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This paper provides parametric and rank-based optimal tests for eigen-
vectors and eigenvalues of covariance or scatter matrices in elliptical families.
The parametric tests extend the Gaussian likelihood ratio tests of Anderson
(1963) and their pseudo-Gaussian robustifications by Davis (1977) and Tyler
(1981, 1983). The rank-based tests address a much broader class of prob-
lems, where covariance matrices need not exist and principal components are
associated with more general scatter matrices. The proposed tests are shown
to outperform daily practice both from the point of view of validity as from
the point of view of efficiency. This is achieved by utilizing the Le Cam the-
ory of locally asymptotically normal experiments, in the nonstandard context,
however, of a curved parametrization. The results we derive for curved exper-
iments are of independent interest, and likely to apply in other contexts.

1. Introduction. This fairly detailed introduction aims at providing a com-
prehensive and nontechnical overview of the paper, including its asymptotic the-
ory aspects, and a rough description of some of the rank-based test statistics to
be derived. It is expected to be accessible to a broad readership. It should be suf-
ficiently informative for the reader not interested in the technical aspects of as-
ymptotic theory, to proceed to Sections 5 (Gaussian and pseudo-Gaussian tests)
and 6 (rank-based tests), where the proposed testing procedures are described, and
for the reader mainly interested in asymptotics, to decide whether he/she is inter-
ested in the treatment of a LAN family with curved parametrization developed in
Sections 3 and 4.
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1.1. Hypothesis testing for principal components. Principal components are
probably the most popular and widely used device in the traditional multivari-
ate analysis toolkit. Introduced by Pearson (1901), principal component analysis
(PCA) was rediscovered by Hotelling (1933), and ever since has been an essential
part of daily statistical practice, basically in all domains of application.

The general objective of PCA is to reduce the dimension of some observed k-
dimensional random vector X while preserving most of its total variability. This is
achieved by considering an adequate number q of linear combinations of the form
β ′

1X, . . . ,β ′
qX, where βj , j = 1, . . . , k, are the eigenvectors associated with the

eigenvalues λ1, . . . , λk of X’s covariance matrix �cov, ranked in decreasing order
of magnitude. Writing β for the orthogonal k × k matrix with columns β1, . . . ,βk

and ��cov for the diagonal matrix of eigenvalues λ1, . . . , λk , the matrix �cov thus
factorizes into �cov = β��covβ

′. The random variable β ′
j X, with variance λj , is

known as X’s j th principal component.
Chapters on inference for eigenvectors and eigenvalues can be found in most

textbooks on multivariate analysis, and mainly cover Gaussian maximum likeli-
hood estimation (MLE) and the corresponding Wald and Gaussian likelihood ratio
tests (LRT). The MLEs of β and ��cov are the eigenvectors and eigenvalues of the
empirical covariance matrix

S(n) := 1

n

n∑
i=1

(
Xi − X̄(n))(Xi − X̄(n))′ with X̄(n) := 1

n

n∑
i=1

Xi ,

while testing problems classically include testing for sphericity (equality of eigen-
values), testing for subsphericity (equality among some given subset of eigenva-
lues—typically, the last k−q ones), testing that the �th eigenvector has some spec-
ified direction, or that the proportion of variance accounted for by the last k − q

principal components is larger than some fixed proportion of the total variance:
see, for instance, Anderson (2003) or Jolliffe (1986).

Gaussian MLEs and the corresponding tests (Wald or likelihood ratio tests—
since they are asymptotically equivalent, in the sequel we indistinctly refer to
LRTs) for covariance matrices and functions thereof are notoriously sensitive to
violations of Gaussian assumptions; see Muirhead and Waternaux (1980) for a
classical discussion of this fact, or Yanagihara, Tonda and Matsumoto (2005) for
a more recent overview. The problems just mentioned about the eigenvectors and
eigenvalues of �cov are no exception to that rule, although belonging, in Muir-
head and Waternaux’s terminology, to the class of “easily robustifiable” ones. For
such problems, adjusted LRTs remaining valid under the whole class of ellipti-
cal distributions with finite fourth-order moments can be obtained via a correction
factor involving estimated kurtosis coefficients [see Shapiro and Browne (1987)
for a general result on the “easy” cases, and Hallin and Paindaveine (2008b) for
the “harder” ones]. Such adjusted LRTs were obtained by Tyler (1981, 1983) for
eigenvector problems and by Davis (1977) for eigenvalues.
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Tyler actually constructs tests for the scatter matrix � characterizing the den-
sity contours [of the form (x − θ)′�−1(x − θ) = constant] of an elliptical family.
His tests are the Wald tests associated with any available estimator �̂ of � such
that n1/2 vec(�̂ − �) is asymptotically normal, with mean zero and covariance
matrix �f , say, under f ∈ F , where F denotes some class of elliptical densities
and �f either is known or (still, under f ∈ F ) can be estimated consistently. The
resulting tests then are valid under the class F . When the estimator �̂ is the empir-
ical covariance matrix S(n), these tests under Gaussian densities are asymptotically
equivalent to Gaussian LRTs. Unlike the latter, however, they remain (asymptoti-
cally) valid under the class F 4 of all elliptical distributions with finite moments of
order four, and hence qualify as pseudo-Gaussian versions of the Gaussian LRTs.

Due to their importance for applications, throughout this paper, we concentrate
on the following two problems:

(a) testing the null hypothesis Hβ
0 that the first principal direction β1 coincides

(up to the sign) with some specified unit vector β0 (the choice of the first principal
direction here is completely arbitrary, and made for the simplicity of exposition
only), and

(b) testing the null hypothesis H�
0 that

∑k
j=q+1 λj/

∑k
j=1 λj = p against the

one-sided alternative under which
∑k

j=q+1 λj/
∑k

j=1 λj < p, p ∈ (0,1) given.
The Gaussian LRT for (a) was introduced in a seminal paper by Anderson

(1963). Denoting by λj ;S and βj ;S, j = 1, . . . , k, respectively, the eigenvalues and

eigenvectors of S(n), this test—denote it by φ
(n)
β;Anderson—rejects Hβ

0 (at asymptotic
level α) as soon as

Q
(n)
Anderson := n

[
λ1;Sβ0′(S(n))−1

β0 + λ−1
1;Sβ0′S(n)β0 − 2

]
(1.1)

= n

λ1;S

k∑
j=2

(λj ;S − λ1;S)2

λ3
j ;S

(
β ′

j ;SS(n)β0)2

exceeds the α upper-quantile of the chi-square distribution with (k − 1) degrees
of freedom. The behavior of this test being particularly poor under non-Gaussian
densities, Tyler (1981, 1983) proposed a pseudo-Gaussian version φ

(n)
β;Tyler, which

he obtains via an empirical kurtosis correction

Q
(n)
Tyler := (

1 + κ̂ (n))−1
Q

(n)
Anderson(1.2)

of (1.1) (same asymptotic distribution), where κ̂ (n) is some consistent estimator of
the underlying kurtosis parameter κk ; see Section 5.3 for a definition.

A related test of Schott (1991) addresses the same problem where however β1
is the first eigenvector of the correlation matrix.

The traditional Gaussian test for problem (b) was introduced in the same pa-
per by Anderson (1963). For any k × k diagonal matrix � with diagonal entries
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λ1, . . . , λk , let ap,q(�) := 2(p2 ∑q
j=1 λ2

j + (1 − p)2 ∑k
j=q+1 λ2

j ). Defining βS :=
(β1;S, . . . ,βk;S) and cp,q := (−p1′

q

... (1 − p)1′
k−q)

′, with 1� := (1, . . . ,1)′ ∈ R
�,

and denoting by dvec(A) the vector obtained by stacking the diagonal elements of
a square matrix A, Anderson’s test, φ

(n)
�;Anderson, say, rejects the null hypothesis at

asymptotic level α whenever

T
(n)
Anderson := n1/2(ap,q(�S))−1/2c′

p,q dvec
(
β ′

SS(n)βS
)

(1.3)

= n1/2(ap,q(�S))−1/2

(
(1 − p)

k∑
j=q+1

λj ;S − p

q∑
j=1

λj ;S
)

is less than the standard normal α-quantile. Although he does not provide any
explicit form, Davis (1977) briefly explains how to derive the pseudo-Gaussian
version

T
(n)

Davis := (
1 + κ̂ (n))−1/2

T
(n)
Anderson(1.4)

of (1.3), where κ̂ (n) again is any consistent estimator of the underlying kurtosis
parameter κk . The resulting test (same asymptotic standard normal distribution)
will be denoted as φ

(n)
�;Davis.

Being based on empirical covariances, though, the pseudo-Gaussian tests based
on (1.2) and (1.4) unfortunately remain poorly robust. They still are very sensi-
tive to the presence of outliers—an issue which we do not touch here; see, for
example, Croux and Haesbroeck (2000), Salibián-Barrera, Van Aelst and Willems
(2006), and the references therein. Moreover, they do require finite moments of
order four—hence lose their validity under heavy tails, and only address the tradi-
tional covariance-based concept of principal components.

This limitation is quite regrettable, as principal components, irrespective of any
moment conditions, clearly depend on the elliptical geometry of underlying distri-
butions only. Recall that an elliptical density over R

k is determined by a location
vector θ ∈ R

k , a scale parameter σ ∈ R
+
0 (where σ 2 is not necessarily a variance),

a real-valued k × k symmetric and positive definite matrix V called the shape ma-
trix, and a standardized radial density f1 (whenever the elliptical density has finite
second-order moments, the shape and covariance matrices V and �cov are propor-
tional, hence share the same collection of eigenvectors and, up to a positive factor,
the same collection of eigenvalues). Although traditionally described in terms of
the covariance matrix �cov, most inference problems in multivariate analysis nat-
urally extend to arbitrary elliptical models, with the shape matrix V or the scatter
matrix � := σ 2V playing the role of �cov. Principal components are no exception;
in particular, problems (a) and (b) indifferently can be formulated in terms of shape
or covariance eigenvectors and eigenvalues. Below, �V := diag(λ1;V, . . . , λk;V)

and β := (β1, . . . ,βk) collect the eigenvalues and eigenvectors of the shape ma-
trix V.
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Our objective in this paper is to provide a class of signed-rank tests which re-
main valid under arbitrary elliptical densities, in the absence of any moment as-
sumption, and hence are not limited to the traditional covariance-based concept
of principal components. Of particular interest within that class are the van der
Waerden—that is, normal-score—tests, which are asymptotically equivalent, un-
der Gaussian densities, to the corresponding Gaussian LRTs (the asymptotic op-
timality of which we moreover establish in Section 5, along with local powers).
Under non-Gaussian conditions, however, these van der Waerden tests uniformly
dominate, in the Pitman sense, the pseudo-Gaussian tests based on (1.2) and (1.4)
above, which, as a result, turn out to be nonadmissible (see Section 7).

Our tests are based on the multivariate signs and ranks previously considered
by Hallin and Paindaveine (2006a, 2008a) and Hallin, Oja and Paindaveine (2006).
Denote by X1, . . . ,Xn an observed n-tuple of k-dimensional elliptical vectors with
location θ and shape V. Let Zi := V−1/2(Xi − θ) denote the sphericized version
of Xi (throughout A1/2, for a symmetric and positive definite matrix A, stands
for the symmetric and positive definite root of A): the corresponding multivariate
signs are defined as the unit vectors Ui = Ui (θ ,V) := Zi/‖Zi‖, while the ranks
R

(n)
i = R

(n)
i (θ,V) are those of the norms ‖Zi‖, i = 1, . . . , n. Our rank tests are

based on signed-rank covariance matrices of the form

S˜(n)
K := 1

n

n∑
i=1

K

(
R

(n)
i

n + 1

)
UiU′

i ,

where K : (0,1) → R stands for some score function, and Ui = Ui (θ̂, V̂) and
R

(n)
i = R

(n)
i (θ̂, V̂) are computed from appropriate estimators θ̂ and V̂ of θ and V.

More precisely, for the testing problem (a), the rank-based test φ˜
(n)
β;K rejects the

null hypothesis Hβ
0 (at asymptotic level α) whenever

Q˜
(n)
K := nk(k + 2)

Jk(K)

k∑
j=2

(
β̃ ′

j S˜(n)
K β0)2

exceeds the α upper-quantile of the chi-square distribution with (k − 1) degrees of
freedom; here, Jk(K) is a standardizing constant and β̃j stands for a constrained
estimator of V’s j th eigenvector; see (5.2) for details. As for problem (b), our rank
tests φ˜

(n)
�;K are based on statistics of the form

T˜ (n)
K :=

(
nk(k + 2)

Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,q dvec

(
�̃

1/2
V β̂ ′S˜(n)

K β̂�̃
1/2
V

)
,

where �̃V and β̂ are adequate estimators of �V and β , respectively. The null hy-
pothesis H�

0 is to be rejected at asymptotic level α whenever T˜ (n)
K is smaller than

the standard normal α-quantile.
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These tests are not just validity-robust, they also are efficient. For any smooth
radial density f1, indeed, the score function K = Kf1 (see Section 2.2) provides a
signed-rank test which is locally and asymptotically optimal (locally and asymp-
totically most stringent, in the Le Cam sense) under radial density f1. In particular,
when based on normal or van der Waerden scores K = Kφ1 := �−1

k , where �k

denotes the chi-square distribution function with k degrees of freedom, our rank
tests achieve the same asymptotic performances as the optimal Gaussian ones at
the multinormal, while enjoying maximal validity robustness, since no assump-
tion is required on the underlying density beyond ellipticity. Moreover, the asymp-
totic relative efficiencies (AREs) under non-Gaussian densities of these van der
Waerden tests are uniformly larger than one with respect to their pseudo-Gaussian
parametric competitors; see Section 7. On all counts, validity, robustness, and ef-
ficiency, our van der Waerden tests thus perform uniformly better than the daily
practice Anderson tests and their pseudo-Gaussian extensions.

1.2. Local asymptotic normality for principal components. The methodolog-
ical tool we are using throughout is Le Cam’s theory of locally asymptotically
normal (LAN) experiments [for background reading on LAN, we refer to Le Cam
(1986), Le Cam and Yang (2000) or van der Vaart (1998); see also Strasser (1985)
or Rieder (1994)]. Although this powerful method has been used quite success-
fully in inference problems for elliptical families [Hallin and Paindaveine (2002,
2004, 2005, 2006a), Hallin, Oja and Paindaveine (2006) and Hallin and Paindav-
eine (2008a) for location, VARMA dependence, linear models, shape and scatter,
resp.], it has not been considered so far in problems involving eigenvectors and
eigenvalues, and, as a result, little is known about optimality issues in that context.
The main reason, probably, is that the eigenvectors β and eigenvalues � are com-
plicated functions of the covariance or scatter matrix �, with unpleasant identifi-
cation problems at possibly multiple eigenvalues. These special features of eigen-
vectors and eigenvalues, as we shall see, make the LAN approach more involved
than in standard cases.

LAN (actually, ULAN) has been established, under appropriate regularity as-
sumptions on radial densities, in Hallin and Paindaveine (2006a), for elliptical
families when parametrized by a location vector θ and a scatter matrix � [more
precisely, the vector vech(�) resulting from stacking the upper diagonal elements
of �]. Recall, however, that LAN or ULAN are properties of the parametrization of
a family of distributions, not of the family itself. Now, due to the complicated rela-
tion between (θ,vech�) and the quantities of interest � and β , the (θ,vech(�))-
parametrization is not convenient in the present context. Another parametrization,
involving location, scale, and shape eigenvalues and eigenvectors is much prefer-
able, as the hypotheses to be tested then take simple forms. Therefore, we show
(Lemma A.1) how the ULAN result of Hallin and Paindaveine (2006a) carries over
to this new parametrization where, moreover, the information matrix, very conve-
niently, happens to be block-diagonal—a structure that greatly simplifies inference
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in the presence of nuisance parameters. Unfortunately, this new parametrization,
where β ranges over the set SOk of k × k real orthogonal matrices with deter-
minant one, raises problems of another nature. The subparameter vec(β) indeed
ranges over vec(SOk), a nonlinear manifold of R

k2
, yielding a curved ULAN

experiment. By a curved experiment, we mean a parametric model indexed by
a �-dimensional parameter ranging over some nonlinear manifold of R

�, such
as in curved exponential families, for instance. Under a vec(β)-parametrization,
the local experiments are not the traditional Gaussian shifts anymore, but curved
Gaussian location ones, that is, Gaussian location models under which the mean of
a multinormal observation with specified covariance structure ranges over a non-
linear manifold of R

�, so that the simple local asymptotic optimality results as-
sociated with local Gaussian shifts no longer hold. To the best of our knowledge,
such experiments never have been considered in the LAN literature.

A third parametrization, however, can be constructed from the fact that β is in
SOk if it can be expressed as the exponential of a k × k skew-symmetric matrix ι.
Denoting by vech+(ι) the vector resulting from stacking the upper off-diagonal
elements of ι, this yields a parametrization involving location, scale, shape eigen-
values and vech+(ι); the latter subparameter ranges freely over R

k(k−1)/2, yielding
a well-behaved ULAN parametrization where local experiments converge to the
classical Gaussian shifts, thereby allowing for the classical construction [Le Cam
(1986), Section 11.9] of locally asymptotically optimal tests. The trouble is that
translating null hypotheses (a) and (b) into the ι-space in practice seems unfeasi-
ble.

Three distinct ULAN structures are thus coexisting on the same families of
distributions:

(ULAN1) proved in Hallin and Paindaveine (2006a) for the (θ ,vech(�))-
parametrization, serving as the mother of all subsequent ones;

(ULAN2) for the location-scale-eigenvalues–eigenvectors parametrization,
where the null hypotheses of interest take simple forms, but the local experiments
happen to be curved ones;

(ULAN3) for the location-scale-eigenvalues–skew symmetric matrix param-
etrization, where everything is fine from a decision-theoretical point of view, with,
however, the major inconvenience that explicit solutions cannot be obtained in
terms of original parameters.

The main challenge of this paper was the delicate interplay between these three
structures. Basically, we are showing (Lemma A.1) how ULAN can be imported
from the first parametrization, and (Section 3.3) optimality results from the third
parametrization, both to the second one. These results then are used in order to
derive locally asymptotically optimal Gaussian, pseudo-Gaussian and rank-based
tests for eigenvectors and eigenvalues of shape. This treatment we are giving of
curved ULAN experiments, to the best of our knowledge, is original, and likely to
apply in a variety of other contexts.
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1.3. Outline of the paper. Section 2 contains, for easy reference, some basic
notation and fundamental assumptions to be used later on. The main ULAN result,
of a nonstandard curved nature, is established in Section 3, and its consequences
for testing developed in Section 4. As explained in the Introduction, optimality is
imported from an untractable parametrization involving skew-symmetric matrices.
This is elaborated, in some detail, in Section 3.3, where a general result is derived,
and in (Section 4.1), where that result is applied to the particular case of eigen-
vectors and (Section 4.2) eigenvalues of shape, under arbitrary radial density f1.
Special attention is given, in Sections 5.1 and 5.2, to the Gaussian case (f1 = φ1);
in Sections 5.3 and 5.4, those Gaussian tests are extended to a pseudo-Gaussian
context with finite fourth-order moments. Then, in Section 6, rank-based proce-
dures, which do not require any moment assumptions, are constructed: Section 6.1
provides a general asymptotic representation result [Proposition 6.1(i)] in the Há-
jek style; asymptotic normality, under the null as well as under local alternatives,
follows as a corollary [Proposition 6.1(ii)]. Based on these results, Sections 6.2
and 6.3 provide optimal rank-based tests for the eigenvector and eigenvalue prob-
lems considered throughout; Sections 7 and 8 conclude with asymptotic relative
efficiencies and simulations. Technical proofs are concentrated in the Appendix.

The reader interested in inferential results and principal components only (the
form of the tests, their optimality properties and local powers) may skip Sections 3
and 4, which are devoted to curved LAN experiments, and concentrate on Sec-
tion 5 for the “parametric” procedures, on Section 6 for the rank-based ones, on
Sections 7 and 8 for their asymptotic and finite-sample performances.

1.4. Notation. The following notation will be used throughout. For any k × k

matrix A = (Aij ), write vec(A) for the k2-dimensional vector obtained by stack-
ing the columns of A, vech(A) for the [k(k + 1)/2]-dimensional vector obtained
by stacking the upper diagonal elements of those columns, vech+(A) for the
[k(k − 1)/2]-dimensional vector obtained by stacking the upper off-diagonal ele-
ments of the same, and dvec(A) =: (A11, (d

◦
vec(A))′)′ for the k-dimensional vector

obtained by stacking the diagonal elements of A;d
◦

vec(A) thus is dvec(A) deprived
of its first component. Let Hk be the k×k2 matrix such that Hk vec(A) = dvec(A).
Note that we then have that H′

k dvec(A) = vec(A) for any k × k diagonal ma-
trix A, which implies that HkH′

k = Ik . Write diag(B1, . . . ,Bm) for the block-
diagonal matrix with blocks B1, . . . ,Bm and A⊗2 for the Kronecker product
A ⊗ A. Finally, denoting by e� the �th vector in the canonical basis of R

k , write
Kk := ∑k

i,j=1(eie′
j ) ⊗ (ej e′

i ) for the k2 × k2 commutation matrix.

2. Main assumptions.

2.1. Elliptical densities. We throughout assume that the observations are el-
liptically symmetric. More precisely, defining

F := {h : R+
0 → R

+ :μk−1;h < ∞},
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where μ�;h := ∫∞
0 r�h(r) dr , and

F1 :=
{
h1 ∈ F : (μk−1;h1)

−1
∫ 1

0
rk−1h1(r) dr = 1/2

}
,

we denote by X(n)
1 , . . . ,X(n)

n an observed n-tuple of mutually independent k-
dimensional random vectors with probability density function of the form

f (x) := ck,f1 |�|−1/2f1
((

(x − θ)′�−1(x − θ)
)1/2)

, x ∈ R
k,(2.1)

for some k-dimensional vector θ (location), some symmetric and positive definite
(k × k) scatter matrix �, and some f1 in the class F1 of standardized radial
densities; throughout, |A| stands for the determinant of the square matrix A.

Define the elliptical coordinates of X(n)
i as

U(n)
i (θ ,�) := �−1/2(X(n)

i − θ)

‖�−1/2(X(n)
i − θ)‖ and

(2.2)
d

(n)
i (θ ,�) := ∥∥�−1/2(X(n)

i − θ
)∥∥.

Under the assumption of ellipticity, the multivariate signs U(n)
i (θ ,�), i = 1, . . . , n,

are i.i.d. uniform over the unit sphere in R
k , and independent of the standardized

elliptical distances d
(n)
i (θ ,�). Imposing that f1 ∈ F1 implies that the d

(n)
i (θ ,�)’s,

which have common density f̃1k(r) := (μk−1;f1)
−1rk−1f1(r)I[r>0], with distribu-

tion function F̃1k , have median one [F̃1k(1) = 1/2]—a constraint which identifies
� without requiring any moment assumptions [see Hallin and Paindaveine (2006a)
for a discussion]. Under finite second-order moments, the scatter matrix � is pro-
portional to the traditional covariance matrix �cov.

Special instances are the k-variate multinormal distribution, with radial den-
sity f1(r) = φ1(r) := exp(−akr

2/2), the k-variate Student distributions, with
radial densities (for ν ∈ R

+
0 degrees of freedom) f1(r) = f t

1,ν(r) := (1 +
ak,νr

2/ν)−(k+ν)/2, and the k-variate power-exponential distributions, with radial
densities of the form f1(r) = f e

1,η(r) := exp(−bk,ηr
2η), η ∈ R

+
0 ; the positive con-

stants ak , ak,ν , and bk,η are such that f1 ∈ F1.
The derivation of locally and asymptotically optimal tests at standardized radial

density f1 will be based on the uniform local and asymptotic normality (ULAN)
of the model at given f1. This ULAN property—the statement of which requires
some further preparation and is delayed to Section 3—only holds under some fur-
ther mild regularity conditions on f1. More precisely, we require f1 to belong to
the collection Fa of all absolutely continuous densities in F1 for which, denoting
by ḟ1 the a.e. derivative of f1 and letting ϕf1 := −ḟ1/f1, the integrals

Ik(f1) :=
∫ 1

0
ϕ2

f1
(r)f̃1k(r) dr and Jk(f1) :=

∫ 1

0
r2ϕ2

f1
(r)f̃1k(r) dr(2.3)
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are finite. The quantities Ik(f1) and Jk(f1) play the roles of radial Fisher infor-
mation for location and radial Fisher information for shape/scale, respectively.
Slightly less stringent assumptions, involving derivatives in the sense of distrib-
utions, can be found in Hallin and Paindaveine (2006a), where we refer to for
details. The intersection of Fa and F 4

1 := {f1 ∈ F1 :
∫∞

0 r4f̃1k(r) dr < ∞} will be
denoted as F 4

a .

2.2. Score functions. The various score functions K appearing in the rank-
based statistics to be introduced in Section 6 will be assumed to satisfy a few
regularity assumptions which we are listing here for convenience.

ASSUMPTION (S). The score function K : (0,1) → R (S1) is continuous and
square-integrable, (S2) can be expressed as the difference of two monotone in-
creasing functions, and (S3) satisfies

∫ 1
0 K(u)du = k.

Assumption (S3) is a normalization constraint that is automatically satisfied by
the score functions K(u) = Kf1(u) := ϕf1(F̃

−1
1k (u))F̃−1

1k (u) associated with any
radial density f1 ∈ Fa (at which ULAN holds); see Section 3. For score functions
K,K1,K2 satisfying Assumption (S), let [throughout, U stands for a random vari-
able uniformly distributed over (0,1)]

Jk(K1,K2) := E[K1(U)K2(U)], Jk(K) := Jk(K,K)(2.4)

and

Jk(K,f1) := Jk(K,Kf1);(2.5)

with this notation, Jk(f1) = Jk(Kf1,Kf1).
The power score functions Ka(u) := k(a+1)ua (a ≥ 0), with Jk(Ka) = k2(a+

1)2/(2a + 1), provide some traditional score functions satisfying Assumption (S):
the sign, Wilcoxon, and Spearman scores are obtained for a = 0, a = 1 and a = 2,
respectively. As for the score functions of the form Kf1 , an important particular
case is that of van der Waerden or normal scores, obtained for f1 = φ1. Then

Kφ1(u) = �−1
k (u) and Jk(φ1) = k(k + 2),(2.6)

where �k was defined in page 3250. Similarly, Student densities f1 = f t
1,ν (with

ν degrees of freedom) yield the scores

Kf t
1,ν

(u) = k(k + ν)G−1
k,ν(u)

ν + kG−1
k,ν(u)

and

Jk(f
t
1,ν) = k(k + 2)(k + ν)

k + ν + 2
,

where Gk,ν stands for the Fisher–Snedecor distribution function with k and ν de-
grees of freedom.
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3. Uniform local asymptotic normality (ULAN) and curved Gaussian loca-
tion local experiments.

3.1. Semiparametric modeling of elliptical families. Consider an i.i.d. n-tuple
X(n)

1 , . . . ,X(n)
n with elliptical density (2.1) characterized by θ , �, and f1 : (θ ,�)

or, if a vector is to be preferred, (θ ′, (vech�)′)′, provides a perfectly valid para-
metrization of the elliptical family with standardized radial density f1. However,
in the problems we are considering in this paper, it will be convenient to have
eigenvalues and eigenvectors appearing explicitly in the vector of parameters. De-
compose therefore the scatter matrix � into � = σ 2V = β��β ′ = βσ 2�Vβ ′,
where σ ∈ R

+
0 is a scale parameter (equivariant under multiplication by a positive

constant), and V a shape matrix (invariant under multiplication by a positive con-
stant) with eigenvalues �V = diag(λ1;V, . . . , λk;V) = σ−2 diag(λ1;�, . . . , λk;�) =
σ−2�� ; β is an element of the so-called special orthogonal group SOk :=
{O|O′O = Ik , |O| = 1} diagonalizing both � and V, the columns β1, . . . ,βk of
which are the eigenvectors (common to � and V) we are interested in.

Such decomposition of scatter into scale and shape can be achieved in various
ways. Here, we adopt the determinant-based definition of scale

σ := |�|1/2k =
k∏

j=1

λ
1/2k
j ;� hence V := �/σ 2 = �/|�|1/k,

which implies that |V| = ∏k
j=1 λj ;V = 1. As shown by Paindaveine (2008), this

choice indeed is the only one for which the information matrix for scale and shape
is block-diagonal, which greatly simplifies inference. The parametric families of
elliptical distributions with specified standardized radial density f1 then are in-
dexed by the L = k(k + 2)-dimensional parameter

ϑ := (θ ′, σ 2, (d
◦

vec�V)′, (vecβ)′)′ =: (ϑ ′
I , ϑII,ϑ

′
III,ϑ

′
IV)′,

where d
◦

vec(�V) = (λ2;V, . . . , λk;V)′ since λ1;V = ∏k
j=2 λ−1

j ;V.
This ϑ -parametrization however requires a fully identified k-tuple of eigenvec-

tors, which places the following restriction on the eigenvalues �V.

ASSUMPTION (A). The eigenvalues λj ;V of the shape matrix V are all dis-
tinct, that is, since � (hence also V) is positive definite, λ1;V > λ2;V > · · · >

λk;V > 0.

Denote by P(n)
ϑ;f1

the joint distribution of X(n)
1 , . . . ,X(n)

n under parameter value
ϑ and standardized radial density f1 ∈ F1; the parameter space [the definition of
which includes Assumption (A)] then is

	 := R
k × R

+
0 × Ck−1 × vec(SOk),
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where Ck−1 is the open cone of (R+
0 )k−1 with strictly ordered (from largest to

smallest) coordinates.
Since vec(SOk) is a nonlinear manifold of R

k2
: the vec(β)-parametrized exper-

iments are curved experiments, in which the standard methods [see Section 11.9 of
Le Cam (1986)] for constructing locally asymptotically optimal tests do not apply.
It is well known, however [see, e.g., Khuri and Good (1989)], that any element
β of SOk can be expressed as the exponential exp(ι) of a k × k skew-symmetric
matrix ι, itself characterized by the k(k − 1)/2-vector vech+(ι) of its upper off-
diagonal elements. The differentiable mapping � : vech+(ι) 
→ �(vech+(ι)) :=
vec(exp(ι)) from R

k(k−1)/2 to SOk is one-to-one, so that vech+(ι) ∈ R
k(k−1)/2

also can be used as a parametrization instead of vec(β) ∈ vec(SOk). Both
parametrizations yield uniform local asymptotic normality (ULAN). Unlike the
vec(β)-parametrized one, the vech+(ι)-parametrized experiment is not curved, as
vech+(ι) freely ranges over R

k(k−1)/2, so that the standard methods for construct-
ing locally asymptotically optimal tests apply—which is not the case with curved
experiments. On the other hand, neither the vech+(ι)-part of the central sequence,
nor the image in the vech+(ι)-space of the null hypothesis Hβ

0 yield tractable
forms. Therefore, we rather state ULAN for the curved vec(β)-parametrization.
Then (Section 3.3), we develop a general theory of locally asymptotically optimal
tests for differentiable hypotheses in curved ULAN experiments.

Without Assumption (A), the ϑ-parametrization is not valid, and cannot enjoy
LAN nor ULAN; optimality properties (of a local and asymptotic nature) then
cannot be obtained. As far as validity issues (irrespective of optimality properties)
are considered, however, this assumption can be weakened. If the null hypothesis

Hβ
0 is to make any sense, the first eigenvector β1 clearly should be identifiable,

but not necessarily the remaining ones. The following assumption on the λj ;V’s,
under which β2, . . . ,βk need not be identified, is thus minimal in that case.

ASSUMPTION (A′
1). The eigenvalues of the shape matrix V are such that

λ1;V > λ2;V ≥ · · · ≥ λk;V > 0.

Under Assumption (A′
1), 	 is broadened into a larger parameter space 	′

1,
which does not provide a valid parametrization anymore, and for which the ULAN
property of Proposition 3.1 below no longer holds. As we shall see, all the tests
we are proposing for Hβ

0 nevertheless remains valid under the extended null hy-

pothesis Hβ′
0;1 resulting from weakening (A) into (A′

1). Note that, in case the null
hypothesis is dealing with βq instead of β1, the appropriate weakening of As-
sumption (A) is the following.

ASSUMPTION (A′
q). The eigenvalues of the shape matrix V are such that

λ1;V ≥ · · · ≥ λq−1;V > λq;V > λq+1;V ≥ · · · ≥ λk;V > 0.
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This yields enlarged parameter space 	′
q and null hypothesis Hβ′

0;q .

Similarly, the null hypothesis H�
0 requires the identifiability of the groups of q

largest (hence k − q smallest) eigenvalues; within each group, however, eigenval-
ues may coincide, yielding the following assumption.

ASSUMPTION (A′′
q). The eigenvalues of the shape matrix V are such that

λ1;V ≥ · · · ≥ λq−1;V ≥ λq;V > λq+1;V ≥ · · · ≥ λk;V > 0.

This yields enlarged parameter space 	′′
q and null hypothesis H�′′

0;q , say. As we

shall see, the tests we are proposing for H�
0 remain valid under H�′′

0;q .

3.2. Curved ULAN experiments. Uniform local asymptotic normality (ULAN)
for the parametric families or experiments P (n)

f1
:= {P(n)

ϑ;f1
:ϑ ∈ 	}, with classi-

cal root-n rate, is the main technical tool of this paper. For any ϑ := (θ ′, σ 2,
(d

◦
vec�V)′, (vecβ)′)′ ∈ 	, a local alternative is a sequence ϑ (n) ∈ 	 such

that (ϑ (n) − ϑ) is O(n−1/2). For any such ϑ (n), consider a further sequence
ϑ (n) + n−1/2τ (n), with τ (n) = ((τ I (n))′, τ II(n), (τ III(n))′, (τ IV(n))′)′ such that
supn τ (n)′τ (n) < ∞ and ϑ (n) + n−1/2τ (n) ∈ 	 for all n. Note that such τ (n) ex-
ist: τ I (n) can be any bounded sequence of R

k , τ II(n) any bounded sequence
with τ II(n) > −n1/2σ 2(n), τ III(n) any bounded sequence of real (k − 1)-tuples
(τ

III(n)
1 , . . . , τ

III(n)
k−1 ) such that

0 < λ
(n)
k;V + n−1/2τ

III(n)
k−1 < · · ·

< λ
(n)
3;V + n−1/2τ

III(n)
2 < λ

(n)
2;V + n−1/2τ

III(n)
1

<

k∏
j=2

(
λ

(n)
j ;V + n−1/2τ

III(n)
j−1

)−1
,

which ensures that the perturbed eigenvalues λ
(n)
j ;V + n−1/2�

(n)
j , with

�
(n)
1 := n1/2

(
k∏

j=2

(
λ

(n)
j ;V + n−1/2τ

III(n)
j−1

)−1 − λ
(n)
1;V

)
(3.1)

= −λ
(n)
1;V

k∑
j=2

(
λ

(n)
j ;V

)−1
τ

III(n)
j−1 + O(n−1/2)

and (�
(n)
2 , . . . , �

(n)
k ) := τ III(n), still satisfy Assumption (A) and yield determinant

value one. Writing �(n) for the diagonal k × k matrix with diagonal elements
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�
(n)
1 , . . . , �

(n)
k , we then have

tr
((

�
(n)
V

)−1
�(n)) = (

λ
(n)
1;V

)−1
[
−λ

(n)
1;V

k∑
j=2

(
λ

(n)
j ;V

)−1
τ

III(n)
j−1 + O(n−1/2)

]

+
k∑

j=2

(
λ

(n)
j ;V

)−1
τ

III(n)
j−1

= O(n−1/2).

Finally, denote by M′
k(λ2, . . . , λk) = (−λ1(λ

−1
2 , . . . , λ−1

k )′
... Ik−1)

′ the value at
(λ2, . . . , λk) of the Jacobian matrix of

(λ2, . . . , λk) 
→
(
λ1 :=

k∏
j=2

λ−1
j , λ2, . . . , λk

)
.

Letting � := diag(λ1, λ2, . . . , λk), we have M′
k(λ2, . . . , λk)d

◦
vec(l) = dvec(l) for

any k × k real matrix l such that tr(�−1l) = 0. Indeed,

M′
k(λ2, . . . , λk)d

◦
vec(l) = (−λ1(λ

−1
2 , . . . , λ−1

k )′
... Ik−1

)′
(d

◦
vec l)

= (−λ1
(
tr(�−1l) − (λ1)

−1l11
) ... (d ◦

vec l)′
)′

= dvec(l),

an identity that will be used later on for M�V
k := Mk(d

◦
vec(�V)).

The problem is slightly more delicate for τ IV(n), which must be such that
vec(β(n)) + n−1/2τ IV(n) remains in vec(SOk). That is, τ IV(n) must be of the form
τ IV(n) = vec(b(n)), with

0 = (
β(n) + n−1/2b(n))′(β(n) + n−1/2b(n))− Ik

(3.2)
= n−1/2(β(n)′b(n) + b(n)′β(n))+ n−1b(n)′b(n).

That is, β(n)′b(n) + n−1/2b(n)′b(n)/2 should be skew-symmetric. Such local per-
turbations admit an intuitive interpretation: we have indeed

β(n) + n−1/2b(n) = β(n)β(n)′(β(n) + n−1/2b(n)) = β(n)(Ik + n−1/2β(n)′b(n))
an expression in which Ik + n−1/2β(n)′b(n), up to a O(n−1) quantity, coincides
with the first-order approximation of the exponential of a skew-symmetric matrix,
and therefore can be interpreted as an infinitesimal rotation. Identity (3.2) provides
a characterization of SOk in the vicinity of β(n). The tangent space [in R

k2
, at
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vec(β)] to vec(SOk) is obtained by linearizing (3.2). More precisely, this tangent
space is of the form

{vec(β + b)|vec(b) ∈ R
k2

and β ′b + b′β = 0}
(3.3)

= {vec(β + b)|vec(b) ∈ R
k2

and β ′b skew-symmetric}.
We then have the following result (see the Appendix for the proof).

PROPOSITION 3.1. The experiment P (n)
f1

:= {P(n)
ϑ;f1

|ϑ ∈ 	} is ULAN, with

central sequence �
(n)
ϑ;f1

:= (�I ′
ϑ;f1

,�II
ϑ;f1

,�III′
ϑ;f1

,�IV′
ϑ;f1

)′, where [with di :=
d

(n)
i (θ ,V) and Ui := U(n)

i (θ ,V) as defined in (2.2), and letting M�V
k :=

Mk(d
◦

vec�V)],

�I
ϑ;f1

:= 1√
nσ

n∑
i=1

ϕf1

(
di

σ

)
V−1/2Ui ,

�II
ϑ;f1

:= 1

2
√

nσ 2

n∑
i=1

(
ϕf1

(
di

σ

)
di

σ
− k

)
,

�III
ϑ;f1

:= 1

2
√

n
M�V

k Hk(�
−1/2
V β ′)⊗2

n∑
i=1

vec
(
ϕf1

(
di

σ

)
di

σ
UiU′

i

)
and

�IV
ϑ;f1

:= 1

2
√

n
Gβ

k Lβ,�V
k (V⊗2)−1/2

n∑
i=1

vec
(
ϕf1

(
di

σ

)
di

σ
UiU′

i

)
,

with Gβ
k := (Gβ

k;12Gβ
k;13 · · ·Gβ

k;(k−1)k),Gβ
k;jh := ej ⊗ βh − eh ⊗ βj and

Lβ,�V
k := (

Lβ,�V
k;12 Lβ,�V

k;13 · · ·Lβ,�V
k;(k−1)k

)′
, Lβ,�V

k;jh := (λh;V − λj ;V)(βh ⊗ βj ),

and with block-diagonal information matrix

ϑ;f1 = diag(I
ϑ;f1

,�II
ϑ;f1

,III
ϑ;f1

,IV
ϑ;f1

),(3.4)

where, defining Dk(�V) := 1
4M�V

k Hk[Ik2 + Kk](�−1
V )⊗2H′

k(M
�V
k )′,

I
ϑ;f1

= Ik(f1)

kσ 2 V−1, �II
ϑ;f1

= Jk(f1) − k2

4σ 4 , III
ϑ;f1

= Jk(f1)

k(k + 2)
Dk(�V)

and

IV
ϑ;f1

:= 1

4

Jk(f1)

k(k + 2)
Gβ

k diag
(
ν−1

12 , ν−1
13 , . . . , ν−1

(k−1)k

)
(Gβ

k )′,
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where νjh := λj ;Vλh;V/(λj ;V − λh;V)2. More precisely, for any local alternative
ϑ (n) and any bounded sequence τ (n) such that ϑ (n) + n−1/2τ (n) ∈ 	, we have,
under P(n)

ϑ (n);f1
,

�
(n)

ϑ (n)+n−1/2τ (n)/ϑ (n);f1
:= log

(
dP(n)

ϑ (n)+n−1/2τ (n);f1
/dP(n)

ϑ (n);f1

)
= (

τ (n))′�(n)

ϑ (n);f1
− 1

2

(
τ (n))′ϑ;f1τ

(n) + oP(1)

and �ϑ (n);f1

L−→ N (0,ϑ;f1), as n → ∞.

The block-diagonal structure of the information matrix ϑ;f1 implies that infer-
ence on β (resp., �V) can be conducted under unspecified θ , σ and �V (resp., β)
as if the latter were known, at no asymptotic cost. The orthogonality between the
eigenvalue and eigenvector parts of the central sequence is structural, while that
between the eigenvalue and eigenvector parts on one hand and the scale parameter
part on the other hand is entirely due to the determinant-based parametrization of
scale [see Hallin and Paindaveine (2006b) or Paindaveine (2008)]. Note that IV

ϑ;f1
,

with rank k(k − 1)/2 < k2, is not invertible.

3.3. Locally asymptotically optimal tests for differentiable hypotheses in curved
ULAN experiments. Before addressing testing problems involving eigenvalues
and eigenvectors, we need a general theory for locally asymptotically optimal tests
in curved ULAN experiments, which we are developing in this section.

Consider a ULAN sequence of experiments {P(n)
ξ : ξ ∈ �}, where � is an open

subset of R
m, with central sequence �ξ and information ξ . For the simplicity of

exposition, assume that ξ for any ξ has full rank m. Let � :� → R
p , p ≥ m, be a

continuously differentiable mapping such that the Jacobian matrix D�(ξ ) has full
rank m for all ξ , and consider the experiments {P(n)

ϑ :ϑ ∈ 	 := �(�)}, where, with

a slight abuse of notation, P(n)
ϑ := P(n)

ξ for ϑ = �(ξ). This sequence also is ULAN,
with central sequence �ϑ and information matrix ϑ such that [see (A.5) and
the proof of Lemma A.1], at ϑ = �(ξ), and [up to o

(n)
Pϑ

(1)’s which, for simplicity,
we omit here] �ξ = D�

′(ξ)�ϑ and ξ = D�
′(ξ)ϑD�(ξ )—throughout, we write

D�
′(·), Db̄′(·), etc., instead of (D�(·))′, (D b̄(·))′, etc. In general, 	 is a nonlinear

manifold of R
p; the experiment parametrized by 	 then is a curved experiment.

Next, denoting by C an r-dimensional manifold in R
p , r < p, consider the

null hypothesis H0 :ϑ ∈ C ∩ 	—in general, a nonlinear restriction of the para-
meter space 	. The same hypothesis can be expressed in the ξ -parametrization
as H0 : ξ ∈ �0, where �0 := �

−1(C ∩ 	) is a (�-dimensional, say) submanifold
of �. Fix ξ0 = �

−1(ϑ0) ∈ �0, and let l̄ :B ⊂ R
� → � be a local (at ξ0) chart for

this manifold.
Define α0 := l̄−1(ξ0). At ξ0, H0 is linearized into Hξ0

: ξ ∈ ξ0 + M(D l̄(α0)),
where Dl̄(α0) is the Jacobian matrix of l̄ (with rank �) computed at α0 and M(A)
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denotes the vector space spanned by the columns of a matrix A. At α0, a locally
asymptotically most stringent test statistic (at ξ0) for Hξ0

is

Qξ0
:= �′

ξ0

(
−1

ξ0
− Dl̄(α0)(D l̄′(α0)ξ0

Dl̄(α0))
−1Dl̄′(α0)

)
�ξ0

(3.5)

[see Section 11.9 of Le Cam (1986)]. This test statistic is nothing else but the
squared Euclidean norm of the orthogonal projection, onto the linear space or-
thogonal to 

1/2
ξ0

Dl̄(α0), of the standardized central sequence 
−1/2
ξ0

�ξ0
. In view

of ULAN, the asymptotic behavior of �ξ0
is the same under local alternatives in

�0 as under local alternatives in ξ0 + M(D l̄(α0)), so that the same test statis-
tic Qξ0

, which (at ξ0) is locally asymptotically most stringent for Hξ0
, is also

locally asymptotically most stringent for H0.
In many cases, however, it is highly desirable to express the most stringent

statistic in the curved 	-parametrization, which, as is the case for the eigenval-
ues/eigenvectors problems considered in this work, is the natural parametrization.
This is the objective of the following result (see the Appendix for the proof).

PROPOSITION 3.2. With the same notation as above, a locally asymptotically
most stringent statistic (at ϑ0) for testing H0 :ϑ ∈ C ∩ 	 is

Qξ0
= Qϑ0 := �′

ϑ0

(
−

ϑ0
− Db̃(η0)(D b̃′(η0)ϑ0Db̃(η0))

−Db̃′(η0)
)
�ϑ0,(3.6)

where b̃ :A ⊂ R
� → R

p is a local (at ϑ0) chart for the tangent (still at ϑ0) to the
manifold C ∩	, η0 := b̄−1(ϑ0), and A− denotes the Moore–Penrose inverse of A.

Hence, a locally asymptotically most stringent (at ξ0 or ϑ0, depending on the
parametrization) test for H0 can be based on either of the two quadratic forms
Qξ0

or Qϑ0 , which coincide, and are asymptotically chi-square [(m − �) degrees

of freedom] under P(n)
ξ0

= P(n)
ϑ0

, for ϑ0 = �(ξ0). For practical implementation, of
course, an adequately discretized root-n consistent estimator has to be substituted
for the unknown ϑ0 or ξ0—which asymptotically does not affect the test statistic.

Provided that � remains an open subset of R
m, the assumption of a full-rank

information matrix ξ is not required. Hallin and Puri [(1994), Lemma 5.12] in-
deed have shown, in the case of ARMA experiments, that (3.5) remains locally
asymptotically most stringent provided that generalized inverses (not necessarily
Moore–Penrose ones) are substituted for the inverses of noninvertible matrices,
yielding

Qξ0
:= �′

ξ0

(
−

ξ0
− Dl̄(α0)(D l̄′(α0)ξ0

Dl̄(α0))
−Dl̄′(α0)

)
�ξ0

.

The same reasoning as in the proof of Proposition 3.2 then applies, mutatis mutan-
dis, when “translating” Qξ0

into Qϑ0 (with appropriate degrees of freedom).
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4. Parametrically optimal tests for principal components.

4.1. Optimal parametric tests for eigenvectors. Testing the hypothesis Hβ
0 on

eigenvectors is a particular case of the problem considered in the previous sec-
tion. The vech+(ι) parametrization [ι an arbitrary skew-symmetric (k × k) matrix]
yields a standard ULAN experiment, with parameter

ξ := (θ ′, σ 2, (d
◦

vec(�V))′, (vech+(ι))′)′ ∈ R
k × R

+ × Ck−1 × R
k(k−1)/2 =: �,

hence m = k(k + 3)/2, while Proposition 3.1 provides the curved ULAN experi-
ment, with parameter ϑ ∈ 	 ⊂ R

p and p = k(k + 2). ULAN for the ξ -experiment
readily follows from the fact that the mapping vech+(ι) 
→ vec(β) = vec(exp(ι))

is continuously differentiable.
As explained before, the block-diagonal structure of the information matrix

(3.4) implies that locally asymptotically optimal inference about β can be based
on �IV

ϑ;f1
only, as if θ , σ 2 and d

◦
vec(�V) were specified. Since this also allows for

simpler exposition and lighter notation, let us assume that these parameters take
on specified values θ , σ 2 and (λ2;V, . . . , λk;V), respectively. The resulting exper-

iment then is parametrized either by vecβ ∈ vec(SOk) ⊂ R
k2

(playing the role
of ϑ ∈ 	 ⊂ R

p in the notation of Proposition 3.2) or by vech+(ι) ∈ R
k(k−1)/2

(playing the role of ξ ).
In this experiment, the null hypothesis Hβ

0 consists in the intersection of the
linear manifold C := (β0′,01×(k−1)k)

′ + M(ϒ), where ϒ := (0k(k−1)×k, Ik(k−1))
′,

with the nonlinear manifold vec(SOk). Let β0 := (β0,β2, . . . ,βk) be such that
vec(β0) belongs to that intersection. In view of Proposition 3.2, a most stringent
test statistic [at vec(β0)] for Hβ

0 requires a chart for the tangent to C ∩ vec(SOk)

at vec(β0). It follows from (3.3) that this tangent space reduces to

{vec(β0 + b)|b := (0,b2, . . . ,bk) such that β ′
0b + b′β0 = 0}.

Solving for vec(b) = (0′,b′
2, . . . ,b′

k)
′ the system of constraints β ′

0b + b′β0 = 0

yields vec(b) ∈ M(Pβ0
k ), where

Pβ0
k :=

⎛⎜⎝
0k×k(k−1)

Ik−1 ⊗ [Ik − β0β0′] −
k−1∑

i,j=1

[ei;k−1e′
j ;k−1 ⊗ βj+1β

′
i+1]

⎞⎟⎠(4.1)

(with ei;k−1 denoting the ith vector of the canonical basis of R
k−1). A local

chart for the tangent space of interest is then simply b̃ :η ∈ R
(k−1)k 
→ b̃(η) :=

vec(β0) + Pβ0
k η, with η0 = b̃−1(vec(β0)) = 0(k−1)k and Db̃(η0) = Pβ0

k . Letting
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ϑ0 := (θ ′, σ 2, (d
◦

vec�V)′, (vecβ0)
′)′, the test statistic (3.6) takes the form

Q
(n)
ϑ0;f1

= �IV′
ϑ0;f1

[(IV
ϑ0;f1

)− − Pβ0
k ((Pβ0

k )′IV
ϑ0;f1

Pβ0
k )−(Pβ0

k )′]�IV
ϑ0;f1

(4.2)

= nk(k + 2)

Jk(f1)

k∑
j=2

(
β ′

j S(n)
ϑ0;f1

β0)2
,

with

S(n)
ϑ;f1

:= 1

n

n∑
i=1

ϕf1

(
di(θ,V)

σ

)
di(θ ,V)

σ
Ui (θ ,V)U′

i(θ ,V),(4.3)

where V denotes the unique shape value associated with the parameter ϑ .
After simple algebra, we obtain

IV
ϑ0;f1

[(IV
ϑ0;f1

)− − Pβ0
k ((Pβ0

k )′IV
ϑ0;f1

Pβ0
k )−(Pβ0

k )′]
(4.4)

= 1
2Gβ0

k diag
(
Ik−1,0(k−2)(k−1)/2×(k−2)(k−1)/2

)
(Gβ0

k )′,

which is idempotent with rank (k − 1). Since, moreover, �IV
ϑ0;f1

, under P(n)
ϑ0;f1

, is

asymptotically N (0,IV
ϑ0;f1

), Theorem 9.2.1 in Rao and Mitra (1971) then shows

that Q
(n)
ϑ0;f1

, still under P(n)
ϑ0;f1

, is asymptotically chi-square with (k − 1) degrees
of freedom.

The resulting test, which rejects Hβ
0 at asymptotic level α whenever Q

(n)
ϑ0;f1

exceeds the α-upper quantile χ2
k−1,1−α of the χ2

k−1 distribution, will be denoted

as φ
(n)
β;f1

. It is locally asymptotically most stringent, at ϑ0 and under correctly
specified standardized radial density f1 (an unrealistic assumption). Of course,
even if f1 were supposed to be known, Q

(n)
ϑ0;f1

still depends on the unspecified

θ , σ 2,�V and β2, . . . ,βk . In order to obtain a genuine test statistic, providing a
locally asymptotically most stringent test at any ϑ0 ∈ Hβ

0 (with an obvious abuse
of notation), we would need replacing those nuisance parameters with adequate
estimates. We will not pursue any further with this problem here, as it is of little
practical interest for arbitrary density f1. The same problem will be considered in
Section 5 for the Gaussian and pseudo-Gaussian versions of (4.2), then in Section 6
for the rank-based ones.

4.2. Optimal parametric tests for eigenvalues. We now turn to the problem
of testing the null hypothesis H�

0 :
∑k

j=q+1 λj ;V − p
∑k

j=1 λj ;V = 0 against alter-

natives of the form H�
1 :

∑k
j=q+1 λj ;V − p

∑k
j=1 λj ;V < 0, for given p ∈ (0,1).

Letting

h : (λ2, λ3, . . . , λk)
′ ∈ Ck−1 
→

k∑
j=q+1

λj − p

(
k∏

j=2

λ−1
j +

k∑
j=2

λj

)
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and recalling that
∏k

j=1 λj ;V = 1, H�
0 rewrites, in terms of d

◦
vec(�V), as

H�
0 :h(d

◦
vec(�V)) = 0, a highly nonlinear but smooth constraint on d

◦
vec(�V).

It is easy to check that, when computed at d
◦

vec(�V), the gradient of h is

gradh(d
◦

vec(�V))

= (
p(λ1;Vλ−1

2;V − 1), . . . , p(λ1;Vλ−1
q;V − 1),

1 + p(λ1;Vλ−1
q+1;V − 1), . . . ,1 + p(λ1;Vλ−1

k;V − 1)
)′
.

Here again, in view of the block-diagonal form of the information matrix, we
may restrict our attention to the d

◦
vec(�V)-part �III

ϑ;f1
of the central sequence as

if θ , σ 2 and β were known; the parameter space then reduces to the (k − 1)-
dimensional open cone Ck−1. Testing a nonlinear constraint on a parameter ranging
over an open subset of R

k−1 is much easier however than the corresponding prob-
lem involving a curved experiment, irrespective of the possible noninvertibility of
the information matrix. In the noncurved experiment, indeed, a linearized version
H�

0,lin : d
◦

vec(�V) ∈ d
◦

vec(�0) + M⊥(gradh(d
◦

vec�0)) of H�
0 in the vicinity of

d
◦

vec(�0) satisfying h(d
◦

vec�0) = 0 makes sense [M⊥(A) denotes the orthogo-
nal complement of M(A)]. And, as mentioned in Section 3.3, under ULAN, the
asymptotic behavior of �III

ϑ0;f1
, with ϑ0 = (θ ′, σ 2, (d

◦
vec�0)

′, (vecβ)′)′, is locally

the same under H�
0,lin as under H�

0 . As for the “linearized alternative” H�
1,lin con-

sisting of all d
◦

vec� values such that (d
◦

vec� − d
◦

vec�0)
′ gradh(d

◦
vec�0) < 0,

it locally and asymptotically coincides with H�
1 : indeed, although the symmetric

difference H�
1 �H�

1,lin, for fixed n, is not empty, any d
◦

vec�0 + n−1/2τ III ∈ H�
1,lin

eventually belongs to H�
1 , and conversely. Therefore, a locally (at d

◦
vec�0) as-

ymptotically optimal test for H�
0,lin against H�

1,lin is also locally asymptotically

optimal for H�
0 against H�

1 , and conversely, whatever the local asymptotic opti-
mality concept adopted. Now, in the problem of testing H�

0,lin against H�
1,lin the

null hypothesis is (locally) a hyperplane of R
k−1, with an alternative consisting

of the halfspace lying “below” that hyperplane. For such one-sided problems (lo-
cally and asymptotically, still at ϑ0) uniformly most powerful tests exist; a most
powerful test statistic is [Le Cam (1986), Section 11.9]

T
(n)
ϑ0;f1

:= (grad′ h(d
◦

vec�0)(
III
ϑ0;f1

)−1 gradh(d
◦

vec�0))
−1/2

(4.5)
× grad′ h(d

◦
vec�0)(

III
ϑ0;f1

)−1�III
ϑ0;f1

,

which, under P(n)
ϑ0;f1

, is asymptotically standard normal. An explicit form of T
(n)
ϑ0;f1

requires a closed form expression of the inverse of III
ϑ;f1

= (Jk(f1)/k(k + 2)) ×
Dk(�V). The following lemma provides such an expression for the inverse of
Dk(�V) (see the Appendix for the proof).
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LEMMA 4.1. Let P�V
k := Ik2 − 1

k
�⊗2

V vec(�−1
V )(vec(�−1

V ))′ and Nk :=
(0(k−1)×1, Ik−1). Then, (Dk(�V))−1 = NkHkP�V

k (Ik2 + Kk)�
⊗2
V (P�V

k )′H′
kN′

k .

Using this lemma, it follows after some algebra that, for any ϑ0 ∈ H�
0 ,

grad′ h(d
◦

vec�0)(Dk(�0))
−1 gradh(d

◦
vec�0)

= 2

{
p2

q∑
j=1

λ2
j ;0 + (1 − p)2

k∑
j=q+1

λ2
j ;0

}
= ap,q(�0)

[where � 
→ ap,q(�) is the mapping defined in (1.3)], and

grad′ h(d
◦

vec�0)(Dk(�0))
−1M�0

k Hk(�
−1/2
0 )⊗2 = c′

p,qHk(�
1/2
0 )⊗2.

This and the definition of Hk yields

T
(n)
ϑ0;f1

=
(

nk(k + 2)

Jk(f1)

)1/2

(ap,q(�0))
−1/2c′

p,q dvec
(
�

1/2
0 β ′S(n)

ϑ0;f1
β�

1/2
0

)
(4.6)

with S(n)
ϑ;f1

defined in (4.3). The corresponding test, which rejects H�
0 for small

values of T
(n)
ϑ0;f1

, will be denoted as φ
(n)
�;f1

.

4.3. Estimation of nuisance parameters. The tests φ
(n)
β;f1

and φ
(n)
�;f1

derived
in Sections 4.1 and 4.2 typically are valid under standardized radial density f1
only; they mainly settle the optimality bounds at given density f1, and are of little
practical value. Due to its central role in multivariate analysis, the Gaussian case
(f1 = φ1) is an exception. In this subsection devoted to the treatment of nuisance
parameters, we therefore concentrate on the Gaussian tests φ

(n)
β;φ1

and φ
(n)
�;φ1

, to be
considered in more detail in Section 5.

The test statistics derived in Sections 4.1 and 4.2 indeed still involve nuisance
parameters which in practice have to be replaced with estimators. The traditional
way of handling this substitution in ULAN families consists in assuming, for a null
hypothesis of the form ϑ ∈ H0, the existence of a sequence ϑ̂ (n) of estimators of
ϑ satisfying all or part of the following assumptions (in the notation of this paper).

ASSUMPTION (B). We say that a sequence of estimators (ϑ̂ (n), n ∈ N) satis-
fies Assumption (B) for the null H0 and the density f1 if ϑ̂ (n) is:

(B1) constrained: P(n)
ϑ;f1

[ϑ̂ (n) ∈ H0] = 1 for all n and all ϑ ∈ H0;

(B2) n1/2-consistent: for all ϑ ∈ H0, n1/2(ϑ̂ (n) −ϑ) = OP(1) under P(n)
ϑ;f1

, as n →
∞;

(B3) locally asymptotically discrete: for all ϑ ∈ H0 and all c > 0, there exists
M = M(c) > 0 such that the number of possible values of ϑ̂ (n) in balls of
the form {t :n1/2‖(t − ϑ)‖ ≤ c} is bounded by M , uniformly as n → ∞.
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These assumptions will be used later on. In the Gaussian or pseudo-Gaussian
context we are considering here, however, Assumption (B3) can be dispensed with
under arbitrary densities with finite fourth-order moments. The following asymp-
totic linearity result characterizes the asymptotic impact, on �III

ϑ;φ1
and �IV

ϑ;φ1
, un-

der any elliptical density g1 with finite fourth-order moments, of estimating ϑ (see
the Appendix for the proof).

LEMMA 4.2. Let Assumption (A) hold, fix ϑ ∈ 	 and g1 ∈ F 4
1 , and write

Dk(g1) := μk+1;g1/μk−1;g1 . Then, for any root-n consistent estimator ϑ̂ :=
(ϑ̂I ′, ϑ̂ II, ϑ̂ III′, ϑ̂ IV′)′ of ϑ under P(n)

ϑ;g1
, both �III

ϑ̂;φ1
− �III

ϑ;φ1
+ ak(Dk(g1)/k) ×

III
ϑ;φ1

n1/2(ϑ̂ III − ϑ III) and �IV
ϑ̂;φ1

− �IV
ϑ;φ1

+ ak(Dk(g1)/k)IV
ϑ;φ1

n1/2(ϑ̂ IV − ϑ IV)

are oP(1) under P(n)
ϑ;g1

, as n → ∞, where ak was defined in Section 2.1.

5. Optimal Gaussian and pseudo-Gaussian tests for principal components.

5.1. Optimal Gaussian tests for eigenvectors. For f1 = φ1, the test statistic
(4.2) takes the form

Q
(n)
ϑ0;φ1

= n

k∑
j=2

(
β ′

j S(n)
ϑ0;φ1

β0)2 = nβ0′S(n)
ϑ0;φ1

(Ik − β0β0′)S(n)
ϑ0;φ1

β0,(5.1)

with S(n)
ϑ;φ1

:= ak

nσ 2

∑n
i=1 V−1/2(Xi − θ)(Xi − θ)′V−1/2. This statistic still de-

pends on nuisance parameters, to be replaced with estimators. Letting S(n) =
1
n

∑n
i=1(Xi − X̄)(Xi − X̄)′, a natural choice for such estimators would be θ̂ =

X̄ := 1
n

∑n
i=1 Xi and

S(n) =: ∣∣S(n)
∣∣1/kV̂ =

( |S(n)|1/k

σ̂ 2

)
σ̂ 2V̂ =:

( |S(n)|1/k

σ̂ 2

)
σ̂ 2β̂V�̂Vβ̂ ′

V,

where �̂V is the diagonal matrix collecting the eigenvalues of V̂ (ranked in de-
creasing order), β̂V := (β̂1;V, . . . , β̂k;V) is the corresponding matrix of eigenvec-

tors, and σ̂ 2 stands for the empirical median of d2
i (X̄, V̂), i = 1, . . . , n. For β ,

however, we need a constrained estimator β̃ satisfying Assumption (B) for Hβ
0

(β̂V in general does not). Thus, we rather propose estimating ϑ by

ϑ̂ := (X̄′, σ̂ 2, (d
◦

vec �̂V)′, (vec β̃0)
′)′,(5.2)

where β̃0 := (β0, β̃2, . . . , β̃k) can be obtained from (β̂1;V, . . . , β̂k;V) via the fol-

lowing Gram–Schmidt technique. Let β̃2 := (Ik −β0β0′)β̂2;V/‖(Ik −β0β0′)β̂2;V‖.

By construction, β̃2 is the unit-length vector proportional to the projection of the
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second eigenvector of S(n) onto the space which is orthogonal to β0. Iterating this
procedure, define

β̃j = (Ik − β0β0′ −∑j−1
h=2 β̃hβ̃

′
h)β̂j ;V

‖(Ik − β0β0′ −∑j−1
h=2 β̃hβ̃

′
h)β̂j ;V‖

, j = 3, . . . , k.

The corresponding (constrained) estimator of the scatter � is �̃ := σ̂ 2Ṽ :=
σ̂ 2β̃0�̂Vβ̃ ′

0.

It is easy to see that β̃0, under ϑ0 ∈ Hβ
0 , inherits β̂V’s root-n consistency, which

holds under any elliptical density g1 with finite fourth-order moments. Lemma 4.2
thus applies. Combining Lemma 4.2 with (4.4) and the fact that

Gβ0
k diag

(
Ik−1,0(k−2)(k−1)/2×(k−2)(k−1)/2

)
(Gβ0

k )′ vec(β̃0 − β0) = 0

(where β0 is the matrix of eigenvectors associated with ϑ0), one easily obtains
that substituting ϑ̂ for ϑ0 in (5.1) has no asymptotic impact on Q

(n)
ϑ0;φ1

—more pre-

cisely, Q
(n)

ϑ̂;φ1
− Q

(n)
ϑ0;φ1

is oP(1) as n → ∞ under P(n)
ϑ0;g1

, with g1 ∈ F 4
1 . It follows

that Q
(n)

ϑ̂;φ1
shares the same asymptotic optimality properties as Q

(n)
ϑ0;φ1

, irrespec-

tive of the value of ϑ0 ∈ Hβ
0 . Thus, a locally and asymptotically most stringent

Gaussian test of Hβ
0 —denote it by φ

(n)
β;N —can be based on the asymptotic chi-

square distribution [with (k − 1) degrees of freedom] of

Q
(n)

ϑ̂;φ1
= na2

k

σ̂ 4

k∑
j=2

(
β̃ ′

j Ṽ−1/2S(n)Ṽ−1/2β0)2

= na2
k

σ̂ 4λ̂1;V

k∑
j=2

λ̂−1
j ;V

(
β̃ ′

j S(n)β0)2(5.3)

= na2
k |S(n)|2/k

σ̂ 4λ1;S

k∑
j=2

λ−1
j ;S

(
β̃ ′

j S(n)β0)2 =: Q(n)
N .

Since σ̂ 2/|S(n)|1/k converges to ak as n → ∞ under the null Hβ
0 and Gaussian

densities, one can equivalently use the statistic

Q̄
(n)
N := n

λ1;S

k∑
j=2

λ−1
j ;S

(
β̃ ′

j S(n)β0)2
,

which, of course, is still a locally and asymptotically most stringent Gaussian test
statistic. For results on local powers, we refer to Proposition 5.1.

This test is valid under Gaussian densities only (more precisely, under ra-
dial densities with Gaussian kurtosis). On the other hand, it remains valid in
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case Assumption (A) is weakened [as in Anderson (1963) and Tyler (1981,
1983)] into Assumption (A′

1). Indeed, the consistency of �̃ remains unaffected
under the null, and β0 still is an eigenvector for both �̃−1/2 and �, so that
[Ik − β0β0′]�̃−1/2��̃−1/2β0 = 0. Hence,

Q
(n)
N = na2

k

k∑
j=2

(
β̃ ′

j �̃
−1/2S(n)�̃−1/2β0)2

= na2
kβ

0′�̃−1/2S(n)�̃−1/2

(
k∑

j=2

β̃j β̃
′
j

)
�̃−1/2S(n)�̃−1/2β0

= na2
kβ

0′�̃−1/2S(n)�̃−1/2[Ik − β0β0′]�̃−1/2S(n)�̃−1/2β0

= na2
kβ

0′�̃−1/2(S(n) − a−1
k �

)
�̃−1/2

× [Ik − β0β0′]�̃−1/2(S(n) − a−1
k �

)
�̃−1/2β0

= na2
kβ

0′�−1/2(S(n) − a−1
k �

)
�−1/2

× [Ik − β0β0′]�−1/2(S(n) − a−1
k �

)
�−1/2β0 + oP(1),

as n → ∞ under Hβ′
0;1. Since n1/2ak�

−1/2(S(n) − a−1
k �)�−1/2β0 is asymptoti-

cally N (0, Ik + β0β0′) as n → ∞ under Hβ′
0;1 and Gaussian densities, this idem-

potent quadratic form remains asymptotically chi-square, with (k − 1) degrees of
freedom, even when (A) is weakened into (A′

1), as was to be shown.
This test is also invariant under the group of transformations Grot,◦ mapping

(X1, . . . ,Xn) onto (OX1 + t, . . . ,OXn + t), where t is an arbitrary k-vector and

O ∈ SO
β0

k := {O ∈ SOk|Oβ0 = β0}, provided that the estimator of ϑ0 used is
equivariant under the same group—which the estimator ϑ̂ proposed in (5.2) is.
Indeed, denoting by Q

(n)
N (O, t), ϑ̂(O, t), �S(O, t), β̃(O, t), �̃(O, t) and S(n)(O, t)

the statistics Q
(n)
N , ϑ̂ , �S, β̃ , �̃ and S(n) computed from the transformed sample

(OX(n)
1 + t, . . . ,OX(n)

n + t), one easily checks that, for any O ∈ SO
β0

k , �S(O, t) =
�S, β̃(O, t) = Oβ̃ , �̃(O, t) = O�̃O′ and S(n)(O, t) = OS(n)O′, so that (noting
that O′β0 = β0)

Q
(n)
N (O, t) = na2

k

k∑
j=2

(
β̃ ′

j O′O�̃−1/2O′OS(n)O′O�̃−1/2O′β0)2 = Q
(n)
N .

Finally, let us show that Q
(n)
Anderson and Q

(n)
N asymptotically coincide, under

Hβ′
0;1 and Gaussian densities, hence also under contiguous alternatives. This as-

ymptotic equivalence indeed is not a straightforward consequence of the defini-
tions (1.1) and (5.3). Since

∑k
j=2 λ−1

j ;S(βj ;Sβ ′
j ;S − β̃j β̃

′
j ) is oP(1) and n1/2(S(n) −
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β̃0�Sβ̃ ′
0) is OP(1) as n → ∞, under Hβ′

0;1 and Gaussian densities [with �S :=
diag(λ1;S, . . . , λk;S)], it follows from Slutsky’s lemma that

Q
(n)
Anderson = n

λ1;S

k∑
j=2

λ−1
j ;S[(λj ;S − λ1;S)β ′

j ;Sβ0]2

= n

λ1;S

k∑
j=2

λ−1
j ;S

[
β ′

j ;S
(
S(n) − β̃0�Sβ̃ ′

0
)
β0]2

= n

λ1;S

k∑
j=2

λ−1
j ;S

[
β̃ ′

j

(
S(n) − β̃0�Sβ̃ ′

0
)
β0]2 + oP(1)

= n

λ1;S

k∑
j=2

λ−1
j ;S

(
β̃ ′

j S(n)β0)2 + oP(1)

= Q̄
(n)
N + oP(1)

as n → ∞, still under Hβ′
0;1 and Gaussian densities. The equivalence between

Q
(n)
Anderson and Q

(n)
N in the Gaussian case then follows since Q̄

(n)
N = Q

(n)
N + oP(1)

as n → ∞, under Hβ′
0;1 and Gaussian densities.

5.2. Optimal Gaussian tests for eigenvalues. Turning to H�
0 , we now consider

the Gaussian version of the test statistic T
(n)
ϑ0;f1

obtained in Section 4.2. In view of
(4.6), we have

T
(n)
ϑ0;φ1

= n1/2(ap,q(�0))
−1/2c′

p,q dvec
(
�

1/2
0 β ′S(n)

ϑ0;φ1
β�

1/2
0

)
(5.4)

[recall that Jk(φ1) = k(k + 2); see (2.6)]. Here also we have to estimate ϑ0 in
order to obtain a genuine test statistic. By using the fact that β�0β

′ = V0 (where
all parameter values refer to those in ϑ0), we obtain that, in (5.4),

n1/2c′
p,q dvec

(
�

1/2
0 β ′S(n)

ϑ0;φ1
β�

1/2
0

)
(5.5)

= n1/2ak

σ 2 c′
p,q dvec

(
β ′ 1

n

n∑
i=1

(Xi − θ)(Xi − θ)′β
)
,

a OP(1) expression which does not depend on �0. In view of Lemma 4.2 and the
block-diagonal form of the information matrix, estimation of θ , σ 2 and β has no
asymptotic impact on the eigenvalue part �III

ϑ;φ1
of the central sequence, hence

on T
(n)
ϑ0;φ1

. As for ap,q(�0), it is a continuous function of �0, so that, in view of
Slutsky’s lemma, plain consistency of the estimator of �0 is sufficient. Conse-
quently, we safely can use here the unconstrained estimator

ϑ̂ := (X̄′, σ̂ 2, (d
◦

vec �̂V)′, (vec β̂V)′)′;(5.6)
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see the beginning of Section 5.1. Using again the fact that, under Gaussian den-
sities, σ̂ 2/|S(n)|1/k converges to ak as n → ∞, a locally and asymptotically most
powerful Gaussian test statistic therefore is given by

T
(n)

N := n1/2ak

σ̂ 2 (ap,q(�̂V))−1/2c′
p,q dvec

(
β̂ ′

VS(n)β̂V
)

= n1/2ak|S(n)|1/k

σ̂ 2 (ap,q(�S))−1/2c′
p,q dvec

(
β̂ ′

VS(n)β̂V
)

(5.7)

= n1/2(ap,q(�S))−1/2

(
(1 − p)

k∑
j=q+1

λj ;S − p

q∑
j=1

λj ;S
)

+ oP(1),

under Gaussian densities as n → ∞. The corresponding test, φ
(n)
�;N say, rejects

H�
0 whenever T

(n)
N is smaller than the standard normal α-quantile; (5.7) shows

that T
(n)

N coincides [up to oP(1)] with T
(n)

Anderson given in (1.3), which entails that

(i) φ
(n)
�;Anderson is also locally and asymptotically most powerful under Gaussian

densities, and that (ii) the validity of φ
(n)
�;N extends to H�′′

0;q (since the validity of

φ
(n)
�;Anderson does).

5.3. Optimal pseudo-Gaussian tests for eigenvectors. The Gaussian tests
φ

(n)
β;N and φ

(n)
�;N of Sections 5.1 and 5.2 unfortunately are valid under multinor-

mal densities only (more precisely, as we shall see, under densities with Gaussian
kurtosis). It is not difficult, however, to extend their validity to the whole class
of elliptical populations with finite fourth-order moments, while maintaining their
optimality properties at the multinormal.

Let us first introduce the following notation. For any g1 ∈ F 4
1 , let (as in Lem-

ma 4.2) Dk(g1) := μk+1;g1/μk−1;g1 = σ−2Eϑ;g1[d2
i (θ ,V)] = ∫ 1

0 (G̃−1
1k (u))2 du

and Ek(g1) := σ−4Eϑ;g1[d4
i (θ ,V)] = ∫ 1

0 (G̃−1
1k (u))4 du, where G̃1k(r) :=

(μk−1;g1)
−1 ∫ r

0 sk−1g1(s) ds; see Section 2.1. Then

κk(g1) := k

k + 2

Ek(g1)

D2
k (g1)

− 1

is the kurtosis of the elliptic population with radial density g1 [see, e.g., page 54 of
Anderson (2003)]. For Gaussian densities, Ek(φ1) = k(k + 2)/a2

k , Dk(φ1) = k/ak

and κk(φ1) = 0.
Since the asymptotic covariance matrix of �IV

ϑ;φ1
under P(n)

ϑ;g1
(with ϑ ∈ Hβ

0 and

g1 ∈ F 4
1 ) is (a2

kEk(g1)/k(k + 2))IV
ϑ;φ1

, it is natural to base our pseudo-Gaussian
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tests on statistics of the form [compare with the f1 = φ1 version of (5.1)]

Q
(n)
ϑ0,N ∗ := k(k + 2)

a2
kEk(g1)

�IV′
ϑ0;φ1

[(IV
ϑ0;φ1

)− − Pβ0
k ((Pβ0

k )′IV
ϑ0;φ1

Pβ0
k )−(Pβ0

k )′]�IV
ϑ0;φ1

= (
1 + κk(g1)

)−1 k2

D2
k (g1)a

2
k

Q
(n)
ϑ0,φ1

=: (1 + κk(g1)
)−1

Qϑ0,N (g1).

As in the Gaussian case, and with the same ϑ̂ as in (5.2), Lemma 4.2 entails that
Q

(n)

ϑ̂,φ1
= Q

(n)
ϑ0,φ1

+ oP(1), as n → ∞ under P(n)
ϑ0;g1

, with ϑ0 ∈ Hβ
0 and g1 ∈ F 4

1 .

Since σ̂ 2/|S(n)|1/k consistently estimates k/Dk(g1) under P(n)
ϑ0;g1

, with ϑ0 ∈ Hβ
0

and g1 ∈ F 4
1 , it follows from Slutsky’s lemma that

Q̂
ϑ̂,N := σ̂ 2

|S(n)|1/ka2
k

Q
(n)

ϑ̂,φ1

satisfies Q̄
(n)
N = Q̂

ϑ̂,N = Qϑ0,N (g1) + oP(1) as n → ∞, still under Hβ
0 , g1 ∈ F 4

1 .

The pseudo-Gaussian test φ
(n)
β;N ∗ we propose is based on

Q
(n)
N ∗ := (1 + κ̂k)

−1Q̄
(n)
N ,(5.8)

where κ̂k := (kn−1 ∑n
i=1 d̂4

i )/((k + 2)(n−1 ∑n
i=1 d̂2

i )2)− 1, with d̂i := di(X̄,S(n)).

The statistic Q
(n)
N ∗ indeed remains asymptotically chi-square [(k − 1) degrees of

freedom] under Hβ′
0;1 for any g1 ∈ F 4

1 . Note that φ
(n)
β;N ∗ is obtained from φ

(n)
β;N

by means of the standard kurtosis correction of Shapiro and Browne (1987), and
asymptotically coincides with φ

(n)
β;Tyler; see (1.2).

Local powers for φ
(n)
β;N ∗ classically follow from applying Le Cam’s third

lemma. Let τ (n) := ((τ I (n))′, τ II(n), (τ III(n))′, (τ IV(n))′)′, with τ (n)′τ (n) uniformly
bounded, where τ IV(n) = vec(b(n)) is a perturbation of vec(β0) = vec(β0,β2, . . . ,

βk) such that β ′
0b, with b = (b′

1, . . . ,b′
k)

′ := limn→∞ b(n), is skew-symmetric;
see (3.2) and (3.3). Assume furthermore that the corresponding perturbed value of
ϑ0 ∈ Hβ

0 does not belong to Hβ
0 , that is, b1 �= 0, and define

r
β
ϑ0;τ := lim

n→∞
(
vec b(n))′Gβ0

k diag
(
ν−1

12 , . . . , ν−1
1k ,01×(k−2)(k−1)/2

)
× (Gβ0

k )′
(
vec b(n))(5.9)

= 4
k∑

j=2

ν−1
1j (β ′

j b1)
2.

The following result summarizes the asymptotic properties of the pseudo-Gaussian
tests φ

(n)
β;N ∗. Note that optimality issues involve Hβ

0 [hence require Assump-

tion (A)], while validity extends to Hβ′
0;1 [which only requires Assumption (A′

1)].
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PROPOSITION 5.1. (i) Q
(n)
N ∗ is asymptotically chi-square with (k − 1) de-

grees of freedom under
⋃

ϑ∈Hβ′
0;1

⋃
g1∈F 4

1
{P(n)

ϑ;g1
}, and asymptotically noncentral

chi-square, still with (k − 1) degrees of freedom, but with noncentrality parame-
ter r

β
ϑ;τ/4(1 + κk(g1)) under P(n)

ϑ+n−1/2τ (n);g1
, with ϑ ∈ Hβ

0 , g1 ∈ F 4
a , and τ (n) as

described above;
(ii) the sequence of tests φ

(n)
β;N ∗ rejecting the null whenever Q

(n)
N ∗ exceeds the

α upper-quantile χ2
k−1;1−α of the chi-square distribution with (k − 1) degrees of

freedom has asymptotic size α under
⋃

ϑ∈Hβ′
0;1

⋃
g1∈F 4

1
{P(n)

ϑ;g1
};

(iii) the pseudo-Gaussian tests φ
(n)
β;N ∗ are asymptotically equivalent, under⋃

ϑ∈Hβ′
0;1

{P(n)
ϑ;φ1

} and contiguous alternatives, to the optimal parametric Gaussian

tests φ
(n)
β;N ; hence, the sequence φ

(n)
β;N ∗ is locally and asymptotically most strin-

gent, still at asymptotic level α, for
⋃

ϑ∈Hβ′
0;1

⋃
g1∈F 4

1
{P(n)

ϑ;g1
} against alternatives of

the form
⋃

ϑ /∈Hβ
0
{P(n)

ϑ;φ1
}.

Of course, since κ̂k is invariant under Grot,◦, the pseudo-Gaussian test inherits
the Grot,◦-invariance features of the Gaussian one.

5.4. Optimal pseudo-Gaussian tests for eigenvalues. As in the previous sec-
tion, the asymptotic null distribution of the Gaussian test statistic T

(n)
N is not stan-

dard normal anymore under radial density g1 as soon as κk(g1) �= κk(φ1). The
Gaussian test φ

(n)
�;N thus is not valid (does not have asymptotic level α) under

such densities. The same reasoning as before leads to a similar kurtosis correction,
yielding a pseudo-Gaussian test statistic

T
(n)

N ∗ := (1 + κ̂k)
−1/2T̃

(n)
N ,

where T̃
(n)

N := n1/2(ap,q(�S))−1/2((1 −p)
∑k

j=q+1 λj ;S −p
∑q

j=1 λj ;S) and κ̂k is

as in Section 5.3. This statistic coincides with T
(n)

Davis given in (1.4).
Here also, local powers are readily obtained via Le Cam’s third lemma. Let

τ (n) := ((τ I (n))′, τ II(n), (τ III(n))′, (τ IV(n))′)′, with τ (n)′τ (n) uniformly bounded,
where τ III(n) := d

◦
vec(l(n)) is such that l := limn→∞ l(n) := limn→∞ diag(�

(n)
1 , . . . ,

�
(n)
k ) satisfies tr(�−1

V l) = 0 [see (3.1) and the comments thereafter], and define

r
�V
ϑ;τ := lim

n→∞ gradh(d
◦

vec(�V))′τ III(n) = (1 − p)

k∑
j=q+1

lj − p

q∑
j=1

lj .(5.10)

The following proposition summarizes the asymptotic properties of the resulting
pseudo-Gaussian tests φ

(n)
�V;N ∗.



RANK-BASED TESTS FOR PCA 3273

PROPOSITION 5.2. (i) T
(n)

N ∗ is asymptotically normal, with mean zero

under
⋃

ϑ∈H�′′
0;q

⋃
g1∈F 4

1
{P(n)

ϑ;g1
}, mean (4ap,q(�V)(1 + κk(g1))

−1/2r
�V
ϑ;τ under

P(n)

ϑ+n−1/2τ (n);g1
, ϑ ∈ H�

0 , g1 ∈ F 4
a and τ (n) as described above, and variance one

under both;
(ii) the sequence of tests φ

(n)
�;N ∗ rejecting the null whenever T

(n)
N ∗ is less

than the standard normal α-quantile zα has asymptotic size α under⋃
ϑ∈H�′′

0;q
⋃

g1∈F 4
1
{P(n)

ϑ;g1
};

(iii) the pseudo-Gaussian tests φ
(n)
�;N ∗ are asymptotically equivalent, under⋃

ϑ∈H�′′
0;q

{P(n)
ϑ;φ1

} and contiguous alternatives, to the optimal parametric Gaussian

tests φ
(n)
�;N ; hence, the sequence φ

(n)
�;N ∗ is locally and asymptotically most power-

ful, still at asymptotic level α, for
⋃

ϑ∈H�′′
0;q

⋃
g1∈F 4

1
{P(n)

ϑ;g1
} against alternatives of

the form
⋃

ϑ /∈H�
0
{P(n)

ϑ;φ1
}.

6. Rank-based tests for principal components.

6.1. Rank-based statistics: Asymptotic representation and asymptotic normal-
ity. The parametric tests proposed in Section 4 are valid under specified radial
densities f1 only, and therefore are of limited practical value. The importance of
the Gaussian tests of Sections 5.1 and 5.2 essentially follows from the fact that
they belong to usual practice, but Gaussian assumptions are quite unrealistic in
most applications. The pseudo-Gaussian procedures of Sections 5.3 and 5.4 are
more appealing, as they only require finite fourth-order moments. Still, moments
of order four may be infinite and, being based on empirical covariances, pseudo-
Gaussian procedures remain poorly robust. A straightforward idea would consist in
robustifying them by substituting some robust estimate of scatter for empirical co-
variance matrices. This may take care of validity-robustness issues, but has a neg-
ative impact on powers, and would not achieve efficiency-robustness. The picture
is quite different with the rank-based procedures we are proposing in this section.
While remaining valid under completely arbitrary radial densities, these methods
indeed also are efficiency-robust; when based on Gaussian scores, they even uni-
formly outperform, in the Pitman sense, their pseudo-Gaussian counterparts (see
Section 7). Rank-based inference, thus, in this problem as in many others, has
much to offer, and enjoys an extremely attractive combination of robustness and
efficiency properties.

The natural framework for principal component analysis actually is the semi-
parametric context of elliptical families in which θ , d

◦
vec(�V), and β (not σ 2)

are the parameters of interest, while the radial density f [equivalently, the couple
(σ 2, f1)] plays the role of an infinite-dimensional nuisance. This semiparametric
model enjoys the double structure considered in Hallin and Werker (2003), which
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allows for efficient rank-based inference: the fixed-f1 subexperiments, as shown
in Proposition 3.1 are ULAN, while the fixed-(θ , d

◦
vec(�V), β) subexperiments

[equivalently, the fixed-(θ ,V) subexperiments] are generated by groups of trans-
formations acting on the observation space. Those groups here are of the form
G(n)

θ,V,◦ and consist of the continuous monotone radial transformations G(n)
h

G(n)
h (X1, . . . ,Xn) = G(n)

h

(
θ + d1(θ,V)V1/2U1(θ ,V), . . . ,

θ + dn(θ ,V)V1/2Un(θ,V)
)

:= (
θ + h(d1(θ ,V))V1/2U1(θ ,V), . . . ,

θ + h(dn(θ ,V))V1/2Un(θ ,V)
)
,

where h : R+ → R
+ is continuous, monotone increasing, and satisfies

limr→∞ h(r) = ∞ and h(0) = 0. The group G(n)
θ ,V,◦ generates the fixed-(θ,V)

family of distributions
⋃

σ 2
⋃

f1
{P(n)

θ,σ 2,d
◦
vec(�V),vec(β);f1

}. The general results of

Hallin and Werker (2003) thus indicate that efficient inference can be based on the
corresponding maximal invariants, namely the vectors(

R
(n)
1 (θ ,V), . . . ,R(n)

n (θ ,V),U1(θ ,V), . . . ,Un(θ ,V)
)

of ranks and multivariate signs, where R
(n)
i (θ ,V) denotes the rank of di(θ ,V)

among d1(θ ,V), . . . , dn(θ ,V). Test statistics based on such invariants automati-
cally are distribution-free under

⋃
σ 2

⋃
f1

{P(n)

θ,σ 2,d
◦
vec(�V),vec(β);f1

}.
Letting Ri := Ri(θ ,V) and Ui := Ui(θ ,V), define

�˜ III
ϑ;K := 1

2
√

n
M�V

k Hk(�
−1/2
V β ′)⊗2

n∑
i=1

K

(
R

(n)
i

n + 1

)
vec(UiU′

i)

and

�˜ IV
ϑ;K := 1

2
√

n
Gβ

k Lβ,�V
k (V⊗2)−1/2

n∑
i=1

K

(
R

(n)
i

n + 1

)
vec(UiU′

i ).

Associated with �˜ III
ϑ;K and �˜ IV

ϑ;K , let

�III
ϑ;K,g1

:= 1

2
√

n
M�V

k Hk(�
−1/2
V β ′)⊗2

n∑
i=1

K

(
G̃1k

(
di(θ ,V)

σ

))
vec(UiU′

i)

and

�IV
ϑ;K,g1

:= 1

2
√

n
Gβ

k Lβ,�V
k (V⊗2)−1/2

n∑
i=1

K

(
G̃1k

(
di(θ ,V)

σ

))
vec(UiU′

i),

where G̃1k is as in Section 5.3. The following proposition provides an asymptotic
representation and asymptotic normality result for �˜ III

ϑ;K and �˜ IV
ϑ;K .



RANK-BASED TESTS FOR PCA 3275

PROPOSITION 6.1. Let Assumption (S) hold for the score function K . Then:

(i) (asymptotic representation) (�˜ III′
ϑ;K,�˜ IV′

ϑ;K)′ = (�III′
ϑ;K,g1

,�IV′
ϑ;K,g1

)′ +
oL2(1) as n → ∞, under P(n)

ϑ;g1
, for any ϑ ∈ 	 and g1 ∈ F1;

(ii) (asymptotic normality) let Assumption (A) hold and consider a bounded
sequence τ (n) := ((τ I (n))′, τ II(n), (τ III(n))′, (τ IV(n))′)′ such that both τ III :=
limn→∞ τ III(n) and τ IV := limn→∞ τ IV(n) exist. Then (�III′

ϑ;K,g1
,�IV′

ϑ;K,g1
)′ is as-

ymptotically normal, with mean zero and mean

Jk(K,g1)

k(k + 2)

(
Dk(�V)τ III

1
4Gβ

k diag
(
ν−1

12 , . . . , ν−1
(k−1)k

)
(Gβ

k )′τ IV

)
[where Jk(K,g1) was defined in (2.5)], under P(n)

ϑ;g1
(any ϑ ∈ 	 and g1 ∈ F1)

and P(n)

ϑ+n−1/2τ (n);g1
(any ϑ ∈ 	 and g1 ∈ Fa), respectively, and block-diagonal

covariance matrix diag(III
ϑ;K,IV

ϑ;K) under both, with

III
ϑ;K := Jk(K)

k(k + 2)
Dk(�V)

and

IV
ϑ;K := Jk(K)

4k(k + 2)
Gβ

k diag
(
ν−1

12 , . . . , ν−1
(k−1)k

)
(Gβ

k )′.(6.1)

The proofs of parts (i) and (ii) of this proposition are entirely similar to those of
Lemma 4.1 and Proposition 4.1, respectively, in Hallin and Paindaveine (2006a),
and therefore are omitted.

In case K = Kf1 is the score function associated with f1 ∈ Fa , and pro-
vided that Assumption (A) holds (in order for the central sequence �ϑ;f1 of Pro-

position 3.1 to make sense), �III
ϑ;Kf1 ,f1

and �IV
ϑ;Kf1 ,f1

, under P(n)
ϑ;f1

clearly coincide

with �III
ϑ;f1

and �IV
ϑ;f1

. Therefore, �˜ III
ϑ;Kf1

and �˜ IV
ϑ;Kf1

constitute rank-based, hence

distribution-free, versions of those central sequence components. Exploiting this,
we now construct signed-rank tests for the two problems we are interested in.

6.2. Optimal rank-based tests for eigenvectors. Proposition 6.1 provides the
theoretical tools for constructing rank-based tests for Hβ

0 and computing their
local powers. Letting again ϑ0 := (θ ′, σ 2, (d

◦
vec�V)′, (vecβ0)

′)′, with β0 =
(β0,β2, . . . ,βk), define the rank-based analog of (4.2)

Q˜
(n)
ϑ0;K := �˜ IV′

ϑ0;K [(IV
ϑ0;K)− − P

β0
k ((P

β0
k )′IV

ϑ0;KP
β0
k )−(P

β0
k )′]�˜ IV

ϑ0;K
(6.2)

= nk(k + 2)

Jk(f1)

k∑
j=2

(
β ′

j S˜(n)
ϑ0;Kβ0)2

,
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where S˜(n)
ϑ;K := 1

n

∑n
i=1 K(

R
(n)
i (θ ,V)

n+1 )Ui (θ,V)U′
i(θ ,V).

In order to turn Q˜
(n)
ϑ0;K into a genuine test statistic, as in the parametric case,

we still have to replace ϑ0 with some adequate estimator ϑ̂ satisfying, under
as large as possible a class of densities, Assumption (B) for Hβ

0 . In particu-
lar, root-n consistency should hold without any moment assumptions. Denote by
θ̂HR the Hettmansperger and Randles (2002) affine-equivariant median, and by
V̂Tyler the shape estimator of Tyler (1987), normalized so that it has determi-
nant one: both are root-n consistent under any radial density g1. Factorize V̂Tyler

into β̂Tyler�̂Tylerβ̂
′
Tyler. The estimator we are proposing (among many possible

ones) is ϑ̂ = (θ̂ ′
HR, σ 2, (d

◦
vec �̂Tyler)

′, (vec β̃0)
′)′, where the constrained estimator

β̃0 := (β0, β̃2, . . . , β̃k) is constructed from β̂Tyler via the same Gram–Schmidt pro-

cedure as was applied in Section 5.1 to the eigenvectors β̂V of V̂ := S(n)/|S(n)|1/k ;
note that σ 2 does not even appear in Q˜

(n)
ϑ0;K , hence needs not be estimated.

In view of (6.2),

Q˜
(n)
K = Q˜

(n)

ϑ̂;K

= nk(k + 2)

Jk(K)
β0′S˜(n)

ϑ̂;K(Ik − β0β0′)S˜(n)

ϑ̂;Kβ0(6.3)

= nk(k + 2)

Jk(K)

∥∥[β0′ ⊗ (Ik − β0β0′)](vec S˜ (n)

ϑ̂;K
)∥∥2

,

where the ranks and signs in S˜ ϑ̂;K are computed at ϑ̂ , that is, R
(n)
i := R

(n)
i (θ̂HR,

β̃0�̂Tylerβ̃
′
0) and Ui = Ui (θ̂HR, β̃0�̂Tylerβ̃

′
0).

Let us show that substituting ϑ̂ for ϑ0 in (6.2) has no asymptotic impact on
Q˜

(n)
ϑ0;K—that is, Q˜

(n)
ϑ0;K − Q˜

(n)
K = oP(1) as n → ∞ under P(n)

ϑ0;g1
, with g1 ∈ Fa ,

ϑ0 ∈ Hβ′
0;1. The proof, as usual, relies on an asymptotic linearity property which,

in turn, requires ULAN. The ULAN property of Proposition 3.1, which was moti-
vated by optimality issues in tests involving β and �V, here cannot help us, as it
does not hold under Assumption (A′

1). Another ULAN property, however, where
Assumption (A) is not required, has been obtained by Hallin and Paindaveine
(2006a) for another parametrization—based on (θ , σ 2,V)—of the same families
of distributions, and perfectly fits our needs here.

Defining Jk := (vec Ik)(vec Ik)
′ and J⊥

k := Ik2 − 1
k
Jk , it follows from Proposi-

tion A.1 in Hallin, Oja and Paindaveine (2006) and Lemma 4.4 in Kreiss (1987)
that, for any locally asymptotically discrete [Assumption (B3)] and root-n consis-
tent [Assumption (B2)] sequence (θ̂ (n), V̂(n)) of estimators of location and shape,
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one has

J⊥
k

√
nvec(S˜ϑ̂;K − S˜ϑ;K)

+ Jk(K,g1)

4k(k + 2)

[
Ik2 + Kk − 2

k
Jk

]
(V−1/2)⊗2n1/2 vec

(
V̂(n) − V

)
(6.4)

= oP(1)

as n → ∞ under P(n)
ϑ0;g1

, with ϑ0 ∈ 	 and g1 ∈ Fa . This result readily applies

to any adequately discretized version of (θ̂HR, β̃0�̂Tylerβ̃
′
0) at ϑ0 ∈ Hβ′

0;1. It is well
known, however, that discretization, although necessary for asymptotic statements,
is not required in practice [see pages 125 or 188 of Le Cam and Yang (2000)
for a discussion on this point]; we therefore do not emphasize discretization any
further in the notation, and henceforth assume that ϑ̂ , whenever needed, has been
adequately discretized.

Using (6.4) and the fact that [β0′ ⊗ (Ik −β0β0′)]Jk = 0, we obtain, under P(n)
ϑ0;g1

with ϑ0 ∈ Hβ′
0;1 and g1 ∈ Fa , since Kk(vec A) = vec(A′) for any k × k matrix A

and since β0 under ϑ0 ∈ Hβ′
0;1 is an eigenvector of V−1/2β̃0�̂Tylerβ̃

′
0V−1/2,

√
n[β0′ ⊗ (Ik − β0β0′)]vec

(
S˜ (n)

ϑ̂;K − S˜ (n)
ϑ;K

)
= − Jk(K,g1)

2k(k + 2)
n1/2[β0′ ⊗ (Ik − β0β0′)](V−1/2)⊗2 vec(β̃0�̂Tylerβ̃

′
0 − V)

+ oP(1)

= − Jk(K,g1)

2k(k + 2)
n1/2 vec

(
(Ik − β0β0′)[V−1/2β̃0�̂Tylerβ̃

′
0V−1/2 − Ik]β0)

+ oP(1)

= oP(1),

as n → ∞. In view of (6.3), we therefore conclude that Q˜
(n)
K − Q˜

(n)
ϑ0;K = oP(1) as

n → ∞, still under under ϑ0 ∈ Hβ′
0;1, as was to be shown.

The following result summarizes the results of this section.

PROPOSITION 6.2. Let Assumption (S) hold for the score function K . Then:

(i) Q˜
(n)
K is asymptotically chi-square with (k − 1) degrees of freedom under⋃

ϑ∈Hβ′
0;1

⋃
g1∈Fa

{P(n)
ϑ;g1

}, and asymptotically noncentral chi-square, still with (k −
1) degrees of freedom, and noncentrality parameter

J 2
k (K,g1)

4k(k + 2)Jk(K)
r
β
ϑ;τ
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under P(n)

ϑ+n−1/2τ (n);g1
, for ϑ ∈ Hβ

0 and g1 ∈ Fa , with τ (n) as in Proposition 5.1 and

r
β
ϑ;τ defined in (5.9);

(ii) the sequence of tests φ˜
(n)
β;K rejecting the null when Q

(n)
K exceeds the α

upper-quantile of the chi-square distribution with (k − 1) degrees of freedom has
asymptotic size α under

⋃
ϑ∈Hβ′

0

⋃
g1∈Fa

{P(n)
ϑ;g1

};
(iii) for scores K = Kf1 , with f1 ∈ Fa , φ˜

(n)
β;K is locally asymptotically most

stringent, at asymptotic level α, for
⋃

ϑ∈Hβ′
0

⋃
g1∈Fa

{P(n)
ϑ;g1

} against alternatives of

the form
⋃

ϑ /∈Hβ
0
{P(n)

ϑ;f1
}.

Being measurable with respect to signed-ranks, Q˜
(n)
K is asymptotically invariant

under continuous monotone radial transformations, in the sense that it is asymp-
totically equivalent (in probability) to a random variable that is strictly invariant
under such transformations. Furthermore, it is easy to show that it enjoys the same
Grot,◦-invariance features as the parametric, Gaussian, or pseudo-Gaussian test sta-
tistics.

6.3. Optimal rank-based tests for eigenvalues. Finally, still from the results of
Proposition 6.1, we construct signed-rank tests for the null hypothesis H�

0 . A rank-
based counterpart of (4.5) and (4.6) [at ϑ0 = (θ ′, σ 2, (d

◦
vec�0)

′, (vecβ)′)′ ∈ H�
0 ]

is, writing V0 for β�0β
′,

T˜ (n)
ϑ0;K = (grad′ h(d

◦
vec�0)(

III
ϑ0;K)−1 gradh(d

◦
vec�0))

−1/2

× grad′ h(d
◦

vec�0)(
III
ϑ0;K)−1�˜ III

ϑ0;K(6.5)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�0))
−1/2c′

p,q dvec
(
�

1/2
0 β ′S˜(n)

ϑ0,K
β�

1/2
0

)
.

Here again, we have to estimate ϑ0. Note that, unlike the quantity
grad′ h(d

◦
vec�0)(

III
ϑ0;φ1

)−1�III
ϑ0;φ1

appearing in the Gaussian or pseudo-Gaussian

cases, grad′ h(d
◦

vec�0)(
III
ϑ0;K)−1�˜ III

ϑ0;K does depend on �0 [see the comments

below (5.4)]. Consequently, we have to carefully select an estimator ϑ̂ that has no
influence on the asymptotic behavior of T˜ (n)

ϑ0;K under H�′′
0;q .

To this end, consider Tyler’s estimator of shape V̂Tyler(=: β̂Tyler�̂Tylerβ̂
′
Tyler,

with obvious notation) and define

dvec(�̃Tyler) := (
Ik − cp,q(c′

p,qcp,q)−1c′
p,q

)
(dvec �̂Tyler).
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Then the estimator of shape �̃V := �̃Tyler/|�̃Tyler|1/k is clearly constrained:
c′
p,q(dvec �̃V) = 0 and |�̃V| = 1. The resulting preliminary estimator ϑ̂ is

ϑ̂ := (θ̂ ′
HR, σ 2, (d

◦
vec �̃V)′, (vec β̂Tyler)

′)′,(6.6)

where θ̂HR still denotes the Hettmansperger and Randles (2002) affine-equivariant
median. The test statistic we propose is then

T˜ (n)
K := T˜ (n)

ϑ̂;K

= (grad′ h(d
◦

vec �̃V)(III
ϑ̂;K)−1 gradh(d

◦
vec �̃V))−1/2

× grad′ h(d
◦

vec �̃V)(III
ϑ̂;K)−1�˜ III

ϑ̂;K(6.7)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,q

× dvec
(
�̃

1/2
V β̂ ′

TylerS˜(n)

ϑ̂;K β̂Tyler�̃
1/2
V

)
,

where S˜(n)

ϑ̂;K := 1
n

∑n
i=1 K(

R̂
(n)
i

n+1)ÛiÛ
′
i , with R̂

(n)
i := R

(n)
i (θ̂HR, β̂Tyler�̃Vβ̂ ′

Tyler) and

Ûi := Ui(θ̂HR, β̂Tyler�̃Vβ̂ ′
Tyler). The following lemma shows that the substitution

of ϑ̂ for ϑ in (6.6) has no asymptotic effect on T˜ (n)
ϑ;K (see the Appendix for a

proof).

LEMMA 6.1. Fix ϑ ∈ H�′′
0;q and g1 ∈ Fa , and let ϑ̂ be the estimator in (6.6).

Then T˜ (n)
K − T˜ (n)

ϑ;K is oP(1) as n → ∞, under P(n)
ϑ;g1

.

The following result summarizes the results of this section.

PROPOSITION 6.3. Let Assumption (S) hold for the score function K . Then:

(i) T˜ (n)
K is asymptotically standard normal under

⋃
ϑ∈H�′′

0;q
⋃

g1∈Fa
{P(n)

ϑ;g1
}, and

asymptotically normal with mean

Jk(K,g1)√
4k(k + 2)ap,q(�V)Jk(K)

r
�V
ϑ;τ

and variance 1 under P(n)

ϑ+n−1/2τ (n);g1
, with ϑ ∈ H�V

0 , g1 ∈ Fa , τ (n) as in Proposi-

tion 5.2, and r
�V
ϑ;τ defined in (5.10);
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(ii) the sequence of tests φ˜
(n)
�;K rejecting the null whenever T˜ (n)

K is less

than the standard normal α-quantile zα has asymptotic size α under⋃
ϑ∈H�′′

0;q
⋃

g1∈Fa
{P(n)

ϑ;g1
};

(iii) for scores K = Kf1 with f1 ∈ Fa , the sequence of tests φ˜
(n)
�;K is

locally and asymptotically most powerful, still at asymptotic level α, for⋃
ϑ∈H�′′

0;q
⋃

g1∈Fa
{P(n)

ϑ;g1
} against alternatives of the form

⋃
ϑ /∈H�

0
{P(n)

ϑ;f1
}.

7. Asymptotic relative efficiencies. The asymptotic relative efficiencies
(AREs) of the rank-based tests of Section 6 with respect to their Gaussian
and pseudo-Gaussian competitors of Sections 5 are readily obtained as ratios
of noncentrality parameters under local alternatives (squared ratios of standard-
ized asymptotic shifts for the one-sided problems on eigenvalues). Denoting by
AREϑ,τ

k,g1
(φ

(n)
1 /φ

(n)
2 ) the ARE, under local alternatives of the form P(n)

ϑ+n−1/2τ ;g1
,

of a sequence of tests φ
(n)
1 with respect to the sequence φ

(n)
2 , we thus have the

following result.

PROPOSITION 7.1. Let Assumptions (S) and (B) hold for the score function
K and (with the appropriate null hypotheses and densities) for the estimators ϑ̂
described in the previous sections. Then, for any g1 ∈ F 4

a ,

AREϑ,τ
k,g1

(
φ˜

(n)
β;K/φ

(n)
β;N ∗

) = AREϑ,τ
k,g1

(
φ˜

(n)
�;K/φ

(n)
�;N ∗

) := (1 + κk(g1))J 2
k (K,g1)

k(k + 2)Jk(K)
.

Table 1 provides numerical values of these AREs for various values of the space
dimension k and selected radial densities g1 (Student, Gaussian and power-expo-
nential), and for the van der Waerden tests φ˜

(n)
β;vdW and φ˜

(n)
�;vdW, the Wilcoxon tests

φ˜
(n)
β;K1

and φ˜
(n)
�;K1

, and the Spearman tests φ˜
(n)
β;K2

and φ˜
(n)
�;K2

(the score functions

Ka , a > 0 were defined in Section 2.2). These values coincide with the “AREs for
shape” obtained in Hallin and Paindaveine (2006a), which implies [Paindaveine
(2006)] that the AREs of van der Waerden tests with respect to their pseudo-
Gaussian counterparts are uniformly larger than or equal to one (an extension of
the classical Chernoff–Savage property):

inf
g1

AREϑ,τ
k,g1

(
φ˜

(n)
β;vdW/φ

(n)
β;N ∗

) = inf
g1

AREϑ,τ
k,g1

(
φ˜

(n)
�;vdW/φ

(n)
�;N ∗

) = 1.

8. Simulations. In this section, we investigate via simulations the finite-
sample performances of the following tests:

(i) the Anderson test φ
(n)
β;Anderson, the optimal Gaussian test φ

(n)
β;N , the pseudo-

Gaussian test φ
(n)
β;N ∗, the robust test φ

(n)
β;Tyler based on Q

(n)
Tyler, and various rank-

based tests φ
(n)
β;K (with van der Waerden, Wilcoxon, Spearman and sign scores,
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TABLE 1
AREs of the van der Waerden (vdW), Wilcoxon (W) and Spearman (SP) rank-based tests φ˜(n)

β;K and

φ˜(n)
�;K with respect to their pseudo-Gaussian counterparts, under k-dimensional Student (with 5, 8

and 12 degrees of freedom), Gaussian, and power-exponential densities (with parameter
η = 2,3,5), for k = 2, 3, 4, 6, 10, and k → ∞

Underlying density

K k t5 t8 t12 N e2 e3 e5

vdW 2 2.204 1.215 1.078 1.000 1.129 1.308 1.637
3 2.270 1.233 1.086 1.000 1.108 1.259 1.536
4 2.326 1.249 1.093 1.000 1.093 1.223 1.462
6 2.413 1.275 1.106 1.000 1.072 1.174 1.363

10 2.531 1.312 1.126 1.000 1.050 1.121 1.254
∞ 3.000 1.500 1.250 1.000 1.000 1.000 1.000

W 2 2.258 1.174 1.001 0.844 0.789 0.804 0.842
3 2.386 1.246 1.068 0.913 0.897 0.933 1.001
4 2.432 1.273 1.094 0.945 0.955 1.006 1.095
6 2.451 1.283 1.105 0.969 1.008 1.075 1.188

10 2.426 1.264 1.088 0.970 1.032 1.106 1.233
∞ 2.250 1.125 0.938 0.750 0.750 0.750 0.750

SP 2 2.301 1.230 1.067 0.934 0.965 1.042 1.168
3 2.277 1.225 1.070 0.957 1.033 1.141 1.317
4 2.225 1.200 1.051 0.956 1.057 1.179 1.383
6 2.128 1.146 1.007 0.936 1.057 1.189 1.414

10 2.001 1.068 0.936 0.891 1.017 1.144 1.365
∞ 1.667 0.833 0.694 0.556 0.556 0.556 0.556

but also with scores achieving optimality at t1, t3 and t5 densities), all for the null
hypothesis Hβ

0 on eigenvectors;

(ii) the optimal Anderson test φ
(n)
�;Anderson = φ

(n)
�;N , the pseudo-Gaussian test

φ
(n)
�;N ∗ = φ

(n)
�;Davis based on T

(n)
Davis, and various rank-based tests φ

(n)
�;K (still with

van der Waerden, Wilcoxon, Spearman, sign, t1, t3 and t5 scores), for the null
hypothesis H�

0 on eigenvalues.
Simulations were conducted as follows. We generated N = 2500 mutually inde-

pendent samples of i.i.d. trivariate (k = 3) random vectors ε�;j , � = 1,2,3,4, j =
1, . . . , n = 100, with spherical Gaussian (ε1;j ), t5 (ε2;j ), t3 (ε3;j ) and t1 (ε4;j )
densities, respectively. Letting

� :=
⎛⎝10 0 0

0 4 0
0 0 1

⎞⎠ , Bξ :=
⎛⎝ cos(πξ/12) − sin(πξ/12) 0

sin(πξ/12) cos(πξ/12) 0
0 0 1

⎞⎠
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and

Lξ :=
⎛⎝3ξ 0 0

0 0 0
0 0 0

⎞⎠ ,

each ε�;j was successively transformed into

X�;j ;ξ = Bξ�
1/2ε�;j , � = 1,2,3,4, j = 1, . . . , n, ξ = 0, . . . ,3,(8.1)

and

Y�;j ;ξ = (�+Lξ )
1/2ε�;j , � = 1,2,3,4, j = 1, . . . , n, ξ = 0, . . . ,3.(8.2)

The value ξ = 0 corresponds to the null hypothesis Hβ
0 :β1 = (1,0,0)′ for the

X�;j ;ξ ’s and the null hypothesis H�
0 :

∑k
j=q+1 λj ;V/

∑k
j=1 λj ;V = 1/3 (with q = 1

and k = 3) for the Y�;j ;ξ ’s; ξ = 1,2,3 characterizes increasingly distant alterna-
tives. We then performed the tests listed under (i) and (ii) above in N = 2500
independent replications of such samples. Rejection frequencies are reported in
Table 2 for Hβ

0 and in Table 3 for H�
0 .

Inspection of Table 2 confirms our theoretical results. Anderson’s φ
(n)
β;Anderson

meets the level constraint at Gaussian densities only; φ
(n)
β;Tyler (equivalently, φ(n)

β;N ∗)
further survives the t5 but not the t3 or t1 densities which have infinite fourth-order
moments. In contrast, the rank-based tests for eigenvectors throughout satisfy the
nominal asymptotic level condition (a 95% confidence interval here has half-width
0.0085). Despite the relatively small sample size n = 100, empirical power and
ARE rankings almost perfectly agree.

The results for eigenvalues, shown in Table 3, are slightly less auspicious. While
the Gaussian and pseudo-Gaussian tests remain hopelessly sensitive to the viola-
tions of Gaussian and fourth-order moments, respectively, the rank tests, when
based on asymptotic critical values, all significantly overreject, indicating that as-
ymptotic conditions are not met for n = 100. We therefore propose an alterna-
tive construction for critical values. Lemma 6.1 indeed implies that the asymptotic
distribution of the test statistic T˜ (n)

K (based on the ranks and signs of estimated

residuals) is the same, under P(n)
ϑ0;g1

, ϑ0 ∈ H�′′
0;q , as that of T˜ (n)

ϑ0,K
(based on the

ranks and signs of exact residuals, which are distribution-free). The latter distrib-
ution can be simulated, and its simulated quantiles provide valid approximations
of the exact ones. The following critical values were obtained from M = 100,000
replications: −1.7782 for van der Waerden, −1.8799 for t5-scores, −1.8976 for
t3-scores, −1.9439 for t1-scores, −1.9320 for sign scores, −1.8960 for Wilcoxon
and −1.8229 for Spearman. Note that they all are smaller than −1.645, which is
consistent with the overrejection phenomenon. The corresponding rejection fre-
quencies are reported in parentheses in Table 3. They all are quite close to the
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TABLE 2
Rejection frequencies (out of N = 2500 replications), under the null Hβ

0 and increasingly distant

alternatives (see Section 8 for details), of the Anderson test φ
(n)
β;Anderson, the Tyler test φ

(n)
β;Tyler,

the parametric Gaussian test φ
(n)
β;N , its pseudo-Gaussian version φ

(n)
β;N ∗, and the signed-rank

tests with van der Waerden, tν (ν = 1, 3, 5), sign, Wilcoxon, and Spearman scores,
φ˜(n)

β;vdW, φ˜(n)
β;t1,ν

, φ˜(n)
β;S, φ˜(n)

β;W, and φ˜(n)
β;SP, respectively. Sample size is n = 100.

All tests were based on asymptotic 5% critical values

ξ

Test 0 1 2 3 0 1 2 3

N t5

φ
(n)
β;Anderson 0.0572 0.3964 0.8804 0.9852 0.2408 0.4940 0.8388 0.9604

φ
(n)
β;N 0.0528 0.3724 0.8568 0.9752 0.2284 0.4716 0.8168 0.9380

φ
(n)
β;Tyler 0.0572 0.3908 0.8740 0.9856 0.0612 0.2520 0.6748 0.8876

φ
(n)
β;N ∗ 0.0524 0.3648 0.8512 0.9740 0.0544 0.2188 0.6056 0.8156

φ˜
(n)
β;vdW 0.0368 0.2960 0.8032 0.9608 0.0420 0.2328 0.6908 0.9056

φ˜
(n)
β;t1,5

0.0452 0.3204 0.8096 0.9596 0.0476 0.2728 0.7440 0.9284

φ˜
(n)
β;t1,3

0.0476 0.3104 0.7988 0.9532 0.0496 0.2760 0.7476 0.9280

φ˜
(n)
β;t1,1

0.0488 0.2764 0.7460 0.9220 0.0552 0.2652 0.7184 0.9024

φ˜
(n)
β;S 0.0448 0.2268 0.6204 0.8392 0.0496 0.2164 0.6236 0.8324

φ˜
(n)
β;W 0.0456 0.3144 0.8012 0.9556 0.0484 0.2808 0.7464 0.9320

φ˜
(n)
β;SP 0.0444 0.3096 0.8160 0.9576 0.0464 0.2548 0.7068 0.9152

t3 t1

φ
(n)
β;Anderson 0.4772 0.6300 0.8532 0.9452 0.9540 0.9580 0.9700 0.9740

φ
(n)
β;N 0.4628 0.6040 0.8304 0.9168 0.9320 0.9384 0.9472 0.9480

φ
(n)
β;Tyler 0.0892 0.2248 0.5364 0.7508 0.5704 0.5980 0.6584 0.7444

φ
(n)
β;N ∗ 0.0616 0.1788 0.4392 0.6092 0.4516 0.4740 0.5160 0.5624

φ˜
(n)
β;vdW 0.0444 0.2172 0.6464 0.8676 0.0472 0.1656 0.5104 0.7720

φ˜
(n)
β;t1,5

0.0488 0.2628 0.7120 0.9076 0.0560 0.2100 0.6068 0.8508

φ˜
(n)
β;t1,3

0.0500 0.2728 0.7156 0.9116 0.0576 0.2156 0.6292 0.8672

φ˜
(n)
β;t1,1

0.0476 0.2688 0.7100 0.9084 0.0548 0.2256 0.6600 0.8856

φ˜
(n)
β;S 0.0492 0.2202 0.6188 0.8352 0.0512 0.2116 0.6172 0.8448

φ˜
(n)
β;W 0.0520 0.2708 0.7136 0.9120 0.0552 0.2148 0.6148 0.8604

φ˜
(n)
β;SP 0.0544 0.2436 0.6648 0.8776 0.0580 0.1824 0.5200 0.7740



3284 M. HALLIN, D. PAINDAVEINE AND T. VERDEBOUT

TABLE 3
Rejection frequencies (out of N = 2500 replications), under the null H�

0 and increasingly distant

alternatives (see Section 8), of the optimal Gaussian test φ
(n)
�;N = φ

(n)
�;Anderson, its pseudo-Gaussian

version φ
(n)
�;N ∗ = φ

(n)
�;Davis, and the signed-rank tests with van der Waerden, tν (ν = 1, 3, 5), sign,

Wilcoxon, and Spearman scores φ˜(n)
�;vdW, φ˜(n)

�;t1,ν
, φ˜(n)

�;S, φ˜(n)
�;W, φ˜(n)

�;SP. Sample size is n = 100. All

tests were based on asymptotic 5% critical values and (in parentheses) simulated ones

ξ

Test 0 1 2 3

N

φ
(n)
�;N = φ

(n)
�;Anderson 0.0460 0.4076 0.8308 0.9604

φ
(n)
�;N ∗ = φ

(n)
�;Davis 0.0432 0.3976 0.8220 0.9572

φ˜(n)
�;vdW 0.0608 (0.0480) 0.4604 (0.4116) 0.8576 (0.8280) 0.9668 (0.9596)

φ˜(n)
�;t1,5

0.0728 (0.0480) 0.4804 (0.3972) 0.8572 (0.8116) 0.9644 (0.9504)

φ˜(n)
�;t1,3

0.0748 (0.0496) 0.4804 (0.3884) 0.8524 (0.7964) 0.9612 (0.9432)

φ˜(n)
�;t1,1

0.0780 (0.0504) 0.4532 (0.3572) 0.8160 (0.7320) 0.9448 (0.9112)

φ˜(n)
�;S 0.0864 (0.0508) 0.3980 (0.3088) 0.7384 (0.6408) 0.9028 (0.8552)

φ˜(n)
�;W 0.0744 (0.0480) 0.4816 (0.3908) 0.8544 (0.8012) 0.9640 (0.9464)

φ˜(n)
�;SP 0.0636 (0.0460) 0.4664 (0.4096) 0.8564 (0.8200) 0.9668 (0.9584)

t5

φ
(n)
�;N = φ

(n)
�;Anderson 0.1432 0.4624 0.7604 0.9180

φ
(n)
�;N ∗ = φ

(n)
�;Davis 0.0504 0.2768 0.5732 0.7988

φ˜(n)
�;vdW 0.0692 (0.0548) 0.4256 (0.3772) 0.7720 (0.7404) 0.9444 (0.9324)

φ˜(n)
�;t1,5

0.0736 (0.0492) 0.4544 (0.3772) 0.7980 (0.7372) 0.9524 (0.9332)

φ˜(n)
�;t1,3

0.0732 (0.0452) 0.4576 (0.3748) 0.7968 (0.7320) 0.9524 (0.9288)

φ˜(n)
�;t1,1

0.0776 (0.0416) 0.4448 (0.3484) 0.7832 (0.6952) 0.9436 (0.9116)

φ˜(n)
�;S 0.0768 (0.0436) 0.4060 (0.3172) 0.7180 (0.6360) 0.9100 (0.8592)

φ˜(n)
�;W 0.0732 (0.0456) 0.4512 (0.3756) 0.7972 (0.7364) 0.9524 (0.9308)

φ˜(n)
�;SP 0.0764 (0.0544) 0.4360 (0.3736) 0.7776 (0.7304) 0.9480 (0.9300)

nominal probability level α = 5%, while empirical powers are in line with theoret-
ical ARE values.
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TABLE 3
(Continued.)

ξ

Test 0 1 2 3

t3

φ
(n)
�;N = φ

(n)
�;Anderson 0.2572 0.5308 0.7200 0.8596

φ
(n)
�;N ∗ = φ

(n)
�;Davis 0.0368 0.1788 0.3704 0.5436

φ˜(n)
�;vdW 0.0708 (0.0560) 0.4088 (0.3260) 0.7540 (0.7040) 0.9304 (0.9140)

φ˜(n)
�;t1,5

0.0812 (0.0544) 0.4472 (0.3524) 0.7936 (0.7240) 0.9416 (0.9208)

φ˜(n)
�;t1,3

0.0832 (0.0560) 0.4556 (0.3568) 0.7944 (0.7256) 0.9452 (0.9192)

φ˜(n)
�;t1,1

0.0924 (0.0548) 0.4464 (0.3400) 0.7812 (0.7024) 0.9364 (0.8996)

φ˜(n)
�;S 0.0936 (0.0604) 0.4104 (0.2928) 0.7320 (0.6404) 0.9012 (0.8528)

φ˜(n)
�;W 0.0832 (0.0572) 0.4488 (0.3580) 0.7956 (0.7272) 0.9448 (0.9180)

φ˜(n)
�;SP 0.0796 (0.0576) 0.4212 (0.3412) 0.7572 (0.7020) 0.9276 (0.9044)

t1

φ
(n)
�;N = φ

(n)
�;Anderson 0.7488 0.8000 0.8288 0.8528

φ
(n)
�;N ∗ = φ

(n)
�;Davis 0.0072 0.0080 0.0172 0.0296

φ˜(n)
�;vdW 0.0724 (0.0596) 0.3500 (0.3032) 0.6604 (0.6176) 0.8600 (0.8332)

φ˜(n)
�;t1,5

0.0824 (0.0512) 0.3836 (0.3120) 0.7312 (0.6492) 0.9036 (0.8664)

φ˜(n)
�;t1,3

0.0828 (0.0532) 0.3936 (0.3108) 0.7488 (0.6644) 0.9168 (0.8776)

φ˜(n)
�;t1,1

0.0864 (0.0532) 0.4088 (0.3104) 0.7612 (0.6720) 0.9264 (0.8832)

φ˜(n)
�;S 0.0920 (0.0556) 0.3896 (0.3028) 0.7336 (0.6488) 0.9092 (0.8564)

φ˜(n)
�;W 0.0824 (0.0524) 0.3872 (0.3072) 0.7376 (0.6552) 0.9108 (0.8728)

φ˜(n)
�;SP 0.0752 (0.0588) 0.3536 (0.2992) 0.6648 (0.6064) 0.8604 (0.8220)

APPENDIX

We start with the proof of Proposition 3.1. To this end, note that although
generally stated as a property of a parametric sequence of families of the form
P (n) = {P(n)

ω |ω ∈ �} (n ∈ N), LAN (ULAN) actually is a property of the para-
metrization ω 
→ P(n)

ω , ω ∈ � of P (n) (i.e., of a bijective map from � to P (n)).
When parametrized with ω := (θ ′, (vech�)′)′, ω ∈ � := R

k × vech(Sk), where
Sk stands for the class of positive definite symmetric real k × k matrices, the ellip-
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tical families we are dealing with here have been shown to be ULAN in Hallin and
Paindaveine (2006a), with central sequence

�(n)
ω :=

⎛⎜⎜⎜⎜⎝
n−1/2

n∑
i=1

ϕf1(di)�
−1/2Ui

1

2
√

n
Pk(�

⊗2)−1/2
n∑

i=1

vec
(
ϕf1(di)diUiU′

i − Ik

)
⎞⎟⎟⎟⎟⎠ ,(A.1)

with di = di(θ ,�) and Ui = Ui (θ ,�), where P′
k denotes the duplication matrix

[such that P′
k vech(A) = vec(A) for any k × k symmetric matrix A].

The families we are considering in this proposition are slightly different, be-
cause the ϑ -parametrization requires k identifiable eigenvectors. However, denot-
ing by �B := R

k × vech(S B
k ), where S B

k is the set of all matrices in Sk compatible
with Assumption (A), the mapping

d̄ :ω = (θ ′, (vech�)′)′ ∈ �B


→ d̄(ω) := (
θ ′, (det�)1/k, (d

◦
vec��)′/(det�)1/k, (vecβ)′

)′ ∈ 	

from the open subset �B of R
k+k(k+1)/2 to 	 is a differentiable mapping such

that, with a small abuse of notation, P(n)
ω;f1

= P(n)
ϑ=d̄(ω);f1

and P(n)
ϑ;f1

= P(n)

ω=d̄−1(ϑ);f1

(with d̄−1 defined on 	 only). The proof of Proposition 3.1 consists in showing
how ULAN in the ω-parametrization implies ULAN in the ϑ-parametrization, and
how the central sequences and information matrices are related to each other. Let
us start with a lemma.

LEMMA A.1. Let the parametrization ω 
→ P(n)
ω , ω ∈ �, where � is an open

subset of R
k1 be ULAN for P (n) = {P(n)

ω |ω ∈ �}, with central sequence �(n)
ω

and information matrix ω. Let d̄ :ω 
→ ϑ := d̄(ω) be a continuously differen-
tiable mapping from R

k1 to R
k2 (k2 ≥ k1) with full column rank Jacobian matrix

Dd̄(ω) at every ω. Write 	 := d̄(�), and assume that ϑ 
→ P(n)
ϑ , ϑ ∈ 	 pro-

vides another parametrization of P (n). Then, ϑ 
→ P(n)
ϑ , ϑ ∈ 	 is also ULAN, with

[at ϑ = d̄(ω)] central sequence �
(n)
ϑ = (D−d̄(ω))′�(n)

ω and information matrix
ϑ = (D−d̄(ω))′ωD−d̄(ω), where D−d̄(ω) := ((Dd̄(ω))′Dd̄(ω))−1(Dd̄(ω))′
is the Moore–Penrose inverse of Dd̄(ω).

PROOF. Throughout, let ϑ and ω be such that ϑ = d̄(ω). Consider ϑ ∈ 	 and
an arbitrary sequence ϑ (n) = ϑ + O(n−1/2) ∈ 	. The characterization of ULAN
for the ϑ-parametrization involves bounded sequence τ

(n)∗∗ ∈ R
k2 such that the per-

turbation ϑ (n) + n−1/2τ
(n)∗∗ still belongs to 	. In order for ϑ (n) + n−1/2τ

(n)∗∗ to
belong to 	, it is necessary that τ

(n)∗∗ be of the form τ
(n)∗ + o(1), with τ

(n)∗ in the
tangent space to 	 at ϑ (n), hence of the form τ (n) + o(1) with τ (n) in the tangent
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space to 	 at ϑ , that is, τ (n) = Dd̄(ω)w(n) for some bounded sequence w(n) ∈ R
k1 .

It follows from differentiability that, letting ω(n) = d̄−1(ϑ (n)),

ϑ (n) + n−1/2τ (n)∗∗ = ϑ (n) + n−1/2Dd̄(ω)w(n) + o(n−1/2)

= d̄
(
ω(n))+ n−1/2Dd̄(ω)w(n) + o(n−1/2)

(A.2)
= d̄

(
ω(n))+ n−1/2Dd̄

(
ω(n))w(n) + o(n−1/2)

= d̄
(
ω(n) + n−1/2w(n) + o(n−1/2)

)
.

Hence, turning to local log-likelihood ratios, in view of ULAN for the ω-
parametrization,

log
(
dP(n)

ϑ (n)+n−1/2τ
(n)∗∗

/dP(n)

ϑ (n)

)
= log

(
dP(n)

ω(n)+n−1/2w(n)+o(n−1/2)
/dP(n)

ω(n)

)
(A.3)

= w(n)′�(n)

ω(n) − 1
2w(n)′ωw(n) + oP(1)

under P(n)

ω(n) = P(n)

ϑ (n) -probability, as n → ∞. Now, the LAQ part of ULAN for the

ϑ -parametrization requires, for some random vector �
(n)

ϑ (n) and constant matrix ϑ ,

log
(
dP(n)

ϑ (n)+n−1/2τ
(n)∗∗

/dP(n)

ϑ (n)

) = τ (n)′∗∗ �
(n)

ϑ (n) − 1
2τ (n)′∗∗ ϑτ (n)∗∗ + oP(1)(A.4)

under the same P(n)

ω(n) = P(n)

ϑ (n) probability distributions with, in view of (A.2), τ (n)∗∗ =
Dd̄(ω)w(n) +o(1). Identifying (A.3) and (A.4), we obtain that LAQ is satisfied for
the ϑ-parametrization, with any �

(n)
ϑ satisfying

(Dd̄(ω))′�(n)
ϑ = �(n)

ω .(A.5)

Now, let ti be the ith column of Dd̄(ω), i = 1, . . . , k1, and choose tk1+1, . . . ,

tk2 ∈ R
k2 in such a way that they span the orthogonal complement of M(Dd̄(ω)).

Then {ti , i = 1, . . . , k2} is a basis of R
k2 , so that there exists a unique k2-tuple

(δ
(n)
ϑ;1, . . . , δ

(n)
ϑ;k2

)′ such that �
(n)
ϑ = ∑k2

i=1 δ
(n)
ϑ;iti . With this notation, (A.5) yields

�(n)
ω = (Dd̄(ω))′�(n)

ϑ

=
k2∑

i=1

δ
(n)
ϑ;i(Dd̄(ω))′ti =

k1∑
i=1

δ
(n)
ϑ;i(Dd̄(ω))′ti

= (Dd̄(ω))′Dd̄(ω)�
(n)
ϑ ,

where we let �
(n)
ϑ := (δ

(n)
ϑ;1, . . . , δ

(n)
ϑ;k1

)′. Since Dd̄(ω) has full column rank, this

entails (i) �
(n)
ϑ = Dd̄(ω)�

(n)
ϑ and (ii) �

(n)
ϑ = ((Dd̄(ω))′Dd̄(ω))−1�(n)

ω , hence



3288 M. HALLIN, D. PAINDAVEINE AND T. VERDEBOUT

�
(n)
ϑ = (D−d̄(ω))′�(n)

ω . As a linear transformation of �(n)
ω , �

(n)
ϑ clearly also sat-

isfies the asymptotic normality part of ULAN, with the desired ϑ . �

The following slight extension of Lemma A.1 plays a role in the proof of Propo-
sition 3.1 below. Consider a parametrization ω = (ω′

a,ω
′
b)

′ 
→ P(n)
ω , ω ∈ � × V ,

where � is an open subset of R
k1 and V ⊂ R

m is a �-dimensional manifold in R
m,

and assume that it is ULAN for P (n) = {P(n)
ω |ω ∈ � × V}, with central sequence

�(n)
ω and information matrix ω. Let d̄a be a continuously differentiable map-

ping from R
k1 to R

k2 (k2 ≥ k1) with full column rank Jacobian matrix Dd̄a(ωa)

at every ωa , and assume that ϑ := d̄(ω) 
→ P(n)
ϑ , ϑ ∈ 	 × V [with 	 := d̄a(�)],

where

d̄ :� × V → 	 × V ω = (ωa,ωb)
′ 
→ d̄(ω) = (d̄a(ωa),ωb)

′

provides another parametrization of P (n). Then the proof of Lemma A.1 straight-
forwardly extends to show that ϑ 
→ P(n)

ϑ , ϑ ∈ 	 × V is also ULAN, still with

[at ϑ = d̄(ω)] central sequence �
(n)
ϑ = (D−d̄(ω))′�(n)

ω and information matrix
ϑ = (D−d̄(ω))′ωD−d̄(ω).

PROOF OF PROPOSITION 3.1. Consider the differentiable mappings d̄1 :ω :=
(θ ′, (vech�)′)′ 
→ d̄1(ω) = (θ ′, (dvec��)′, (vecβ)′)′ and d̄2 : d̄1(ω) = (θ ′,
(dvec��)′, (vecβ)′)′ 
→ d̄2(d̄1(ω)) = (θ ′, σ 2, (d

◦
vec�V)′, (vecβ)′)′ ∈ 	, the lat-

ter being invertible. Applying Lemma A.1 twice (the second time in its “extended
form,” since the β-part of the parameter is invariant under d̄2) then yields

�
(n)
ϑ = (Dd̄2(d̄1(ω)))′−1Dd̄1(ω)((Dd̄1(ω))′Dd̄1(ω))−1�(n)

ω

= (Dd̄−1
2 (d̄(ω)))′Dd̄1(ω)((Dd̄1(ω))′Dd̄1(ω))−1�(n)

ω .

In view of the definition of M�V
k (Section 3.2), the Jacobian matrix, computed at ϑ ,

of the inverse mapping d̄−1
2 is

Dd̄−1
2 (ϑ) =

⎛⎝ Ik 0 0 0
0 dvec(�V) σ 2(M�V

k )′ 0
0 0 0 Ik2

⎞⎠ .

An explicit expression for Dd̄1(ω) was obtained by Kollo and Neudecker [(1993),
page 288]:

Dd̄1(ω) =
(

Ik 0
0 �β,�� P′

k

)
,

(A.6)

with �β,�� :=

⎛⎜⎜⎜⎝
Hk(β

′)⊗2

β ′
1 ⊗ [β(λ1;�Ik − ��)−β ′]

...

β ′
k ⊗ [β(λk;�Ik − ��)−β ′]

⎞⎟⎟⎟⎠ .
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The result then follows from a direct, though painful, computation, using the fact
that

(Pk�
′
β,��

�β,�� P′
k)

−1 = (P′
k)

−(β ⊗ β)diag(l11;�, l12;�, . . . , lkk;�)(β ′ ⊗ β ′)P−
k ,

with lij ;� = 1 if i = j and lij ;� = (λi;� − λj ;�)−2 if i �= j ; (P′
k)

− here stands for
the Moore–Penrose inverse of Pk [note that (P′

k)
− is such that P′

k(P
′
k)

− vec(A) =
vec(A) for any symmetric matrix A]. �

PROOF OF PROPOSITION 3.2. Proceeding as in the proof of Lemma A.1, let
vi be the ith column of D�(ξ0), i = 1, . . . ,m, and choose vm+1, . . . ,vp ∈ R

p

spanning the orthogonal complement of M(D�(ξ0)). Then there exists a unique
p-tuple (δϑ0;1, . . . , δϑ0;p)′ such that �ϑ0 = ∑p

i=1 δϑ0;ivi (since vi , i = 1, . . . , p

spans R
p) and

�ξ0
= D�

′(ξ0)�ϑ0 =
p∑

i=1

δϑ0;iD�
′(ξ0)vi =

m∑
i=1

δϑ0;iD�
′(ξ0)vi

(A.7)
= C�(ξ0)�

m
ϑ0

,

where C�(ξ0) := D�
′(ξ0)D�(ξ0) and �m

ϑ0
:= (δϑ0;1, . . . , δϑ0;m)′. Hence, we also

have ξ0
= C�(ξ0)

m
ϑ0

C�(ξ0), where m
ϑ0

is the asymptotic covariance matrix of

�m
ϑ0

under P(n)
ϑ0

. Using the fact that C�(ξ0) is invertible, this yields

Qξ0
:= (�m

ϑ0
)′C�(ξ0)(C�(ξ0)

m
ϑ0

C�(ξ0))
−1C�(ξ0)�

m
ϑ0

− (�m
ϑ0

)′C�(ξ0)D l̄(α0)(D l̄′(α0)C�(ξ0)
m
ϑ0

C�(ξ0)D l̄(α0))
−1

× Dl̄′(α0)C�(ξ0)�
m
ϑ0

= (�m
ϑ0

)′(m
ϑ0

)−1�m
ϑ0

− (�m
ϑ0

)′(m
ϑ0

)−1/2�((m
ϑ0

)1/2C�(ξ0)D l̄(α0))(
m
ϑ0

)−1/2�m
ϑ0

=: Qξ0,1 − Qξ0,2,

where �(P) := P(P′P)−1P′ denotes the projection matrix on M(P).
Let b̄ :A ⊂ R

� → R
p be a local (at ϑ0) chart for the manifold C ∩ 	, and

assume, without loss of generality, that η0 = b̄−1(ϑ0). Since D�(ξ0) has maximal
rank, it follows from (A.7) that �ϑ0 = D�(ξ0)�

m
ϑ0

. Hence, the statistic

Q̄ϑ0 := �′
ϑ0

(
−

ϑ0
− Db̄(η0)(D b̄′(η0)ϑ0Db̄(η0))

−Db̄′(η0)
)
�ϑ0(A.8)

[the squared Euclidean norm of the orthogonal projection, onto the linear space
orthogonal to 

1/2
ϑ0

Db̄(η0), of the standardized central sequence (
1/2
ϑ0

)−�ϑ0 ] can
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be written as

Q̄ϑ0 = (�m
ϑ0

)′D�
′(ξ0)(D�(ξ0)

m
ϑ0

D�
′(ξ0))

−D�(ξ0)�
m
ϑ0

− (�m
ϑ0

)′D�
′(ξ0)D b̄(η0)(D b̄′(η0)D�(ξ0)

m
ϑ0

D�
′(ξ0)D b̄(η0))

−

× Db̄′(η0)D�(ξ0)�
m
ϑ0

= (�m
ϑ0

)′D�
′(ξ0)(D�(ξ0)

m
ϑ0

D�
′(ξ0))

−D�(ξ0)�
m
ϑ0

− (�m
ϑ0

)′(m
ϑ0

)−1/2�((m
ϑ0

)1/2D�
′(ξ0)D b̄(η0))(

m
ϑ0

)−1/2�m
ϑ0

=: Q̄ϑ0,1 − Q̄ϑ0,2.

Since D�(ξ0) has full rank, the standard properties of Moore–Penrose inverses
entail Qξ0,1 = Q̄ϑ0,1. As for Qξ0,2 and Q̄ϑ0,2, they are equal if

M((m
ϑ0

)1/2C�(ξ0)D l̄(α0)) = M((m
ϑ0

)1/2D�
′(ξ0)D b̄(η0)).

Since m
ϑ0

and C�(ξ0) are invertible, the latter equality holds if M(D l̄(α0)) =
M((C�(ξ0))

−1D�
′(ξ0)D b̄(η0)), or, since D�(ξ0) has full rank, if

M(D�(ξ0)D l̄(α0)) = M(D�(ξ0)(C�(ξ0))
−1D�

′(ξ0)D b̄(η0))(= M(�(D�(ξ0))D b̄(η0))
)
,

which trivially holds true. Hence, Qξ0,2 = Q̄ϑ0,2, so that Qξ0
= Q̄ϑ0 .

Eventually, the linear spaces orthogonal to 
1/2
ϑ0

Db̄(η0) and to 
1/2
ϑ0

Db̃(η0) do
coincide, so that the statistic Qϑ0 , which is obtained by substituting b̃ for b̄ in
(A.8), is equal to Qϑ0 (=Qξ0

). This establishes the result. �

We now turn to the proofs of Lemmas 4.1 and 4.2.

PROOF OF LEMMA 4.1. The proof consists in checking that postmultiplying
Dk(�V) with NkHkP�V

k (Ik2 +Kk)�
⊗2
V (P�V

k )′H′
kN′

k yields the (k−1)-dimensional

identity matrix (P�V
k and Nk are defined in the statement of the lemma). That is,

we show that

1
4M�V

k Hk(Ik2 + Kk)(�
−1
V )⊗2H′

k(M
�V
k )′NkHk

× P�V
k (Ik2 + Kk)�

⊗2
V (P�V

k )′H′
kN′

k(A.9)

= Ik−1.

First of all, note that the definition of MV
k (see Section 3.2) entails that, for any

k×k real matrix l such that tr(�−1
V l) = 0, (M�V

k )′NkHk(vec l) = (M�V
k )′(d ◦

vec l) =
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dvec(l) = Hk(vec l). Hence, since (letting Eij := eie′
j + ej e′

i )

P�V
k (Ik2 + Kk) = Ik2 + Kk − 2

k
�⊗2

V vec(�−1
V )(vec(�−1

V ))′

=
k∑

i,j=1

vec
(

1

2
Eij − 1

k
(�−1

V )ij�V

)
(vec Eij )

′

=:
k∑

i,j=1

(vec F�V
ij )(vec Eij )

′,

with tr(�−1
V F�V

ij ) = 0, for all i, j = 1, . . . , k, we obtain that (M�V
k )′NkHk ×

P�V
k (Ik2 +Kk) = HkP�V

k (Ik2 +Kk). Now, using the fact that H′
kHk(�

−1
V )⊗2(Ik2 +

Kk)H′
k = (�−1

V )⊗2(Ik2 + Kk)H′
k , the left-hand side of (A.9) reduces to

1
4M�V

k Hk(Ik2 + Kk)(�
−1
V )⊗2P�V

k (Ik2 + Kk)�
⊗2
V (P�V

k )′H′
kN′

k.(A.10)

After straightforward computation, using essentially the well-known property of
the Kronecker product vec(ABC) = (C′ ⊗ A)vec(B) and the fact that M�V

k ×
Hk(vec�−1

V ) = 0 and HkKk = Hk , (A.10) reduces to M�V
k HkH′

kN′
k . The result

follows, since HkH′
k = Ik and M�V

k N′
k = Ik−1. �

PROOF OF LEMMA 4.2. All stochastic convergences in this proof are as n →
∞ under P(n)

ϑ;g1
, for some fixed ϑ ∈ 	 and g1 ∈ F 4

1 . It follows from

M�V
k Hk(β

′)⊗2(V−1)⊗2 vec V = M�V
k Hk(vec�−1

V ) = 0(A.11)

and

Lβ,�V
k (V−1)⊗2 vec V = Lβ,�V

k (vec V−1) = 0,(A.12)

that

�III
ϑ;φ1

= ak

2
√

n
M�V

k Hk(�
−1/2
V β ′)⊗2

×
n∑

i=1

d2
i (θ ,V)

σ 2 vec(Ui(θ ,V)U′
i(θ ,V))

= ak

2
√

nσ 2 M�V
k Hk(β

′)⊗2(V−1)⊗2

×
n∑

i=1

vec
(
(Xi − θ)(Xi − θ)′ − (

Dk(g1)/k
)
�
)
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and

�IV
ϑ;φ1

= ak

2
√

n
Gβ

k Lβ,�V
k (V−1/2)⊗2

n∑
i=1

d2
i (θ ,V)

σ 2 vec(Ui (θ ,V)U′
i(θ ,V))

= ak

2
√

nσ 2 Gβ
k Lβ,�V

k (V−1)⊗2

×
n∑

i=1

vec
(
(Xi − θ)(Xi − θ)′ − (

Dk(g1)/k
)
�
)
.

Hence, using a root-n consistent estimator ϑ̂ := (θ̂ ′, σ̂ 2, (d
◦

vec �̂V)′, (vec β̂)′)′ and
letting �̂ := σ̂ 2β̂�̂Vβ̂ ′, Slutsky’s lemma yields

�III
ϑ̂;φ1

= ak

2
√

nσ̂ 2 M�̂V
k Hk(β̂

′)⊗2(V̂−1)⊗2

×
n∑

i=1

vec
(
(Xi − θ̂)(Xi − θ̂)′ − (

Dk(g1)/k
)
�̂
)

= ak

2
√

nσ̂ 2 M�̂V
k Hk(β̂

′)⊗2(V̂−1)⊗2

×
{

n∑
i=1

vec
(
(Xi − θ)(Xi − θ)′ − (

Dk(g1)/k
)
�
)

− nvec
(
(X̄ − θ)(θ̂ − θ)′

)− nvec
(
(θ̂ − θ)(X̄ − θ)′

)
+ nvec

(
(θ̂ − θ)(θ̂ − θ)′

)− n
(
Dk(g1)/k

)
vec(�̂ − �)

}

= �III
ϑ;φ1

− akDk(g1)

2kσ 2 M�V
k Hk(β

′)⊗2(V−1)⊗2n1/2 vec(�̂ − �)

+ oP(1),

and, similarly,

�IV
ϑ̂;φ1

= ak

2
√

nσ̂ 2 Gβ̂
k Lβ̂,�̂V

k (V̂−1)⊗2

×
n∑

i=1

vec
(
(Xi − θ̂)(Xi − θ̂)′ − (

Dk(g1)/k
)
�̂
)

= �IV
ϑ;φ1

− akDk(g1)

2kσ 2 Gβ
k Lβ,�V

k (V−1)⊗2n1/2 vec(�̂ − �)

+ oP(1).
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Writing �̂ − � = (σ̂ 2 − σ 2)V̂ + σ 2(V̂ − V), applying Slutsky’s lemma again, and
using (A.11), (A.12) and the fact that Kk vec(A) = vec(A′), we obtain

�III
ϑ̂;φ1

= �III
ϑ;φ1

− akDk(g1)

2k
M�V

k Hk(β
′)⊗2(V−1)⊗2n1/2 vec(V̂ − V)

+ oP(1)
(A.13)

= �III
ϑ;φ1

− akDk(g1)

4k
M�V

k Hk(β
′)⊗2(V−1)⊗2[Ik2 + Kk]

× n1/2 vec(V̂ − V) + oP(1)

and

�IV
ϑ̂;φ1

= �IV
ϑ;φ1

− akDk(g1)

2k
Gβ

k Lβ,�V
k (V−1)⊗2n1/2 vec(V̂ − V) + oP(1)

= �IV
ϑ;φ1

− akDk(g1)

4k
Gβ

k Lβ,�V
k (V−1)⊗2[Ik2 + Kk]n1/2 vec(V̂ − V)(A.14)

+ oP(1).

Now, Kollo and Neudecker (1993) showed that

n1/2
(

dvec(�̂V − �V)

vec(β̂ − β)

)
= n1/2�β,�V vec(V̂ − V) + oP(1),

where �β,�V was defined in (A.6). Similar computations as in the proof of Propo-
sition 3.1 then yield

n1/2 vec(V̂ − V)

= n1/2(�′
β,�V

�β,�V)−1�′
β,�V

(
dvec(�̂V − �V)

vec(β̂ − β)

)
+ oP(1)

(A.15)
= (Lβ,�V

k )′(Gβ
k )′n1/2 vec(β̂ − β)

+ β⊗2H′
kn

1/2 dvec(�̂V − �V) + oP(1).

The result for �III
ϑ̂;φ1

then follows by plugging (A.15) into (A.13) and us-

ing the facts that Hk(β
′)⊗2(V−1)⊗2(Lβ,�V

k )′ = 0 and n1/2 dvec(�̂V − �V) =
n1/2(M�V

k )′ d
◦

vec(�̂V − �V) + oP(1) as n → ∞ (the latter is a direct con-

sequence of the definition of M�V
k and the delta method). As for the result

for �IV
ϑ̂;φ1

, it follows similarly by plugging (A.15) into (A.14) by noting that

Gβ
k Lβ,�V

k (V−1)⊗2[Ik2 + Kk]β⊗2H′
k = 0. �

PROOF OF LEMMA 6.1. Throughout fix ϑ = (θ ′, σ 2, (d
◦

vec�)′, (vecβ)′)′ ∈
H�′′

0;q and g1 ∈ Fa , and define Ṽ := β̂Tyler�̃Vβ̂ ′
Tyler. Since Kk vec(A) = vec(A′)
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and c′
p,qHkβ̂

′⊗2
Tyler(Ṽ

1/2)⊗2(vec Ik) = 0, we obtain, from (6.4),

T˜ (n)
K =

(
nk(k + 2)

Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,qHkβ̂

′⊗2
Tyler(Ṽ

1/2)⊗2J⊥
k vec

(
S˜(n)

ϑ̂;K
)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,qHkβ̂

′⊗2
Tyler(Ṽ

1/2)⊗2J⊥
k vec

(
S˜(n)

ϑ;K
)

(A.16)

−
( J 2

k (K,g1)

4k(k + 2)Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,qHkβ̂

′⊗2
Tyler(Ṽ

1/2)⊗2

× (V−1/2)⊗2n1/2 vec(Ṽ − V) + oP(1)

as n → ∞, under P(n)
ϑ;g1

.

We now show that the second term in (A.16) is oP(1) as n → ∞, under P(n)
ϑ;g1

.

Since n1/2 vec(Ṽ − V) is OP(1), Slutsky’s lemma yields

(ap,q(�̃V))−1/2c′
p,qHkβ̂

′⊗2
Tyler(Ṽ

1/2)⊗2(V−1/2)⊗2n1/2 vec(Ṽ − V)

= (ap,q(�V))−1/2c′
p,qHkβ̂

′⊗2
Tyler n

1/2 vec(Ṽ − V) + oP(1).

By construction of the estimator �̃V, c′
p,qHkβ̂

′⊗2
Tyler(vec Ṽ) = 0, so that we have to

show that n1/2c′
p,qHk vec(β̂ ′

TylerVβ̂Tyler) is oP(1). We only do so for ϑ values such
that λ1;V = · · · = λq;V =: λ∗

1 > λ∗
2 := λq+1;V = · · · = λk;V, which is the most dif-

ficult case (extension to the general case is straightforward, although notationally
more tricky). Note that the fact that ϑ ∈ H�′′

0;q then implies that

−pqλ∗
1 + (1 − p)(k − q)λ∗

2 = 0.(A.17)

Partition E := β ′β̂Tyler into

E =
(

E11 E12
E21 E22

)
,(A.18)

where E11 is q × q and E22 is (k − q) × (k − q). As shown in Anderson [(1963),
page 129] n1/2(E11E′

11 − Iq) = oP(1) = n1/2(E22E′
22 − Ik−q) and n1/2E12 =

OP(1) = n1/2E′
21 as n → ∞, under P(n)

ϑ;g1
[actually, Anderson (1963) proves this

only for E = β ′βS and under Gaussian densities, but his proof readily extends to
the present situation]. Hence, still as n → ∞, under P(n)

ϑ;g1
,

n1/2c′
p,qHk vec(β̂ ′

TylerVβ̂Tyler)

= −p{n1/2λ∗
1 tr(E′

11E11) + n1/2λ∗
2 tr(E′

21E21)}
+ (1 − p){n1/2λ∗

1 tr(E′
12E12) + n1/2λ∗

2 tr(E′
22E22)}(A.19)

= −p{n1/2λ∗
1 tr(Iq)} + (1 − p){n1/2λ∗

2 tr(Ik−q)} + oP(1)

= oP(1);
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see (A.17). We conclude that the second term in (A.16) is oP(1), so that

T˜ (n)
K =

(
nk(k + 2)

Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,q

× Hkβ̂
′⊗2
Tyler(Ṽ

1/2)⊗2J⊥
k vec

(
S˜(n)

ϑ;K
)

+ oP(1)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�̃V))−1/2c′
p,q

× HkE′⊗2(β ′)⊗2(Ṽ1/2)⊗2J⊥
k vec

(
S˜(n)

ϑ;K
)

+ oP(1).

Since n1/2J⊥
k vec(S˜(n)

ϑ;K) is OP(1) under P(n)
ϑ;g1

, Slutsky’s lemma entails

T˜ (n)
K =

(
nk(k + 2)

Jk(K)

)1/2

(ap,q(�V))−1/2c′
p,q

× Hk(diag(E′
11,E′

22))
⊗2(β ′)⊗2

× (V1/2)⊗2J⊥
k vec

(
S˜(n)

ϑ;K
)+ oP(1)

(A.20)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�V))−1/2c′
p,q

× Hk(diag(E′
11,E′

22))
⊗2(β ′)⊗2

× (V1/2)⊗2 vec
(
S˜(n)

ϑ;K
)+ oP(1),

where we used the facts that S˜(n)
ϑ;K is OP(1) and that

n1/2c′
p,qHk(diag(E′

11,E′
22))

⊗2(β ′)⊗2(V1/2)⊗2(vec Ik)

= n1/2{−pλ∗
1 tr(E11E′

11) + (1 − p)λ∗
2 tr(E22E′

22)}
= n1/2{−pλ∗

1 tr(Iq) + (1 − p)λ∗
2 tr(Ik−q)} + oP(1)

= oP(1).

Then, putting [with the same partitioning as in (A.18)]

β ′V1/2S˜(n)
ϑ;KV1/2β =: D(n)

ϑ;K =:
((

D(n)
ϑ;K

)
11

(
D(n)

ϑ;K
)
12(

D(n)
ϑ;K

)
21

(
D(n)

ϑ;K
)
22

)
,
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the asymptotic properties of S˜(n)
ϑ;K and Ejj , j = 1,2 imply that

T˜ (n)
K =

(
nk(k + 2)

Jk(K)

)1/2

(ap,q(�V))−1/2{−p tr
(
E′

11
(
D(n)

ϑ;K
)
11E11

)
+ (1 − p) tr

(
E′

22
(
D(n)

ϑ;K
)
22E22

)}+ oP(1)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�V))−1/2{−p tr
((

D(n)
ϑ;K

)
11

)
+ (1 − p) tr

((
D(n)

ϑ;K
)
22

)}+ oP(1)

=
(

nk(k + 2)

Jk(K)

)1/2

(ap,q(�V))−1/2c′
p,qHk(β

′)⊗2(V1/2)⊗2 vec
(
S˜(n)

ϑ;K
)+ oP(1)

= T˜ (n)
ϑ;K + oP(1)

as n → ∞, under P(n)
ϑ;g1

, which establishes the result. �

PROOF OF PROPOSITION 6.2. Fix ϑ0 ∈ Hβ′
0;1 and g1 ∈ Fa . We have already

shown in Section 6.2 that Q˜
(n)
K − Q˜

(n)
ϑ0,K

= oP(1) as n → ∞ under P(n)
ϑ0;g1

. Propo-

sition 6.1(i) then yields

Q˜
(n)
K = �IV′

ϑ0;K,g1
[(IV

ϑ0;K)− − Pβ0

k ((Pβ0

k )′IV
ϑ0;KPβ0

k )−(Pβ0

k )′]�IV
ϑ0;K,g1

(A.21)
+ oP(1),

still as n → ∞ under P(n)
ϑ0;g1

. Now, since

IV
ϑ0;K [(IV

ϑ0;K)− − Pβ0

k ((Pβ0

k )′IV
ϑ0;KPβ0

k )−(Pβ0

k )′]
= 1

2Gβ0
k diag

(
Ik−1,0(k−2)(k−1)/2×(k−2)(k−1)/2

)
(Gβ0

k )′

is idempotent with rank (k − 1) [compare with (4.4)], it follows that Q˜
(n)
K is as-

ymptotically chi-square with (k − 1) degrees of freedom under P(n)
ϑ0;g1

, which es-
tablishes the null-hypothesis part of (i). For local alternatives, we restrict to those
parameter values ϑ0 ∈ Hβ

0 for which we have ULAN. From contiguity, (A.21),

also holds under alternatives of the form P(n)

ϑ0+n−1/2τ (n);g1
. Le Cam’s third lemma

then implies that Q˜
(n)
K , under P(n)

ϑ0+n−1/2τ (n);g1
, is asymptotically noncentral chi-

square, still with (k − 1) degrees of freedom, but with noncentrality parameter

lim
n→∞

{(
τ IV(n))′
× [

IV
ϑ0;K,g1

[(IV
ϑ0;K)− − Pβ0

k ((Pβ0

k )′IV
ϑ0;KPβ0

k )−(Pβ0

k )′]IV
ϑ0;K,g1

]
τ IV(n)}.
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Evaluation of this limit completes part (i) of the proof.
As for parts (ii) and (iii), the fact that φ˜

(n)
β;K has asymptotic level α directly fol-

lows from the asymptotic null distribution just established and the classical Helly–
Bray theorem, while asymptotic optimality under Kf1 scores is a consequence of

the asymptotic equivalence, under density f1, of Q˜
(n)
Kf1

and the optimal parametric

test statistic for density f1. �

PROOF OF PROPOSITION 6.3. Fix ϑ0 ∈ H�′′
0;q and g1 ∈ Fa . It directly follows

from Lemma 6.1 and Proposition 6.1 that

T˜ (n)
K = (grad′ h(d

◦
vec�0

V)(III
ϑ0;K)−1 gradh(d

◦
vec�0

V))−1/2

× grad′ h(d
◦

vec�0
V)(III

ϑ0;K)−1�III
ϑ0;K,g1

+ oP(1)

as n → ∞, under P(n)
ϑ0;g1

, hence also—provided that ϑ0 ∈ H�
0 —under the contigu-

ous sequences P(n)

ϑ0+n−1/2τ (n);g1
. Parts (i) and (ii) result from the fact that �˜ III

ϑ0;K,g1

is asymptotically normal with mean zero under P(n)
ϑ0;g1

and mean

lim
n→∞

{
Jk(K,g1)/

(
k(k + 2)

)
Dk(�V)τ III(n)}

under P(n)

ϑ0+n−1/2τ (n);g1
(Le Cam’s third lemma; again, for ϑ0 ∈ H�

0 ), and with co-

variance matrix Jk(K)/(k(k + 2))Dk(�V) under both. Parts (iii) and (iv) follow
as in the previous proof. �
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