. Use the estimates (â, b̂, d̂) from step 2 to obtain the updated estimate β̂(m+1) =
arg minβ σ̂ 2

β .

4. Repeat steps 2 and 3 until ‖β̂(m+1) − β̂(m)‖ < ε, where ε is some given tolerance
value.

5. The final estimate of β from step 4 is then used to reach the final estimate of
the mean function defined in (2.4).

2.3. Bandwidth selection. Instead of selecting the bandwidths by the leave-
one-curve-out cross-validation method suggested in Rice and Silverman (1991),
we choose the bandwidths for the mean function estimator via an m-fold cross-
validation procedure to reduce the computational cost. Below, we describe the m-
fold cross-validation method for the bandwidth selection for μ(t, βT z). Supposing
that subjects are randomly divided into m groups, (S1, S2, . . . , Sm), the m-fold
cross-validation bandwidth is

hμ = arg min
h

m∑
�=1

∑
i∈S�

Ni∑
j=1

{
Yij − μ̂(−S�)(Tij , β̂

T Zij )
}2

,(2.5)

where μ̂(−S�)(Tij , β̂
T Zij ) is the estimated mean function at (Tij , β̂

T Zij ), exclud-
ing subjects in S�.

3. Asymptotic results. We assume that (Tij ,Zij , Yij ) have the same distrib-
ution as (T ,Z,Y ) with joint probability density function g3(t, z, y) and that the
observational times Tij are i.i.d. with probability density function g(t), but de-
pendency is allowed among observations from the same subject. Let z̃ = βT z,
z̃0 = βT

0 z and let f2(t, z̃) and f3(t, z̃, y) be the joint densities of (T , Z̃) and
(T , Z̃, Y ), respectively. The kernel function is assumed to be symmetric. For sim-
plicity, we also assume that

∫
u2K(u, v) = ∫

v2K(u, v) = ∫
u2v2K(u, v) = 1 as,

without loss of generality, any symmetric density kernel function can be applied
after proper normalization. Since we are interested in the asymptotic distribution
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of β̂ , similar to the assumption in Härdle, Hall and Ichimura (1993), we assume
that the initial value β̂(0) is in a

√
n-neighbor of β0. This assumption is for tech-

nical convenience; in the simulations, an arbitrary initial value was used and it
performed well. To be prudent, one may want to try different random initial β̂(0)

and choose the final estimate as the one that leads to the smallest value in the mini-
mization problem of (2.3). In the data analysis, we chose ten different initial values
for β̂(0) and they all converged to the same estimate β̂ .

From the iterative algorithm in Section 2.2, the updated β̂ from minimizing
(2.3) after one iteration will become

β̂ = β0 + {Dβ
n }−1ϒ + op(n−1/2) where

Dβ
n = {nEN}−2

n∑
i=1

Ni∑
k=1

n∑
j=1

Nj∑
�=1

d2
β(Tik,Zik)

f̂2(Tik, Z̃ik)

(3.1)
× Kh{(Tj� − Tik), (Z̃j� − Z̃ik)}
× (Zj� − Zik)(Zj� − Zik)

T ,

ϒ = (nEN)−2
n∑

i=1

Ni∑
k=1

n∑
j=1

Nj∑
�=1

dβ(Tj�,Zj�)

f̂2(Tj�, Z̃j�)

× Kh{(Tik − Tj�), (Z̃ik − Z̃j�)}(Zik − Zj�)

× {Yik − aβ(Tj�,Zj�)(3.2)

− bβ(Tj�,Zj�)(Tik − Tj�)

− dβ(Tj�,Zj�)(Z̃
0
ik − Z̃0

j�)},
f̂2(t, z) is the estimate of f2(t, z) and aβ ’s, bβ ’s and dβ ’s are the coefficients of
the linear approximation, as defined in Section 2. By means of some tedious calcu-
lations [sketches of proofs of (3.3) and (3.4) are in Appendix B with assumptions
A.1–A.6 listed in Appendix A], we can obtain the following approximations of
{Dβ

n }−1 and ϒ :

{Dβ
n }−1 = β0β

T
0

τ
− h2

z

2τ
(G̃+F̃ T βT

0 + β0F̃ G̃+) + 1

2
G̃+ + Op(h + δβ),(3.3)

ϒ = G̃(β − β0) − (nEN)−1
n∑

i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik

(3.4)
+ op(n−1/2),

where G̃ = E{(∂μ/∂z̃0)2G(Z)}/2, G̃+ = B0(B
T
0 G̃B0)

−1BT
0 is the Moore–

Penrose inverse of G̃ with (β0,B0) an orthogonal matrix, τ = E{(∂μ/∂z̃0)2}h2
t ,
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F̃ = E{(∂μ/∂z̃0)2Fβ(T ,Z)}, Fβ(t, z) = ∂
∂z̃

{f2(t, z̃)ν
T
β (t, z)}/f2(t, z̃), G(z) =

E{(Zik − z)(Zik − z)T }, νβ0(t, z) = E(Z|T = t, βT
0 Z = βT

0 z) − z and δβ =
|β̂ − β0|.

After plugging (3.3) and (3.4) into (3.1), we obtain

β̂ = β0 +
{
β0β

T
0

τ
− h2

z

2τ
(G̃+F̃ T βT

0 + β0F̃ G̃+) + 1

2
G̃+ + Op(h + δβ)

}

×
[
G̃(β − β0) − (nEN)−1

n∑
i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik + op(n−1/2)

]

+ op(n−1/2)

= β0(1 + cn) + 1

2
(I − β0β

T
0 )(β − β0) − G̃+

2nEN

n∑
i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik

+ op(n−1/2),

where cn = h2
zF̃ G̃+[(nEN)−1 ∑n

i=1
∑Ni

k=1{νβ0(Tik,Zik)(∂μ/∂z̃0)}εik − G̃(β −
β0)]/(2τ).

Since |β| = 1, β̂ needs to be standardized. From the above calculation, |β̂| =
1 + cn + op(n−1/2) so

β̂

|β̂| = β0 + 1

2
(I − β0β

T
0 )(β − β0)

− G̃+

2nEN

n∑
i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik + op(n−1/2).

Therefore, in the (m + 1)th iteration,

β̂(m+1) = β0 + 1

2
(I − β0β

T
0 )

(
β̂(m) − β0

)

− G̃+

2nEN

n∑
i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik + op(n−1/2)

= β0 + 1

2m
(I − β0β

T
0 )

(
β̂(1) − β0

)

−
(

m∑
j=1

1

2j

)
(nEN)−1G̃+

n∑
i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik

+ op(n−1/2).

Consequently, as the iteration m → ∞, Lemma D.1 in Appendix D implies the
following theorem.
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THEOREM 3.1. Under assumptions A.1–A.6,
√

n(β̂ − β0)
D→ Np(0,�),

where � = G̃+�∗G̃+ and �∗ = E(N)−1
EN

E[{ ∂μ

∂z̃0 νβ0(T ,Z)ε}{ ∂μ

∂z̃0 νβ0(T
′,Z′) ×

ε′}T ] + 1
EN

E[{ ∂μ

∂z̃0 νβ0(T ,Z)ε}{ ∂μ

∂z̃0 νβ0(T ,Z)ε}T ].

In practice, the covariance of β̂ in Theorem 3.1 is unknown and needs to be
estimated to make inference on β . The idea is to replace the unknown values with
consistent estimates. First, E(N) can be estimated by N̄ = ∑n

i=1 Ni/n and G̃ can
be estimated by

ˆ̃
G =

n∑
i=1

Ni∑
k=1

{
∂

∂z̃
μ̂(Tik, β̂

T Zik)

}2

Ĝ(Zik)/(2nN̄),

where Ĝ(Zik) = 1
n

∑n
j=1

1
Ni

∑Ni

�=1(Zj� − Zik)(Zj� − Zik)
T . To estimate �∗, we

estimate νβ0(T ,Z) at all (Tik,Zik) by (3.5), estimate ε at (Tik,Zik) by the residual,
Yik − μ̂(Tik, β̂

T Zik), and average the product terms in �∗. Therefore,

�̂∗ = N̄ − 1

N̄

{
1

N∗
n∑

i=1

∑
1≤j �=k≤Ni

HikH
T
ij

}
+ 1

N̄

{
1

nN̄

n∑
i=1

Ni∑
k=1

HikH
T
ik

}
,

where Hik = ∂
∂z̃

μ̂(Tik, β̂
T Zik)ν̂β0(Tik,Zik)ε̂ik and N∗ = ∑n

i=1 N2
i − Ni . To esti-

mate νβ0(Tik,Zik) = E(Z|T = Tik, β
T
0 Z = βT

0 Zik) − Zik , we can, for simplicity,
apply a weighted average estimator on the observations in the neighborhood of
(Tik, β

T
0 Zik), which leads to

ν̂β0(Tik,Zik) = ∑
j,�

Kh{(Tj� − Tik), β̂
T (Zj� − Zik)}∑

j,� Kh{(Tj� − Tik), β̂T (Zj� − Zik)}
Zj� − Zik.(3.5)

More sophisticated procedures might be considered to estimate the above unknown
values.

Before showing the asymptotic property of the local linear smoother, μ̂(t,

β̂T z(t)), we first need the asymptotic property of the local linear smoother,
μ̂(t, u(t)), where u is a univariate longitudinal covariate. This is provided in The-
orem 3.2 below, with the proof in Appendix C.

THEOREM 3.2. Under assumptions A.1–A.6, hz/ht → ρ and nE(N)h6
t →

τ 2 for some 0 < ρ, τ < ∞ and√
nN̄hthz[μ̂(t, u) − μ(t, u)] D→ N(η(t, u),�μ(t, u)),

where η(t, u) = τ
√

ρ

2 { ∂2μ

∂t2 + ∂2μ

∂u2 ρ2}, �μ(t, u) = [var(Y |t, u)‖K2‖2]/f2(t, u),

‖K2‖2 = ∫
K2

2 and f2(t, u) is the joint density of (T ,U).
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It is interesting that the asymptotic bias term in Theorem 3.2 depends on the
ratio hz/ht . This is due to the assumption that nE(N)h6

t → τ 2 and assumption A.1
in Appendix A, which requires ht and hz to have the same rate. After some Taylor
expansions, these two assumptions on the bandwidths lead to the asymptotic bias
term in Theorem 3.2. The assumption that the two bandwidths, hz and ht , have
the same rate is natural since the mean function μ(t, z) has the same order of
smoothness along both the t and z coordinates.

Since β̂ is a
√

n-consistent estimator of β0 and by Theorem 3.2, the asymptotic
properties of the local linear smoothers for the mean can be obtained.

THEOREM 3.3. Under assumptions A.1–A.6, hz/ht → ρ and nE(N)h6
t →

τ 2 for some 0 < ρ, τ < ∞, and√
nN̄hthz{μ̂(t, β̂T z) − μ(t, βT

0 z)} D→ N(
μ,�μ),

where 
μ = τ
√

ρ

2 { ∂2μ

∂t2 + ∂2μ

∂z̃2 ρ2}, �μ = [var(Y |t, βT
0 z)‖K2‖2]/f2(t, β

T
0 z) and

‖K2‖2 = ∫
K2

2 .

4. Simulation study. Two simulation schemes are considered in this paper.
One considers the case with time-invariant covariates; the other considers longi-
tudinal covariates. In both simulation studies, β̂(0) = (1/

√
p)1p , where 1p is a

p-dimensional vector with entries all equal to 1, was used as the initial value of β ,
the number of runs was 100 and the number of subject for each run was n = 100.

4.1. Simulation I: Time-invariant covariate. The covariate for each subject
(Z1,Z2) is generated from Z1 ∼ Bernoulli (with probability of success 0.5)
and ZT

2 ∼ N5(0,�), where � = 0.5 × I5 + 0.5 × 151T
5 . We choose βT

0 =
(2,1,0,3,0,−1)/

√
15. Given a subject with covariate z̃ = (z1, z2)

T β0, the sto-
chastic process Y ∗ is generated from a Gaussian process on [0,1] with mean
function μ(t, z̃) = sin(z̃) sin(tπ) + {1 − sin(z̃)} cos(tπ) and covariance function
�(s, t) = (1/4)φ1(t)φ1(s) + (1/16)φ2(t)φ2(s), where φ1(t) = − sin(πt)

√
2 and

φ2(t) = cos(πt)
√

2 are the eigenfunctions of �, with corresponding eigenvalues
1/4 and 1/16, respectively. The measurement errors are assumed to be normally
distributed with mean 0 and variance 0.01. Note that the variance of measurement
error is not very small compared to the scales of the mean function and the eigen-
values.

For the measurement schedule, we use a “jittered” design with an equally spaced
grid {c0, . . . , c50} on [0,1] (c0 = 0 and c50 = 1) and then jitter each point ci by si =
ci + εi , where εi are i.i.d. with N(0,0.0001), si = 0 if si < 0 and si = 1 if si > 1.
This resulted in a jittered schedule that is no longer equally spaced; from there,
a random sample of size Ni is selected from {s1, . . . , s49} without replacement
to serve as the Ni measurement schedule for the ith subject, where Ni is itself
sampled from a discrete uniform distribution {2, . . . ,10}.
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TABLE 1
Performances of estimators for 3- and 10-fold CV. (Measures of differences

between β̂ and β: ‖ · ‖ measures the difference in the Euclidean norm and cos−1 in terms
of the angle between β̂ and β .) The IMSE is the integrated mean squared error, defined as∫∫ [μ̂(t, u) − μ(t, u)]2 dt du. Note that the IMSE of μ̂ in simulation II is much larger than

that in simulation I, due to different scales of t and βT z, and different mean function

Simulation CV ‖β − β̂‖ cos−1(βT β̂) IMSE(μ)

I 3 0.2121 (0.0867) 12.1900 (5.0161) 0.0312
10 0.2121 (0.0793) 12.1860 (4.5833) 0.0237

II 3 0.2575 (0.1923) 14.8944 (11.3004) 0.2723
10 0.2501 (0.1914) 14.4675 (11.2666) 0.2257

We experimented with several m-fold cross-validation (CV) methods and found
the 10-fold method to be satisfactory. Table 1 reports the results for m = 3 and 10.
The results for the parametric estimate β̂ are comparable for 3- and 10-fold CVs
with the 10-fold CV being somewhat better. In terms of estimating the mean func-
tion, the 10-fold CV performs better. Figure 1 also suggests good performance of
the 10-fold CV method in terms of bias. The plot for the 3-fold CV is similar, but
is not provided.

4.2. Simulation II: Longitudinal covariates. This simulation scheme is in-
spired by the CD4+ cell counts data from the Multicenter AIDS Cohort Study
or MACS [Kaslow et al. (1987)], which is analyzed in Section 5. There are five co-
variates in this AIDS data: age at seroconversion and four longitudinal covariates
[packs of cigarettes, recreational drug use (1: yes, 0: no), number of sexual part-
ners and mental illness scores (CESD), larger values indicate increased depressive

FIG. 1. True mean function, averaged estimated mean function and bias in simulation study I.
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FIG. 2. True mean function, averaged estimated mean function and bias in simulation study II.

symptoms]. In the simulation, the covariate values were based on the five covari-
ates from 100 randomly selected subjects. The mean function, coefficient of the
index, two eigenfunctions and two eigenvalues were also chosen to mimic the cor-
responding values of the real data (see Section 5). Therefore, we choose the mean
function

μ(t, βT
0 z) = 6 + βT

0 z

5
+ 1

1 + exp(t)
+ exp{−t (βT

0 z + 3)}
1 + exp{−t (βT

0 z + 3)} ,

where the index coefficient βT
0 = (0.1043,0.5213,0.8341,−0.1043,−0.1043)

and t ∈ [−3,5.5]. The two eigenfunctions are φ1(t) = cos{(t + 3)π/8.5}/√4.25,
and φ2(t) = − sin{(t + 3)π/8.5}/√4.25, with respective eigenvalues λ1 = 2 and
λ2 = 0.5. For each subject, the two principal component scores are generated from
N(0, λ1) and N(0, λ2). Also, normally distributed measurement errors with mean
zero and variance 0.1 are added.

Consistent with the results in simulation I, where the covariates are time invari-
ant, the results in Table 1 for estimating β and mean function μ(t, βT z(t)) are
also comparable for the 3-fold and 10-fold CVs, with 10-fold CV slightly better.
Again, we only provide the plot of estimates based on the 10-fold CV. Other than
the boundary, Figure 2 suggests good performance of the 10-fold CV method in
terms of bias. The boundary effect appears to be due to the sparsity of the data
and is more prominent than in the previous simulation setting of time-invariant
covariates. The observed βT z are very sparse near the boundaries.

5. Application. We illustrate the methodology via CD4+ cell counts data
from the Multicenter AIDS Cohort Study or MACS [Kaslow et al. (1987)]. HIV
destroys CD4 cells, which play a vital role in the immune system. The CD4 cell
count is thus a good marker for disease progress. The number of CD4 cells might
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also be related to some subject-specific factors such as smoking, age, etc. In the
first example, we apply our approach to the CD4 data analyzed in Wu and Chiang
(2000), where the covariates are time invariant. The second example is the CD4
data analyzed in Zeger and Diggle (1994), where longitudinal covariate variables
are available.

5.1. Example I: Time-invariant covariates. This data set involves 1817 mea-
surements of CD4 percentages, which are cell counts divided by the total number
of lymphocytes, observed for 283 homosexual men who became HIV positive be-
tween 1984 and 1991. The measurements were scheduled at each half-yearly visit;
however, the actual measurement times may vary and some subjects missed some
of their scheduled visits. The resulting measurement times tij per subject are ir-
regular and sparse. Three time-independent covariate variables are considered in
our analysis: smoking status (1: yes, 0: no), age at HIV infection and pre-HIV
infection CD4 percentage. To make the scales of different covariates compatible,
we standardize age and pre-HIV infection CD4 percentage. Similarly to the sim-
ulation study, we use 3-fold and 10-fold CV to choose the bandwidths for the
nonparametric procedures.

To avoid being trapped in a local minimum, we choose ten different ran-
dom initial values for β̂(0) = (β̂1(0), β̂2(0), β̂3(0))

T , as follows. First, we pick five
different values (0.1, 0.3, 0.5, 0.7 and 0.9) for β̂1(0) and generate β̂2(0) from

U(0,
√

1 − β̂2
1(0)), then we set β̂3(0) =

√
1 − β̂2

1(0) − β̂2
2(0) to ensure that ‖β̂(0)‖ = 1.

The signs of β̂2(0) and β̂3(0) are initially randomly assigned and then flipped to
make up for the ten initial β̂(0). These ten initial values all lead to the same β̂ .

Several statistical models have been applied to this data set, such as varying
coefficient models in Wu and Chiang (2000). In their analysis, only the effect of
pre-infection CD4 percentage was found to be significant and positive, but none of
the covariate effects seem time-dependent [see Figures 1 and 2 in Wu and Chiang
(2000)]. This result is consistent with our findings in Table 2 and Figure 3. We
find that people who smoke, who are young when they get the HIV infection and

TABLE 2
Estimated parametric index β̂ and asymptotic covariance of β̂ for example I

[here, hμ = (ht , hz) is the bandwidth for estimating β and μ(t,βT z)]

CV 3 10

hμ (2.14,2.80) (1.70,5.00)

β̂T (0.0727,−0.1074,0.9916) (0.0877,−0.1076,0.9903)

Var(β̂) ≈ �̂√
n

⎛
⎝ 0.4213 0.0141 −0.0796

0.0141 0.0887 −0.0161
−0.0796 −0.0161 0.0602

⎞
⎠

⎛
⎝ 0.4137 0.0103 −0.1072

0.0103 0.0898 −0.0128
−0.1072 −0.0128 0.0932

⎞
⎠
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FIG. 3. Estimated mean function of AIDS data for example I.

who have higher pre-HIV infection CD4 percentages tend to have higher post-
HIV infection CD4 percentages on average. However, only pre-HIV infection CD4
percentage is significant. In the right panel of Figure 3, we observe that, in general,
the CD4 percentages deplete rather quickly at the beginning of HIV infection and
the rates of depletion during the first 2.5 years are generally higher than in later
years. However, the time when the rate of depletion slows down varies with the
levels of β̂T z. More specifically, when β̂T z is larger, the rate of depletion slows
down earlier.

5.2. Example II: Time-invariant and longitudinal covariates. In this data set,
2376 CD4 observations on 369 subjects were made and the times of observation
ranged from 3 years before to 6 years after seroconversion. Five covariates con-
sidered in this analysis are age, packs of cigarettes, recreational drug use (1: yes,
0: no), number of sexual partners and mental illness scores (CESD) (larger values
indicate increased depressive symptoms). Except for age, the other four covariates
are longitudinal. As in example I, we applied 3- and 10-fold CVs to choose the
bandwidths in nonparametric procedures and adopted the same strategy to select
10 initial values for β̂0. It turned out that all ten random initial β̂(0)’s lead to the
same β̂ .

Previous analysis for this data includes the semiparametric models in Zeger and
Diggle (1994), where age, smoking, recreational drug use and increased numbers
of sexual partners are associated with higher CD4 cell numbers, while increased
depressive symptoms are associated with decreased CD4 levels, but the effects of
age and recreation drug use are not significant.

In our analysis, among these five covariates, the effect of packs of cigarettes
smoked per day is the most significant. Moreover, our analysis in Table 3 suggests



FUNCTIONAL SIMS 375

TABLE 3
Estimated parametric index β̂ and asymptotic covariance of β̂ for example II

[here, hμ = (ht , hz) is the bandwidth for estimating β and μ(t,βT z)]

3-fold CV

hμ (1.25,3.00)

β̂T (0.0141,0.5700,0.8211,−0.0159,−0.0216)

Var(β̂) ≈ �̂√
n

⎛
⎜⎜⎜⎜⎝

0.0035 0.0045 0.0210 −0.0010 −0.0003
0.0045 0.0956 0.2733 −0.0049 −0.0038
0.0210 0.2733 2.4311 0.0029 −0.0214

−0.0010 −0.0049 0.0029 0.0069 −0.0009
−0.0003 −0.0038 −0.0214 −0.0009 0.0021

⎞
⎟⎟⎟⎟⎠

10-fold CV

hμ (1.00,4.00)

β̂T (0.0128,0.5530,0.8326,−0.0193,−0.0225)

Var(β̂) ≈ �̂√
n

⎛
⎜⎜⎜⎜⎝

0.0037 0.0070 0.0284 −0.0011 −0.0005
0.0070 0.1287 0.3744 −0.0065 −0.0061
0.0284 0.3744 2.7206 −0.0018 −0.0302

−0.0011 −0.0065 −0.0018 0.0070 −0.0008
−0.0005 −0.0061 −0.0302 −0.0008 0.0023

⎞
⎟⎟⎟⎟⎠

that an increasing number of sexual partners is negatively associated with CD4
counts, which seems more reasonable than the previous result. From Table 3 and
Figure 4, we also observe higher mean CD4 cell numbers when subjects are older,
smoke more, use recreational drugs and have lower CESD. The right panel of

FIG. 4. Estimated mean function of AIDS data for example II.
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Figure 4 suggests a big decline of CD4 cell counts half a year before the serocon-
version and one year after seroconversion. After one year of seroconversion, the
decline slows down slightly. The trough at the end might be due to the boundary
effect.

6. Discussion and conclusions. The proposed estimate of the single index
for longitudinal response data works well in our simulations and data application.
It has the advantage that the same bandwidth is used to estimate the nonpara-
metric mean function and the single index without the need to undersmooth the
mean function in order to achieve the

√
n-convergence rate, as is often the case in

semiparametric regression models with independent response data. This leads to a
unified approach to selecting the bandwidth. Additional computational savings are
accomplished through the m-fold cross-validation methods. The simulation results
reported in Section 4 suggest that the performance of the procedure is not very
sensitive to the choice of m and the initial value β̂(0).

We have derived asymptotic distributions for both the parametric (β) and non-
parametric (μ) components of the model and illustrate its usefulness for statistical
inference via an AIDS data set. While it is possible to extend the approach to mul-
tiple indices, such an extension would be computationally intensive and subject to
the curse of dimensionality.

An additive model

E(Y (t)) = μ(t, βT
0 Z(t)) = μt(t) + μz(β

T
0 Z(t))

can be viewed as a special case of model (1.3), and if the model is actually addi-
tive, our approach can be modified to estimate the parametric and nonparametric
components easily. To estimate β and the two functions μt(t) and μz(β

T
0 Z(t)),

we can perform a two-step procedure. First, apply a one-dimensional scatter plot
smoother to {(Yij , Tij )|i = 1, . . . , n; j = 1, . . . ,Ni} to estimate μt(t). Then, ap-
ply modified rMAVE (2.3) to the residuals to estimate β0. Specifically, β0 can be
estimated by solving the minimization problem

min
β,a,b,d

(
n∑

j=1

Nj∑
�=1

n∑
i=1

Ni∑
k=1

[Y c
ik − dj�β

T (Zik − Zj�)]2wikj�

)
,

where Y c
ik = Yik − μ̂t (Tik) for 1 ≤ k ≤ Ni and 1 ≤ i ≤ n.

Model (1.3) extends the popular single-index model from independent univari-
ate to longitudinal response data. Our extension allows both time-independent and
longitudinal covariates, but restricts the effect of the covariates to be time in-
variant. Such a time-invariant approach is in line with the philosophy in linear
mixed-effects model, where the covariate effect is time invariant. In this regard,
our approach could be viewed as an extension of a parametric linear mixed-effect
model to a more flexible semiparametric mixed-effects model. While such an ex-
tension may still be considered restrictive, as compared to an approach that adopts



FUNCTIONAL SIMS 377

a time-dependent direction β(t) to model the covariate effects, the time-invariant
direction β in our model has a nice interpretation as the averaging covariate effect
over time. Thus, β as an average of β(t) serves as a simple summary measure
for the (possibly more complicated) time-dependent covariate effects. Moreover,
a time-dependent approach would require a lot more data to correctly estimate
the direction β(t). When circumstances allow, one way to extend our approach to
time-dependent direction β(t) is to adopt a two-stage procedure: at the first stage,
one bins the data in the direction of time and then applies rMAVE to data that
are observed in a bin that contains t to obtain an initial estimate of β(t); these are
smoothed at the second stage to improve over the initial estimates. This is a subject
for future investigation and is beyond the scope of this paper.

Thus far, we have focused on estimation of the unknown components in the
functional single-index model. A functional principal component analysis (FPCA)
could be added after the covariate-adjusted mean function has been estimated. The
mean-adjusted FPCA (mFPCA) proposed in Jiang and Wang (2010) can be used
to reconstruct the random trajectories. More specifically, we can first show that
the asymptotic properties of the covariance estimator in Theorem 3.5 of Jiang and
Wang (2010) hold by exploiting the

√
n-consistency of β̂ . Then, the eigenvalues

and eigenfunctions corresponding to the estimated covariance can be estimated
by solving the eigenequation, and the PACE method proposed in Yao, Müller and
Wang (2005) can be used to estimate the principal component scores and to select
the number of components.

APPENDIX A: ASSUMPTIONS

The following type of continuity, as defined in Yao (2007), will be needed: a
real function f (x, y) : Rn+m → R is continuous on A ⊆ R

n, uniformly in y ∈ R
m,

if, given any x ∈ A and δ < 0, there exists a neighborhood of x not depending on y,
say U(x), such that |f (x′, y) − f (x, y)| < δ for all x′ ∈ U(x) and y ∈ R

m. Our
proofs cover both time-independent and time-dependent covariates with slightly
different assumptions and arguments. For both cases, we assume the observation
times Tij are i.i.d. with probability density function f (t). For a random design
with time-invariant covariates, we assume that (Tij , Z̃i, Yij ) have the same dis-
tribution as (T , Z̃, Y ) with joint probability density function f3(t, z̃, y), but de-
pendency is allowed among observations from the same subject. The joint prob-
ability density functions of (T , Z̃) and (T1, T2, Z̃, Y1, Y2) are denoted as f2(t, z̃)

and f5(t1, t2, z̃, y1, y2), respectively. If the covariate is longitudinal, then we as-
sume that (Tij , Z̃ij , Yij ) have the same distribution as (T , Z̃, Y ) with joint prob-
ability density function f3(t, z̃, y) and the joint probability density function of
(T1, T2, Z̃1, Z̃2, Y1, Y2) is f6(t1, t2, z̃1, z̃2, y1, y2).

Below, we describe the various assumptions that appear in the theorems.

A.1 ht � hz � h, h → 0, nE(N)h2 → ∞, E(N)h2 → 0 and nE(N)h6 < ∞.
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A.1′ ht � hz � h, h → 0, nE(N)h2 → ∞, E(N)h → 0 and nE(N)h6 < ∞.
A.2 The number of observations Ni(n) for the ith subject is a random variable

with Ni(n) ∼ N(n), where N(n) is a positive integer-valued random variable
such that lim supn→∞ EN(n)2/[EN(n)]2 < ∞ and Ni(n), i = 1, . . . , n, are
i.i.d.

A.3 The conditional mean μ(t, βT z) = E(Y |T = t, βT Z = βT z) and its deriva-
tives up to second order are continuous on {(t, z̃)} and its derivatives up to
the third order are bounded for all β : |β − β0| < δ, for a δ > 0.

A.4 The joint probability density function f2(t, z̃) and its derivatives up to third
order are bounded, up to second order they are continuous on {(t, z̃)} and
f2(t, z̃) > 0 is bounded away from zero for all β : |β − β0| < δ, for a δ > 0.

A.5 The joint probability density function f3(t, z̃, y) and its derivatives up to
second order exist and are continuous on {(t, z̃)}, uniformly in y ∈ R for all
β : |β − β0| < δ, for a δ > 0.

A.6 f6(t1, t2, z̃1, z̃2, y1, y2) is continuous on {(t1, t2, z̃1, z̃2)}, uniformly in (y1,

y2) ∈ R
2 for all β : |β − β0| < δ, for a δ > 0.

A.6′ f5(t1, t2, z̃, y1, y2) is continuous on {(t1, t2, z̃)}, uniformly in (y1, y2) ∈ R
2

for all β : |β − β0| < δ, for a δ > 0.

The bandwidth assumption A.1 and the assumption on the measurement sched-
ule A.2 are required to show that the usual local properties of the kernel estimators
hold for longitudinal or functional data in the presence of within-subject corre-
lation. Assumptions A.3–A.6 are regularity conditions for joint probability den-
sity functions and the mean function. These regularity conditions, along with the
bandwidth assumption A.1, are needed for the consistency results. A.1′ and A.6′
are the assumptions when the covariate variables are time invariant. Adopting as-
sumption A.4 is common practice in the theory of regression estimation to study
estimators on sets bounded away from the troublesome regions [e.g., Hall (1989),
Härdle, Hall and Ichimura (1993) and Xia et al. (2002)].

APPENDIX B: PROOFS OF (3.3) AND (3.4)

PROOF OF (3.3). Let (β,B) be an orthogonal matrix and, by Lemma D.2, we
obtain

{nENf̂2(t, z̃)}−1
n∑

i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)(Zij − z)(Zij − z)T

= {nENf̂2(t, z̃)}−1
n∑

i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)(β,B)

(
βT

BT

)
(B.1)

× (Zij − z)(Zij − z)T (β,B)

(
βT

BT

)

= (β,B)

(
h2

z Fβ(t, z)Bh2
z

BT FT
β (t, z)h2

z BT G(z)B + Op(h2)

)(
βT

BT

)
+ Op(h3),
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where G(z) = E{(Zij − z)(Zij − z)T } and Fβ(t, z) = ∂
∂z̃

(f2ν
T
β (t, z))/f2.

Next, consider

Dβ
n = {nEN}−1

n∑
i=1

Ni∑
k=1

d2
β(Tik,Zik){nENf̂2(Tik, Z̃ik)}−1

×
n∑

j=1

Nj∑
�=1

Kh(Tj� − Tik, Z̃j� − Z̃ik)

× (Zj� − Zik)(Zj� − Zik)
T

= {nEN}−1
n∑

i=1

Ni∑
k=1

d2
β(Tik,Zik)(β,B)

×
(

h2
t Fβ(Tik,Zik)Bh2

z

BT FT
β (Tik,Zik)h

2
z BT G(Zik)B + Op(h2)

)(
βT

BT

)

+ Op(h3)

= (β,B)

⎛
⎜⎝E

{(
∂μ

∂z̃0

)2}
h2

t F̃Bh2
z

BT F̃ T h2
z 2BT G̃B + Op(h2 + δβ)

⎞
⎟⎠(

βT

BT

)

+ Op(h3 + δβh2),

where F̃ = E{( ∂μ

∂z̃0 )
2Fβ(T ,Z)}, G̃ = 1

2E{( ∂μ

∂z̃0 )2G(Z)}, the second equality fol-
lows from (B.1) and the last equality follows from Lemma D.1.

Using the formula for matrix inverse in block form and letting τ = E{( ∂μ

∂z̃0 )2}h2
t

and G̃∗ = (BT G̃B)−1, we obtain

{Dβ
n }−1 = (β,B)

⎛
⎜⎝

1

τ

−1

2τ
F̃BG̃∗h2

z

−1

2τ
G̃∗BT F̃ T h2

z

1

2
G̃∗

⎞
⎟⎠(

βT

BT

)
+ Op(h + δβ)

= ββT

τ
− h2

z

2τ
(BG̃∗BT F̃ T βT + βF̃BG̃∗BT ) + 1

2
BG̃∗BT + Op(h + δβ)

= β0β
T
0

τ
− h2

z

2τ
(G̃+F̃ T βT

0 + β0F̃ G̃+) + 1

2
G̃+ + Op(h + δβ),

where G̃+ = B0(B
T
0 G̃B0)

−1BT
0 is the Moore–Penrose inverse of G̃. �

PROOF OF (3.4). To prove

ϒ = G̃(β − β0) − (nEN)−1
n∑

i=1

Ni∑
k=1

{
νβ0(Tik,Zik)

∂μ

∂z̃0

}
εik + op(n−1/2),
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we work on {Yik −aβ(Tj�,Zj�)−bβ(Tj�,Zj�)(Tik −Tj�)−dβ(Tj�,Zj�)β
T
0 (Zik −

Zj�)} first. By Lemma D.3, we have

Yij − aβ(t, z) − bβ(t, z)(Tij − t) − dβ(t, z)βT
0 (Zij − z)

= −∂μ

∂z̃
νβ(t, z)δβ + εij − ε̃n,1

− ε̃n,2

ht

(Tij − t) − ε̃n,3

hz

βT
0 (Zij − z)

+ 1

2

∂2μ

∂t2

(
(Tij − t)2 − h2

t

)+ ∂2μ

∂t ∂z̃0 (Tij − t)(Z̃ij − z̃)(B.2)

+ 1

2

∂2μ

∂(z̃0)2

(
(Z̃ij − z̃)2 − h2

z

)
+ op(h2 + |δβ | + |δβ |h + |δβ |h2 + |δβ |2)
+ Op(�),

where � = ∑
α1+α2=3 |Tij − t |α1 |Z̃0

ij − z̃0|α2 + |Tij − t ||(Zij − z)T δβ | + |ZT
ij −

zT |2(δβ + δ2
β). We will now calculate the weighted sum of each term in (3.2). This

leads to the following results.
(i) Let

�0n = (nEN)−1
n∑

j=1

Nj∑
�=1

∂μ/∂z̃

nEN

dβ(Tj�,Zj�)

f̂2

×
n∑

i=1

Ni∑
k=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)

× (Zik − Zj�)ν
T
β (Tj�,Zj�)

= (nEN)−1
n∑

j=1

Nj∑
�=1

∂μ/∂z̃ dβ(Tj�,Zj�)

f̂2

× (
f2νβ(Tj�,Zj�) + Op(h2)

)
νT
β (Tj�,Zj�)

= (nEN)−1
n∑

j=1

Nj∑
�=1

∂μ/∂z̃

f̂2
f2νβ(Tj�,Zj�)

× νT
β (Tj�,Zj�)

(
∂μ

∂z̃
+ Op(h + δβ)

)
+ op(n−1/2)

= G̃ + op(n−1/2).
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(ii) If we let

Nn = (nEN)−1
n∑

j=1

Nj∑
�=1

dβ(Tj�,Zj�)

nENf̂2

n∑
i=1

Ni∑
k=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)

× (Zik − Zj�)εik,

then

Nn = (nEN)−1
n∑

i=1

Ni∑
k=1

εik

nEN

n∑
j=1

Nj∑
�=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)

× dβ(Tj�,Zj�)(Zik − Zj�)

f̂2
(B.3)

= (nEN)−1
n∑

i=1

Ni∑
k=1

Nnjεik,

where

Nnj = 1

nEN

n∑
j=1

Nj∑
�=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)
dβ(Tj�,Zj�)(Zik − Zj�)

f̂2

= 1

nEN

n∑
j=1

Nj∑
�=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)(Zik − Zj�)

× (∂μ/∂z̃) + Op(h + |δβ |)
f2

(B.4)

= (
Zi − E(Z|T = Tik,Z

T β = ZT
ikβ)

) ∂μ

∂z̃0 + Op(h + |δβ |)

= −νβ(Tik,Zik)
∂μ

∂z̃0 + Op(h + |δβ |).
Plugging (B.4) into (B.3), we will get

Nn = (nEN)−1
n∑

i=1

Ni∑
k=1

(
−νβ(Tik,Zik)

∂μ

∂z̃0 + Op(h + |δβ |)
)
εik

= (nEN)−1
n∑

i=1

Ni∑
k=1

(
−νβ0(Tik,Zik)

∂μ

∂z̃0

)
εik + op(n−1/2).

(iii) From the definitions of ε̃n,1, ε̃n,2 and ε̃n,3, we obtain

ε̃n,1 = Op(h2), ε̃n,2 = Op(h2) and ε̃n,3 = Op(h2).
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Let Rn = (nEN)−1 ∑n
j=1

∑Nj

�=1
1

nEN

∑n
i=1

∑Ni

k=1 Kh(Tik − Tj�, Z̃ik − Z̃j�) ×
(Zik −Zj�)(ε̃n,1 + ε̃n,2

ht
(Tik −Tj�)+ ε̃n,3

hz
βT

0 (Zik −Zj�)) and thus Rn = op(n−1/2).
(iv)

(nEN)−1
n∑

j=1

Nj∑
�=1

∂2μ/∂t2

nEN

dβ(Tj�,Zj�)

f̂2

×
n∑

i=1

Ni∑
k=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)(Zik − Zj�){(Tik − Tj�)
2 − h2

t }

= (nEN)−1
n∑

j=1

Nj∑
�=1

h2
t

∂2μ

∂t2

dβ(Tj�,Zj�)

f̂2
× Op(h2) = op(n−1/2).

(v)

(nEN)−1
n∑

j=1

Nj∑
�=1

∂2μ/∂t ∂z̃0

nEN

dβ(Tj�,Zj�)

f̂2

×
n∑

i=1

Ni∑
k=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)(Zik − Zj�)(Tik − Tj�)β
T (Zik − Zj�)

= op(n−1/2).

(vi)

(nEN)−1
n∑

j=1

Nj∑
�=1

∂2μ/∂z̃2

nEN

dβ(Tj�,Zj�)

f̂2

×
n∑

i=1

Ni∑
k=1

Kh(Tik − Tj�, Z̃ik − Z̃j�)(Zik − Zj�)[{βT (Zik − Zj�)}2 − h2
z]

= op(n−1/2).

From (i)–(vi), the weighted sum of (B.2) becomes

ϒ = G̃(β − β0) + Nn + Rn + op(n−1/2)

= G̃(β − β0) − (nEN)−1
n∑

i=1

Ni∑
k=1

(
νβ0(Tik,Zik)

∂μ

∂z̃0

)
εik + op(n−1/2)

and (3.4) is thus proved. �
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APPENDIX C: PROOF OF THEOREM 3.2

In this Appendix, we consider Yij as the j th observation of ith subject made at
a random time Tij with a univariate longitudinal covariate Zij , where i = 1, . . . , n

and j = 1, . . . ,Ni . The following definitions are needed to derive the asymptotic
normalities of two-dimensional scatter plot smoothers.

A two-dimensional kernel function K2 : R2 → R is of order (ν, κ) if∫ ∫
uk1vk2K2(u, v) dudv

(C.1)

=
⎧⎨
⎩

0, 0 ≤ k1 + k2 < κ,k1 �= ν1, k2 �= ν2,
(−1)|ν||ν|!, k1 = ν1, k2 = ν2,
�= 0, k1 + k2 = κ ,

where ν is a multi-index ν = (ν1, ν2) and |ν| = ν1 + ν2. Also, define the inverse
Fourier transform of K2(u, v) by

ζ1(t, z) =
∫ ∫

exp
(−(iut + iwz)

)
K2(u,w)dudw.

Further, given an integer Q ≥ 1 and for q = 1, . . . ,Q, let ψq : R3 → R satisfy:

B.1 ψq(t, z, y)’s are continuous on {(t, z)}, uniformly in y ∈ R;
B.2 the functions ∂p

∂tp1 ∂zp2 ψq(t, z, y) exist for all arguments (t, z, y) and are con-
tinuous on {(t, z)}, uniformly in y ∈ R, for p1 + p2 = p and 0 ≤ p1,p2 ≤ p.

The kernel-weighted averages for two-dimensional smoothers are defined as

�qn = 1

nENh
ν1+1
t h

ν2+1
z

n∑
i=1

Ni∑
j=1

ψq(Tij ,Zij , Yij )K2

(
t − Tij

ht

,
z − Zij

hz

)
,(C.2)

where K2 is a kernel function of order (ν, κ) and ht and hz are bandwidths associ-
ated with t and z, respectively. The property of asymptotic normality of the local
linear estimator μ̂(t, z) can be shown by using four specific ψq functions. Let

αq(t, z) = ∂ |ν|

∂tν1 ∂zν2

∫
ψq(t, z, y)f3(t, z, y) dy

and

σqr(t, z) =
∫

ψq(t, z, y)ψr(t, z, y)f3(t, z, y) dy‖K2‖2,

where f3(t, z, y) is the joint density of (T ,Z,Y ), ‖K2‖2 = ∫
K2

2 and 1 ≤ q, r ≤ Q.

LEMMA C.1. Under assumptions A.2–A.6, B.1–B.2, ht � hz � h, h → 0,
nE(N)h|ν|+2 → ∞, E(N)h2 → 0 and nE(N)h2κ+2 < ∞,√

nENh
2ν1+1
t h

2ν2+1
z [(�1n, . . . ,�Qn)

T − (E�1n, . . . ,E�Qn)
T ] D→ N(0,�).
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PROOF. This lemma can be shown by following similar procedures as used to
prove Lemma C.1 in Jiang and Wang (2010). The only difference is in the change-
of-variable step of showing that Q2 = o(1). �

The following two lemmas can be justified easily by following the procedures
in Jiang and Wang (2010) and thus we omit the proof.

LEMMA C.2. Let H : RQ → R be a function with continuous first order deriv-
atives, DH(v) = ( ∂

∂x1
H(v), . . . , ∂

∂xQ
H(v))T and N̄ = 1

n

∑n
i=1 Ni . Under assump-

tions A.2–A.6, B.1–B.2, ht � hz � h, h → 0, nE(N)h|ν|+2 → ∞, E(N)h2 → 0,
hz

ht
→ ρμ and nE(N)h2κ+2

t → τ 2
μ for some 0 < ρμ, τμ < ∞,√

nN̄h
2ν1+1
t h

2ν2+1
z [H(�1n, . . . ,�Qn) − H(α1, . . . , αQ)]

D→ N(βH , [DH(α1, . . . , αQ)]T �[DH(α1, . . . , αQ)]),
where � = (σqr)1≤q,r≤l and

βH = ∑
k1+k2=κ

(−1)κ

k1!k2!
[∫

s
k1
1 s

k2
2 K2(s1, s2) ds1 ds2

]

×
{

Q∑
q=1

∂H

∂αq

[(α1, . . . , αQ)T ] ∂k1+k2−ν1−ν2

∂tk1−αq ∂zk2−ν2
αq(t, z)

}
τμ

√
ρ

2k2+1
μ .

LEMMA C.3. Under the same assumptions as Lemma C.2, together with the
assumption that the inverse Fourier transform ζ1(t, z) is absolutely integrable,

sup
t∈T ;z∈Z

|�qn − αq | = Op

(
1√

nh|ν|+2

)
where h � ht � hz.

PROOF OF THEOREM 3.2. The theorem can be justified easily by employing
Lemmas C.2 and C.3, and following the procedures used to prove Theorem 3.2 in
Jiang and Wang (2010). �

APPENDIX D: AUXILIARY RESULTS

LEMMA D.1. Suppose {Ti ,Zi ,Yi} are from an i.i.d. sample, where Ti =
(Ti1, . . . , TiNi

), Zi = (Zi1, . . . ,ZiNi
) and Yi = (Yi1, . . . , YiNi

). Let ψs(t, z, y)

be a series of functions and assume that E{ψs(T ,Z,Y )} and var{ψs(T ,Z,Y )}
are both finite. Let ψT = (ψ1, . . . ,ψp) and �T = (�1, . . . ,�p), where �s =

1
nEN

∑n
i=1

∑Ni

k=1 ψs(Tik,Zik, Yik) for s = 1, . . . , p. Under assumptions A.1–A.6,
we obtain

√
n{� − E(�)} D→ Np(0,�),(D.1)
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where

� = 1

E(N)
E{ψ(T ,Z,Y )ψT (T ,Z,Y )}

+ E(N) − 1

E(N)
E{ψ(T ,Z,Y )ψT (T ′,Z′, Y ′)}

− E{ψ(T ,Z,Y )}E{ψT (T ,Z,Y )}.
Equation (D.1) implies that

1

nEN

n∑
i=1

Ni∑
k=1

ψ(Tik,Zik, Yik) = E{ψ(T ,Z,Y )} + Op(n−1/2).

PROOF. We can prove (D.1) by showing that
√

n{aT � − aT
E(�)} D→

Np(0, aT �a), where aT = (a1, . . . , ap), by the central limit theorem. �

LEMMA D.2. Let

�β(t, z̃) = 1

nEN

n∑
i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)

(
Tij − t

ht

)α1
(

Z̃ij − z̃

hz

)α2

Yij .

Suppose that E(Y |T = t,ZT β = z̃) = m(t, z̃) and that assumptions A.1–A.6 hold.
Then,

�β(t, z̃) = m(t, z̃)f2(t, z̃)ξα1,α2 + ∂

∂t
{m(t, z̃)f2(t, z̃)}ξα1+1,α2ht

+ ∂

∂z̃
{m(t, z̃)f2(t, z̃)}ξα1,α2+1hz + Op(h2)

(
or Op

(
1√

nENh2

))
,

where ξα1,α2 = ∫
K(u, v)uα1vα2 dudv.

PROOF. From the definition of expectation and by the techniques of change-
of-variables and Taylor’s expansion, we have

E{�β(t, z̃)} =
∫ 1

hthz

K

(
s − t

ht

,
u − z̃

hz

)(
s − t

ht

)α1(u − z̃

hz

)α2

× yf3(s, u, y) ds dudy

=
∫

K(v1, v2)v
α1
1 v

α2
2 m(t + v1ht , z̃ + v2hz)

× f2(t + v1ht , z̃ + v2hz) dv1 dv2

= m(t, z̃)f2(t, z̃)ξα1,α2 + ∂

∂t
{m(t, z̃)f2(t, z̃)}ξα1+1,α2ht

+ ∂

∂z̃
{m(t, z̃)f2(t, z̃)}ξα1,α2+1hz + O(h2).
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The lemma now follows by Lemma C.1. �

In the following lemma, we study the asymptotic expansions of the weighted
least-squares estimator, θ̂ T (t, z) = (âβ(t, z), b̂β(t, z), d̂β(t, z)), of the local linear
smoother for mean function μ(t, βT z) when an initial single index β is given.
Thus,

θ̂ (t, z) = arg min
θ

n∑
i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)

× (
Yij − aβ − bβ(Tij − t) − dβ(Z̃ij − z̃)

)2

(D.2)

= 1

nEN�
β
n (t, z)

n∑
i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)

×
(

1,
Tij − t

ht

,
Z̃ij − z̃

hz

)T

Yij ,

where

�β
n (t, z) = 1

nEN

n∑
i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)

×
(

1,
Tij − t

ht

,
Z̃ij − z̃

hz

)T (
1,

Tij − t

ht

,
Z̃ij − z̃

hz

)
.

LEMMA D.3. Under assumptions A.1–A.6,

âβ(t, z) = μ(t, z̃0) + ∂μ

∂z̃
νβ(t, z)δβ + 1

2

∂2μ

∂t2 h2
t + 1

2

∂2μ

∂z̃2 h2
z + ε̃n,1

+ Op(h3 + |δβ |h2 + |δβ |h3 + |δβ |2h),

b̂β(t, z)ht = ∂μ

∂t
ht + ∂μ

∂z̃

∂νβ(t, z)

∂t
δβht + ε̃n,2

+ Op(h3 + |δβ |h2 + |δβ |h3 + |δβ |2h),

d̂β(t, z)hz = ∂μ

∂z̃
hz + ∂μ

∂z̃

∂νβ(t, z)

∂z̃
δβhz + ε̃n,3

+ Op(h3 + |δβ |h2 + |δβ |h3 + |δβ |2h),

where δβ = β0 − β , �
β
n = �

β
n (t, z̃), νβ(t, z) = E(Z|T = t,ZT β = zT β) − z, all

the derivatives of μ(t, z̃) are evaluated at (t, z̃0) and⎛
⎝ ε̃n,1

ε̃n,2
ε̃n,3

⎞
⎠ = (nENf2)

−1
n∑

i=1

Ni∑
j=1

Kh(Tij − t, Z̃ij − z̃)

⎛
⎝ 1

(Tij − t)/ht

(Zij − z)T β/hz

⎞
⎠ εij .
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PROOF. By Lemma D.2, we obtain

�β
n (t, z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

f2
∂f2

∂t
ht

∂f2

∂z̃
hz

∂f2

∂t
ht f2 0

∂f2

∂z̃
hz 0 f2

⎞
⎟⎟⎟⎟⎟⎟⎠+ Op(h2),

det{�β
n (t, z)} = (f2)

3 + Op(h2)

and

{�β
n (t, z)}−1 = 1

f2(t, z̃)

⎛
⎜⎜⎜⎜⎜⎜⎝I − 1

f2(t, z̃)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −∂f2

∂t
ht −∂f2

∂z̃
hz

−∂f2

∂t
ht 0 0

−∂f2

∂z̃
hz 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

+ Op(h2).

By Taylor’s expansion at (t, z̃0), Yij = μ(Tij ,Z
T
ijβ0) + εij can be expressed as

Yij = μ(t, z̃0) + ∂μ

∂t
(Tij − t) + ∂μ

∂z̃0 (Z̃ij − z̃)︸ ︷︷ ︸
E1

+ ∂μ

∂z̃0 (Zij − z)T δβ︸ ︷︷ ︸
E2

+ 1

2

∂2μ

∂t2 (Tij − t)2

︸ ︷︷ ︸
E3

+ ∂2μ

∂t ∂z̃0 (Tij − t)(Z̃ij − z̃)︸ ︷︷ ︸
E4

+ 1

2

∂2μ

∂(z̃0)2 (Z̃ij − z̃)2

︸ ︷︷ ︸
E5

+ Op(E6) + εij ,

where E6 = ∑
α1+α2=3 |Tij − t |α1 |Z̃0

ij − z̃0|α2 + |Tij − t ||(Zij − z)T δβ | + |ZT
ij −

zT |2(|δβ | + |δβ |2) and the derivatives of μ(t, z̃) are evaluated at (t, z̃0). Therefore,
θ̂ (t, z) in (D.2) is the sum of the weighted averages of E1, . . . ,E6 and error εij .
After evaluating the weighted average of each term, which amounts to smoothing
each Ei and εij , the lemma follows by combining all of the smoothing terms. �
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