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GIRSANOV IDENTITIES FOR POISSON MEASURES UNDER
QUASI-NILPOTENT TRANSFORMATIONS

BY NICOLAS PRIVAULT1

Nanyang Technological University

We prove a Girsanov identity on the Poisson space for anticipating trans-
formations that satisfy a strong quasi-nilpotence condition. Applications are
given to the Girsanov theorem and to the invariance of Poisson measures un-
der random transformations. The proofs use combinatorial identities for the
central moments of Poisson stochastic integrals.

1. Introduction. The Wiener and Poisson measures are well known to be
quasi-invariant under adapted shifts. This quasi-invariance property has been ex-
tended to anticipative shifts by several authors; cf. [10, 23] and [26] and references
therein in the Wiener case, and, for example, [2, 16–18], in the Poisson case.

In the anticipative case the corresponding Radon–Nikodym density is usually
written as the product

|det2(I + ∇u)| exp
(−δ(u) − 1

2‖u‖2)
of a Skorohod–Doléans exponential with the Carleman–Fredholm determinant of
the Malliavin gradient ∇u of the shift u; cf. [10, 23, 26]. A similar formula can be
obtained for Poisson random measures; cf. Section 8.

It has been noted in [27] that the standard Doléans form of the density for antic-
ipative shifts u :W → H on the Wiener space W with Cameron–Martin space H

can be conserved [i.e., the Carleman–Fredholm determinant det2(I + ∇u) equals
one] when the gradient ∇u of the shift u is quasi-nilpotent, that is,

lim
n→∞‖(∇u)n‖1/n

HS = 0 or equivalently trace(∇u)n = 0, n ≥ 2;(1.1)

cf. [27] or Theorem 3.6.1 of [26]. In particular, when ∇u is quasi-nilpotent and
‖u‖ is constant, it has been shown in [25] that δ(u) has a centered Gaussian law
with variance ‖u‖2; cf. [20] for a simplified proof.

In this paper we consider the Poisson space �X over a metric space X with
σ -finite intensity measure σ(dx), and investigate the quasi-invariance of random
transformations τ(ω, ·) which are assumed to be quasi-nilpotent in the sense that
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the finite difference gradient Dsτ(ω, t) satisfies the cyclic finite difference con-
dition (2.3) below, which is a strenghtened version of (1.1). We show in particu-
lar that such anticipating quasi-nilpotent transformations are quasi-invariant, and
their Radon–Nikodym densities are given by Doléans stochastic exponentials with
jumps. This also extends and recovers other results on the invariance of random
transformations of Poisson measures; cf. [22].

Our starting point is the classical Girsanov identity for Poisson random mea-
sures which states that

Eσ

[
exp

(
−

∫
X

g(x)σ (dx)

) ∏
x∈ω

(
1 + g(x)

)] = 1,(1.2)

and rewrites when g = 1A as

Eσ

[
e−rσ (A)(1 + r)ω(A)] = 1, r ∈ R,

which is equivalent to the vanishing of the expectation

E[Cn(Z,λ)] = 0, n ≥ 1,

for Z = ω(A) a Poisson random variable with intensity λ = σ(A), where Cn(x,λ)

is the Charlier polynomials of degree n ∈ N, with generating function

e−rλ(1 + r)x =
∞∑

n=0

rn

n!Cn(x,λ), r > −1.

It is well known, however, that Z need not have a Poisson distribution for
E[Cn(Z,λ)] to vanish when λ is allowed to be random. Indeed, such an identity
also holds in the random adapted case under the form

E
[
Cn

(
Nτ−1(t), τ

−1(t)
)] = 0, n ≥ 1,(1.3)

where (Nt)t∈R+ is a standard Poisson process generating a filtration (Ft )t∈R+ and
τ(t) is an Ft -adapted time change, due to the fact that

Cn

(
Nτ−1(t), τ

−1(t)
)

= n!
∫ ∞

0

∫ tn

0
· · ·

∫ t2

0
d
(
Nτ−1(t1)

− dτ−1(t1)
) · · ·d(

Nτ−1(tn) − dτ−1(tn)
)

is an adapted nth order iterated multiple stochastic integral with respect to the
compensated point martingale (Nτ−1(t) − τ−1(t))t∈R+ ; cf. [24] and [13], page 320.
In this case we also have

Eσ

[
e−rτ−1(t)(1 + r)

N
τ−1(t)

] = 1, r ∈ R,

and more generally

Eσ

[
exp

(
−

∫ ∞
0

g(τ(s)) ds

) ∏
�Ns=1
0<s<∞

(
1 + g(τ(s))

)] = 1,(1.4)
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under a Novikov-type integrability condition on g : R → R; cf., for example, [11].
In Corollary 2.2 below we will extend the Girsanov identity (1.4) to random an-

ticipating processes indexed by an abstract space X, by computing the expectation

Eσ [Cn(ω(A),σ (A))], n ≥ 1,

of the random Charlier polynomial Cn(ω(A),σ (A)), where A(ω) is a random,
possibly anticipating set. In particular we provide conditions on A(ω) for the ex-
pectation Eσ [Cn(ω(A),σ (A))], n ≥ 1, to vanish; cf. Proposition 7.1 below. Such
conditions are satisfied, in particular, under the quasi-nilpotence condition (2.3)
below and include the adaptedness of (τ (t))t∈R+ above, which recovers the clas-
sical adapted Girsanov identity (1.4) as a particular case; cf. Proposition 2.1. As
a consequence we will obtain a Girsanov theorem for random transformations of
Poisson samples on an arbitrary measure space.

The above results will be proved using the Skorohod integral and integration
by parts on the Poisson space. This type of argument has been applied in [22] to
the inductive computation of moments of Poisson stochastic integrals and to the
invariance of the Skorohod integral under random intensity preserving transforma-
tions. However, the case of Charlier polynomials is more complicated, and it leads
to Girsanov identities and a Girsanov theorem as additional applications.

Since our use of integration by parts formulas and moment identities relies on
compensated Poisson stochastic integrals, we will need to work with a family
Bn(y,λ) of polynomials such that

Bn(y,−λ) = Eλ[(Z + y − λ)n],
where Z is a Poisson random variable with intensity λ > 0, and which are related
to the Charlier polynomials by the relation

Cn(y,λ) =
n∑

k=0

s(n, k)Bk(y − λ,λ),

where s(k, l) is the Stirling number of the first kind, that is, (−1)k−ls(k, l) is the
number of permutations of k elements which contain exactly l permutation cycles,
n ∈ N; cf. Proposition 6.1 below.

The outline of this paper is as follows. Section 2 contains our main results on
anticipative Girsanov identities and applications to the Girsanov theorem. In Sec-
tion 3 we consider some examples of anticipating transformations to which this
theorem can be applied; this includes the adapted case as well as transformations
that act inside the convex hull generated by Poisson random measures, given the
positions of the extremal vertices. In Section 4 we show that those results are con-
sequences of identities for multiple integrals and stochastic exponentials. In Sec-
tion 5 we review some results of [22] (cf. also [19]) on the computation of moments
of Poisson stochastic integrals, and we derive some of their corollaries to be ap-
plied in this paper. In Section 6 we derive some combinatorial identities that allow
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us, in particular, to rewrite the Charlier polynomials into a form suitable to the use
of moment identities. Finally in Section 7 we prove the results of Section 4, and in
Section 8 we make some remarks on how the results of this paper can be connected
to the Carleman–Fredholm determinant.

2. Main results. Let �X denote the configuration space on a σ -compact met-
ric space X with Borel σ -algebra B(X), that is,

�X = {
ω = (xi)

N
i=1 ⊂ X,xi 	= xj ∀i 	= j,N ∈ N ∪ {∞}}

is the space of at most countable locally finite subsets of X, endowed with the
Poisson probability measure πσ with σ -finite diffuse intensity σ(dx) on X, which
is characterized by its Laplace transform

ψσ (f ) = Eσ

[
exp

(∫
X

f (x)
(
ω(dx) − σ(dx)

))]
(2.1)

= exp
(∫

X

(
ef (x) − f (x) − 1

)
σ(dx)

)
,

f ∈ L2
σ (X), or by the Girsanov identity (1.2) by taking f (x) = log(1 + g(x)),

x ∈ X, g ∈ Cc(X), where Eσ denotes the expectation under πσ , and Cc(X) is the
space of continuous functions with compact support in X.

Each element ω of �X is identified to the Radon point measure

ω =
ω(X)∑
i=1

εxi
,

where εx denotes the Dirac measure at x ∈ X, and ω(X) ∈ N ∪ {∞} denotes the
cardinality of ω ∈ �X .

Consider a measurable random transformation

τ :�X × X → X

of X, let τ∗(ω), ω ∈ �X , denote the image measure of ω(dx) by τ(ω, ·) :X → X,
that is,

τ∗ :�X → �X(2.2)

maps

ω =
ω(X)∑
i=1

εxi
to τ∗(ω) =

ω(X)∑
i=1

ετ(ω,xi).

In other words, the random mapping τ∗ :�X → �X shifts each configuration point
x ∈ ω according to x → τ(ω, x).
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Let D denote the finite difference gradient defined on any random variable
F :�X → R as

DxF(ω) = F(ω ∪ {x}) − F(ω), ω ∈ �X,x ∈ X,

for any random variable F :�X → R; cf. [7, 9, 15]. The operator D is continuous
on the space D2,1 defined by the norm

‖F‖2
2,1 = ‖F‖2

L2(�X,πσ )
+ ‖DF‖2

L2(�X×X,πσ ⊗σ)
, F ∈ D2,1.

The next result is a Girsanov identity for random, nonadapted shifts of Poisson
configuration points, obtained as a consequence of Proposition 4.1 below which
is proved at the end of Section 4. Here we let Y denote another metric space with
Borel σ -algebra B(Y ).

PROPOSITION 2.1. Assume that τ :�X ×X → Y satisfies the cyclic condition

Dt1τ(ω, t2) · · ·Dtkτ (ω, t1) = 0, σ (dt1), . . . , σ (dtk)-a.e., ω ∈ �X,(2.3)

for all k ≥ 2, and let g :Y → R be a measurable function such that

Eσ

[
e

∫
X |g(τ(ω,x))|σ(dx)

∏
x∈ω

(
1 + |g(τ(ω, x))|)] < ∞.(2.4)

Then we have

Eσ

[
e− ∫

X g(τ(ω,x))σ (dx)
∏
x∈ω

(
1 + g(τ(ω, x))

)] = 1.

As a consequence of Proposition 2.1, if τ :�X × X → X satisfies (2.3) and
τ(ω, ·) :X → Y maps σ to a fixed measure μ on (Y, B(Y )) for all ω ∈ �X , then
we have

Eσ

[∏
x∈ω

(
1 + g(τ(ω, x))

)] = e
∫
X g(τ(ω,x))σ (dx)

= e
∫
Y g(y)μ(dy), g ∈ Cc(Y );

hence τ∗ :�X → �X maps πσ to πμ, which recovers Theorem 3.3 of [22].
Proposition 2.1 then implies the following anticipating Girsanov theorem, in

which the Radon–Nikodym density is given by a Doléans exponential.

COROLLARY 2.2. Assume that for all ω ∈ �X , τ(ω, ·) :X → X is invertible
on X and that for all t0, . . . , tk ∈ X, k ≥ 1, there exists i ∈ {0, . . . , k} such that

Dti τ (ω, x) = 0(2.5)

for all x in a neighborhood of ti+1 mod k , and that the density

φ(ω,x) := dτ−1∗ (ω, ·)σ
dσ

(x) − 1, x ∈ X,
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exists for all ω ∈ �X , with

Eσ

[
e(1+ε)

∫
X φ(ω,x)σ (dx)

∏
x∈ω

(
1 + φ(ω,x)

)1+ε
]

< ∞(2.6)

for some ε > 0. Then we have the Girsanov identity

Eσ

[
F(τ∗(ω))e− ∫

X φ(ω,x)σ (dx)
∏
x∈ω

(
1 + φ(ω,x)

)] = Eσ [F ]

for all F ∈ L1(�X).

PROOF. First we note that from (2.5), for all ω ∈ �X and t0, . . . , tk ∈ X, k ≥ 1,
there exists i ∈ {0, . . . , k} such that

Dti τ (ω, ti+1 modk) = Dtiφ(ω, ti+1 mod k) = 0.(2.7)

Next from Proposition 2.1, for all f ∈ Cc(X) we have

Eσ

[
e− ∫

X f (x)σ (dx)−∫
X φ(ω,x)σ (dx)

∏
x∈ω

(
1 + f (τ(ω, x))

)(
1 + φ(ω,x)

)]

= Eσ

[
e− ∫

X f (τ(ω,x))(1+φ(ω,x))σ (dx)−∫
X φ(ω,x)σ (dx)

× ∏
x∈ω

(
1 + f (τ(ω, x)) + φ(ω,x) + f (τ(ω, x))φ(ω, x)

)]

= 1

by Proposition 2.1, since

x → f (τ(ω, x)) + φ(ω,x) + f (τ(ω, x))φ(ω, x)

satisfies condition (2.3) by (2.7). We conclude by the density in L1(�X) of linear
combinations of F of the form

F = exp
(
−

∫
X

f (x)σ (dx)

) ∏
x∈ω

(
1 + f (x)

)
, f ∈ Cc(X). �

Under the hypotheses of Corollary 2.2, if τ∗ :�X → �X is invertible then
the random transformation τ−1∗ :�X → �X is absolutely continuous with respect
to πσ , with density

dτ−1∗ πσ

dπσ

= e− ∫
X φ(ω,x)σ (dx)

∏
x∈ω

(
1 + φ(ω,x)

)
.(2.8)

In Corollary 2.2, condition (2.6) actually requires σ(τ(X)) to be a.s. finite.

3. Examples. In this section we present an example of a random nonadapted
transformation satisfying the hypotheses of Corollary 2.2. First we note that
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condition (2.3) is an extension of the usual adaptedness condition, as it holds
when τ :X → X is adapted to a given total binary relation � on X. Indeed, if
τ :�X × X → X satisfies

Dxτ(ω,y) = 0, y � x,

then condition (2.3) is satisfied since for all t1, . . . , tk ∈ X there exists i ∈ {1, . . . , k}
such that tj � ti , for all 1 ≤ j ≤ k; hence Dti τ (ω, tj ) = 0, 1 ≤ j ≤ k. In this case,
Corollary 2.2 recovers a classical result in the case where τ :X → X is determin-
istic or adapted; cf., for example, Theorem 3.10.21 of [4].

Next, let X = B̄(0,1) denote the closed unit ball in R
d , with σ(dx) the

Lebesgue measure. For all ω ∈ �X , let C(ω) denote the convex hull of ω in X

with interior Ċ(ω), and let ωe = ω ∩ (C(ω) \ Ċ(ω)) denote the extremal vertices of
C(ω). Consider a measurable mapping τ :�X × X → X such that for all ω ∈ �X ,
τ(ω, ·) is measure preserving, maps Ċ(ω) to Ċ(ω), and for all ω ∈ �X ,

τ(ω, x) =
{

τ(ωe, x), x ∈ Ċ(ω),
x, x ∈ X \ Ċ(ω),

(3.1)

that is, τ(ω, ·) :X → X modifies only the inside points of the convex hull of ω,
depending on the positions of its extremal vertices, which are left invariant by
τ(ω, ·), as illustrated in Figure 1.

Next, assume that τ(ω, ·) :X → X in (3.1) has the form

τ(ω, x) = x + ψ(ωe, x), x ∈ X,

for fixed ω ∈ �X , where ψ(ωe, ·) :X → X is a diffeomorphism such that
τ(ω, ·) :X → X is invertible for all ω ∈ �X; for example,

ψ(ωe, x) = u1C(ω)(x)
(d(x, C(ω) \ Ċ(ω)))2

1 + (d(x, C(ω) \ Ċ(ω)))2
, x ∈ X,(3.2)

with u ∈ R
d such that ‖u‖d < 1/4, where d(x,A) denotes the Euclidean distance

from x ∈ R
d to the closed set A ⊂ R

d . Then the transformation τ :�X × X → X

satisfies the hypotheses of Corollary 2.2 by Proposition 3.1 below, and τ ∗ :�X →
�X is invertible with

(τ ∗)−1(ω) = ωe ∪ ⋃
x∈ω∩Ċ(ω)

{τ−1(ωe, x)}, ω ∈ �X;

FIG. 1. Example of random transformation.
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thus the associated Radon–Nikodym density (2.8) is given by taking

φ(ω,x) = det
(
IRd + ∇xψ(ωe, x)

) − 1, ω ∈ X,x ∈ X.

This quasi-invariance property is related to the intuitive fact that a Poisson random
measure remains Poisson within its convex hull when its configuration points are
shifted given to the position of its extremal vertices; cf., for example, [6].

PROPOSITION 3.1. Assume that the random transformation τ :�X × X → X

satisfies condition (3.1). Then τ satisfies the cyclic condition (2.5) of Corollary 2.2.

PROOF. Let t1, . . . , tk ∈ X. First, if there exists i ∈ {1, . . . , k} such that ti ∈
C(ω), then for all x ∈ X we have ti ∈ C(ω ∪ {x}), and by Lemma 3.2 below we get

Dti τ (ω, x) = 0, x ∈ X;
thus (2.5) holds, and we may assume that ti /∈ C(ω) for all i = 1, . . . , k. In this
case, if ti+1 mod k /∈ C(ω ∪ {ti}) for some i = 1, . . . , k, then by Lemma 3.2 we have

Dti τ (ω, ti+1 modk) = 0;
hence (2.5) holds since the set C(ω ∪ {ti}) is closed. Next, if t1 ∈ C(ω ∪ {tk}),
tk ∈ C(ω ∪ {tk−1}), . . . , t2 ∈ C(ω ∪ {t1}), then we have t1 ∈ C(ω ∪ {tk}) and tk ∈
C(ω ∪ {t1}), which implies t1 = tk /∈ C(ω), and we check that Dtkτ (ω, t1) = 0. �

Next we state and prove Lemma 3.2 which has been used above.

LEMMA 3.2 [22]. For all x, y ∈ X and ω ∈ �X we have

x ∈ C(ω ∪ {y}) �⇒ Dxτ(ω,y) = 0(3.3)

and

y ∈ C(ω ∪ {x}) �⇒ Dxτ(ω,y) = 0.(3.4)

PROOF. Let x, y ∈ X and ω ∈ �X . First, if y /∈ C(ω ∪ {x}) we have τ(ω ∪
{x}, y) = τ(ω, y) = y. Next, if x ∈ C(ω ∪ {y}), we can distinguish two cases:

(a) x ∈ C(ω). In this case we have C(ω ∪ {x}) = C(ω); hence τ(ω ∪ {x}, y) =
τ(ω, y) for all y ∈ X.

(b) x ∈ C(ω ∪ {y}) \ C(ω). If y ∈ C(ω ∪ {x}), then x = y /∈ Ċ(ω ∪ {x}); hence
τ(ω ∪{x}, y) = τ(ω, y). On the other hand if y /∈ C(ω∪{x}), then τ(ω ∪{x}, y) =
τ(ω, y) = y as above.

We conclude that Dxτ(ω,y) = 0 in both cases. �
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4. Multiple integrals and stochastic exponentials. The proofs of the above
results will use properties of stochastic exponentials and multiple stochastic inte-
grals which are introduced and proved in this section. Let now

In(fn)(ω) =
∫
�n

fn(x1, . . . , xn)
(
ω(dx1) − σ(dx1)

) · · · (ω(dxn) − σ(dxn)
)

denote the multiple Poisson stochastic integral of the symmetric function fn ∈
L2

σ (Xn), where

�n = {(x1, . . . , xn) ∈ Xn :xi 	= xj ,∀i 	= j},
with

e− ∫
X g(x)σ (dx)

∏
x∈ω

(
1 + g(x)

) =
∞∑

n=0

1

n!In(g
⊗n)

for g ∈ L2
σ (X) with bounded support, where “⊗” denotes the tensor product of

functions in L2
σ (X). For all (possibly random) disjoint subsets A1, . . . ,An of X

with finite measure, we have the relation

IN(1
A

k1
1

◦ · · · ◦ 1
A

kn
n

) =
n∏

i=1

Cki
(ω(Ai), σ (Ai))(4.1)

between the multiple Poisson integrals and the Charlier polynomials, where “◦”
denotes the symmetric tensor product of functions in L2

σ (X) and N = k1 +· · ·+kn;
cf., for example, Proposition 6.2.9 in [21].

Proposition 2.1 will be proved using the following Proposition 4.1 which is a
restatement of Corollary 7.2 below. It provides a formula for the expectation of a
multiple stochastic integral of a time-changed function.

PROPOSITION 4.1. Assume that τ :�X × X → Y satisfies

Dtτ(ω, t) = 0, ω ∈ �X, t ∈ X.(4.2)

Then for all symmetric step functions g :YN → R of the form

g = ∑
k1+···+kn=N

1≤n≤N

ck1,...,kn1⊗k1
B1,k1

◦ · · · ◦ 1⊗kn

Bn,kn
,

where N ≥ 1 and B1,k1, . . . ,Bn,kn are deterministic disjoint Borel subsets of Y and
ck1,...,kn ∈ R, we have

Eσ [IN(1AN (·)τ⊗N(ω, ·))]
= Eσ

[∫
AN

Dt1 · · ·DtN g(τ(ω, t1), . . . , τ (ω, tN))σ (dt1) · · ·σ(dtN)

]

for all compact subset A ∈ B(X) of X.
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PROOF. It suffices to prove that for all deterministic disjoint Borel subsets
B1, . . . ,Bn of Y we have

Eσ

[
IN

(
1AN 1⊗k1

τ−1(B1)
◦ · · · ◦ 1⊗kn

τ−1(Bn)

)]
= Eσ

[
IN

(
1⊗k1
A∩τ−1(B1)

◦ · · · ◦ 1⊗kn

A∩τ−1(Bn)

)]

= Eσ

[∫
AN

(
N∏

i=1

Dti

)(
1
B

k1
1

⊗ · · · ⊗ 1
B

kn
n

(τ (ω, t1), . . . , τ (ω, tN))
)

× σ(dt1) · · ·σ(dtN)

]

with N = k1 + · · · + kn, and this is a direct consequence of relation (4.1) above
and Corollary 7.2 below applied to the random sets A∩τ−1(B1), . . . ,A∩τ−1(Bn).

�

As a particular case of Proposition 4.1, for g = 1B and B ∈ B(Y ) such that
τ−1(B) ⊂ A a.s., where A is a fixed compact subset of X, we have

Eσ [Cn(τ∗ω(B), τ∗σ(B))]
(4.3)

= Eσ

[∫
An

Ds1 · · ·Dsn

n∏
p=1

1B(τ(ω, sp))σ (ds1) · · ·σ(dsn)

]
,

under condition (4.2). When Ds1B(τ(ω, t)) is quasi-nilpotent in the sense of con-
dition (2.3) above for all k ≥ 2, ω ∈ �X , relation (4.3) and Lemma 4.3 below show
that

Eσ [Cn(τ∗ω(B), τ∗σ(B))] = 0,

and this extends (1.3) as a particular case since when X = R+, condition (2.3)
holds in particular when either

Dsg(τ(ω, t)) = 0, 0 ≤ s ≤ t,

or

Dtg(τ(ω, s)) = 0, 0 ≤ s ≤ t,

that is, when the process τ(ω, t) is forward or backward adapted with respect to
the filtration generated by the standard Poisson process (Nt)t∈[0,T ].

PROOF OF PROPOSITION 2.1. We take g :Y → R to be the step function

g(t) =
m∑

i=1

ci1Bi
(t), t ∈ Y,
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where c1, . . . , cm ∈ R and B1, . . . ,Bm ∈ B(Y ) are disjoint Borel subsets of Y . Then
the expression

Cn(x,λ) =
n∑

k=0

xk
k∑

l=0

(
n

l

)
(−λ)n−ls(k, l), x, λ ∈ R,

for the Charlier polynomial of order n ∈ N, shows that

|Cn(x,λ)| ≤
n∑

k=0

xk
k∑

l=0

(
n

l

)
λn−ls(k, l) = Cn(x,−λ), x,λ ≥ 0;

hence
∞∑

n=0

|r|n
n! |Cn(x,λ)| ≤ e|rλ|(1 + |r|)x, r ∈ R,

and letting A ∈ B(X) be a compact subset of X we have

Eσ

[ ∞∑
n=0

1

n! |In(1An(·)g⊗n(τ⊗n(ω, ·)))|
]

= Eσ

[ ∞∑
N=0

∣∣∣∣∣
∑

k1+···+kn=N

n≥0

(
n∏

l=1

c
ki

i

ki !
)
IN

(
1⊗k1
A∩τ−1(B1)

◦ · · · ◦ 1⊗kn

A∩τ−1(Bn)

)∣∣∣∣∣
]

= Eσ

[ ∞∑
N=0

∣∣∣∣∣
∑

k1+···+kn=N

n≥0

n∏
i=1

c
ki

i

ki !Cki

(
ω

(
A ∩ τ−1(Bi)

)
, σ

(
A ∩ τ−1(Bi)

))∣∣∣∣∣
]

≤ Eσ

[ ∞∑
N=0

∑
k1+···+kn=N

n≥0

n∏
i=1

|ci |ki

ki !
∣∣Cki

(
ω

(
A ∩ τ−1(Bi)

)
, σ

(
A ∩ τ−1(Bi)

))∣∣]

≤ Eσ

[ ∞∑
N=0

∑
k1+···+kn=N

n≥0

n∏
i=1

|ci |ki

ki ! Cki

(
ω

(
A ∩ τ−1(Bi)

)
,−σ

(
A ∩ τ−1(Bi)

))]

= Eσ

[
n∏

i=1

∞∑
ki=0

|ci |ki

ki ! Cki

(
ω

(
A ∩ τ−1(Bi)

)
,−σ

(
A ∩ τ−1(Bi)

))]

= Eσ

[
n∏

i=1

exp
(|ci |σ (

A ∩ τ−1(Bi)
))

(1 + |ci |)ω(A∩τ−1(Bi))

]

≤ Eσ

[
n∏

i=1

exp(|ci |τ∗σ(Bi))(1 + |ci |)τ∗ω(Bi)

]
(4.4)
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= Eσ

[
e

∫
X |g(τ(ω,x))|σ(dx)

∏
x∈ω

(
1 + |g(τ(ω, x))|)

]

< ∞.

Consequently we can apply the Fubini theorem, which shows that

Eσ

[
e− ∫

A g(τ(ω,x))σ (dx)
∏

x∈A∩ω

(
1 + g(τ(ω, x))

)]

= Eσ

[ ∞∑
n=0

1

n!In(1An(·)g⊗n(τ⊗n(ω, ·)))
]

=
∞∑

n=0

1

n!Eσ [In(1An(·)g⊗n(τ⊗n(ω, ·)))]

=
∞∑

n=0

1

n!Eσ

[∫
An

Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ (ds1) · · ·σ(dsn)

]

= 0

by Proposition 4.1, provided∫
An

Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ (ds1) · · ·σ(dsn) = 0, n ≥ 1,(4.5)

πσ (dω)-a.s., which holds by Lemma 4.3 below since Dsτ(ω, t) is quasi-nilpotent
in the sense of (2.3). The extension from A to X, and then from g, a step function,
to a measurable function satisfying (2.4), can be done by dominated convergence
using bound (4.4) above. �

The above results can also be summarized in the following general statement
which is also proved in Section 7 by the same argument as in the proof of Propo-
sition 2.1.

PROPOSITION 4.2. Assume that τ :�X × X → Y satisfies

Dtτ(ω, t) = 0, ω ∈ �X, t ∈ X.

Then for all bounded measurable functions g :Y → R satisfying (2.4) we have

Eσ

[
e− ∫

X g(τ(ω,x))σ (dx)
∏
x∈ω

(
1 + g(τ(ω, x))

)]
(4.6)

=
∞∑

n=0

1

n!Eσ

[∫
Xn

Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ (ds1) · · ·σ(dsn)

]
,
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provided
∞∑

n=0

1

n!Eσ

[∫
Xn

∣∣∣∣∣Ds1 · · ·Dsn

n∏
p=1

g(τ(ω, sp))σ (ds1) · · ·σ(dsn)

∣∣∣∣∣
]

< ∞.(4.7)

In the next lemma we show that relation (4.5) is satisfied provided Dsτ(ω, t)

satisfies the cyclic condition (4.8) below.

LEMMA 4.3. Let N ≥ 1, and assume that τ :�X ×X → X satisfies the cyclic
condition

Dt0τ(ω, t1) · · ·Dtkτ (ω, t0) = 0, ω ∈ �X, t0, . . . , tk ∈ X,(4.8)

for k = 1, . . . ,N . Then we have

Dt0 · · ·Dtk

k∏
p=0

g(τ(ω, tp)) = 0, t0, . . . , tk ∈ X,

for k = 1, . . . ,N .

PROOF. We use the relation

Ds0 · · ·Dsj

n∏
p=0

g(τ(ω, sp))

(4.9)
= ∑

�0∪···∪�n={0,1,...,j }
D�0g(τ(ω, s0)) · · ·D�ng(τ(ω, sn)),

s0, . . . , sn ∈ X, where D� := ∏
j∈� Dsj when � ⊂ {0,1, . . . , j}, 0 ≤ j ≤ n, which

follows from the product rule

Dt(FG) = FDtG + GDtF + DtFDtG, t ∈ X,(4.10)

which is satisfied by Dt as a finite difference operator. Without loss of generality
we may assume that �0 	= ∅, . . . ,�j 	= ∅ and �k ∩ �l = ∅, 0 ≤ k 	= l ≤ j . In
this case we can construct a sequence (k1, . . . , ki) by choosing

0 	= k1 ∈ �0, k2 ∈ �k1, . . . , ki−1 ∈ �ki−2,

until ki = 0 ∈ �ki−1 for some i ∈ {2, . . . , j} since �0 ∩ · · · ∩ �j = ∅ and �0 ∪
· · · ∪ �j = {0,1, . . . , j}. Hence by (4.8) we have

Dsk1
g(τ(ω, ss0))Dsk2

g(τ(ω, ssk1
)) · · ·

× Dski−1
g(τ(ω, sski−2

))Ds0g(τ(ω, sski−1
)) = 0

by (4.8), which implies

D�0g(τ(ω, s0))D�k1
g(τ(ω, sk1)) · · ·

× D�ki−2
g(τ(ω, ski−2))D�ki−1

g(τ(ω, ski−1)) = 0,

since

(k1, . . . , ki−1,0) ∈ �0 × �k1 × · · · × �ki−1 . �



1022 N. PRIVAULT

5. Moment identities for Poisson integrals. In this section we state some
results obtained in [22] on the moments of Poisson stochastic integrals, and we
reformulate them in view of our applications to Girsanov identities and to random
Charlier polynomial functionals.

The Poisson–Skorohod integral operator δ is defined on any measurable process
u :�X × X → R by the expression

δ(u) =
∫
X

u(ω \ {t}, t)(ω(dt) − σ(dt)
)
,(5.1)

provided Eσ [∫X |u(ω, t)|σ(dt)] < ∞; cf., for example, [14, 21].
Note that if Dtut = 0, t ∈ X, and in particular when applying (5.1) to u ∈ L1

σ (X)

a deterministic function, we have

δ(u) =
∫
X

u(t)
(
ω(dt) − σ(dt)

)
,(5.2)

that is, δ(u) with the compensated Poisson–Stieltjes integral of u. In addition, if
X = R+ and σ(dt) = λt dt , we have

δ(u) =
∫ ∞

0
ut (dNt − λt dt)(5.3)

for all square-integrable predictable processes (ut )t∈R+ , where Nt = ω([0, t]),
t ∈ R+, is a Poisson process with intensity λt > 0; cf., for instance, the example
on page 518 of [15].

From Corollaries 1 and 5 in [15] or Proposition 6.4.3 in [21] the operators D

and δ are closable and satisfy the duality relation

Eσ

[〈DF,u〉L2
σ (X)

] = Eσ [Fδ(u)],(5.4)

which can be seen as a formulation of the Mecke [12] identity for Poisson random
measures, on their L2 domains Dom(δ) ⊂ L2(�X × X,πσ ⊗ σ) and Dom(D) =
D2,1 ⊂ L2(�X,πσ ) under the Poisson measure πσ with intensity σ .

The operator δ is continuous on the space L2,1 ⊂ Dom(δ) defined by the norm

‖u‖2
2,1 = Eσ

[∫
X

|ut |2σ(dt)

]
+ Eσ

[∫
X

|Dsut |2σ(ds)σ (dt)

]
,

and it satisfies the Skorohod isometry

Eσ [δ(u)2] = Eσ

[∫
X

|ut |2σ(dt)

]
+ Eσ

[∫
X

∫
X

DsutDtusσ (ds)σ (dt)

]
(5.5)

for any u ∈ L2,1; cf. Corollary 4 and pages 517 and 518 of [15].
In addition, from (5.1), for any u ∈ Dom(δ) we have the commutation relation

Dtδ(u) = δ(Dtu) + ut , t ∈ X,(5.6)

or

(I + Dt)δ(u) = δ
(
(I + Dt)u

) + ut , t ∈ X,(5.7)
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provided Dtu ∈ L2,1, t ∈ X.
The following lemma relies on the application of relations (5.4) and (5.6), and

extends (5.5) to powers of order greater than two; cf. Lemma 2.4 in [22].

LEMMA 5.1 [22]. Let u ∈ L2,1 be such that Dtu ∈ L2,1, t ∈ X, δ(u)n ∈ D2,1,
and

Eσ

[∫
X

|ut |n−k+1∣∣δ(
(I + Dt)u

)∣∣kσ (dt)

]
< ∞,

Eσ

[
|δ(u)|k

∫
X

|ut |n−k+1σ(dt)

]
< ∞,

0 ≤ k ≤ n. Then we have

Eσ [δ(u)n+1] =
n−1∑
k=0

(
n

k

)
Eσ

[
δ(u)k

∫
X

un−k+1
t σ (dt)

]

+
n∑

k=1

(
n

k

)
Eσ

[∫
X

un−k+1
t

(
δ
(
(I + Dt)u

)k − δ(u)k
)
σ(dt)

]

for all n ≥ 1.

When h is a deterministic function, Lemma 5.1 yields the recursive covariance
identity

Eσ [δ(h)n+1] =
n∑

k=1

(
n

k

)∫
X

hk+1(t)σ (dt)Eσ [δ(h)n−k], n ≥ 0,(5.8)

for the Poisson stochastic integral

δ(h) =
∫
X

h(x)
(
ω(dx) − σ(dx)

)
.

By induction, (5.8) shows that the moments of the above Poisson stochastic inte-
gral can be computed as

Eσ [δ(h)n] =
n−1∑
a=1

∑
0=k1�···�ka+1=n

a∏
l=1

(
kl+1 − 1

kl

) a∏
l=1

∫
X

hkl+1−kl dσ(5.9)

for all n ≥ 1 and deterministic h ∈ ⋂n
p=2∧n L

p
σ (X), where a � b means a < b−1,

a, b ∈ N. This result can also be recovered from the relation

Eσ [δ(h)n] =
n∑

d=1

∑
B1,...,Bd

κ|B1| · · ·κ|Bd |,(5.10)

where the sum runs over all partitions of {1, . . . , n}, |Bi | denotes the cardinality
of Bi , and κ1 = 0, κn = ∫

X hn(t)σ (dt), n ≥ 2, denote the cumulants of δ(h).
In particular, relations (5.9) and (5.10) yield the identity

Eλ[(Z − λ)n] =
n∑

a=0

λaS2(n, a)(5.11)
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for the central moments of a Poisson random variable Z with intensity λ, where

S2(n, a) := ∑
0=k1�···�ka+1=n

a∏
l=1

(
kl+1 − 1

kl

)
,

represents the number of partitions of a set of size m into a subsets of size at
least 2.

In the sequel we let

C(l1, . . . , la, b)
(5.12)

= ∑
0=rb+1<···<r0=a+b+1

b∏
q=0

rq−1−(b−q)∏
p=rq+1−(b−q−1)

(
l1 + · · · + lp + q − 1
l1 + · · · + lp−1 + q

)
,

which represents the number of partitions of a set of l1 +· · ·+ la +b elements into
a subsets of lengths l1, . . . , la and b singletons. We will need the following result;
cf. Theorem 5.1 of [22].

THEOREM 5.2 [22]. Let F :�X → R be a bounded random variable, and let
u :�X × X → R be a bounded process with compact support in X. For all n ≥ 0
we have

Eσ [Fδσ (u)n]

=
n∑

a=0

n−a∑
b=0

(−1)b
∑

l1+···+la=n−b

l1,...,la≥1

C(l1, . . . , la, b)

× Eσ

[∫
Xa+b

(
a∏

i=1

(I + Dsi )F

)(
a+b∏

q=a+1

a∏
i=1

(I + Dsi )usq

)

×
a∏

p=1

(
a∏

i=1
i 	=p

(I + Dsi )usp

)lp

σ (ds1) · · ·σ(dsa+b)

]
.

In the above proposition, by saying that u :�X ×X → R has a compact support
in X we mean that there exists a compact K ∈ B(X) such that u(ω,x) = 0 for all
ω ∈ �X and x ∈ X \ K .

In particular when u = 1A is a (random) indicator function we get the following
proposition, which will be used to prove Proposition 7.1 below. We let

S(n, c) = 1

c!
c∑

l=0

(−1)c−l

(
c

l

)
ln(5.13)

denote the Stirling number of the second kind, that is, the number of ways to
partition a set of n objects into c nonempty subsets. In the next proposition, which
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is an application of Theorem 5.2, the random indicator function (x,ω) → 1A(ω)(x)

on �X × X denotes a measurable process u :�X × X → R such that u2(ω, t) =
u(ω, t), ω ∈ �X , t ∈ X.

PROPOSITION 5.3. Let F :�X → R be a bounded random variable, and con-
sider a measurable random indicator function (x,ω) → 1A(ω)(x) on �X ×X, with
compact support in X. Then for all n ≥ 0 we have

Eσ [Fδ(1A)n]

=
n∑

c=0

c∑
a=0

(−1)a
(

n

a

)
S(n − a, c − a)

× Eσ

[∫
Xa

(
a∏

i=1

(I + Dsi )(Fσ(A)c−a)

)

×
a∏

p=1

a∏
i=1
i 	=p

(I + Dsi )1A(sp)σ (ds1) · · ·σ(dsa)

]
.

PROOF. Taking u = 1A in Theorem 5.2 yields

Eσ [F(δ(u))n]

=
n∑

a=0

n−a∑
b=0

(−1)b
∑

l1+···+la=n−b

l1,...,la≥1

C(l1, . . . , la, b)

× Eσ

[∫
Xa+b

(
a∏

i=1

(I + Dsi )F

)

×
a+b∏
p=1

a∏
i=1
i 	=p

(I + Dsi )1A(sp)σ (ds1) · · ·σ(dsa+b)

]

=
n∑

c=0

c∑
a=0

(−1)a
(

n

a

)
S(n − a, c − a)

× Eσ

[∫
Xc

(
a∏

i=1

(I + Dsi )F

)

×
c∏

p=1

a∏
i=1
i 	=p

(I + Dsi )1A(sp)σ (ds1) · · ·σ(dsc)

]
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=
n∑

c=0

c∑
a=0

(−1)a
(

n

a

)
S(n − a, c − a)

× Eσ

[∫
Xa

(
a∏

i=1

(I + Dsi )(Fσ(A)c−a)

)

×
a∏

p=1

a∏
i=1
i 	=p

(I + Dsi )1A(sp)σ (ds1) · · ·σ(dsa)

]
,

after checking that we have(
n

b

)
S(n − b, a) = ∑

l1+···+la=n−b

l1,...,la≥1

C(l1, . . . , la, b),

which is the number of partitions of a set of n elements into a nonempty subsets
and one subset of size b. �

When the set A is deterministic, Proposition 5.3 yields

Eλ[(Z − λ)n] =
n∑

c=0

λc
c∑

a=0

(−1)a
(

n

a

)
S(n − a, c − a)

for the central moments of a Poisson random variable Z = ω(A) with intensity
λ = σ(A), which, from (5.11), shows the combinatorial identity

S2(n, c) =
c∑

a=0

(−1)a
(

n

a

)
S(n − a, c − a).(5.14)

6. Poisson moments and polynomials. As mentioned in the Introduction we
need to introduce another family of polynomials whose generating function and
associated combinatorics will be better adapted to our approach, making it possi-
ble to apply the moment identities of Proposition 5.3 and the integration by parts
formula (5.4).

In terms of polynomials the identity (4.3) is easy to check for n = 1 and n = 2,
in which case we have

C1(ω(A),σ (A)) = ω(A) − σ(A) = δ(1A)

and

C2(ω(A),σ (A)) = (
ω(A) − σ(A)

)2 − (
ω(A) − σ(A)

) − σ(A)
(6.1)

= δ(1A)2 − δ(1A) − σ(A),



GIRSANOV IDENTITIES FOR POISSON MEASURES 1027

hence

Eσ [C2(ω(A),σ (A))] = Eσ [δ(1A)2] − σ(A)

= Eσ

[∫
X

∫
X

Ds1A(t)Dt1A(s)σ (ds)σ (dt)

]

from the Skorohod isometry (5.5).
In the sequel we will need to extend the above calculations and the proof of

(4.3) to Charlier polynomials Cn(x,λ) of all orders. For this, in Section 7 we will
use the moment identities for the Skorohod integral δ(1A) of Proposition 5.3, and
for this reason we will need to rewrite Cn(ω(A),σ (A)), a linear combination of
polynomials of the form Bn(δ(1A), σ (A)), where Bn(x,λ) is another polynomial
of degree n. This construction is done using Stirling numbers and combinatorial
arguments; cf. Proposition 6.1 below.

In other words, instead of using the identity (1.2) we need its Laplace form
(2.1), that is,

Eσ

[
exp

(
δ(f ) −

∫
X

(
ef (x) − f (x) − 1

)
σ(dx)

)]
= 1,(6.2)

obtained from (1.2) by taking

f (x) = log
(
1 + g(x)

)
, x ∈ X.

In particular when f = 1A with A ∈ B(X) a fixed compact subset of X, relation
(6.2) reads

Eσ

[
etδ(1A)−σ(A)(et−t−1)] = 1, t ∈ R,(6.3)

where δ(1A) = ω(A) − σ(A) is a compensated Poisson random variable with in-
tensity σ(A) > 0.

We let (Bn(x,λ))n∈N denote the family of polynomials defined by the generat-
ing function

ety−λ(et−t−1) =
∞∑

n=0

tn

n!Bn(y,λ), t ∈ R,(6.4)

for all y,λ ∈ R. This definition implies in particular that

Bn(y,−λ) = Eλ[(Z + y − λ)n],
where Z is a Poisson random variable with intensity λ > 0, and

Bn(y,λ) =
n∑

k=0

(
n

k

)
ykBn−k(0, λ), λ ∈ R, n ∈ N.(6.5)
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For example, one has that B1(y, λ) = y and B2(y, λ) = y2 − λ; hence (6.1) reads

C2(x, λ) = B2(x − λ,λ) − B1(x − λ,λ),

and these relations will extended to all polynomial degrees in Proposition 6.1 be-
low.

In addition, the definition of Bn(x,λ) generalizes that of the Bell (or Touchard)
polynomials Bn(λ) defined by the generating function

eλ(et−1) =
∞∑

n=0

tn

n!Bn(λ),

which satisfy

Bn(λ) = Bn(λ,−λ) = Eλ[Zn] =
n∑

c=0

λcS(n, c),(6.6)

where Z is a Poisson random variable with intensity λ > 0; cf., for example, Propo-
sition 2 of [5] or Section 3.1 of [8].

Next we show that the Charlier polynomials Cn(x,λ) with exponential generat-
ing function

e−λt (1 + t)x =
∞∑

n=0

tn

n!Cn(x,λ), x, t, λ ∈ R,

are dual to the generalized Bell polynomials Bn(x − λ,λ) under the Stirling trans-
form.

PROPOSITION 6.1. We have the relations

Cn(y,λ) =
n∑

k=0

s(n, k)Bk(y − λ,λ)

and

Bn(y,λ) =
n∑

k=0

S(n, k)Ck(y + λ,λ),

y, λ ∈ R, n ∈ N.

PROOF. For the first relation, for all fixed y,λ ∈ R we let

A(t) = e−λt (1 + t)y+λ =
∞∑

n=0

tn

n!Cn(y + λ,λ), t ∈ R,

and note that

A(et − 1) = et(y+λ)−λ(et−1) =
∞∑

n=0

tn

n!Bn(y,λ), t ∈ R,
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which implies

Bn(y,λ) =
n∑

k=0

S(n, k)Ck(y + λ,λ), n ∈ N,

(see, e.g., [3], page 2). The second part can be proved by inversion using Stirling
numbers of the first kind, as

n∑
k=0

S(n, k)Ck(y + λ,λ) =
n∑

k=0

k∑
l=0

S(n, k)s(k, l)Bl(y, λ)

=
n∑

l=0

Bl(y,λ)

n∑
k=l

S(n, k)s(k, l)

= Bn(y,λ)

from the inversion formula

n∑
k=l

S(n, k)s(k, l) = 1{n=l}, n, l ∈ N,(6.7)

for Stirling numbers; cf., for example, page 825 of [1]. �

The combinatorial identity proved in the next lemma will be used in Section 7
for the proof of Proposition 7.1. For b = 0 it yields the identity

S(n, a) =
a∑

c=0

(
n

c

)
S2(n − c, a − c),(6.8)

which is the inversion formula of (5.14), and has a natural interpretation by stating
that S2(m,b) is the number of partitions of a set of m elements made of b sets of
cardinal greater or equal to 2.

LEMMA 6.2. For all a, b ∈ N we have

(
a + b

a

)
S(n, a + b) =

b∑
l=0

n∑
k=l

(
n

k

)(
k

l

)
S(k − l, a)S2(n − k, b − l).

PROOF. This identity can be proved by a combinatorial argument. For each
value of k = 0, . . . , n one chooses a subset of {1, . . . , n} of size k − l which is
partitioned into a nonempty subsets, the remaining set of size n + l − k being
partitioned into l singletons and b − l subsets of size at least 2. In this process the
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b subsets mentioned above are counted including their combinations within a + b

sets, which explains the binomial coefficient
(a+b

a

)
on the right-hand side. �

7. Random Charlier polynomials. In order to simplify the presentation of
our results it will sometimes be convenient to use the symbolic notation

�s0 · · ·�sj

n∏
p=0

usp = ∑
�0∪···∪�n={0,1,...,j }

0/∈�0,...,j /∈�j

D�0us0 · · ·D�nusn,(7.1)

s0, . . . , sn ∈ X, 0 ≤ j ≤ n, for any measurable process u :�X × X → R.
The above formula implies in particular �s0us0 = 0, and it can be used to rewrite

the Skorohod isometry (5.5) as

Eσ [δ(u)2] = Eσ

[‖u‖2
L2

σ (X)

] + Eσ

[∫
X

∫
X

�s�t(utus)σ (ds)σ (dt)

]
,

since by definition we have

�s�t(usut ) = DsutDtus, s, t ∈ X.

In this section we show the following proposition.

PROPOSITION 7.1. Let n ≥ 1 and let A1(ω), . . . ,An(ω) be a.e. disjoint ran-
dom Borel sets, all of them being a.s. contained in a fixed compact set K of X.
Then we have

Eσ

[
n∏

i=1

Cki

(
δ(1Ai

) + σ(Ai), σ (Ai)
)]

= Eσ

[∫
KN

�s1 · · ·�sN (1
A

k1
1

⊗ · · · ⊗ 1
A

kn
n

)(s1, . . . , sN)σ (ds1) · · ·σ(dsN)

]
,

k1, . . . , kn ∈ N, with N = k1 + · · · + kn.

For n = 1, Proposition 7.1 yields, in particular,

Eσ [Cn(ω(A),σ (A))]

= Eσ

[∫
Kn

�s1 · · ·�sn

n∏
p=1

1A(sp)σ (ds1) · · ·σ(dsn)

]

for A a.s. contained in a fixed compact set K of X, which leads to (4.3) by Lem-
ma 7.3 under condition (4.2), as in the following corollary which is used for the
proof of Proposition 4.1.
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COROLLARY 7.2. Assume that τ :�X × X → X satisfies

Dtτ(ω, t) = 0, ω ∈ �X, t ∈ X.(7.2)

Then for all deterministic disjoint B1, . . . ,Bn ∈ B(X) we have

Eσ

[
n∏

i=1

Cki

(
ω

(
A ∩ τ−1(Bi)

)
, σ

(
A ∩ τ−1(Bi)

))]

= Eσ

[∫
AN

Ds1 · · ·DsN

(
(1

B
k1
1

⊗ · · · ⊗ 1
B

kn
n

)(τ (ω, s1), . . . , τ (ω, sN))
)

× σ(ds1) · · ·σ(dsN)

]
,

k1, . . . , kn ∈ N, with N = k1 + · · · + kn, for all compact A ∈ B(X).

PROOF. We apply Proposition 7.1 by letting Ai(ω) = A∩ τ−1(ω,Bi), and we
note that we have

σ(Ai(ω)) =
∫
A

1Bi
(τ (ω, t))σ (dt) = σ

(
A ∩ τ−1(ω,Bi)

)
.

On the other hand, by (7.2) we have Dt1Ai
(t) = Dt1Bi

(τ (ω, t)) = 0; hence from
Lemma 7.4 below we have

δ(1Ai
) + σ(Ai) = δ(1A1Bi

◦ τ) + σ
(
A ∩ τ−1(Bi)

) = ω
(
A ∩ τ−1(Bi)

)
.

Finally we note that from (7.1) and (7.2) we have

Ds1 · · ·DsN = �s1 · · ·�sN ,

and we apply Proposition 7.1. �

The proof of Proposition 7.1 relies on the following lemma.

LEMMA 7.3. Let F :�X → R be a bounded random variable, and consider a
random set A, a.s. contained in a fixed compact set K of X. For all k ≥ 1 we have

Eσ

[
FCk

(
δ(1A) + σ(A),σ (A)

)]

=
k∑

z=0

(−1)k−z

(
k

z

)
Eσ

[∫
Xk

z∏
j=1

(I + Dsj )F

k∏
p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)

× σ(ds1) · · ·σ(dsk)

]
.
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PROOF. Using Proposition 5.3 and Lemma 6.2 we have

Eσ [FBn(δ(1A), σ (A))]

=
n∑

i=0

(
n

i

)
Eσ [F(δ(1A))iBn−i(0, σ (A))]

=
n∑

i=0

(
n

i

) n−i∑
c=0

(−1)cS2(n − i, c)Eσ [F(δ(1A))iσ (A)c]

=
n∑

i=0

(
n

i

) n−i∑
c=0

(−1)cS2(n − i, c)

×
i∑

e=0

e∑
z=0

(−1)e−z

(
i

z

)
S(i − z, e − z)

× Eσ

[∫
Xz

(
z∏

j=1

(I + Dsj )(Fσ(A)c+e−z)

)

×
z∏

p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)

× σ(ds1) · · ·σ(dsz)

]

=
n−1∑
k=0

n∑
i=0

(
n

i

) n−i∑
c=0

S2(n − i, c)

×
k−c∑
z=0

(−1)k−z

(
i

z

)
S(i − z, k − c − z)

× Eσ

[∫
Xz

(
z∏

j=1

(I + Dsj )(Fσ(A)k−z)

)

×
z∏

p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)

× σ(ds1) · · ·σ(dsz)

]
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=
n−1∑
k=0

k∑
z=0

(−1)k−z
n∑

i=0

(
n

i

) n−i∑
c=0

(
i

z

)
S2(n − i, c)S(i − z, k − c − z)

× Eσ

[∫
Xz

(
z∏

j=1

(I + Dsj )(Fσ(A)k−z)

)

×
z∏

p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)σ (ds1) · · ·σ(dsz)

]

=
n∑

k=0

S(n, k)

k∑
z=0

(−1)k−z

(
k

z

)

× Eσ

[∫
Xz

(
z∏

j=1

(I + Dsj )(Fσ(A)k−z)

)

×
z∏

p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)σ (ds1) · · ·σ(dsz)

]
.

Hence from Proposition 6.1 or the inversion formula (6.7) we get

Eσ

[
FCk

(
δ(1A) + σ(A),σ (A)

)]

=
k∑

z=0

(−1)k−z

(
k

z

)

× Eσ

[∫
Xk

z∏
j=1

(I + Dsj )F

k∏
p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)

× σ(ds1) · · ·σ(dsk)

]
. �

In particular, Lemma 7.3 applied to F = 1 shows that

Eσ

[
Ck

(
δ(1A) + σ(A),σ (A)

)]

=
k∑

z=0

(−1)k−z

(
k

z

)
Eσ

[∫
Xk

k∏
p=1

z∏
j=1
j 	=p

(I + Dsj )1A(sp)σ (ds1) · · ·σ(dsk)

]

=
k∑

z=0

(−1)k−z

(
k

z

)
Eσ

[∫
Xk

k∏
p=1

z∏
j=1

(I + �sj )1A(sp)σ (ds1) · · ·σ(dsk)

]
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= Eσ

[∫
Xk

(
k∏

j=1

(I + �sj − I )

)
k∏

p=1

1A(sp)σ (ds1) · · ·σ(dsk)

]

= Eσ

[∫
Xk

�s1 · · ·�sk

k∏
p=1

1A(sp)σ (ds1) · · ·σ(dsk)

]
,

which is Proposition 7.1 for n = 1. Next we will apply this argument to prove
Proposition 7.1 from Lemma 7.3 by induction.

PROOF OF PROPOSITION 7.1. From Lemma 7.3 we have

Eσ

[
FCk1

(
δ(1A1) + σ(A1), σ (A1)

)]

=
k1∑

z1=0

(−1)k1−z1

(
k1
z1

)
(7.3)

× Eσ

[∫
Kk1

z1∏
j=1

(I + Ds1,j
)F

k1∏
p=1

z1∏
j=1
j 	=p

(I + Ds1,j
)1A1(s1,p)

× σ(ds1,1) · · ·σ(ds1,k1)

]
.

The first induction step is to apply the above equality to the random variable

F =
n∏

i=2

Cki

(
δ(1Ai

) + σ(Ai), σ (Ai)
)
.

Here F is not bounded, however since Ai(ω) ⊂ K , a.s., i = 1, . . . , n, for a fixed
compact K ∈ B(X), we check that |F | is bounded by a polynomial in ω(K), and∣∣∣∣∣

z1∏
j=1

(I + Ds1,j
)F

∣∣∣∣∣
is bounded by another a polynomial in ω(K), uniformly in s1, . . . , sk1 ∈ X. Hence
by dominated convergence we can extend (7.3) from the bounded random variable
max(min(F,−C),C), C > 0, to F by letting C go to infinity. From relation (5.7)
we have

z1∏
j=1

(I + Ds1,j
)δ(1Ai

) = δ

(
z1∏

j=1

(I + Ds1,j
)1Ai

)
+

z1∑
k=1

z1∏
j=1
j 	=k

(I + Ds1,j
)1Ai

(s1,k)

= δ

(
z1∏

j=1

(I + Ds1,j
)1Ai

)
,
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0 ≤ z1 ≤ k1, i ≥ 2, when s1,k ∈ ∏z1
j=1j 	=k

(I + Ds1,j
)A1, 1 ≤ k ≤ k1, since

z1∏
j=1
j 	=k

(I + Ds1,j
)A1(ω), . . . ,

z1∏
j=1
j 	=k

(I + Ds1,j
)An(ω)

are disjoint, 1 ≤ k ≤ k1, ω ∈ �X , hence

z1∏
j=1

(I + Ds1,j
)F =

z1∏
j=1

(I + Ds1,j
)

n∏
i=2

Cki

(
δ(1Ai

) + σ(Ai), σ (Ai)
)

=
n∏

i=2

Cki

(
z1∏

j=1

(I + Ds1,j
)δ(1Ai

) +
z1∏

j=1

(I + Ds1,j
)σ (Ai),

z1∏
j=1

(I + Ds1,j
)σ (Ai)

)

=
n∏

i=2

Cki

(
δ

(
z1∏

j=1

(I + Ds1,j
)1Ai

)
+

z1∏
j=1

(I + Ds1,j
)σ (Ai),

z1∏
j=1

(I + Ds1,j
)σ (Ai)

)
,

which yields, from (7.3),

Eσ

[
n∏

i=1

Cki

(
δ(1Ai

) + σ(Ai), σ (Ai)
)]

=
k1∑

z1=0

(−1)k1−z1

(
k1
z1

)

× Eσ

[∫
Xk1

n∏
i=2

Cki

(
δ

(
z1∏

j=1

(I + Ds1,j
)1Ai

)
+

z1∏
j=1

(I + Ds1,j
)σ (Ai),

z1∏
j=1

(I + Ds1,j
)σ (Ai)

)

×
k1∏

p=1

z1∏
j=1
j 	=p

(I + Ds1,j
)1A1(s1,p)σ (ds1,1) · · ·σ(ds1,k1)

]
.
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Next, we apply Lemma 7.3 again to

Ck2

(
δ

(
z1∏

j=1

(I + Ds1,j
)1A2

)

+
z1∏

j=1

(I + Ds1,j
)σ (A2),

z1∏
j=1

(I + Ds1,j
)σ (A2)

)

and to

F =
k1∏

p=1

z1∏
j=1
j 	=p

(I + Ds1,j
)1A1(s1,p)

×
n∏

i=3

Cki

(
δ

(
z1∏

j=1

(I + Ds1,j
)1Ai

)
+

z1∏
j=1

(I + Ds1,j
)σ (Ai),

z1∏
j=1

(I + Ds1,j
)σ (Ai)

)
,

and by iteration of this argument we obtain

Eσ

[
n∏

i=1

Cki

(
δ(1Ai

) + σ(Ai), σ (Ai)
)]

=
kn∑

zn=0

· · ·
k1∑

z1=0

n∏
l=1

(−1)kl−zl

×
n∏

l=1

(
kl

zl

)
Eσ

[∫
Xk1

n∏
i=1

zi∏
j=1
j 	=p

(I + Dsi,j )

×
n∏

i=1

ki∏
j=1

1Ai
(si,j )σ (ds1,1) · · ·σ(dsn,kn)

]

=
kn∑

zn=0

· · ·
k1∑

z1=0

n∏
l=1

(−1)kl−zl

×
n∏

l=1

(
kl

zl

)
Eσ

[∫
Xk1

(
n∏

i=1

zi∏
j=1

(I + �si,j )

)

×
n∏

i=1

ki∏
j=1

1Ai
(si,j )σ (ds1,1) · · ·σ(dsn,kn)

]
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= Eσ

[∫
XN

(
n∏

i=1

ki∏
j=1

(I + �si,j − I )

)

×
n∏

i=1

ki∏
j=1

1Ai
(si,j )σ (ds1,1) · · ·σ(dsn,kn)

]

= Eσ

[∫
XN

(
n∏

i=1

ki∏
j=1

�si,j

)
n∏

i=1

ki∏
j=1

1Ai
(si,j )σ (ds1,1) · · ·σ(dsn,kn)

]
.

�

Next we prove Proposition 4.2.

PROOF OF PROPOSITION 4.2. Taking g :Y → R to be the step function

g =
m∑

i=1

ci1Bi
,

where c1, . . . , cm ∈ R and B1, . . . ,Bm ∈ B(Y ) are disjoint Borel subsets of Y ,
Corollary 7.2 shows that for compact A ∈ B(X) we have

Eσ

[
e− ∫

A g(τ(ω,t))σ (dt)
∏

x∈A∩ω

(
1 + g(τ(ω, x))

)]

= Eσ

[
m∏

l=1

e−clσ (A∩τ−1(Bl))
m∏

l=1

(1 + cl)
ω(A∩τ−1(Bl))

]

=
∞∑

k1=0

· · ·
∞∑

km=0

(
m∏

i=1

c
ki

i

ki !
)
Eσ

[
m∏

i=1

Cki

(
ω

(
A ∩ τ−1(Bi)

)
, σ

(
A ∩ τ−1(Bi)

))]

=
∞∑

n=0

1

n!Eσ [In(1An(·)g⊗n(τ⊗n(ω, ·)))]

=
∞∑

n=0

1

n!Eσ

[∫
An

�s1 · · ·�sn

n∏
p=1

g(τ(ω, sp))σ (ds1) · · ·σ(dsn)

]
.

In the general case with g :Y → R bounded measurable the conclusion follows
by approximation of g by step functions and dominated convergence under (2.4),
followed by extension to A = X using the bound (4.7). �

Finally we state the following lemma which has been used in the proof of Corol-
lary 7.2.

LEMMA 7.4. Assume that

Dtτ(ω, t) = 0, ω ∈ �X, t ∈ X.(7.4)



1038 N. PRIVAULT

Then we have∫
X

1A(t)h(τ (ω, t))ω(dt) = δ(1Ah ◦ τ)(ω) +
∫
A

h ◦ τ(ω, t)σ (dt), ω ∈ �X,

for all compact A ∈ B(X) and all bounded measurable functions h :X → R.

PROOF. We note that condition (7.4) above means that τ(ω, t) does not de-
pend on the presence or absence of a point in ω at t , and in particular,

τ(ω, t) = τ(ω ∪ {t}, t), t /∈ ω,

and

τ(ω, t) = τ(ω \ {t}, t), t ∈ ω.

Hence we have

δ(1Ah ◦ τ) +
∫
A

h ◦ τ(ω, t)σ (dt)

=
∫
X

1A(t)h
(
τ(ω \ {t}, t))(ω(dt) − σ(dt)

) +
∫
X

1A(t)h(τ (ω, t))σ (dt)

=
∫
X

1A(t)h
(
τ(ω \ {t}, t))ω(dt)

=
∫
X

1A(t)h(τ (ω, t))ω(dt). �

8. Link with the Carleman–Fredholm determinant. In this section we
make some remarks on differences between the Poisson and Wiener cases, in re-
lation to the quasi-nilpotence of random transformations. We consider a Poisson
random measure on R+ × [−1,1]d on the real line with flat intensity measure,
in which case it is known [16–18], that, building the Poisson measure as a prod-
uct of exponential and uniform densities on the sequence space R

N, we have the
Girsanov identity,

E[F(I + u)|det2(I + ∇u)| exp(−∇∗(u))] = E[F ],
where u : RN → R

N is a random shift satisfying certain conditions, det2(I + ∇u)

is the Carleman–Fredholm determinant of I + ∇u and ∇∗(u) is a Skorohod-type
integral of the discrete-time process u.

When it is invertible, (I + u)∗πσ is absolutely continuous with respect to πσ

with

d(I + u)−1∗ πσ

dπσ

= |det2(I + ∇u)| exp(−∇∗(u)).

It can be checked (cf. [16–18]) that in the adapted case this yields the usual
Girsanov theorem for the change of intensity of Poisson random measures
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when the configuration points are shifted by an adapted smooth diffeomor-
phism φ :�X × R+ × [0,1]d −→ R+ × [0,1]d , in which case I + Du becomes
a block diagonal matrix, each d × d block having the Jacobian determinant
|∂t,xφ(ω,Tk, x

1
k , . . . , xd

k )|, and we have

det2(I + ∇u) exp(−∇∗(u))

= e
− ∫

R+×[0,1]d (|∂s,xφ(ω,s,x)|−1) ds dx
∞∏

k=1

|∂t,xφ(ω,Tk, x
1
k , . . . , xd

k )|.

The main difference with the Wiener case is that here ∇u is not quasi-nilpotent on
�2(N) and we do not have det2(I + ∇u) = 1. Nevertheless it should be possible to
recover Proposition 4.1 in a weaker form by checking the relation

det(I + ∇u) =
∞∏

k=1

|∂t,xφ(ω,Tk, x
1
k , . . . , xd

k )|

for anticipating shifts φ :�X × R+ × [0,1]d −→ R+ × [0,1]d , under smoothness
and quasi-nilpotence assumptions stronger than those assumed in this paper.
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