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DIFFUSIVITY BOUNDS FOR 1D BROWNIAN POLYMERS

BY PIERRE TARRÈS1,2, BÁLINT TÓTH3 AND BENEDEK VALKÓ3,4

CNRS, Université de Toulouse, Budapest University of Technology
and University of Wisconsin

We study the asymptotic behavior of a self-interacting one-dimensional
Brownian polymer first introduced by Durrett and Rogers [Probab. Theory
Related Fields 92 (1992) 337–349]. The polymer describes a stochastic pro-
cess with a drift which is a certain average of its local time.

We show that a smeared out version of the local time function as viewed
from the actual position of the process is a Markov process in a suitably cho-
sen function space, and that this process has a Gaussian stationary measure.
As a first consequence, this enables us to partially prove a conjecture about
the law of large numbers for the end-to-end displacement of the polymer
formulated in Durrett and Rogers [Probab. Theory Related Fields 92 (1992)
337–349].

Next we give upper and lower bounds for the variance of the process under
the stationary measure, in terms of the qualitative infrared behavior of the
interaction function. In particular, we show that in the locally self-repelling
case (when the process is essentially pushed by the negative gradient of its
own local time) the process is super-diffusive.

1. Introduction.

1.1. Historical background. Let (X(t))t≥0 be the random process defined by
X(0) := x0 ∈ R and

X(t) = B(t) +
∫ t

0

(
ξ(X(s)) +

∫ s

0
f

(
X(s) − X(u)

)
du

)
ds,(1)

where B(t) is a standard 1D Brownian motion, f : R → R is a function with suf-
ficient regularity, and ξ : R → R is an initial drift profile with regularity (detailed
below).
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This process X(t) was introduced by Norris, Rogers and Williams [17], Durrett
and Rogers [6], as a model for the location of the end of a growing polymer at
time t , in the case of zero initial profile (ξ ≡ 0).

It is phenomenologically instructive to write the driving mechanism on the right-
hand side of (1) in terms of the occupation time density (local time) of the process
X(t):

X(t) = B(t) +
∫ t

0

{
ξ(X(s)) +

∫ ∞
−∞

f (z)L
(
s,X(s) − z

)
dz

}
ds,(2)

where

L(s, y) := ∂y

∫ s

0
1{X(u)<y} du.(3)

Various choices of the function f have been analyzed in detail and mathemat-
ically deep, sometimes phenomenologically surprising results have been obtained
in the papers [2, 3] and [16]. For a detailed survey of the problem see [16]. How-
ever, satisfactory understanding of the asymptotic behavior of the process (1) has
not been reached in many interesting cases.

In particular, the following conjecture has remained open so far:

CONJECTURE 1 (Durrett and Rogers [6]). Suppose f has sufficient fast decay
at infinity, and

f (−x) = −f (x) and sgn(f (x)) = sgn(x).(4)

Then X(t)/t → 0 a.s.

Tóth and Werner later conjectured that, under the same assumptions, X(t)/t2/3

converges in law, by analogy with the discrete space–time self-repelling random
walk on Z which displays this t2/3 asymptotic behavior (with identification of
the limiting distribution, see [23, 24]), and with a continuous space–time process
arising as a scaling limit constructed in [25]. These studies were stimulated by
the so-called true self-avoiding random walk (TSAW) introduced in the physics
literature by Amit, Parisi and Peliti [1].

We partially prove Conjecture 1, and obtain asymptotic lower and upper bounds
in the stationary regime which translate, in the case (4), into

lim
t→∞

t−5/4E(X(t)2) > 0, lim
t→∞ t−3/2E(X(t)2) < ∞,(5)

where the lower bound is meant in the sense of Laplace transform (see details
later). We also show that the process X(t) behaves diffusively, for functions f

satisfying a certain summability condition [see (24)]. Our argument is based on
the study of an underlying Markov process living in the path space, which has
invariant Gaussian measure.
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In the follow-up paper [7] the analogous polymer model in dimensions d ≥ 3 is
investigated. There full CLT is proved for the locally self-repelling case in those
dimensions, using the nonreversible version of the Kipnis–Varadhan theory. As
explained in that paper, technical parts of that method do not apply (so far) in
lower dimensions.

1.2. Assumptions on f . We assume throughout the paper that the Brownian
polymer processes (1) are under the assumption that the function f is the negative
gradient of an absolutely integrable smooth function of positive type, that is,

f (x) = −b′(x),(6)

where b ∈ L1(R)∩C(∞)(R) has nonnegative Fourier transform. Note that positive
definiteness implies

b(−x) = b(x), sup
x∈R

|b(x)| = b(0).(7)

Given that b is of positive type, it is actually sufficient to assume its infinitely dif-
ferentiability only at x = 0. Indeed, since b ∈ L1(R) and b̂(p) ≥ 0, it then follows
that b̂ has finite moments of all orders: for all k ∈ N,∫ ∞

−∞
|p|kb̂(p) dp < ∞,(8)

and, hence, it follows that actually b ∈ C∞(R).
Note that the regularity assumption is much more than really needed, we assume

it in order to make the technical arguments shorter.

1.3. Underlying Markov process and invariant Gaussian measure. First, we
let t 	→ ζ(t, x) be the “drift function” environment at time t [i.e., ζ(t, x) is the
drift that would be endured by the particle at time t if it were in x]:

ζ(t, x) = ζ(0, x) +
∫ t

0
b′(X(s) − x

)
ds.(9)

The initial condition is ζ(0, x) = ξ(x) from (1) and (2). Then (1) reads

X(t) = X(0) + B(t) +
∫ t

0
ζ(s,X(s)) ds.(10)

In other words,

dX(t) = dB(t) + ζ(t,X(t)) dt, dζ(t, x) = b′(X(t) − x
)
dt.(11)

Now let η be the environment profile as seen from the moving point X(t), that
is,

x 	→ η(t, x) := ζ
(
t,X(t) + x

)
.(12)
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Then t 	→ η(t) := η(t, ·) is a Markov process, on the space of smooth functions of
slow increase at infinity:

� := {ω ∈ C∞(R → R) : (∀k ≥ 0,∀l ≥ 1) :‖ω‖k,l < ∞},(13)

where ‖ω‖k,l are the seminorms

‖ω‖k,l := sup
x∈R

(1 + |x|)−1/l
∣∣ω(k)(x)

∣∣, k ≥ 0, l ≥ 1.(14)

� endowed with these seminorms ‖ω‖k,l , k ≥ 0, l ≥ 1, is a Fréchet space.
Note that the existence and uniqueness of a pathwise strong solution of (1) is

standard; see, for instance, Theorem 11.2 in [20]. Furthermore, given the corre-
sponding assumptions on b, if ζ(0, ·) ∈ �, then ζ(t, ·) ∈ �, for all t ≥ 0.

Using (11) with the definition (12), we derive by standard Itô-calculus that

dη(t, x) = η′(t, x) dB(t) + η′(t, x)η(t,0) dt + η′′(t, x)

2
dt − b′(x) dt.(15)

We show in Theorem 1 that the unique Gaussian probability measure π(dω) on
� with mean and covariance∫

�
ω(x)π(dω) = 0,

∫
�

ω(x)ω(y)π(dω) = b(x − y)(16)

is invariant for the Markov process t 	→ η(t) := η(t, ·).
Recall that Minlos’ theorem (Theorem I.10 of [22]) implies, given x 	→ b(x)

with the assumed properties, that the expectations and covariances (16) define a
unique translation invariant Gaussian probability measure π(dω) on the space of
tempered distributions S ′(R). The regularity properties of the covariance func-
tion b imply that this measure is actually supported by the space � ⊂ S ′(R); see
[14, 15].

A natural realization of the measure π(dω) is the following: let c : R → R be
the unique function of positive type for which b = c ∗ c and let w′(y) be standard
white noise on the line R. Let

ω(x) :=
∫

R

c(x − y)w′(y) dy.(17)

Then the random element ω(·) ∈ � will have exactly the distribution π(dω).
Note that the group of spatial translations

R � z 	→ τz :� → �, (τzω)(x) := ω(x + z)(18)

acts naturally on � and preserves the probability measure π(dω). As can be seen
from the representation (17), the dynamical system (�,π(dω), τz : z ∈ R) is er-
godic.

THEOREM 1. The Gaussian probability measure π(dω) on �, with mean 0
and covariances (16), is time-invariant and ergodic for the �-valued Markov pro-
cess t 	→ η(t).
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Theorem 1 is proved in Section 2.3; we also provide in Section 1.5 a short
formal proof of it.

Now define the function ϕ :� → R,

ϕ(ω) := ω(0).(19)

Note that (9), (10) and (12) imply

X(t) − X(0) = B(t) +
∫ t

0
ϕ(η(s)) ds.(20)

The law of large numbers is therefore a direct consequence of ergodicity.

COROLLARY 1. For π -almost all initial profiles ζ(0, ·),

lim
t→∞

X(t)

t
= 0 a.s.(21)

This partially settles Conjecture 2 of [6].

1.4. Diffusivity bounds on X(t). All results in the sequel will be meant for
the process being in the stationary regime described in the last section [i.e., ξ =
ζ(0, ·) ∈ � distributed according to π ].

We now study the t → ∞ asymptotics of the variance of displacement

E(t) := E(X(t)2).(22)

First, we use a special kind of time-reversal symmetry, sometimes called
Yaglom-reversibility (see [5, 26, 27]), to show in Section 3.1 that, under the gen-
eral assumptions of Section 1.2, for any s < t , the random variables B(t) − B(s)

and
∫ t
s ϕ(η(u)) du are uncorrelated, and, hence,

E
((

X(t) − X(s)
)2) = t − s + E

((∫ t

s
ϕ(η(u)) du

)2)
.(23)

Furthermore, if the following summability condition holds:

ρ2 :=
∫ ∞
−∞

p−2b̂(p) dp < ∞,(24)

then the process X(t) behaves diffusively, as stated in Theorem 2, shown in Sec-
tion 3.2. Note that (24) is a condition on the infrared (|p| � 1) asymptotics of the
spectrum b̂(p).

THEOREM 2. Let ρ2 be the constant defined in (24). Then

1 ≤ lim
t→∞

t−1E(t) ≤ lim
t→∞ t−1E(t) ≤ 1 + ρ2.(25)
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REMARKS. (1) The upper bound in (25) is informative only when the integral
on the right-hand side of (24) is finite, which does not hold, for instance, in the
self-repelling case f = −b′ of the form (4), where b̂(0) > 0.

(2) This result is short of proving the full CLT, namely, that

σ 2 := lim
t→∞ t−1E(t)

exists, is between the bounds given in (25) and t−1/2X(t) ⇒ N(0, σ 2). Recall that
in the follow-up paper [7] full CLT is proved for the locally self-repelling Brown-
ian polymer in d ≥ 3. The proof relies on the nonreversible Kipnis–Varadhan the-
ory. As explained in that paper, technical parts of that method cannot be applied
(so far) in lower dimensions.

Let, for all λ > 0,

Ê(λ) :=
∫ ∞

0
e−λtE(t) dt,(26)

and let D be the diffusivity, as usually defined: D(t) := t−1E(t).
One can easily show (by a simple change of variables) that, for ν > 0,

{E(t) ∼ Ct2ν, t � 1} ⇒ {Ê(λ) ∼ C′λ−2ν−1, λ � 1}.(27)

Theorem 3 shows bounds for the Laplace transform Ê(λ) as λ → 0, based on the
resolvent method, first used by Landim, Quastel, Salmhofer and Yau in [12] to
provide superdiffusive estimates on the diffusivity of asymmetric simple exclusion
process in one and two dimensions.

Then Lemma 1, shown in a different context in [19] but readily translated for
our purposes (see also [10, 13, 19]), enables us to convert the upper bound on Ê(λ)

into an upper bound on E(t), without the need of extra regularity assumption, as
is usually required in Tauberian theorems. Its proof relies on the estimate of the
variance of additive functionals of Markov processes using the H−1 norm.

More precisely, let us consider the following infrared bounds for the correlation
function b̂(p): for some −1 < α < 1:

C1 := lim
p→0

|p|−αb̂(p) < ∞, C2 := lim
p→0

|p|−αb̂(p) > 0.(28)

Of course, C2 ≤ C1.

THEOREM 3. If for some −1 < α < 1 the infrared bounds (28) hold, then

lim
λ→0

λ(5−α)/2Ê(λ) ≤ C3 < ∞(29)

and

lim
λ→0

λ(9−2α+α2)/4Ê(λ) ≥ C4 > 0,(30)

where the constants C3 and C4 depend only on α, C1 and C2.
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LEMMA 1. There exists an explicit finite constant C such that

E(t) ≤ Ct−1Ê(t−1).(31)

REMARKS. (1) By Lemma 1 the bound (29) can be converted into

lim
t→∞ t−(3−α)/2E(t) ≤ C ′

3 < ∞.(32)

(2) Although we cannot translate the lower bound on Ê(λ) into an asymptotic
lower bound on E(t), by (27) the bound (30) essentially means

lim
t→∞

t−(5−2α+α2)/4E(t) ≥ C ′
4 > 0.(33)

(3) The locally self-avoiding case corresponds to α = 0. In this case our results
give

C′′
4 t5/4 ≤ E(t) ≤ C′′

3 t3/2(34)

with some constants C′′
4 > 0, C′′

3 < ∞. Here the first inequality is meant in the
sense of Laplace transforms. Recall that in this particular case, the conjectured
order in [25] is E(t) � t4/3.

(4) We make the following conjecture:

CONJECTURE 2. Under the conditions of Theorem 3 the true asymptotic order
is

E(t) = E(X(t)2) � t4/(3+α).(35)

REMARK. This conjecture is formally in agreement with the order of the
limit proved in [16] under superballistic scaling, for slowly decaying (with dis-
tance) self-interaction functions f , and the corresponding conjectures formulated
in [6, 25].

1.5. Formal proof of Theorem 1. In order to prove that π is indeed time-
stationary, we have to show that for any (sufficiently smooth) test function u(·)
the moment generating functional E(exp{〈u,η(t)〉}) is constant in time. Here we
used the notation

〈u, v〉 :=
∫ ∞
−∞

v(x)u(x) dx.(36)

[Note that starting from Section 2 the brackets 〈·, ·〉 will have a different meaning;
see (43).] It follows from (15) that

dE(exp{〈u,η(t)〉})
= E(d exp{〈u,η(t)〉})(37)

= E
(
e〈u,η(t)〉(1

2〈u′′, η(t)〉 + 1
2〈u′, η(t)〉2 − 〈u′, η(t)〉η(t,0) + 〈u′, b〉))dt.
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Let X,Y,Z be jointly Gaussian with zero mean. Then it is easy to show (by
differentiations of the moment generating function of their joint distribution) that

E(Y eX) = exp{E(X2)/2}E(XY),(38)

E(YZeX) = exp{E(X2)/2}(E(YZ) + E(XY)E(XZ)
)
.(39)

Using these identities, if η is a zero mean Gaussian field with covariance b (as it is
assumed), the right-hand side of (37) can be computed explicitly to deduce

e(1/2)〈u,b∗u〉{1
2〈u′′, b ∗ u〉 + 1

2〈u′, b ∗ u′〉
(40)

+ 1
2〈u′, b ∗ u〉2 − 〈u′, b ∗ u〉〈u,b〉}dt.

Note that for any test function u we have 〈u′, b∗u〉 = 0, since b is even. Thus, after
one integration by parts we note that the previous expression is always 0, which
shows that E(exp{〈u,η(t)〉}) is indeed constant in time.

REMARK. It is not hard to check that translation invariant Gaussian fields with
nonzero centering and the same covariances∫

�
ω(x)π(dω) = v ∈ R,

∫
�

ω(x)ω(y)π(dω) − v2 = b(x − y)(41)

are also time-stationary (and ergodic) for the process t 	→ η(t). If we start our pro-
cess with these initial distributions, then the corresponding laws of large numbers

lim
t→∞

X(t)

t
= v a.s.(42)

hold, which means ballistic behavior of the process t 	→ X(t). We will not pursue
these regimes in the present note.

2. Spaces and operators.

2.1. Spaces. The natural formalism for the proofs of our theorems is that of
Fock space and Gaussian Hilbert spaces. We follow the usual notation of Euclidean
quantum field theory; see, for example, [22].

Endow the space of real-valued smooth functions of rapid decrease (Schwartz
space) S = S(R) with the inner product

〈u, v〉 :=
∫ ∞
−∞

∫ ∞
−∞

u(x)b(x − y)v(y) dx dy

(43)
=

∫ ∞
−∞

û(−p)v̂(p)b̂(p) dp < ∞,

and let V be the completion of S(R) with respect to this Euclidean norm.
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We denote H := L2(�,π). Then

φ : S → H, φ(v)(ω) :=
∫ ∞
−∞

ω(x)v(x) dx(44)

is an isometric embedding of (V, 〈·, ·〉) in H:

‖φ(v)‖2
H = ‖v‖2

V ,(45)

so φ extends as an isometric embedding of V into the Gaussian subspace of H.
The Hilbert space H is naturally graded

H = H0 ⊕ H1 ⊕ H2 ⊕ · · · ⊕ Hn ⊕ · · · ,(46)

where

H0 := {c1, c ∈ R},(47)

H1 := {φ(v), v ∈ V},(48)

Hn := span{:φ(v1) · · ·φ(vn):, v1, . . . , vn ∈ V}.(49)

Here and throughout the rest of the paper :X1 · · ·Xn : denotes the Wick product of
the jointly Gaussian random variables (X1, . . . ,Xn). For basics of Fock space and
Wick products see, for example, chapter I of [22] and/or chapter III of [8].

2.2. Operators. We use the standard notation of Fock spaces. Given a
(bounded or unbounded) closed linear operator A over the basic Hilbert space V ,
its second quantized version over the Hilbert space H will be denoted d�(A). This
latter one acts on Wick monomials as follows:

d�(A):φ(v1) · · ·φ(vj ) · · ·φ(vn): =
n∑

j=1

:φ(v1) · · ·φ(Avj ) · · ·φ(vn):,(50)

and it is extended by linearity and graph closure.
A particularly important linear operator over V is the differentiation with respect

to the x-variable:

∂v(x) := v′(x).(51)

This is an unbounded skew self-adjoint operator defined on the dense domain

Dom(∂) =
{
v ∈ V :

∫ ∞
−∞

p2|v̂(p)|2b̂(p) dp < ∞
}
.(52)

We denote the second quantization of ∂ by

∇ := d�(∂).(53)

Then ∇ is also an unbounded and skew self-adjoint operator over H. We shall also
need the operator ∇2 acting on H. (Note that this is not the second quantization
of ∂2.)
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Given an element u ∈ V , the creation and annihilation (or: raising and lowering)
operators associated to it are

a∗(u) : Hn → Hn+1, a(u) : Hn → Hn−1,(54)

acting on Wick monomials as

a∗(u) :φ(v1) · · ·φ(vn): = :φ(u)φ(v1) · · ·φ(vn):,(55)

a(u) :φ(v1) · · ·φ(vn): =
n∑

j=1

〈u, vj 〉:φ(v1) · · ·φ(vj−1)φ(vj+1) · · ·φ(vn):.(56)

We will also use the following straightforward commutation relation:

[∇, a(u)] = a(u′).(57)

We define the unitary involution J on H:

Jf (ω) := f (−ω), J �Hn= (−1)nI �Hn .(58)

The subspace of smooth functions

C := {F(φ(v1), . . . , φ(vk)) :F ∈ C∞
0 (Rk → R), v1, . . . , vk ∈ S} ⊂ H(59)

is a common core for all (unbounded) operators defined above and used in the
sequel. They act on functions of this form as follows:

∇F(φ(v1), . . . , φ(vk)) =
k∑

l=1

∂lF (φ(v1), . . . , φ(vk))φ(v′
l),(60)

∇2F(φ(v1), . . . , φ(vk)) =
k∑

l,m=1

∂2
l,mF (φ(v1), . . . , φ(vk))φ(v′

l)φ(v′
m)

(61)

+
k∑

l=1

∂lF (φ(v1), . . . , φ(vk))φ(v′′
l ),

a(u)F (φ(v1), . . . , φ(vk)) =
k∑

l=1

∂lF (φ(v1), . . . , φ(vk))〈u, vl〉,(62)

a∗(u)F (φ(v1), . . . , φ(vk)) = φ(u)F (φ(v1), . . . , φ(vk))
(63)

− a(u)F (φ(v1), . . . , φ(vk)).

For basics about creation, annihilation and second quantized operators see, for ex-
ample, [8] or [22]. In particular, note that, for F ∈ C and u ∈ V such that b ∗ u ∈ �,
the following identities hold:((

a∗(u) + a(u)
)
F

)
(ω) = (φ(u)F )(ω),(64)

(a(u)F )(ω) = lim
ε→0

ε−1(
F(ω + εb ∗ u) − F(ω)

)
.(65)
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These identities are easily checked on Wick monomials and extended by linear-
ity. Identity (64) means that the sum of the creation and annihilation operators
corresponding to an element of the basic space V is the multiplication operator
with the isometric Gaussian embedding of that vector. The meaning of (65) is that
the annihilation operator a(u) is actually a “directional derivative” in the direc-
tion b ∗ u ∈ �. This latter one is a particular case of a well-known identity from
Malliavin calculus; see, for example, chapter XV and, in particular, Theorem 15.8
of [8].

Notice that ∇ is the infinitesimal generator of the unitary group of spatial trans-
lations while ∇2/2 is the infinitesimal generator of the Markovian semigroup of
diffusion in random scenery:

exp{z∇} = Tz, Tzf (ω) := f (τzω),(66)

exp{t∇2/2} = Qt, Qtf (ω) :=
∫ exp{−z2/(2t)}√

2πt
f (τzω)dz.(67)

2.3. The infinitesimal generator, stationarity, Yaglom-reversibility, ergodicity.
We denote

Pt : H → H, Ptf (ω) := E
(
f (η(t))|η(0) = ω

)
.(68)

Then [0,∞) � t 	→ Pt ∈ B(H) (bounded operators on H) is a positivity preserving
contraction semigroup on H.

Given f = F(φ(v1), . . . , φ(vk)) ∈ C , from (11), (12) and using (60)–(63), one
can compute

lim
t→0

E(f (η(t) − f (η(0)))|η(0) = ω)

t
=

(
1

2
∇2 + φ(δ)∇ + a(δ′)

)
f (ω).(69)

This operator is extended from C by graph closure. Now, using the commutation
relation (57), we obtain the infinitesimal generator of the semigroup Pt :

G := 1
2∇2 + a∗(δ)∇ + ∇a(δ).(70)

The adjoint of the generator is

G∗ := 1
2∇2 − a∗(δ)∇ − ∇a(δ).(71)

For later use we introduce notation for the symmetric (self-adjoint) and antisym-
metric (skew-self-adjoint) parts of the generator:

S := −1
2(G + G∗) = −1

2∇2,(72)

A := 1
2(G − G∗) = a∗(δ)∇ + ∇a(δ) =: A+ + A−.(73)

Note that

S : Hn → Hn, A+ : Hn → Hn+1,
(74)

A− : Hn → Hn−1, A− = −A∗+
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and

S �H0= 0, A+ �H0= 0, A− �H0⊕H1= 0.(75)

PROOF OF THEOREM 1 AND COROLLARY 1. It is clear that

G∗1 = 0,(76)

and, hence, it follows that π is indeed a stationary distribution of the process t 	→
η(t) and G∗ is itself the infinitesimal generator of the stochastic semigroup P ∗

t of
the time reversed process.

Proving ergodicity is easy. For any f ∈ H the Dirichlet form of the process
t 	→ η(t) is given by

D(f ) := −(f,Gf ) = −(
f, 1

2∇2f
) = 1

2‖∇f ‖2,(77)

where (·, ·) and ‖ · ‖ denote the scalar product and L2 norm in H. So,

{D(f ) = 0} ⇔ {∇f = 0} ⇔ {f = const. π -a.s.},(78)

since z 	→ τz acts ergodically on (�,π).
Corollary 1 follows directly (20), by the ergodic theorem. �

The generator G is, of course, not reversible, but the so-called Yaglom-
reversibility [5, 26, 27] holds:

G∗ = JGJ.(79)

This identity means that the stationary forward process (−∞,∞) � t 	→ η(t) and

(−∞,∞) � t 	→ η̃(t) := −η(−t)(80)

obey the same law. We will call t 	→ η̃(t) the flipped-backward process.

3. Diffusive bounds. The aim of this section is to prove Theorem 2.

3.1. Diffusive lower bound. For −∞ < s ≤ t < ∞ denote

M(s, t) := X(t) − X(s) −
∫ t

s
ϕ(η(u)) du = B(t) − B(s).(81)

LEMMA 2. For s ∈ R fixed the process [s,∞) � t 	→ M(s, t) is a forward
martingale with respect to the forward filtration {F(−∞,t] : t ≥ s} of the process
t 	→ η(t). For t ∈ R fixed the process (−∞, t] � s 	→ M(s, t) is a backward
martingale with respect to the backward filtration {F[s,∞) : s ≤ t} of the process
t 	→ η(t).
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PROOF. There is nothing to prove about the first statement: the integral on the
right-hand side of (81) was chosen exactly so that it compensates the conditional
expectation of the infinitesimal increments of X(t).

We turn to the second statement of the lemma. We use the following facts:
(1) For any s ≤ t , there is a Borel function Fs,t mapping a.s. (η(u))s≤u≤t

to X(t) − X(s). By symmetry, F−t,−s maps the flipped-backward process
(η̃(u))−t≤u≤−s in (80) to

X̃(−s) − X̃(−t) = X(s) − X(t).(82)

(2) The forward process t 	→ η(t) and flipped-backward process t 	→ η̃(t) are
identical in law.

(3) The function ω 	→ ϕ(ω) is odd with respect to the flip map ω 	→ −ω.
Putting these facts together (in this order) we obtain

lim
h→0

E
(

X(s − h) − X(s)

−h

∣∣∣∣F[s,∞)

)

= − lim
h→0

E
(

X̃(−s + h) − X̃(−s)

h

∣∣∣∣F̃(−∞,−s]
)

(83)

= −ϕ(η̃(−s)) = ϕ(η(s)). �

From Lemma 2 it follows that

E
((

X(t) − X(s)
)2) = E

((
M[s,t]

)2) + E
((∫ t

s
ϕ(η(u)) du

)2)
(84)

= t − s + E
((∫ t

s
ϕ(η(u)) du

)2)
,

hence the lower bound in (25).

3.2. Diffusive upper bound. Throughout this section we assume (24). First we
recall a general result about the limiting variance of additive functionals integrated
along the trajectory of a stationary and ergodic Markov process.

Let t 	→ η(t) be a stationary and ergodic Markov process on the abstract prob-
ability space (�,π). Denote the infinitesimal generator acting on L2(�,π) and
its adjoint by G, respectively, by G∗. These might be unbounded operators, but
it is assumed that they have a common core of definition. Denote the symmetric
(self-adjoint), respectively, the antisymmetric (skew-self-adjoint) part of the in-
finitesimal generator by

S := −1
2(G + G∗), A := 1

2(G − G∗).(85)

Let t 	→ ξ(t) be the reversible Markov process on the same state space (�,π)

which has the infinitesimal generator −S.
The following lemma is proved in [21]. See also the survey papers [11, 18] and

further references cited therein.
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LEMMA 3. Let ϕ ∈ L2(�,π) with
∫

ϕ dπ = 0. Then

lim
t→∞ t−1E

((∫ t

0
ϕ(η(s)) ds

)2)
≤ lim

t→∞ t−1E
((∫ t

0
ϕ(ξ(s)) ds

)2)
.(86)

In our particular case

S = −1
2∇2,(87)

and the reversible process t 	→ ξ(t) will be the so-called diffusion in random
scenery process; see, for example, [9] or the more recent survey [4]. That means

ξ(t) := τZt ω,(88)

where t 	→ Zt is a standard Brownian motion, independent of the field ω. The
function ϕ :� → R is ϕ(ω) = ω(0). Thus, the upper bound in (86) will be

lim
t→∞ t−1E

((∫ t

0
ϕ(ξ(s)) ds

)2)
= lim

t→∞ t−1E
((∫ t

0
ω(Zs) ds

)2)
(89)

=
∫ ∞
−∞

p−2b̂(p) dp.

Here the last step is just explicit computation, with expectation taken over the
Brownian motion Z(t) and over the random scenery ω. The straightforward details
are left for the reader.

4. Superdiffusive bounds. From (84) it follows that

E(t) = t + E
((∫ t

0
ϕ(η(s)) ds

)2)
(90)

= t + 2
∫ t

0
(t − s)E(ϕ(η(s))ϕ(η(0))) ds.

Taking the Laplace transform of the previous equation, we get

Ê(λ) = λ−2(
1 + 2

(
ϕ, (λ − G)−1ϕ

))
.(91)

We will estimate (ϕ, (λ−G)−1ϕ) using the following variational formula; see, for
example, (2.5) of [12]:

(
ϕ, (λ − G)−1ϕ

)
(92)

= sup
ψ∈H

{
2(ϕ,ψ) − (

ψ, (λ + S)ψ
) − (

Aψ, (λ + S)−1Aψ
)}

.
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4.1. Superdiffusive upper bounds.

PROOF OF THEOREM 3—UPPER BOUND. The upper bound will follow from
simply dropping the last term on the right-hand side of (92):

(
ϕ, (λ − G)−1ϕ

) ≤ sup
ψ∈H

{
2(ϕ,ψ) − (

ψ, (λ + S)ψ
)} = (

ϕ, (λ + S)−1ϕ
)
.(93)

Note that—modulo a Tauberian inversion—this is equivalent to the argument in
Section 3.2.

Using (67) and (72), we write the resolvent of −S as

(λ + S)−1 =
∫ ∞
−∞

∫ ∞
0

1√
2πt

e−λt−z2/(2t)Tz dt dz =
∫ ∞
−∞

gλ(z)Tz dz,(94)

where the function gλ(z) and its Fourier transform ĝλ(p) are

gλ(z) = 1√
2λ

e−√
2λ|z|, ĝλ(p) = 1√

2π

1

λ + p2/2
.(95)

Hence, by the Parseval formula,

(
ϕ, (λ + S)−1ϕ

) =
∫ ∞
−∞

gλ(z)E(ω(0)ω(z))

= 1√
2π

∫ ∞
−∞

b̂(p)

λ + p2/2
dp.

By (28), we can choose δ > 0 so that for |p| < δ

C2

2
|p|α ≤ b̂(p) ≤ 2C1|p|α.(96)

Then

(
ϕ, (λ + S)−1ϕ

)

≤ C1

√
2

π

∫ ∞
−∞

|p|α
λ + p2/2

dp +
√

2

π

∫
|p|>δ

p−2b̂(p) dp(97)

= λ(α−1)/2C1

√
2

π

∫ ∞
−∞

|q|α
1 + q2/2

dq +
√

2

π

∫
|p|>δ

p−2b̂(p) dp.

Since both integrals in (97) are finite (as |α| < 1), the upper bound (29) follows
from (91), (93) and (97). �
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4.2. Superdiffusive lower bounds.

PROOF OF THEOREM 3—LOWER BOUND. Lower bounds are obtained by
taking on the right-hand side of (92) the supremum over the subspace H1 only:(

ϕ, (λ − G)−1ϕ
)

(98)
≥ sup

ψ∈H1

{
2(ϕ,ψ) − (

ψ, (λ + S)ψ
) − (

Aψ, (λ + S)−1Aψ
)}

= sup
ψ∈H1

{
2(ϕ,ψ) − (

ψ, (λ + S)ψ
) − (

A+ψ, (λ + S)−1A+ψ
)}

.(99)

The last identity is due to (75).
We write ψ ∈ H1 as

ψ =
∫ ∞
−∞

u(x)ω(x) dx(100)

with u an even function and compute the three terms on the right-hand side of (99).
The first two are straightforward:

(ϕ,ψ) =
∫ ∞
−∞

u(x)E(ω(0)ω(x)) dx =
∫ ∞
−∞

b̂(p)û(p)dp,(101)

(
ψ, (λ + S)ψ

)
=

∫ ∞
−∞

∫ ∞
−∞

(
λu(x)u(y) + 1

2
u′(x)u′(y)

)
E(ω(x)ω(y)) dx dy(102)

=
∫ ∞
−∞

(λ + p2/2)b̂(p)û(p)2 dp.

In order to compute the third term, we first note that

A+ψ =
∫ ∞
−∞

u′(x) :ω(0)ω(x): dx(103)

and, hence,(
A+ψ, (λ + S)−1A+ψ

)
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

gλ(z)u
′(x)u′(y)E

(:ω(0)ω(x): :ω(z)ω(z + y):)dx dy dz

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

gλ(z)u
′(x)u′(y)

(
b(z)b(z + y − x)

(104)
+ b(z + y)b(z − x)

)
dx dy dz

= 1

2
√

2π

∫ ∞
−∞

∫ ∞
−∞

b̂(p)b̂(q)

λ + (p − q)2/2

(
pû(p) − qû(q)

)2
dq dp

≤
∫ ∞
−∞

b̂(p)p2û(p)2K(λ,p)dp,
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where

K(λ,p) := 1√
2π

∫ ∞
−∞

b̂(q)

λ + (p + q)2/2
dq

(105)

= 1√
2π

∫ ∞
−∞

b̂(q − p)

λ + q2/2
dq.

In the last step we used the Cauchy–Schwarz inequality and the fact that b̂(·) is a
nonnegative even function.

From (99), (101), (102) and (104) it follows that

(
ϕ, (λ − G)−1ϕ

) ≥
∫ ∞
−∞

b̂(p)

λ + p2/2 + K(λ,p)p2 dp.(106)

Next we give an upper bound for K(λ,p). Let δ be chosen so that the bounds (96)
hold and assume that λ < δ2/4. Then

1{|p|<λ1/2}K(λ,p)

≤ C1

√
2

π
1{|p|<λ1/2}

∫ ∞
−∞

|q − p|α
λ + q2/2

dq +
√

2

π

∫
|q|>δ/2

q−2b̂(q − p)dq

≤ λ(α−1)/2C1

√
2

π
sup
|r|<1

∫ ∞
−∞

|q − r|α
1 + q2/2

dq +
√

2

π

∫
|q|>δ/2

q−2b̂(q − p)dq(107)

≤ Cλ(α−1)/2(108)

with some C < ∞, for λ sufficiently small. The last inequality holds since the
integrals in (107) are bounded.

From (106) and (108) it follows that for sufficiently small λ

(
ϕ, (λ − G)−1ϕ

) ≥
∫
|p|≤λ1/2

b̂(p)

λ + Cλ(α−1)/2p2 dp

≥ C2

2

∫
|p|≤λ1/2

|p|α
λ + Cλ(α−1)/2p2 dp

(109)

= λ−(1−α)2/4 C2

2

∫
|r|≤λ(α−1)/4

|r|α
1 + Cr2 dr

≥ Cλ−(1−α)2/4

with some C > 0, for λ sufficiently small.
The lower bound (30) follows from (91) and (109). �
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