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MONOTONE SPECTRAL DENSITY ESTIMATION

BY DRAGI ANEVSKI AND PHILIPPE SOULIER

Lund University and Université Paris Ouest Nanterre

We propose two estimators of a monotone spectral density, that are based
on the periodogram. These are the isotonic regression of the periodogram
and the isotonic regression of the log-periodogram. We derive pointwise
limit distribution results for the proposed estimators for short memory linear
processes and long memory Gaussian processes and also that the estimators
are rate optimal.

1. Introduction. The motivation for doing spectral analysis of stationary time
series comes from the need to analyze the frequency content in the signal. The fre-
quency content can for instance be described by the spectral density, defined below,
for the process. One could be interested in looking for a few dominant frequencies
or frequency regions, which correspond to multimodality in the spectral density.
Inference methods for multimodal spectral densities have been treated in Davies
and Kovac (2004), using the taut string method. A simpler problem is that of fitting
a unimodal spectral density, that is, the situation when there is only one dominant
frequency, which can be known or unknown, corresponding to known or unknown
mode, respectively, and leading to the problem of fitting a unimodal spectral den-
sity to the data. In this paper we treat unimodal spectral density estimation for
known mode. A spectral density that is decreasing on [0, π] is a model for the fre-
quency content in the signal being ordered. A unimodal spectral density is a model
for there being one major frequency component, with a decreasing amount of other
frequency components seen as a function of the distance to the major frequency.

Imposing monotonicity (or unimodality) means that one imposes a nonparamet-
ric approach, since the set of monotone (or unimodal) spectral densities is infinite
dimensional. A parametric problem that is contained in our estimation problem is
that of a power law spectrum, that is, when one assumes that the spectral density
decreases as a power function f (u) ∼ u−β for u ∈ (0, π), with unknown expo-
nent β . Power law spectra seem to have important applications to physics, as-
tronomy and medicine; four different applications mentioned in McCoy, Walden
and Percival (1998) are: (a) fluctuations in the Earth’s rate of rotation [cf. Munk
and Macdonald (2009)], (b) voltage fluctuations across cell membrane [cf. Holden
(1976)], (c) time series of impedances of rock layers in boreholes [cf., e.g., Kerner
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and Harris (1994)] and (d) x-ray time variability of galaxies [cf. McHardy and Cz-
erny (1987)]. We propose to use a nonparametric approach as an alternative to the
power law spectrum methods used in these applications. There are (at least) two
reasons why this could make sense: first, the reason for using a power function, for
example, to model the spectrum in the background radiation, is (at best) a theoret-
ical consideration exploiting physical theory and leading to the power function as
a good approximation. However, this is a stronger model assumption to impose on
the data than merely imposing monotonicity, and thus one could imagine a wider
range of situations that should be possible to analyze using our methods. Second,
fitting a power law spectral model to data consists of doing linear regression of the
log periodogram; if the data are not very well aligned along a straight line (after a
log-transformation) this could influence the overall fit. A nonparametric approach,
in which one assumes only monotonicity, is more robust against possible misfit.

Sometimes one assumes a piecewise power law spectrum [cf. Percival (1991)]
as a model. Our methods are well adapted to these situations when the overall
function behavior is that of a decreasing function.

Furthermore there seem to be instances in the literature when a monotonically
decreasing (or monotonically increasing) spectral density is both implicitly as-
sumed as a model, and furthermore seems feasible: two examples in Percival and
Walden (1993) [cf., e.g., Figures 20 and 21 in Percival and Walden (1993)] are (e)
the wind speed in a certain direction at a certain location measured every 0.025
second (for which a decreasing spectral density seems to be feasible) and (f) the
daily record of how well an atomic clock keeps time on a day-to-day basis (which
seems to exhibit an increasing spectral density). The methods utilized in Percival
and Walden (1993) are smoothing of the periodogram. We propose to use an order-
restricted estimator of the spectral density, and would like to claim that this is better
adapted to the situations at hand.

Decreasing spectral densities can arise when one observes a sum of several para-
metric time series, for instance, AR(1) processes with coefficient |a| < 1; the inter-
est of the nonparametric method in that case is that one does not have to know how
many AR(1) are summed up. Another parametric example is an ARFIMA(0, d,0)

with 0 < d < 1/2, which has a decreasing spectral density, which is observed with
added white noise, or even with added one (or several) AR(1) processes; the re-
sulting time series will have a decreasing spectral density. Our methods are well
adapted to this situation, and we will illustrate the nonparametric methods on sim-
ulated data from such parametric models.

The spectral measure of a weakly stationary process is the positive measure σ

on [−π,π ] characterized by the relation

cov(X0,Xk) =
∫ π

−π
eikxσ (dx).

The spectral density, when it exists, is the density of σ with respect to Lebesgue’s
measure. It is an even nonnegative integrable function on [−π,π ]. Define the spec-
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tral distribution function on [−π,π ] by

F(λ) =
∫ λ

0
f (u)du, 0 ≤ λ ≤ π,

F (λ) = −F(−λ), −π ≤ λ < 0.

An estimate of the spectral density is given by the periodogram

In(λ) = 1

2πn

∣∣∣∣∣
n∑

k=1

Xke
−ikλ

∣∣∣∣∣
2

.

The spectral distribution function is estimated by the empirical spectral distribution
function

Fn(λ) =
∫ λ

0
In(u) du.

Functional central limit theorems for Fn have been established in Dahlhaus (1989)
and Mikosch and Norvaiša (1997). However, since the derivative is not a smooth
map, the properties of Fn do not transfer to In, and furthermore it is well known
that the periodogram is not even a consistent estimate of the spectral density. The
standard remedy for obtaining consistency is to use kernel smoothers. This, how-
ever, entails a bandwidth choice, which is somewhat ad hoc. The assumption of
monotonicity allows for the construction of adaptive estimators that do not need a
pre-specified bandwidth.

We will restrict our attention to the class of nonincreasing functions.

DEFINITION 1. Let F be the convex cone of integrable, monotone nonin-
creasing functions on (0, π].

Given a stationary sequence {Xk} with spectral density f , the goal is to estimate
f under the assumption that it lies in F . We suggest two estimators, which are the
L

2 orthogonal projections on the convex cone F of the periodogram and of the
log-periodogram, respectively.

(i) The L
2 minimum distance estimate between the periodogram and F is

defined as

f̂n = arg min
z∈F

Q(z),(1)

with

Q(z) =
∫ π

0

(
In(s) − z(s)

)2
ds.

This estimator of the spectral density naturally yields a corresponding estimator
F̂n of the spectral distribution function F , defined by

F̂n(t) =
∫ t

0
f̂n(s) ds.(2)
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(ii) The L
2 minimum distance estimate between the log-periodogram (often

called the cepstrum) and the “logarithm of F ” is defined as

f̃n = exp arg min
z∈F

Q̃(z),(3)

with

Q̃(z) =
∫ π

0
{log In(s) + γ − log z(s)}2 ds,

where γ is Euler’s constant. To understand the occurrence of the centering −γ ,
recall that if {Xn} is a Gaussian white noise sequence with variance σ 2, then
its spectral density is σ 2/(2π) and the distribution of In(s)/(σ

2/2π) is a stan-
dard exponential (i.e., one half of a chi-square with two degrees of freedom), and
it is well known that if Z is a standard exponential, then E[log(Z)] = −γ and
var(logZ) = π2/6 [see, e.g., Hurvich, Deo and Brodsky (1998)]. The log-spectral
density is of particular interest in the context of long-range dependent time series,
that is, when the spectral density has a singularity at some frequency and might not
be square integrable, though it is always integrable by definition. For instance, the
spectral density of an ARFIMA(0, d,0) process is f (x) = σ 2|1 − eix |−2d , with
d ∈ (−1/2,1/2). It is decreasing on (0, π] for d ∈ (0,1/2) and not square inte-
grable for d ∈ (1/4,1/2). In this context, for technical reasons, we will take In to
be a step function changing value at the so-called Fourier frequencies λk = 2πk/n.

The paper is organized as follows: in Section 2 we derive the algorithms for the
estimators f̂n, F̂n and f̃n. In Section 3 we derive a lower bound for the asymptotic
local minimax risk in monotone spectral density estimation and show that the rate
is not faster than n−1/3. In Section 4 we derive the pointwise limit distributions for
the proposed estimators. The limit distribution of f̂n (suitably centered and nor-
malized) is derived for a linear process. The asymptotic distribution is that of the
slope of the least concave majorant at 0 of a quadratic function plus a two-sided
Brownian motion. Up to constants, this distribution is the so-called Chernoff’s dis-
tribution [see Groeneboom and Wellner (2001)] which turns up in many situations
in monotone function estimation [see, e.g., Prakasa Rao (1969) for monotone den-
sity estimation and Wright (1981) for monotone regression function estimation].
The limit distribution for f̃n is derived for a Gaussian process and is similar to the
result for f̂n. Section 5 contains a simulation study with plots of the estimators.
Section 6 contains the proofs of the limit distribution results (Theorems 5 and 6).

2. Identification of the estimators. Let h be a function defined on a compact
interval [a, b]. The least concave majorant T (h) of h and its derivative T (h)′ are
defined by

T (h) = arg min{z : z ≥ x, z concave},
T (h)′(t) = min

u<t
max
v≥t

h(v) − h(u)

v − u
.
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By definition, T (h)(t) ≥ h(t) for all t ∈ [a, b], and it is also clear that T (h)(a) =
h(a), T (h)(b) = h(b). Since T (h) is concave, it is everywhere left and right dif-
ferentiable, T (h)′ as defined above coincides with the left derivative of T (h) and
T (h)(t) = ∫ t

a T (h)′(s) ds [see, e.g., Hörmander (2007), Theorem 1.1.9]. We will
also need the following result.

LEMMA 1. If h is continuous, then the support of the Stieltjes measure dT (h)′
is included in the set {T (h) = h}.

PROOF. Since h and T (h) are continuous and T (h)(a) − h(a) = T (h)(b) −
h(b) = 0, the set {T (h) > h} is open. Thus it is a union of open intervals. On
such an interval, T (h) is linear since otherwise it would be possible to build a
concave majorant of h that would be strictly smaller than T (h) on some smaller
open subinterval. Hence T (h)′ is piecewise constant on the open set {T (h) > h},
so that the support of dT (h)′ is included in the closed set {T (h) = h}. �

The next lemma characterizes the least concave majorant as the solution of a
quadratic optimization problem. For any integrable function g, define the function
ḡ on [0, π] by

ḡ(t) =
∫ t

0
g(s) ds.

LEMMA 2. Let g ∈ L
2([0, π]). Let G be defined on L

2([0, π]) by

G(f ) = ‖f − g‖2
2 =

∫ π

0
{f (s) − g(s)}2 ds.

Then arg minf ∈F G(f ) = T (ḡ)′.

This result seems to be well known. It is cited, for example, in Mammen [(1991),
page 726] but since we have not found a proof, we give one for completeness.

Let G : F �→ R be an arbitrary functional. It is called Gateaux differentiable at
the point f ∈ F if the limit

G′
f (h) = lim

t→0

G(f + th) − G(f )

t

exists for every h such that f + th ∈ F for small enough t .

PROOF OF LEMMA 2. Denote G(f ) = ‖f −g‖2
2 and f̂ = T (ḡ)′. The Gateaux

derivative of G at f̂ in the direction h is

G′
f̂
(h) = 2

∫ π

0
h(t){f̂ (t) − g(t)}dt.
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By integration by parts, and using that T (ḡ)(π)− ḡ(π) = T (ḡ)(0)− ḡ(0) = 0, for
any function of bounded variation h, we have

G′
f̂
(h) = −2

∫ π

0
{T (ḡ)(t) − ḡ(t)}dh(t).(4)

By Lemma 1, the support of the measure df̂ is included in the closed set {T (ḡ) =
ḡ}, and thus

G′
f̂
(f̂ ) = −2

∫ π

0
{T (ḡ)(t) − ḡ(t)}df̂ (t) = 0.(5)

If h = f − f̂ , with f monotone nonincreasing, (4) and (5) imply that

G′
f̂
(f − f̂ ) = −2

∫ π

0
{T (ḡ)(t) − ḡ(t)}df (t) ≥ 0.(6)

Let f ∈ F be arbitrary, and let u be the function defined on [0,1] by u(t) =
G(f̂ + t (f − f̂ )). Then u is convex and u′(0) = G′

f̂
(f − f̂ ) ≥ 0 by (6). Since

u is convex, if u′(0) ≥ 0, then u(1) ≥ u(0), that is, G(f ) ≥ G(f̂ ). This proves that
f̂ = arg minf ∈F G(f ). �

Since f̂n and log f̃n are the minimizers of the L
2 distance of In and log(In)+γ ,

respectively, over the convex cone of monotone functions, we can apply Lemma 2
to derive characterizations of f̂n and f̃n.

THEOREM 3. Let f̂n, F̂n and f̃n be defined in (1), (2) and (3), respectively.
Then

f̂n = T (Fn)
′,

F̂n(t) = T (Fn),

f̃n = exp{T (F̃n)
′},

where

Fn(t) =
∫ t

0
In(u) du,

F̃n(t) =
∫ t

0
{log In(u) + γ }du.

Standard and well-known algorithms for calculating the map y �→ T (y)′ are
the pool adjacent violators algorithm (PAVA), the minimum lower set algorithm
(MLSA) and the min–max formulas; cf. Robertson, Wright and Dykstra (1988).
Since the maps T and T ′ are continuous operations, in fact the algorithms PAVA
and MLSA will be approximations that solve the discrete versions of our problems,
replacing the integrals in Q and Q̃ with approximating Riemann sums. Note that
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the resulting estimators are order-restricted means; the discrete approximations
entail that these are approximated as sums instead of integrals. The approximation
errors are similar to the ones obtained, for example, for the methods in Mammen
(1991) and Anevski and Hössjer (2006).

3. Lower bound for the local asymptotic minimax risk. We establish a
lower bound for the minimax risk when estimating a monotone spectral density
at a fixed point. This result will be proved by looking at parametrized subfamilies
of spectral densities in an open set of densities on R

n; the subfamilies can be seen
as (parametrized) curves in the set of monotone spectral densities. The topology
used will be the one generated by the metric

ρ(f, g) =
∫

R

|f (x) − g(x)|dx

for f,g spectral density functions on [−π,π ]. Note first that the distribution of
a stochastic process is not uniquely defined by the spectral density. To accomo-
date this, let Lg be the set of all laws of stationary processes (i.e., the translation
invariant probability distributions on R

∞) with spectral density g.
Let ε > 0, c1, c2 be given finite constants, and let t0 > 0, the point at which we

want to estimate the spectral density, be given.

DEFINITION 2. For each n ∈ Z let G 1 := G 1(ε, c1, c2, t0) be a set of monotone
C1 spectral densities g on [0, π], such that

sup
|t−t0|<ε

g′(t) < 0,(7)

c1 < inf|t−t0|<ε
g(t) < sup

|t−t0|<ε

g(t) < c2.(8)

THEOREM 4. For every open set U in G 1 there is a positive constant c(U)

such that

lim inf
n→∞ inf

Tn

sup
g∈U

sup
L∈Lg

n2/3
EL

[(
Tn − g(t0)

)2] ≥ c(U),

where the infimum is taken over all functions Tn of the data.

PROOF. Let k be a fixed real valued continuously differentiable function, with
support [−1,1] such that

∫
k(t) dt = 0, k(0) = 1 and sup|k(t)| ≤ 1. Then, since k′

is continuous with compact support, |k′| < C for some constant C < ∞.
For fixed h > 0, define a parametrized family of spectral densities gθ by

gθ (t) = g(t) + θk

(
t − t0

h

)
.
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Obviously, {gθ }θ∈
 are C1 functions. Since

g′
θ (t) = g′(t) + θ

h
k′

(
t − t0

h

)
,

and since k′ is bounded, we have that, for |t − t0| < ε, g′
θ (t) < 0 if |θ/h| < δ, for

some δ = δ(C) > 0. Thus, in order to make the parametrized spectral densities gθ

strictly decreasing in the neighborhood {t : |t − t0| < ε}, the parameter space for θ

should be chosen as


 = (−δh, δh).

We will use the van Trees inequality [cf. Gill and Levit (1995), Theorem 1] for the
estimand gθ (t0) = g(t0) + θ . Let λ be an arbitrary prior density on 
. Then, for
sufficiently small δ, {gθ : θ ∈ 
} ⊂ U (cf. the definition of the metric ρ). Let Pθ

denote the distribution of a Gaussian process with spectral density gθ , and Eθ the
corresponding expectation. Then

sup
g∈U

sup
L∈Lg

EL

(
Tn − g(t0)

)2 ≥ sup
θ∈


Eθ

(
Tn − gθ (t0)

)2

≥
∫



Eθ

(
Tn − gθ (t0)

)2
λ(θ) dθ.

Then, by the Van Trees inequality, we obtain∫



Eθ

(
Tn − gθ (t0)

)2
λ(θ) dθ ≥ 1∫

In(θ)λ(θ) dθ + Ĩ (λ)
,(9)

where

In(θ) = 1
2 tr({M−1

n (gθ )Mn(∂θgθ )}2)

is the Fisher information matrix [cf. Dzhaparidze (1986)] with respect to the para-
meter θ of a Gaussian process with spectral density gθ , and for any even nonneg-
ative integrable function φ on [−π,π ], Mn(φ) is the Toeplitz matrix of order n

Mn(φ)i,j =
∫ π

−π
φ(x) cos

(
(i − j)x

)
dx.

For any n × n nonnegative symmetric matrix A, define the spectral radius of A as

ρ(A) = sup{utAu | utu = 1},
where ut denotes transposition of the vector u, so that ρ(A) is the the largest
eigenvalue of A. Then, for any n × n matrix B ,

tr(AB) ≤ ρ(A) tr(B).

If φ is bounded away from zero, say φ(x) ≥ a > 0 for all x ∈ [−π,π ], then

ρ(M−1
n (φ)) ≤ a−1.



426 D. ANEVSKI AND P. SOULIER

By the Parseval–Bessel inequality,

tr({Mn(φ)}2) ≤ n

∫ π

−π
φ2(x) dx.

Thus, if g is bounded below, then In(θ) is bounded by some constant times

n

∫ π

−π
k2(

(t − t0)/h
)
dt = nh

∫
k2(t) dt.

In order to get an expression for Ĩ (λ), let λ0 be an arbitrary density on (−1,1),
and define the prior density on 
 = (−δh, δh) as λ(θ) = 1

δh
λ0(

θ
δh

). Then

Ĩ (λ) =
∫ δh

−δh

(λ′(θ))2

λ(θ)
dθ = 1

δ2h2

∫ 1

−1

λ′
0(u)2

λ0(u)
du = I0

δ2h2 .

Finally, plugging the previous bounds into (9) yields, for large enough n,

sup
g∈U

sup
L∈Lg

EL

(
Tn(t0) − g(t0)

)2 ≥ 1

nhc3 + I0δ−2h−2 ,

which, if h = n−1/3, becomes

sup
g∈U

sup
L∈Lg

EL[{Tn(t0) − g(t0)}2] ≥ c4n
−2/3,

for some positive constant c4. This completes the proof of Theorem 4. �

4. Limit distribution results. We next derive the limit distributions for f̂n

and f̃n under general assumptions. The main tools used are local limit distrib-
utions for the rescaled empirical spectral distribution function Fn and empirical
log-spectral distribution function F̃n, respectively, as well as maximal bounds for
the rescaled processes. These will be coupled with smoothness results for the least
concave majorant map established in Anevski and Hössjer (2006), Theorems 1
and 2. The proofs are postponed to Section 6.

4.1. The limit distribution for the estimator f̂n.

ASSUMPTION 1. The process {Xi, i ∈ Z} is linear with respect to an i.i.d.
sequence {εi, i ∈ Z} with zero mean and unit variance, that is,

Xk =
∞∑

j=0

aj εk−j ,(10)

where the sequence {aj } satisfies

∞∑
j=1

(j1/2|aj | + j3/2a2
j ) < ∞.(11)
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REMARK 1. Condition (11) is needed to deal with remainder terms and apply
the results of Mikosch and Norvaiša (1997) and Brockwell and Davis (1991). It is
implied, for instance, by the simpler condition

∞∑
j=1

j3/4|aj | < ∞.(12)

It is satisfied by most usual linear time series such as causal invertible ARMA
processes.

The spectral density of the process {Xi} is given by

f (u) = 1

2π

∣∣∣∣∣
∞∑

j=0

aj e
iju

∣∣∣∣∣
2

.

Unfortunately, there is no explicit condition on the coefficients aj that implies
monotonicity of f , but the coefficients aj are not of primary interest here.

The limiting distribution of the estimator will be expressed in terms of the so-
called Chernoff distribution, that is, the law of a random variable ζ defined by
ζ = arg maxs∈R{W(s) − s2}, where W is a standard two-sided Brownian motion.
See Groeneboom and Wellner (2001) for details about this distribution.

THEOREM 5. Let {Xi} be a linear process such that (10) and (11) hold and
E[ε8

0] < ∞. Assume that its spectral density f belongs to F . Assume f ′(t0) < 0 at
the fixed point t0. Then, as n → ∞,

n1/3(
f̂n(t0) − f (t0)

) L→ 2{−πf 2(t0)f
′(t0)}1/3ζ.

4.2. The limit distributions for the estimator f̃n. In this section, in order to
deal with the technicalities of the log-periodogram, we make the following as-
sumption.

ASSUMPTION 2. The process {Xk} is Gaussian. Its spectral density f is
monotone on (0, π] and can be expressed as

f (x) = |1 − eix |−2df ∗(x),

with |d| < 1/2 and f ∗ is bounded above and away from zero and there exists a
constant C such that for all x, y ∈ (0, π],

|f (x) − f (y)| ≤ C
|x − y|
x ∧ y

.
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REMARK 2. This condition is usual in the long memory literature. Similar
conditions are assumed in Robinson (1995), Assumption 2, Moulines and Soulier
(1999), Assumption 2, Soulier (2001), Assumption 1 (with a typo). It is used to de-
rive covariance bounds for the discrete Fourier transform ordinates of the process,
which yield covariance bounds for nonlinear functionals of the periodogram ordi-
nates in the Gaussian case. It is satisfied by usual long memory processes such as
causal invertible ARFIMA(p, d, q) processes with possibly an additive indepen-
dent white noise or AR(1) process.

Recall that

f̃n = exp arg min
f ∈F

∫ π

0
{logf (s) − log In(s) + γ }2 ds,

where γ is Euler’s constant and In is the periodogram, defined here as a step func-
tion

In(t) = In(2π [nt/2π ]/n) = 2π

n

∣∣∣∣∣
n∑

k=1

Xke
i2kπ [nt/2π ]/n

∣∣∣∣∣
2

.

THEOREM 6. Let {Xi} be a Gaussian process that satisfies Assumption 2.
Assume f ′(t0) < 0 at the fixed point t0 ∈ (0, π). Then, as n → ∞,

n1/3{log f̃n(t0) − logf (t0)} L→ 2
(−π4f ′(t0)

3f (t0)

)1/3

ζ.

COROLLARY 7. Under the assumptions of Theorem 6,

n1/3{f̃n(t0) − f (t0)} L→ 2{−π4f 2(t0)f
′(t0)/3}1/3ζ.

REMARK 3. This is the same limiting distribution as in Theorem 5, up to the
constant 3−1/3π > 1. Thus the estimator f̃n is less efficient than the estimator f̂n,
but the interest of f̃n is to be used when long memory is suspected, that is, the
spectral density exhibits a singularity at zero, and the assumptions of Theorem 5
are not satisfied.

5. Simulations and finite sample behavior of estimators. In this section we
apply the nonparametric methods on simulated time series data of sums of para-
metric models. The algorithms used for the calculation of f̂n and f̃n are the discrete
versions of the estimators f̂ , f̃n, that are obtained by doing isotonic regression of
the data {(λk, In(λk)), k = 1, . . . , [(n − 1)/2]} where λk = 2πk/n. For instance,
the discrete version f̂ d

n of f̂n is calculated as

f̂ d
n = arg min

z∈F

n∑
k=1

(
In(λk) − z(λk)

)2
.
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Note that the limit distribution for f̃n is stated for the discrete version f̃ d
n . The

simulations were done in R, using the “fracdiff” package. The code is available
from the corresponding author upon request.

EXAMPLE 1. The first example consists of sums of several AR(1) processes.
Let {Xk} be a stationary AR(1) process, that is, for all k ∈ Z,

Xk = aXk−1 + εk,

with |a| < 1. This process has spectral density function f (λ) = (2π)−1σ 2|1 −
aeiλ|−2 for −π ≤ λ ≤ π , with σ 2 = var(ε2

1) and and thus f is decreasing on [0, π].
If X(1), . . . ,X(p) are independent AR(1) processes with coefficients aj such that
|aj | < 1, j = 1, . . . , p, and we define the process X by

Xk =
p∑

j=1

X
(j)
k ,

then X has spectral density f (λ) = (2π)−1 ∑p
j=1 σ 2

j |1 + aj e
iλ|−2 which is de-

creasing on [0, π], since it is a sum of decreasing functions. Assuming that we
do not know how many AR(1) processes are summed, we have a nonparamet-
ric problem: estimate a monotone spectral density. Figure 1 shows a plot of the

FIG. 1. The spectral density (red), the periodogram (black), the estimates f̂n (green) and f̃n (yel-
low), for n = 100,500,1,000 and 5,000 data points, for Example 1.
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FIG. 2. Left plot: spectral density (black), pointwise mean of estimates f̂n (red) and 95% confidence
intervals (green). Right plot: spectral density (black), pointwise mean of the estimates f̃n (red) and
95% confidence intervals (green), for n = 1,000 data points, for Example 1.

periodogram, the true spectral density and the nonparametric estimators f̂n and
f̃n for simulated data from a sum of three independent AR(1) processes with
a1 = 0.5, a2 = 0.7, a3 = 0.9. Figure 2 shows the pointwise means and 95% confi-
dence intervals of f̂n and f̃n for 1,000 realizations.

EXAMPLE 2. The second example is a sum of an ARFIMA(0, d,0) process
and an AR(1) process. Let X(1) be an ARFIMA(0, d,0)-process with 0 < d < 1/2.
This has a spectral density (2π)−1σ 2

1 |1−eiλ|−2d . If we add an independent AR(1)-
process X(2) with coefficient |a| < 1 the resulting process X = X(1) + X(2) will
have spectral density f (λ) = (2π)−1σ 2

1 |1 − eiλ|−2d + (2π)−1σ 2
2 |1 − aeiλ|−2 on

[0, π], and thus the resulting spectral density f will be a monotone function on
[0, π]. As above, if an unknown number of independent processes is added we have
a nonparametric estimation problem. Figure 3 shows a plot of the periodogram,
the true spectral density and the nonparametric estimators f̂n and f̃n for simulated
time series data from a sum of an ARFIMA(0, d,0)-process with d = 0.2 and
an AR(1)-process with a = 0.5. Figure 4 shows the pointwise means and 95%
confidence intervals of f̂n and f̃n for 1,000 realizations.

Table 1 shows mean square root of sum of squares errors (comparing with the
true function), calculated on 1,000 simulated samples of the times series of Exam-
ple 1. Table 2 shows the analog values for Example 2.

Both estimators f̂n and f̃n seem to have good finite sample properties. As indi-
cated by the theory, f̃n seems to be less efficient than f̂n.

6. Proofs of Theorems 5 and 6. Let Jn be the integral of the generic prelim-
inary estimator of the spectral density, that is the integral of In or of log(In), let K

denote F or the primitive of logf , respectively, and write

Jn(t) = K(t) + vn(t).(13)
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FIG. 3. The spectral density (red), the periodogram (black), the estimates f̂n (green) and f̃n (yel-
low), for n = 100,500,1,000 and 5,000 data points, for Example 2.

Let dn ↓ 0 be a deterministic sequence, and define the rescaled process and
rescaled centering

ṽn(s; t0) = d−2
n {vn(t0 + sdn) − vn(t0)},(14)

gn(s) = d−2
n {K(t0 + sdn) − K(t0) − K ′(t0)dns}.(15)

FIG. 4. Left plot: spectral density (black), pointwise mean of estimates f̂n (red) and 95% confidence
intervals (green). Right plot: spectral density (black), pointwise mean of the estimates f̃n (red) and
95% confidence intervals (green), for n = 1,000 data points, for Example 2.
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TABLE 1
MISE values for Example 1

MISE n = 100 n = 500 n = 1,000 n = 5,000

In 9.59 12.96 13.67 14.25
f̂n 6.38 5.48 4.76 2.95
f̃n 9.11 8.52 7.27 4.26

Consider the following conditions:

(AH1) There exists a stochastic process ṽ(·; t0) such that

ṽn(·; t0) L→ ṽ(·; t0),(16)

in D(−∞,∞), endowed with the topology generated by the supnorm met-
ric on compact intervals, as n → ∞.

(AH2) For each ε, δ > 0 there is a finite τ such that

lim sup
n→∞

P

(
sup
|s|≥τ

∣∣∣∣ ṽn(s; t0)
gn(s)

∣∣∣∣ > ε

)
< δ,(17)

P

(
sup
|s|≥τ

∣∣∣∣ ṽ(s; t0)
s2

∣∣∣∣ε
)

< δ.(18)

(AH3) There is a constant A < 0 such that for each c > 0,

lim
n→∞ sup

|s|≤c

|gn(s) − As2| = 0;(19)

(AH4) For each a ∈ R and c, ε > 0

P
(
ṽ(s; t0)(s) − ṽ(0; t0) + As2 − as ≥ ε|s| for all s ∈ [−c, c]) = 0.(20)

If there exists a sequence dn such that these four conditions hold, then, defining the
process y by y(s) = ṽ(s; t0) + As2, by Anevski and Hössjer [(2006), Theorems 1
and 2] as n → ∞, it holds that

d−1
n {T (Jn)

′(t0) − K ′(t0)} L→ T (y)′(0),(21)

where T (y)′(0) denotes the slope at zero of the smallest concave majorant of y.

TABLE 2
MISE values for Example 2

MISE n = 100 n = 500 n = 1,000 n = 5,000

In 1.80 1.99 2.02 2.07
f̂n 0.710 0.520 0.432 0.305
f̃n 1.12 0.803 0.659 0.472



MONOTONE SPECTRAL DENSITY ESTIMATION 433

6.1. Proof of Theorem 5. The proof consists in checking conditions (AH1)–
(AH4) with Jn = Fn and K = F .

- It is proved in Lemma 8 below that (16) holds with dn = n1/3 and ṽ(·; t0) the

standard two-sided Brownian motion times
√

π2/6.

- If f ′(t0) < 0, then (19) holds with A = 1
2f ′(t0) and dn ↓ 0 an arbitrary deter-

ministic sequence.
- Lemma 9 shows that (17) holds and the law of iterated logarithm yields that (18)

holds for the two-sided Brownian motion.
- Finally, (20) also holds for the two-sided Brownian motion.

Thus (21) holds with the process y defined by

y(s) = 1
2f ′(t0)s2 + √

2πf (t0)W(s).

The scaling property of the Brownian motion yields the representation of T (y)′(0)

in terms of Chernoff’s distribution.

LEMMA 8. Assume the process {Xn} is given by (10), that (11) holds and that
E[ε8

0] < ∞. If dn = n−1/3, then the sequence of processes ṽn(·; t0) defined in (14)
converges weakly in C([−c, c]) to

√
2πf (t0)W where W is a standard two-sided

Brownian motion.

PROOF. For clarity, we omit t0 in the notation. Write

ṽn(s) = ṽε
n(s) + Rn(s)

with

ṽ(ε)
n (s) = d−2

n

∫ t0+dns

t0

f (u)
{
I (ε)
n (u) − 1

}
du,

(22)

I (ε)
n (u) = 1

n

∣∣∣∣∣
n∑

k=1

εke
iku

∣∣∣∣∣
2

,

Rn = d−2
n

∫ t0+dns

t0

rn(u) du, rn(u) = In(u) − f (u)I (ε)
n (u).(23)

Note that (2π)−1I ε
n is the periodogram for the white noise sequence {εi}. We first

treat the remainder term Rn. Denote G = {g :
∫ π
−π g2(u)f 2(u) du < ∞}. Equation

(5.11) (with a typo in the normalization) in Mikosch and Norvaiša (1997) states
that if (11) and E[ε8

0] < ∞ hold, then

√
n sup

g∈G

∫ π

−π
g(x)rn(x) dx = oP (1).(24)
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Define the set G̃ = {kn(·, s)f :n ∈ N, s ∈ [−c, c]}. Since f is bounded, we have
that

∫
k2
n(u, s)f 2(u) du < ∞, so G̃ ⊂ G and we can apply (24) on G̃ , which shows

that Rn converges uniformly (over s ∈ [−c, c]) to zero. We next show that

ṽ(ε)
n (s)

L→ √
2πf (t0)W(s),(25)

as n → ∞, on C(R), where W is a standard two-sided Brownian motion. Since
{εk} is a white noise sequence, we set t0 = 0 without loss of generality. Straight-
forward algebra yields

ṽ(ε)
n (s) = d−2

n {γ̂n(0) − 1}F(dns) + Sn(s)(26)

with

γ̂n(0) = n−1
n∑

j=1

ε2
j , Sn(s) =

n∑
k=2

Ck(s)εk,

Ck(s) = d3/2
n

k−1∑
j=1

αj (s)εk−j , αj (s) = d−1/2
n

∫ dns

−dns
f (u)eiju du.

Since {εj } is a white noise sequence with finite fourth moment, it is easily checked
that

nvar(γ̂n(0)) = var(ε2
0),

(27)

sup
s∈[−c,c]

d−2
n

∫ dns

0
f (u)du |γ̂n(0) − 1| = OP (d−1

n n−1/2) = OP

(√
dn

)
so that the first term in (26) is negligible. It remains to prove that the sequence of
processes Sn converges weakly to a standard Brownian motion. We prove the con-
vergence of finite dimension distribution by application of the Martingale central
limit theorem [cf., e.g., Hall and Heyde (1980), Corollary 3.1]. It is sufficient to
check the following conditions:

lim
n→∞

n∑
k=2

E[C2
k (s)] = 2πf 2(0)s,(28)

lim
n→∞

n∑
k=2

E[C4
k (s)] = 0.(29)

By the Parseval–Bessel identity, we have
∞∑

j=−∞
α2

j (s) = 2πd−1
n

∫ dns

−dns
f 2(u) du ∼ 4πf 2(0)s.

Since α0(s) ∼ 2f (0)
√

dn, this implies that
n∑

k=2

E[C2
k (s)] =

n−1∑
j=1

(1 − j/n)α2
j (s) ∼

∞∑
j=1

α2
j (s) ∼ 2πf 2(0)s.
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This proves condition (28). For the asymptotic negligibility condition (29), we use
Rosenthal’s inequality [cf. Hall and Heyde (1980), Theorem 2.12],

E[C4
k ] ≤ cstn−2

k−1∑
j=1

α4
j (s) + cstn−2

(
k−1∑
j=1

α2
j (s)

)2

= O(n−2),

implying
∑n

k=1 E[C4
k (s)] = O(n−1), which proves (29). To prove tightness, we

compute the fourth moment of the increments of Sn. Write

Sn(s) − Sn(s
′) = n−1/2

n∑
k=1

k−1∑
j=1

αj (s, s
′)εk−j εk,

with

αj (s, s
′) = d−1/2

n

∫ dns

dns′
f (u)eiju du + d−1/2

n

∫ −dns′

−dns
f (u)eiju du.

By Parseval’s inequality, it holds that

n∑
j=1

α2
j (s, s

′) ≤ C|s − s′|.

Applying again Rosenthal’s inequality, we obtain that E[|Sn(s) − Sn(s
′)|4] is

bounded by a constant times

n−1
n∑

j=1

α4
j (s, s

′) +
(

n∑
j=1

α2
j (s, s

′)
)2

≤ C|s − s′|2.

Applying [Billingsley (1968), Theorem 15.6] concludes the proof of tightness. �

LEMMA 9. For any δ > 0 and any κ > 0, there exists τ such that

lim sup
n→∞

P

(
sup
|s|≥τ

|ṽn(s)|
|s| > κ

)
≤ δ.(30)

PROOF. Without loss of generality, we can assume that f (t0) = 1. Recall that
ṽn = ṽ

(ε)
n + Rn and ṽ

(ε)
n (s) = F(dns)ζn + Sn(s), where ṽ

(ε)
n and Rn are defined in

(22) and (23), ζn = d−2
n (γ̂n(0) − 1) and Sn is defined in (26). Then

P

(
sup
s≥τ

|ṽn(s)|
s

> κ

)
≤ P

(
sup
s≥τ

|ζn|F(dns)/s > κ/3
)

+ P

(
sup
s≥τ

|Sn(s)|
s

> κ/3
)

+ P

(
sup
s≥τ

|Rn(s)|
s

> κ/3
)
.
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The spectral density is bounded, so F(dns)/s ≤ Cdn for all s. Since var(ζn) =
O(d−1

n ), by (27) and the Bienayme–Chebyshev inequality, we get

P

(
sup
s≥τ

|ζn|F(dns)/s > κ
)

≤ O(d−1
n d2

n) = O(dn).

Let {sj , j ≥ 0} be an increasing sequence. Then we have the bound

P

(
sup
s≥s0

|Sn(s)|
s

> κ

)
≤

∞∑
j=0

P
(|Sn(sj )| > κsj

)

+
∞∑

j=1

P

(
sup

sj−1≤s≤sj

|Sn(s) − Sn(sj−1)| > κsj−1

)
.

From (28), we know that var(Sn(s)) = O(s). Thus
∞∑

j=0

P
(|Sn(sj )| > κsj

) ≤ cstκ−2
∑
j=0

s−1
j .

Thus if the series s−1
j is summable, this sum can be made arbitrarily small by

choosing s0 large enough. It was shown in the proof of Lemma 8 that

E[|Sn(s) − Sn(s
′)|4] ≤ C|s − s′|2.

By Billingsley (1968), Theorem 15.6 [or more specifically Ledoux and Talagrand
(1991), Theorem 11.1], this implies that

P

(
sup

sj−1≤s≤sj

|Sn(s) − Sn(sj−1)| > κsj−1

)
≤ C(sj − sj−1)

2

κ2s2
j−1

.

Thus choosing sj = (s0 + j)ρ for some ρ > 1 implies that the series is convergent
and

P

(
sup
s≥s0

|Sn(s)|
s

> κ

)
= O(s−1

0 ),

which is arbitrarily small for large s0.
To deal with the remainder term Rn, we prove that P(sups≥s0

|Rn(s)|/s > s0) =
oP (1) by the same method as that used for Sn. Thus we only need to obtain a
suitable bound for the increments of Rn. By definition of Rn, we have, for s < s′,

Rn(s
′) − Rn(s) = d−2

n

∫ t0+dns′

t0+dns
f (u)rn(u) du.

Since f is bounded, by Hölder’s inequality, we get

E[|Rn(s
′) − Rn(s)|2] ≤ ‖f ‖∞n(s′ − s)

∫ t0+dns′

t0+dns
E[r2

n(u)]du.



MONOTONE SPECTRAL DENSITY ESTIMATION 437

Under (11), it is known [see, e.g., Brockwell and Davis (1991), Theorem 10.3.1]
that

E[r2
n(u)] ≤ Cn−1.

Hence,

E[|Rn(s
′) − Rn(s)|2] ≤ Cdnn(s′ − s)2.

The rest of the proof is similar to the proof for Sn. This concludes the proof of
(30). �

6.2. Sketch of proof of Theorem 6. The proof consists in checking conditions
(AH1)–(AH4) with Jn and Kn now defined by Jn(t) = ∫ t

0 {log In(s) + γ }ds and
K(t) = ∫ t

0 logf (2π [ns/2π ]/n)ds. Let λk = 2kπ/n denote the so-called Fourier
frequencies. For t ∈ [0, π], denote kn(t) = [nt/2π ]. Denote

ξk = log{In(λk)/f (λk)} + γ,

where γ is Euler’s constant. Then

vn(t) = Jn(t) − K(t) = 2π

n

kn(t)∑
j=1

ξj + (
t − λkn(t)

)
ξkn(t).

The log-periodogram ordinates ξj are not independent, but sums of log-peri-
odogram ordinates, such as the one above, behave asymptotically as sums of
independent random variables with zero mean and variance π2/6 [cf. Soulier
(2001)], and bounded moments of all order. Thus, for t0 ∈ (0, π), the process
ṽn(s; t0) = d−2

n {vn(t0 + dns) − vn(t0)} with dn = n−1/3 converges weakly in
D(−∞,∞) to the two-sided Brownian motion with variance 2π4/3. It can be
shown by using the moment bounds of Soulier (2001) that (17) holds. Finally, if f

is differentiable at t0, it is easily seen that d−2
n (K(t0 + dns) − K(t0) − dnsJ

′
b(t0)}

converges to 1
2As2 with A = f ′(t0)/f (t0).
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