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LOOP-ERASED RANDOM WALK AND POISSON KERNEL ON
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Lawler, Schramm and Werner showed that the scaling limit of the loop-
erased random walk on Z2 is SLE2. We consider scaling limits of the loop-
erasure of random walks on other planar graphs (graphs embedded into C so
that edges do not cross one another). We show that if the scaling limit of the
random walk is planar Brownian motion, then the scaling limit of its loop-
erasure is SLE2. Our main contribution is showing that for such graphs, the
discrete Poisson kernel can be approximated by the continuous one.

One example is the infinite component of super-critical percolation on Z2.
Berger and Biskup showed that the scaling limit of the random walk on this
graph is planar Brownian motion. Our results imply that the scaling limit of
the loop-erased random walk on the super-critical percolation cluster is SLE2.

1. Introduction. Let G be a graph. The loop-erased random walk or LERW
on G is obtained by performing a random walk on G, and then erasing the loops in
the random walk path in chronological order. The resulting path is a self-avoiding
path in the graph G, starting and ending at the same points as the random walk.
LERW was invented by Lawler in [5] as a natural measure on self-avoiding paths.
It was studied extensively on the graphs Zd . In dimensions d ≥ 4, the scaling limit
is known to be Brownian motion (see [7]). In dimension d = 3, Kozma proved
that the scaling limit exists and that the limit is invariant under rotations and di-
lations (see [4]). In order to study the case d = 2, in [13] Schramm introduced a
one-parameter family of random continuous curves, known as Schramm–Loewner
evolution or SLEκ . In [9] Lawler, Schramm and Werner proved that the scaling
limit of LERW on Z2 is SLE2. Their result also holds for other two-dimensional
lattices. Many other processes in statistical mechanics have been shown to con-
verge to SLEκ for other values of κ .

In this paper, we focus on the scaling limit of LERW on planar graphs, not nec-
essarily lattices. A planar graph is a graph embedded into the complex plane so that
edges do not intersect each other; a precise definition is provided in Section 1.1.
We allow weighted and directed graphs, but require them to be irreducible; that is,
any two points are connected by a path in the graph.
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FIG. 1. LERW (black) and simple random walk (gray) stopped on exiting the unit disc. The under-
lying graphs are Z2 (left) and the super-critical percolation cluster with parameter 0.75 (right). The
mesh size is 1/600.

Our main result, Theorem 1.1, is a generalization of [9]. Let G be an irreducible
graph, and let f :G → C be an embedding of G into the complex plane. If f (G)

is planar (in the sense above), and if the scaling limit of the random walk on f (G)

is planar Brownian motion, then the scaling limit of LERW on f (G) is SLE2.
One interesting example is the infinite component of super-critical percolation

on Z2. That is, consider bond percolation on Z2, each bond open with probability
p > 1/2, all bonds independent. Then, a.s. there exists a unique infinite connected
component. In [1] Berger and Biskup proved that a.s. the scaling limit of the ran-
dom walk on this infinite component is Brownian motion. Together with our result,
this implies that a.s. the scaling limit of LERW on the super-critical percolation
cluster is SLE2 (see Figure 1).

Another example of a planar graph with random walk converging to planar
Brownian motion is given by Lawler in [6] (see the example following Lemma 5).
For each vertex z ∈ Z2, define transition probabilities as follows: the probability
to go either up or down is p(z)/2, and the probability to go either left or right
is (1 − p(z))/2. Lawler proved in [6] that if p(z) are all chosen i.i.d. such that
P[p(z) = p] = P[p(z) = 1 − p] = 1/2, for some 0 < p < 1/2, then a.s. the scal-
ing limit of the random walk on this graph is planar Brownian motion. Our result
implies that the LERW on this graph converges to SLE2.

The main contribution of this work is Lemma 1.2, that states that for planar
graphs, the discrete Poisson kernel can be approximated by the continuous Pois-
son kernel. This result holds for any bounded domain, although the boundary be-
havior can be arbitrary. This result also holds “pointwise,” regardless of the local
geometry of the graph. Perhaps it can be used to generalize other limit theorems
about processes on Z2 (such as IDLA) to more general planar graphs (e.g., the
super-critical percolation cluster).



LERW ON PLANAR GRAPHS 1245

1.1. Definitions and notation. For any v,u ∈ C, denote [v,u] = {(1 − t)v +
tu : 0 ≤ t ≤ 1}.

Planar-irreducible graphs. Let G = (V ,E) be a directed weighted graph; that
is, E :V × V → [0,∞). We write (v, u) ∈ E, if E(v,u) > 0. Let o ∈ V be a fixed
vertex. Let f :V → C be an embedding of G in the complex plane such that:

(1) f (o) = 0.
(2) The embedding of G in C is a “planar” graph; that is, for every two edges

(v, u), (v′, u′) ∈ E such that {v,u} ∩ {v′, u′} = ∅, [f (v), f (u)] ∩ [f (v′), f (u′)] =
∅.

(3) For every compact set K ⊂ C, the number of vertices v ∈ V such that
f (v) ∈ K is finite.

We think of the graph G as its embedding in C. For δ > 0, let Gδ = (Vδ,Eδ) be
the graph defined by

Vδ = {δf (v) :v ∈ V } and Eδ(δf (v), δf (u)) = E(v,u);
that is, Gδ is the embedding of G in C scaled by a factor of δ.

We assume that
∑

u∈V E(v,u) < ∞ for every v ∈ V . Let P :V ×V → [0,1] be

P(v,u) = E(v,u)∑
w∈V E(v,w)

.

We call the Markov chain induced on Vδ by P the natural random walk on Gδ .
We assume that the natural random walk is irreducible; that is, for every v,u ∈ V ,
there exists n ∈ N such that P n(v,u) > 0.

We call a graph G that satisfies all the above properties a planar-irreducible
graph. For the remainder of this paper we consider only planar-irreducible graphs.

Loop erasure. Let x(0), x(1), . . . , x(n) be n+ 1 vertices in Gδ . Define x[0, n]
as the linear interpolation of (x(0), . . . , x(n)); that is, for t ∈ [0, n], set

x(t) = (
1 − (t − 
t�))x(
t�) + (t − 
t�)x(
t� + 1).

Define the loop-erasure of x(·) as the self-avoiding sequence induced by erasing
loops in chronological order; that is, the loop-erasure of x(·) is the sequence y(·)
that is defined inductively as follows: y(0) = x(0), and y(k + 1) is defined using
y(k) as y(k + 1) = x(T + 1), where T = max{� ≤ n :x(�) = y(k)} [the loop-
erasure ends once y(k) = x(n)].

A path from v to u in Gδ is a sequence v = x(0), x(1), . . . , x(n) = u such
that (x(j), x(j + 1)) ∈ Eδ for all j . The reversal of the path x(·) is the sequence
x(n), x(n − 1), . . . , x(0). The reversal of a path is not necessarily a path.
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Domains. Denote by U the open unit disc in C. Let D � C be a simply con-
nected domain such that 0 ∈ D. Define Vδ(D) as the set of vertices z ∈ Vδ ∩ D

such that there is a path from 0 to z in Gδ . Define

∂Vδ(D) = {(v, u) : (v, u) ∈ Eδ, v ∈ Vδ(D), [v,u] ∩ ∂D �= ∅},
the “boundary” of Gδ in D. Denote by ϕD :D → U the unique conformal map
onto the unit disc such that ϕD(0) = 0 and ϕ′

D(0) > 0. Define the inner radius of
D as rad(D) = sup{R ≥ 0 :R · U ⊆ D}.

Throughout this paper, we work with a fixed domain and its sub-domains. Fix a
specific bounded domain D � C such that rad(D) > 1/2 (one can think of D as U).
Denote

D = {D ⊆ D :D simply connected domain, rad(D) > 1/2}.

SLE. Radial SLEκ in U can be described as follows (for more details see, e.g.,
[8, 9, 12, 13, 15]). Let γ be a simple curve from ∂U to 0. Parameterize γ so that
g′

t (0) = et , where gt is the unique conformal map mapping U\γ [0, t] onto U with
gt (0) = 0 and g′

t (0) > 0. It is known that the limit W(t) = limz→γ (t) gt (z) exists,
where z tends to γ (t) from within U \ γ [0, t]. In addition, W : [0,∞) → ∂U is a
continuous function, and the Loewner differential equation is satisfied

∂tgt (z) = gt (z)
W(t) + gt (z)

W(t) − gt (z)

and g0(z) = z. The function W(·) is called the driving function of γ .
Taking W(t) = eiB(κt), where B(·) is a one-dimensional Brownian motion

(started uniformly on [0,2π ]), one can solve the Loewner differential equation,
obtaining a family of conformal maps gt . It turns out that for κ ≤ 4, the curve
γ obtained from the driving function W (defined as γ (0) = W(0) and γ (0, t] =
U\g−1

t (U)) is indeed a simple curve from ∂U to 0 (see [12]). The curve γ is called
the SLEκ path.

Weak convergence. We define weak convergence using one of several equiv-
alent definitions (see Chapter III in [14], e.g.). Let α,β : [0,1] → U be two con-
tinuous curves. Let � be the set of continuous nondecreasing maps φ : [0,1] →
[0,1]. We say that α and β are equivalent if α = β ◦ φ for some φ ∈ �. Let

C be the set of all equivalence classes under this relation. Define 
(α,β) =
infφ∈� supt∈[0,1] |α(t) − β(φ(t))|.

It is known that 
(·, ·) is a metric on C . Let � be the Borel σ -algebra generated
by the open sets of 
. Let μ be a probability measure on (C,�). We say that A ∈ �

is μ-continuous, if μ(∂A) = 0, where ∂A is the boundary of A.
Let {μn} be a sequence of probability measures on (C,�). We say that {μn}

converges weakly to μ, if for all μ-continuous events A ∈ �, it holds that μn(A)

converges to μ(A).
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Poisson kernel. Let D ∈ D. For a ∈ Vδ(D) and b ∈ Vδ(D) ∪ ∂Vδ(D), define
H(a, b) = H(δ)(a, b;D) to be the probability that a natural random walk on Gδ ,
started at a and stopped on exiting D, visits b. That is,

H(a, b) =
{

P[∃0 ≤ k ≤ τ :S(k) = b], b ∈ Vδ(D),
P

[(
S(τ − 1), S(τ )

) = b
]
, b ∈ ∂Vδ(D),

where S(·) is a natural random walk on Gδ started at a, and τ is the exit time
of S(·) from D. We sometimes denote the segment (S(τ − 1), S(τ )) by S(τ); for
example, instead of (S(τ −1), S(τ )) = b we write S(τ) = b, and for a set J ⊆ ∂D,
we write S(τ) ∈ J instead of writing [S(τ − 1), S(τ )] ∩ J �= ∅.

Let e = (v, u) ∈ ∂Vδ(D). Let ẽ ∈ ∂D be the “first” point on the [v,u] that is not
in D; that is, let s = inf{0 ≤ t ≤ 1 : (1 − t)v + tu /∈ D}, and let ẽ = (1 − s)v + su.
Define ϕ(e) = limt→s− ϕ((1 − t)v + tu).

For a ∈ Vδ(D) and b ∈ Vδ(D) ∪ ∂Vδ(D), define the Poisson kernel

λ(a, b) = λ(a, b;D) = 1 − |ϕ(a)|2
|ϕ(a) − ϕ(b)|2 .

If B(·) is a planar Brownian motion started at x ∈ U, τ is the exit time of B(·)
from U, and J is a Borel subset of ∂U, then

Px[B(τ) ∈ J ] =
∫
J

λ(x, ζ ;U) dζ,(1.1)

where dζ is the uniform measure on ∂U (see Chapter 3 of [10]).

Complex analysis. Throughout the proofs we will make repeated use of three
classical theorems in the theory of analytic and conformal maps: the Schwarz
lemma, the Koebe distortion theorem and the Koebe 1/4 theorem. These can be
found in [2] or [11].

1.2. Main results. Let G be a planar-irreducible graph. Let νδ be the law of
the natural random walk on Gδ started at 0 and stopped on exiting U. Let μδ be the
law of the loop-erasure of the reversal of the natural random walk on Gδ started at
0 and stopped on exiting U.

THEOREM 1.1. Let {δn} be a sequence converging to 0. If νδn converges
weakly to the law of planar Brownian motion started at 0 and stopped on exit-
ing U, then μδn converges weakly to the law of radial SLE2 in U started uniformly
on ∂U.

The proof of Theorem 1.1 is given in Section 6. A key ingredient in the proof
is the following lemma, that shows that the discrete Poisson kernel can be approx-
imated by the continuous one (its proof is given in Section 5).
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LEMMA 1.2. For all ε,α > 0, there exists δ0 such that for all 0 < δ < δ0 the
following holds:

Let D ∈ D, let a ∈ Vδ(D) be such that |ϕD(a)| ≤ 1 − ε, and let b ∈ ∂Vδ(D).
Then,

∣∣∣∣H
(δ)(a, b;D)

H(δ)(0, b;D)
− λ(a, b;D)

∣∣∣∣ ≤ α.

Lemma 1.2 holds for all graphs that are planar, irreducible and such that the
scaling limit of the random walk on them is planar Brownian motion. The ques-
tion arises whether a similar result holds in “higher dimensions.” The answer is
negative. For d > 2, one can construct a subgraph of Zd such that Lemma 1.2 does
not hold for it. The idea is to disconnect one-dimensional subsets, leaving only
one edge connecting them to the rest of Zd . This can be done in a way so that the
random walk will still converge to d-dimensional Brownian motion, but for points
in these sets the discrete Poisson kernel will be far from the continuous one.

One can also ask whether Lemma 1.2 can be generalized to nonplanar graphs.
The answer is again negative. Consider the underlying graph of the following
Markov chain. Toss a coin; if it comes out heads, run a simple random walk on
δZ2 conditioned to exit the unit disc in the upper half plane, and if the coin comes
out tails, run a simple random walk on δZ2 conditioned to exit the unit disc in the
lower half plane. This Markov chain converges to planar Brownian motion, but
the underlying graph is not planar. In this example, for any point other than 0, the
discrete Poisson kernel is supported only on one half of the unit disc (and so is far
from the continuous one).

The proof of Theorem 1.1 mainly follows the proof of Lawler, Schramm and
Werner in [9]. To understand the new ideas in our paper, let us first give a very brief
overview of the argument in [9]. Denote by γ the loop-erasure of the reversal of the
natural random walk, and let W be the driving function of γ given by Loewner’s
thoery.

The first step is to show that W converges to Brownian motion on ∂U. A key
ingredient in this step is showing that the discrete Poisson kernel can be approxi-
mated by the continuous Poisson kernel (see Lemma 1.2 above). The proof of the
convergence of the Poisson kernel in [9] is based on lattice properties, whereas
the proof here uses converges to planar Brownian motion from only one vertex,
namely 0, and the planarity of the graph.

The second step of the proof is using a compactness argument to conclude a
stronger type of convergence. As in [9], we show that the laws given by γ are
tight (see definition in Section 6.3.1 below). The proof of tightness in [9] uses a
“natural” family of compact sets. In our setting, it is not necessarily true that γ

belongs to one of these compact sets with high probability (and so the argument
of [9] fails). To overcome this difficulty, we define a “weaker” notion of tightness,
which we are able to use to conclude the proof.
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We now discuss the first step, the proof of Lemma 1.2, in more detail. Let a be
a vertex in U, and let b be an edge on ∂U (in fact, we need to consider arbitrary
D ∈ D, but we ignore this here). The intuition behind Lemma 1.2 is that two inde-
pendent planar Brownian motions, started at 0 and at the vertex a, conditioned on
exiting U at a small interval around b, intersect each other with high probability.
Intuitively, this should give us a way to couple a random started at 0 and a random
walk started at the vertex a (conditioned on exiting U at a small interval around b),
so that they will both exit U at the same point with high probability. There are sev-
eral obstacles in this argument: first, we are not able to provide such a coupling, and
we overcome this difficulty using harmonic functions. Second, we are not given a
priori any information on the random walk starting at the vertex a. Third, we also
need to consider the case where the two walks do not intersect. Finally, we are
interested in what happens at a specific edge b, and not in its neighborhood (the
local geometry around b can be almost arbitrary). The main properties of G that
allow us to overcome these obstacles are its planarity and the weak convergence of
the random walk started at 0 to planar Brownian motion.

2. Preliminaries. Let D ∈ D. For z ∈ Vδ(D), let Sz(·) be a natural random
walk on Gδ started at z. Let τ

(z)
D be the exit time of Sz(·) from D. When D is clear,

we omit the subscript from τ
(z)
D and use τ (z). For U ⊂ D, define

�z(U) = �D
z (U) = min

{
0 ≤ t ≤ τ (z) :Sz(t) ∈ U

}
.

For a path γ [T1, T2] in D, denote by ϕD ◦ γ [T1, T2] the path in U that is the
image of γ [T1, T2] under the map ϕD .

2.1. Encompassing a point. For r > 0 and z ∈ C, denote ρ(z, r) = {ζ ∈
C : |ζ − z| < r}, the disc of radius r centered at z.

Crossing a rectangle. Let z1, z2 ∈ C and r > 0. Define �(z1, z2, r) as the 4r

by 4r +|z2 − z1| open rectangle around the interval [z1, z2]; more precisely, define
�(z1, z2, r) as the interior of the convex hull of the four points z1 − 2r(u + v),
z1 −2r(u−v), z2 +2r(u+v) and z2 +2r(u−v), where u = z2−z1|z2−z1| and v = u · i.

Let γ : [T1, T2] → C be a curve. Let t1 = inf{t ≥ T1 :γ (t) ∈ ρ(z1, r)} and t2 =
inf{t ≥ T1 :γ (t) ∈ ρ(z2, r)}. We say that γ [T1, T2] crosses �(z1, z2, r), if t1 < t2 ≤
T2 and γ [t1, t2] ⊂ �(z1, z2, r).

Encompassing a point. Let z ∈ C and r > 0. Define z1, . . . , z5 ∈ C to be the
following five points: let r ′ = r/20, let z1 = z − 8r ′ − 4r ′i, let z2 = z + 4r ′ − 4r ′i,
let z3 = z + 4r ′ + 4r ′i, let z4 = z − 4r ′ + 4r ′i and let z5 = z − 4r ′ − 8r ′i.

We say that γ [T1, T2] r-encompasses z, denoted γ [T1, T2] �(r) z, if γ [T1, T2]
crosses all rectangles �(z1, z2, r

′), �(z2, z3, r
′), �(z3, z4, r

′), �(z4, z5, r
′).
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If γ [T1, T2] �(r) z, then any path from z to infinity must intersect γ [T1, T2];
that is, z does not belong to the unique unbounded component of C \ γ [T1, T2].
Also, if γ [T1, T2] �(r) z, there exist τ1 < τ2 ≤ T2 such that γ [τ1, τ2] �(r) z and
γ [τ1, τ2] ⊂ ρ(z, r).

2.2. Compactness of D. Let D ∈ D. We bound the derivative of ϕ−1
D at 0.

Using the Schwarz lemma, since ϕ−1
D (0) = 0, we have rad(D)/|ϕ−1′

D (0)| ≤ 1.
Since rad(D) > 1/2, we have |ϕ−1′

D (0)| > 1/2. Using the Schwarz lemma again,
we have |ϕ−1′

D (0)| ≤ C′, for C′ = sup{|x| :x ∈ D}. Thus, there exists a constant
c = c(D) > 0 such that

c ≤ |ϕ−1′
D (0)| ≤ c−1.(2.1)

Let ε > 0. Every map ϕ−1
D , for D ∈ D, can be thought of as a continuous map

on the compact domain K = {ξ ∈ U : |ξ | ≤ 1 − ε}. The set of maps {ϕ−1
D }D∈D is

pointwise relatively compact. Let z ∈ K , then for every z′ ∈ K ,

|ϕ−1
D (z) − ϕ−1

D (z′)| ≤ |ϕ−1′
D (ζ )| · |z − z′|

for some ζ ∈ K . By the Koebe distortion theorem and (2.1), there exists a constant
c1 = c1(D) > 0 such that |ϕ−1′

D (ζ )| ≤ c1 · ε−3. Thus, {ϕ−1
D }D∈D is equicontinuous.

Hence, by the Arzelá–Ascoli theorem, {ϕ−1
D }D∈D is relatively compact (as maps

on K).

PROPOSITION 2.1. For any ε, η > 0, there exist δ0 > 0 and a finite family of
domains Dε,η, such that for every D ∈ D there exists D̃ ∈ Dε,η with the following
properties:

(1) D̃ ⊂ D.
(2) For every a ∈ D such that |ϕD(a)| ≤ 1 − ε, we have |ϕ

D̃
(a)| ≤ 1 − ε/2.

(3) For every ξ ∈ ∂D̃, we have |ϕD(ξ)| ≥ 1 − η.
(4) For every ξ ∈ C such that |ξ | ≤ 1, we have |ϕD(ϕ−1

D̃
(ξ)) − ξ | ≤ η.

(5) For every ξ ∈ C such that there exists z in the closure of D̃ with |z−ξ | ≤ δ0,
we have |ϕD(ξ) − ϕD(z)| ≤ η.

We call D̃ the (ε, η)-approximation of D.

PROOF OF PROPOSITION 2.1. Let ε1, ε2 > 0 be small enough, and let K =
{ξ ∈ U : |ξ | ≤ 1 − ε1}. By the relative compactness of {ϕ−1

D }D∈D (as maps on K),
there exists a finite family of domains D′ such that for every D ∈ D there exists
D′ ∈ D′ with

dist(ϕ−1
D ,ϕ−1

D′ ) = max
x∈K

|ϕ−1
D (x) − ϕ−1

D′ (x)| < ε2.(2.2)
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Set Dε,η to be the set of D̃ = ϕ−1
D′ ((1 − 2ε1)U) for D′ ∈ D′.

Let D ∈ D, let D′ ∈ D′ be the closest domain to D in D′ and let D̃ = ϕ−1
D′ ((1 −

2ε1)U). By (2.1), and by the Koebe distortion theorem, for every z ∈ K ,

ε1

C
< |ϕ−1′

D (0)| · 1 − |z|
8

≤ |ϕ−1′
D (z)| ≤ |ϕ−1′

D (0)| · 2

(1 − |z|)3 <
C

ε3
1

,(2.3)

where C = C(D) > 0 is a constant.
We prove property (1). Using (2.3), for every z1 ∈ U such that |z1| = 1 − ε1 and

z2 ∈ U such that |z2| = 1 − 2ε1,

|ϕ−1
D (z1) − ϕ−1

D (z2)| = |ϕ−1′
D (ξ)||z1 − z2| ≥ ε2

1

C
(2.4)

for some ξ ∈ K . By (2.2), for every z ∈ D̃, there exists ζ ∈ ϕ−1
D ((1 − 2ε1)U) such

that |z − ζ | < ε2. Thus, for ε2 <
ε2

1
C

, we have D̃ ⊂ ϕ−1
D (K) ⊂ D.

We prove property (2). Let a ∈ D be such that |ϕD(a)| ≤ 1 − ε. We first show
that for ε1 ≤ ε/4,

dist(b, ∂D̃) ≥ c · ε2

for a constant c = c(D) > 0, where b = ϕ−1
D′ (ϕD(a)). Since 2ε1 < ε, b ∈ D̃. By

the Koebe 1/4 theorem, using the Koebe distortion theorem and since ϕ−1
D̃

(x) =
ϕ−1

D′ ((1 − 2ε1)x),

dist(b, ∂D̃) ≥ (1 − |ϕ
D̃

(b)|) · |ϕ−1′
D̃

(ϕ
D̃

(b))|
4

≥ (1 − |ϕ
D̃

(b)|)2 · (1 − 2ε1)

C

= (1 − |ϕD(a)/(1 − 2ε1)|)2 · (1 − 2ε1)

C
≥ c · ε2.

Thus, ρ(b, ε2) ⊂ D̃, for ε2 < c · ε2. Thus, by (2.2), [a, b] ⊂ D̃, which implies,
using the Koebe distortion theorem,

|ϕD′(a) − ϕD(a)| = |ϕD′(a) − ϕD′(b)| = |ϕ′
D′(ξ)| · |b − a|

≤ C

1 − |ϕD′(ξ)| · ε2 ≤ ε2 · C
2ε1

for some ξ ∈ D̃. Thus, for ε2 < ε1·ε2

2C
,

|ϕ
D̃

(a)| = |ϕD′(a)|
1 − 2ε1

≤ 1 − ε + ε2 · C/(2ε1)

1 − 2ε1
< 1 − ε

2
.(2.5)

We prove property (3). Let ξ ∈ ∂D̃. Let z = ϕ−1
D (ϕD′(ξ)). By (2.2), |z−ξ | < ε2.

By (2.4), ρ(z, ε2
1/C) ⊂ ϕ−1

D (K). Thus, for ε2 ≤ ε2
1/C, using (2.3),

|ϕD(ξ) − ϕD(z)| ≤ |ϕ′
D(ζ )| · ε2 ≤ Cε2

ε1
≤ ε1
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for some ζ ∈ ϕ−1
D (K). Since |ϕD(z)| = |ϕD′(ξ)| = 1 − 2ε1,

|ϕD(ξ)| ≥ |ϕD(z)| − |ϕD(ξ) − ϕD(z)| ≥ 1 − 3ε1 > 1 − η

for ε1 < η/3.
We prove property (4). Let ξ ∈ C be such that |ξ | ≤ 1. Using (2.2),

|ϕD(ϕ−1
D̃

(ξ)) − ξ | ≤ ∣∣ϕD

(
ϕ−1

D′
(
(1 − 2ε1)ξ

)) − (1 − 2ε1)ξ
∣∣ + |(1 − 2ε1)ξ − ξ |

= |ϕ′
D(ζ )| · ∣∣ϕ−1

D′
(
(1 − 2ε1)ξ

) − ϕ−1
D

(
(1 − 2ε1)ξ

)∣∣ + 2ε1

≤ |ϕ′
D(ζ )| · ε2 + 2ε1

for some ζ ∈ e = [ϕ−1
D′ ((1 − 2ε1)ξ), ϕ−1

D ((1 − 2ε1)ξ)]. Since the length of e is at
most ε2, and since ε2 ≤ ε2

1/C, using (2.4), we have e ⊂ ϕ−1
D (K). Thus, ϕD(ζ ) ∈ K ,

which implies using (2.3) that |ϕ′
D(ζ )| ≤ C

ε1
. Choosing ε2 ≤ ε2

1
C

and 3ε1 ≤ η the
proof is complete.

We prove property (5). Let ξ ∈ C be such that there exists z in the closure of
D̃ with |z − ξ | ≤ δ0. As in property (4), for δ0 ≤ ε2

1/C, we have [ξ, z] ⊂ ϕ−1
D (K),

which implies

|ϕD(ξ) − ϕD(z)| ≤ |ϕ′
D(ζ )| · δ0 ≤ Cδ0

ε1
≤ η

for some ζ ∈ [ξ, z] and δ0 ≤ ηε1/C. �

3. Preliminaries for Brownian motion.

3.1. Brownian motion measure continuity.

PROPOSITION 3.1. Let D � C be a simply connected domain such that 0 ∈ D.
Let ν be the law of planar Brownian motion B(·) (started at some point in D and
stopped on exiting D). Let τ be the exit time of B(·) from D. Then, the following
events are ν-continuous:

(1) For any r > 0 and z ∈ D such that ρ(z, r) ⊂ D, the event {B[0, τ ] �(r) z}.
(2) For any disc ρ(z, r) ⊂ D, the event {B[0, τ ] ∩ ρ(z, r) �= ∅}.
(3) If D = U, for any interval I ⊂ ∂U, the event {B(τ) ∈ I }.

PROOF. We use the following claim.

CLAIM 3.2. Let U ⊂ D be an open set, and τ∂U = inf{t ≥ 0 :B(t) ∈ ∂U}.
Then, if U = ρ(z, r) or if U = �(z1, z2, r) for some z1, z2 ∈ D, we have P[τ1 >

τ∂U ] = P[τ2 > τ∂U ] = 0, where τ1 = inf{t ≥ τ∂U :B(t) ∈ U} and τ2 = inf{t ≥
τ∂U :B(t) /∈ U ∪ ∂U}.
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PROOF. We prove P[τ1 > τ∂U ] = 0. The proof for τ2 is similar. Let F (t) be
the σ -algebra generated by {B(s) : 0 ≤ s ≤ t}, and let F +(t) = ⋂

s>t F (s). Since

{τ1 = τ∂U } = ⋂
n∈N

{
∃0 < ε <

1

n
:B(τ∂U + ε) ∈ U

}
∈ F +(τ∂U ),

by Blumenthal’s 0–1 law and the strong Markov property (see, e.g., Chapter 2
in [10]), P[τ1 = τ∂U | F (τ∂U )] ∈ {0,1}. Since for any small enough ε > 0, P[τ1 ≤
τ∂U + ε] ≥ P[B(τ∂U + ε) ∈ U ] ≥ 1

10 , we have P[τ1 > τ∂U ] = 0. �

The event {B[0, τ ] �(r) z} is the intersection of four events of the form
{B[0, τ ] crosses �(zj , zj+1, r

′)}, for appropriate z1, . . . , z5, and r ′. So it suffices
to prove that for any �(z1, z2, r) ⊂ D, the event {B[0, τ ] crosses �(z1, z2, r)} is
ν-continuous. By definition,

{B[0, τ ] crosses �(z1, z2, r)} = {t1 < t2} ∩ {t2 ≤ τ } ∩ {B[t1, t2] ⊂ �(z1, z2, r)},
where t1 = inf{t ≥ 0 :B(t) ∈ ρ(z1, r)} and t2 = inf{t ≥ 0 :B(t) ∈ ρ(z2, r)}.

Let τ1 = inf{t ≥ 0 :B(t) ∈ ∂ρ(z1, r)}. The boundary of the event {t1 < t2} is
contained in the event {t1 > τ1}. Thus, by Claim 3.2, the boundary of {t1 < t2} has
zero ν-measure.

Let τ2 = inf{t ≥ 0 :B(t) ∈ ∂ρ(z2, r)}. The boundary of the event {t2 ≤ τ } is
contained in the event {t2 > τ2}. Thus, by Claim 3.2, the boundary of {t2 ≤ τ } has
zero ν-measure.

Let τ3 = inf{t1 ≤ t ≤ t2 :B(t) ∈ ∂�(z1, z2, r)} and τ4 = inf{t ≥ τ3 :B(t) /∈
�(z1, z2, r) ∪ ∂�(z1, z2, r)}. The boundary of the event {B[t1, t2] ⊂ �(z1, z2, r)}
is contained in the event {τ4 > τ3}. Thus, by Claim 3.2, the boundary of
{B[t1, t2] ⊂ �(z1, z2, r)} has zero ν-measure.

This proves property (1). A similar (simpler) argument proves property (2). To
prove property (2), note that the measure ν is supported on curves that intersect
∂U at most at one point. Hence, up to zero ν-measure, the boundary of the event
{B(τ) ∈ I } is the event {B(τ) ∈ {w,w′}}, where w and w′ are the endpoints of I

in ∂U. Since {B(τ) ∈ {w,w′}} has zero ν-measure, we are done. �

3.2. Probability estimates. This section contains some lemmas regarding pla-
nar Brownian motion. Some of these lemmas may be considered “folklore.” For
the sake of brevity, we omit the proofs.

Notation. In the following B(·) is a planar Brownian motion. For x ∈ U, Px

is the measure of B(·) conditioned on B(0) = x. For r > 0, define A(r) to be the
annulus of inner radius r and outer radius 5r centered at 1, intersected with the unit
disc; that is, A(r) = {1 + z : r < |z| < 5r} ∩ U. Also, define ξ(r) = 1 − 3r ∈ A(r).
Note that ρ(ξ(r), r) ⊂ A(r) for r < 1/25.

The following proposition is a corollary of Theorem 3.15 in [10].
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PROPOSITION 3.3. Let 0 �= x ∈ U and let 0 < c < |x|. Let τ be the exit time
of B(·) from U. Then,

Px

[∃t ∈ [0, τ ] : |B(t)| ≤ c
] ≥ 1 − |x|

− log c
.

PROPOSITION 3.4. There exists c > 0 such that the following holds:
Let r > 0 and let z ∈ C. Let T be the exit time of B(·) from ρ(z, r). Then for

every x ∈ ρ(z, r/2), Px[B[0, T ] �(r) z] ≥ c.

PROPOSITION 3.5. For any 0 < ε < 1, there exists c > 0 such that the follow-
ing holds:

Let a ∈ U be such that |a| ≤ 1 − ε. Let τ be the exit time of B(·) from U. Then,
P0[B[0, τ ] �(ε) a] ≥ c.

LEMMA 3.6. There exists c > 0 such that the following holds:
Let 0 < r < 1

25 , let A = A(r) and ξ = ξ(r). Let x ∈ A be such that 2r ≤ |x −
1| ≤ 4r . Let T be the exit time of B(·) from A. Then,

Px

[
B[Tξ , Tρ] �(r) ξ, Tρ < T

] ≥ c · 1 − |x|
r

≥ c

2
· 1 − |x|2

r
,

where Tξ = inf{t > 0 :B(t) ∈ ρ(ξ, r/20)} and Tρ = inf{t ≥ Tξ :B(t) /∈ ρ(ξ, r)}.
LEMMA 3.7. There exists c > 0 such that the following holds:
Let 0 < β < 1

25π
, and let I = {eit :−πβ ≤ t ≤ πβ} be the interval on the unit

circle centered at 1 of measure β . Let πβ ≤ r < 1
25 , let A = A(r) and ξ = ξ(r).

Let x ∈ A be such that 2r ≤ |x − 1| ≤ 4r . Let τ be the exit time of B(·) from U,
and let T be the exit time of B(·) from A. Then,

Px

[
B[Tξ , Tρ] �(r) ξ, Tρ < T | B(τ) ∈ I

] ≥ c,

where Tξ = inf{t > 0 :B(t) ∈ ρ(ξ, r/20)} and Tρ = inf{t ≥ Tξ :B(t) /∈ ρ(ξ, r)}.
LEMMA 3.8. For every η > 0, there exists c > 0 such that the following holds:
Let β, I, r,A, ξ, x, τ and T be as in Lemma 3.7. Then,

Px[Tξ,η < T | B(τ) ∈ I ] ≥ c,

where Tξ,η = inf{t > 0 :B(t) ∈ ρ(ξ, ηr)}.
LEMMA 3.9. There exist K,c > 0 such that the following holds:
Let 0 < πβ < r < 1

2K
, and let I = {eit :−πβ ≤ t ≤ πβ} be the interval on the

unit circle centered at 1 of measure β . Let ξ = ξ(r). Let τ be the exit time of B(·)
from U. Then,

P0
[
B[Tξ , τ ] �(r) ξ, τ < TKr | B(τ) ∈ I

] ≥ c,

where Tξ = inf{t > 0 :B(t) ∈ ρ(ξ, r/20)} and TKr = inf{t > Tξ : |B(t)−1| ≥ Kr}.
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LEMMA 3.10. There exist K,c > 0 such that the following holds:
Let β, r, I, ξ, τ, Tξ and TKr be as in Lemma 3.9. Then,

P0[Tξ < τ < TKr,B(τ) ∈ I+ | B(τ) ∈ I ] ≥ c(3.1)

and

P0[Tξ < τ < TKr,B(τ) ∈ I− | B(τ) ∈ I ] ≥ c,(3.2)

where I+ = {eit :πβ/2 ≤ t ≤ πβ} and I− = {eit :−πβ ≤ t ≤ −πβ/2}.

4. Planarity and global behavior.

4.1. Continuity for a fixed domain.

PROPOSITION 4.1. For all α > 0, there exists η > 0 such that for all ε > 0,
for all simply connected domains D � C such that 0 ∈ D, and for all ã ∈ (1−ε)U,
there exists δ0 > 0 such that for all 0 < δ < δ0 the following holds:

Let y ∈ Vδ(D) ∩ ϕ−1
D (ρ(ã, ηε)). Then, for every continuous curve g starting in

ρ(ã, ηε) and ending outside of ρ(ã, ε), the probability that ϕD ◦ Sy does not cross
g before exiting ρ(ã, ε) is at most α.

PROOF. Denote ϕ = ϕD . For x ∈ D and r > 0, define

τ (x)(r) = �x(ϕ
−1(ρ(ã, r))),

the time ϕ ◦ Sx hits ρ(ã, r), and define

T (x)(r) = min
{
τ (x)(r/20) ≤ t ≤ τ (x) :ϕ(Sx(t)) /∈ ρ(ã, r)

}
.

We use the following claim and its corollary below.

CLAIM 4.2. There exists a universal constant c > 0 such that for all 0 < r <

ε/40, there exists δ0 > 0 such that for all 0 < δ < δ0 the following holds:
There exists x ∈ Vδ(D) such that ϕ(x) ∈ ρ(ã, r/20) and

P
[
ϕ ◦ Sx

[
0, T (x)(r)

]
�(r) ã, ϕ ◦ Sx

[
T (x)(r), T (x)(20r)

]
�(20r) ã

] ≥ c.

PROOF. Consider the event

F = {
ϕ ◦ S0

[
τ (0)(r/20), T (0)(r)

]
�(r) ã, ϕ ◦ S0

[
T (0)(r), T (0)(20r)

]
�(20r) ã

}
.

Let B(·) be a planar Brownian motion, and let τ (B) be the exit time of B(·)
from U. Let τ (B)(r/20) = inf{0 ≤ t ≤ τ (B) :B(t) ∈ ρ(ã, r/20)}, and let T (B)(r) =
inf{τ (B)(r/20) ≤ t ≤ τ (B) :B(t) /∈ ρ(ã, r)} [T (B)(20r) is defined similarly].
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By weak convergence and Proposition 3.1, by the conformal invariance of
Brownian motion, by the strong Markov property and by Proposition 3.4, for small
enough δ0,

P[F ] ≥ 1

2
P0

[
B

[
τ (B)(r/20), T (B)(r)

]
�(r) ã,

B
[
T (B)(r), T (B)(20r)

]
�(20r) ã

]

≥ 1

2
P0

[
τ (B)(r/20) < τ (B)]

(4.1)
× inf

ξ∈ρ(ã,r/20)
Pξ

[
B

[
0, T (B)(r)

]
�(r) ã,

B
[
T (B)(r), T (B)(20r)

]
�(20r) ã

]
≥ c1 · P0

[
τ (B)(r/20) < τ (B)],

where c1 > 0 is a universal constant. In addition, by the strong Markov property,

P[F ] ≤ P
[
τ (0)(r/20) < τ (0)]

× max
x

P
[
ϕ ◦ Sx

[
0, T (x)(r)

]
�(r) ã, ϕ ◦ Sx

[
T (x)(r), T (x)(20r)

]
�(20r) ã

]
,

where the supremum is over x ∈ Vδ(D)∩ϕ−1(ρ(ã, r/20)). Hence, since for small
enough δ0,

P
[
τ (0)(r/20) < τ (0)] ≤ 2P0

[
τ (B)(r/20) < τ (B)],

using (4.1), there exists x ∈ Vδ(D) ∩ ϕ−1(ρ(ã, r/20)) such that

P
[
ϕ ◦ Sx

[
0, T (x)(r)

]
�(r) ã, ϕ ◦ Sx

[
T (x)(r), T (x)(20r)

]
�(20r) ã

] ≥ c. �

COROLLARY 4.3. There exists a universal constant c > 0 such that for all
0 < r < ε/40, there exists δ0 > 0 such that for all 0 < δ < δ0 the following holds:

For every w ∈ Vδ(D) such that ϕ(w) ∈ ρ(ã, r/20),

P
[
ϕ ◦ Sw

[
0, T (w)(20r)

]
�(20r) ã

] ≥ c.

PROOF. We claim that there exists a set of vertices U in Vδ(D) such that every
path in Gδ that starts from w and reaches outside of ϕ−1(ρ(ã, r)), intersects U ,
and such that

P
[
ϕ ◦ Su

[
0, T (u)(20r)

]
�(20r) ã

] ≥ c(4.2)

for every u ∈ U , where c > 0 is the universal constant from Claim 4.2. This implies
the corollary, since P[ϕ ◦ Sw[0, T (w)(20r)] �(20r) ã] is a convex sum of P[ϕ ◦
Su[0, T (u)(20r)] �(20r) ã] for u ∈ U (because G is irreducible).

Indeed, let U be the set of all vertices in Vδ(D) ∩ ϕ−1(ρ(ã, r)) such that (4.2)
holds. Assume toward a contradiction that there is a path Y in Gδ starting from
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w and reaching the outside of ϕ−1(ρ(ã, r)), such that Y ∩ U = ∅. Then, every
path in Gδ whose image under ϕ r-encompasses ã, must intersect Y . Let x be the
vertex guarantied by Claim 4.2. Then,

P
[
ϕ ◦ Sx

[
0, T (x)(r)

]
�(r) ã, ϕ ◦ Sx

[
T (x)(r), T (x)(20r)

]
�(20r) ã

]
≤ ∑

y∈Y

p(y) · P
[
ϕ ◦ Sy

[
0, T (y)(20r)

]
�(20r) ã

]
< c,

which is a contradiction to Claim 4.2 [where {p(y)}y∈Y is a distribution on the
set Y ]. �

We continue with the proof of Proposition 4.1. Let c > 0 be the constant
from Corollary 4.3. Let M ∈ N be large enough so that (1 − c)M < α. Let
η > 0 be small enough so that 500M+1η < 1/40. For j = 1,2, . . . ,M , define
rj = 500j ηε, and define Fj = {ϕ ◦ Sy[T (y)(rj ), T

(y)(400rj )] �(400rj ) ã}. By the
strong Markov property and by Corollary 4.3, since ϕ(y) ∈ ρ(ã, ηε), we have
P[Fj | F 1, . . . ,F j−1] ≥ c for every j , which implies

P[F 1, . . . ,FM ] ≤ (1 − c)M < α

(here and below E is the complement of the event E). Since G is planar-
irreducible, the proposition follows. �

4.2. Starting near the boundary. In this section we prove the version of
Lemma 5.4 in [9] that is relevant to us. Part of the proof is similar to that of [9],
but the setting here is more general and requires more details.

LEMMA 4.4. For any ε,α > 0, there exist η, δ0 > 0 such that for every 0 <

δ < δ0 the following holds:
Let D ∈ D, and let x ∈ Vδ(D) be such that |ϕD(x)| ≥ 1 − η. Then, the prob-

ability that Sx hits the set {y ∈ D : |ϕD(y) − ϕD(x)| > ε} before exiting D is at
most α.

We first prove the following proposition.

PROPOSITION 4.5. There exists 0 < α < 1 such that for any ε > 0, there exist
η, δ0 > 0 such that for every 0 < δ < δ0 the following holds:

Let D ∈ D, and let x ∈ Vδ(D) be such that 1 − 2η ≤ |ϕD(x)| ≤ 1 − η. Then, the
probability that Sx hits the set {y ∈ D : |ϕD(y) − ϕD(x)| > ε} before exiting D is
at most α.

PROOF. Let η > 0 be small enough. By (2.1), by the Koebe distortion theo-
rem, and by the Koebe 1/4 theorem, dist(x, ∂D) ≥ r0, where r0 = c · η2 for some
constant c = c(D) > 0. Let z ∈ ∂D be a point such that r = |z − x| = dist(x, ∂D).
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Let x′ ∈ D be such that |x′ −x| < r0/C, and let z′ ∈ D be such that |z′ −z| < r0/C,
for a large enough constant C > 0. We need to consider only finitely many points
x′ and z′.

Let r ′ = |x′ − z′|, and let R > 0 be large enough so that D ∪ ρ(x′,10r ′) ⊂ R
2 U.

Denote A1 = {ξ ∈ C : |ξ − z′| ≤ r ′/10} ∪ [x′, z′] \ {x′}. Let Q be the connected
component in C of (∂ρ(z′, r ′)) ∩ D that contains x′. Let A2 and A3 be the two
connected components in C of Q \ {x′}. For large enough C, the distance from
x′ to ∂D is at least 3r ′/4. Thus, both A2 and A3 are arcs of length at least 3r ′/4.
If C is large enough, D \ (A1 ∪ A2 ∪ A3) has three connected components in C.
For j = 1,2,3, let Kj be the connected component in C of D \ (A1 ∪ A2 ∪ A3)

such that Aj ∩ ∂Kj = ∅. Let Ej be the collection of curves γ ⊂ RU such that
γ stays in Kj from the first time it first hits ∂ρ(x′, r ′/2) until it exits D. By the
conformal invariance of Brownian motion, there exists a universal constant c1 > 0
such that for every j = 1,2,3, we have Px′ [B(·) ∈ Ej ] > c1, where B(·) is a planar
Brownian motion started at x′.

Let A = {y ∈ D : |ϕD(y) − ϕD(x)| > ε}. We show that there exists j ′ ∈ {1,2,3}
such that A ∩ Kj ′ = ∅. Assume toward a contradiction that A ∩ Kj �= ∅ for all j .
We prove for the case that A intersects both A1 and A2 (the proof for the other
cases is similar). A is a connected set that intersects both A1 and A2, so we can
choose A′ to be a minimal connected subset of A that intersects both A1 and A2
(minimal with respect to inclusion). Thus, either A′ is in the closure of K3 or A′
is in the closure of K1 ∪ K2. We prove for the case that A′ is in the closure of K3
(the proof for the other case is similar).

We show that A ∩ ρ(x′, r ′/2) = ∅. By choosing η > 0 to be small enough, and
by the conformal invariance of Brownian motion, the probability that a Brown-
ian motion started at x hits A before exiting D can be made arbitrarily small. If
A ∩ ρ(x,3r/5) �= ∅, because dist(x, ∂D) = r and because A is connected, the
probability that a Brownian motion started at x hits A before exiting D is at least
a universal constant c2 > 0. This is a contradiction for a small enough η, which
implies A∩ρ(x,3r/5) = ∅. Since r ′ ≤ r(1 + 2/C) and since |x − x′| ≤ r0/C, for
large enough C we have that ρ(x′, r ′/2) ⊂ ρ(x,3r/5).

For a vertex y ∈ Vδ(ρ(x′, r ′/2)), define h(y) as the probability that Sy[0, τ
(y)
D ]

is in Ej ′ . The map h(·) is harmonic in Vδ(ρ(x′, r ′/2)) with respect to the law of
the natural random walk on Gδ .

CLAIM 4.6. There exist a universal constant c3 > 0 and δ0 > 0 such that for
all 0 < δ < δ0, there exists y ∈ Vδ(ρ(x′, r0/C)) with h(y) ≥ c3.

PROOF. We prove for the case j ′ = 3. The proof of the other cases is similar.
The event E3 contains an event E that is independent of D; for example, there exist
x′ = z1, z2, . . . , zm ∈ C for m ≤ 103 such that |zi+1 − zi | = r ′/2, and

E = {γ ⊂ RU :γ crosses �(zi, zi+1, r
′/100) for all i} ⊂ E3.
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Let B(·) be a Brownian motion, and let τ be the exit time of B(·) from RU.
Since �(z1, z2, r

′/100), . . . ,�(zm−1, zm, r ′/100) are m − 1 rectangles of fixed
proportions, we have infw∈ρ(x′,r ′/100) Pw[B[0, τ ] ∈ E ] > c4 for some universal
constant c4 > 0. Let T be the time B(·) hits ρ = ρ(x′, r0/C). On one hand,

P0
[
B[T , τ ] ∈ E

] ≥ P0[T < τ ] · c4.

On the other hand, using weak convergence and Proposition 3.1, if δ0 is small
enough,

P0
[
B[T , τ ] ∈ E

] ≤ 2P
[
S0

[
�0(ρ), τ

(0)
RU

] ∈ E
]

≤ 4P0[T < τ ] · max
y∈Vδ(ρ)

P
[
Sy

[
0, τ

(y)
RU

] ∈ E
]
. �

Let c3 > 0 and let y ∈ Vδ(ρ(x′, r0/C)) be given by Claim 4.6. Since h(·) is
harmonic, there exists a path γ from y to ∂ρ(x′, r ′/2) such that h(w) ≥ h(y) for
every w ∈ γ . Since h(·) is nonnegative, harmonic and bounded,

h(x) ≥ P
[
Sx

[
0, τ

(x)
ρ(x′,r ′/2)

] ∩ γ �= ∅
] · h(y).

By Proposition 4.1, and by choosing large enough C, we have P[Sx[0, τ
(x)
ρ(x′,r ′/2)]∩

γ �= ∅] ≥ 1/2. Since every curve in Ej ′ does not intersect A, the probability that
Sx hits the set A before exiting D is at most 1 − c3/2 < 1. �

Planarity and Proposition 4.5 imply a stronger statement.

COROLLARY 4.7. There exists 0 < α < 1 such that for any ε > 0, there exist
η, δ0 > 0 such that for every 0 < δ < δ0 the following holds:

Let D ∈ D, and let x ∈ Vδ(D) be such that |ϕD(x)| ≥ 1 − η. Then, the prob-
ability that Sx hits the set {y ∈ D : |ϕD(y) − ϕD(x)| > ε} before exiting D is at
most α.

PROOF. Let α,η, δ0 be given by Proposition 4.5 with ε/10, and let 0 < δ < δ0.
For y ∈ Vδ(D), define f (y) as the probability that Sy hits A = {y ∈ D : |ϕD(y) −
ϕD(x)| > ε} before exiting D. Assume toward a contradiction that f (x) > α. The
map f (·) is harmonic in Vδ(D \ A) with respect to the law of the natural random
walk on Gδ . Let A′ be the set of ξ ∈ D such that 1 − 2η ≤ |ϕD(ξ)| ≤ 1 − η and
|ϕD(ξ) − ϕD(x)| ≤ ε/2. By Proposition 4.5, f (y) ≤ α for all y ∈ Vδ(A

′). Thus,
there exists a path γ from x to the set A in Vδ(D) that does not intersect A′ such
that f (y) > α for every y ∈ γ .

There exists z′ ∈ A′ such that ρ(ϕD(z′), η/10) ⊂ ϕD(A′) and for every ξ ∈
ρ(ϕD(z′), η/10), every path from ϕ−1

D (ξ) to ∂D that does not hit {ζ ∈ D : |ϕD(ζ )−
ξ | > ε/10} crosses γ (as a continuous curve). By the Koebe 1/4 theorem and by
the Koebe distortion theorem, there exist a finite set Z ⊂ C and η′ > 0, depending
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only on η, such that for all ρ = ρ(ξ, η/10) ⊂ (1−η)U and any D ∈ D, there exists
z ∈ Z with ρ(z, η′) ⊂ ϕ−1

D (ρ). Thus, by weak convergence and Proposition 3.1, for
small enough δ0 (depending only on η), there exists z ∈ Vδ(D) such that ϕD(z) ∈
ρ(ϕD(z′), η/10). The probability that Sz hits {ζ ∈ D : |ϕD(ζ ) − ϕD(z)| > ε/10}
before exiting D is at least miny∈γ f (y) > α. This is a contradiction to Proposi-
tion 4.5. �

PROOF OF LEMMA 4.4. Let η,η′ > 0 be small enough. We show that if δ0 is
small enough, for every D ∈ D, and for every x ∼ y ∈ Vδ(D), we have |ϕD(x) −
ϕD(y)| < η′.

By the Koebe distortion theorem, using (2.1), for every z ∈ (1 − η)U, we have
|ϕ−1′

D (z)| ≥ cη for a constant c > 0. By weak convergence, since G is planar-
irreducible, when δ0 tends to 0, the length of the edges of Gδ in RU, for R =
sup{|z| : z ∈ D}, tends to 0. This implies that if δ0 is small enough, for every D ∈
D and y ∼ x ∈ Vδ(D) such that |ϕD(y)|, |ϕD(x)| ≤ 1 − η, we have |ϕD(y) −
ϕD(x)| ≤ η′.

It remains to consider x’s such that |ϕD(x)| ≥ 1 − η. As above, for small
enough δ0, every z ∈ [x, y] admits |ϕD(z)| ≥ 1 − 2η. Assume toward a contradic-
tion that |ϕD(x)−ϕD(y)| ≥ η′. Thus, by Proposition 4.5 (using a similar argument
to the one in Corollary 4.7), there exists ξ ∈ Vδ(D) such that 1 − 4η ≤ |ϕD(ξ)| ≤
1−2η and the probability that Sξ hits the set {ζ ∈ D : |ϕD(ζ )−ϕD(ξ)| > η′/3} be-
fore exiting D is smaller than 1. However, since G is planar-irreducible, Sξ cannot
cross [x, y], so the probability that Sξ hits the set {ζ ∈ D : |ϕD(ζ )−ϕD(ξ)| > η′/3}
before exiting D is 1, which is a contradiction.

The proof of the lemma follows by the strong Markov property, and by applying
Corollary 4.7 a finite number of times. �

4.3. Exit probabilities are correct. Let D ∈ D. For J ⊂ ∂D, denote by
H(a,J ;D) the probability that the natural random walk started at a exits D at J ;
that is, H(a,J ;D) = ∑

b H(a, b;D), where the sum is over all b ∈ ∂Vδ(D) such
that b ∩ J �= ∅.

LEMMA 4.8. For all ε,α > 0, for all D ∈ D, and for all J = ϕ−1
D (I) where

I ⊂ ∂U is an arc, there exists δ0 > 0 such that for all 0 < δ < δ0 the following
holds:

Let a ∈ Vδ(D) be such that |ϕD(a)| ≤ 1 − ε. Then,

|H(a,J ;D) − Pa[B(τ) ∈ J ]| < α,

where B(·) is a planar Brownian motion, and τ is the exit time of B(·) from D.

PROOF. Fix ε,α,D and J as above. Denote ϕ = ϕD and denote τ (a) = τ
(a)
D .

Let 0 < α0 < 1 be such that (1+α0)
2

(1−α0)
2 = 1 + α

2 . Let η > 0 be small enough. Denote
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A = {η
4 (n+m · i) ∈ (1−ε)U :n,m ∈ Z}. The set A is finite, and there exists ã ∈ A

such that ϕ(a) ∈ ρ(ã, η). Denote ρ = ϕ−1(ρ(ã, η)).
We show that if η, δ0 is small enough, then P[Sx(τ

(x)) ∈ J ] > (1 − α0/2) ·
P[Sy(τ

(y)) ∈ J ] for every x, y ∈ Vδ(ρ). Define h(z) to be the probability that
Sz(τ

(z)) ∈ J . The map h(·) is harmonic in Vδ(D) with respect to the law of the
natural random walk on Gδ . Since h(·) is harmonic, there exists a path γ from y

to ∂D such that h(z) ≥ h(y) for every z ∈ γ . Since h(·) is nonnegative, harmonic
and bounded,

h(x) ≥ P
[
Sx

[
0, τ (x)] ∩ γ �= ∅

] · h(y).

By Proposition 4.1, since G is planar, P[Sx[0, τ (x)]∩γ �= ∅] > 1−α0/2 for small
enough η, δ0.

Therefore, for small enough η, δ0,
∣∣∣∣ P[Sz(τ

(z)) ∈ J ]
P[Sa(τ (a)) ∈ J ] − 1

∣∣∣∣ < α0(4.3)

for every z ∈ Vδ(ρ). In addition,∣∣∣∣Pz[B(τ) ∈ J ]
Pa[B(τ) ∈ J ] − 1

∣∣∣∣ < α0(4.4)

for every z ∈ ρ. By weak convergence and Proposition 3.1, by the conformal in-
variance of Brownian motion, we can choose δ0 so that∣∣∣∣ P[�0(ρ) < τ (0), S0(τ

(0)) ∈ J ]
P0[B[0, τ ] ∩ ρ �= ∅,B(τ) ∈ J ] − 1

∣∣∣∣ < α0(4.5)

and ∣∣∣∣ P[�0(ρ) < τ (0)]
P0[B[0, τ ] ∩ ρ �= ∅] − 1

∣∣∣∣ < α0.(4.6)

Combining (4.5) and (4.4),

P
[
�0(ρ) < τ (0), S0

(
τ (0)) ∈ J

]
< (1 + α0)P0

[
B[0, τ ] ∩ ρ �= ∅,B(τ) ∈ J

]
< (1 + α0)

2P0
[
B[0, τ ] ∩ ρ �= ∅

]
Pa[B(τ) ∈ J ]

and combining (4.3) and (4.6),

P
[
�0(ρ) < τ (0), S0

(
τ (0)) ∈ J

]
> (1 − α0)P

[
�0(ρ) < τ (0)]P[

Sa

(
τ (a)) ∈ J

]
> (1 − α0)

2P0
[
B[0, τ ] ∩ ρ �= ∅

]
P

[
Sa

(
τ (a)) ∈ J

]
.

Thus, by the choice of α0,

P
[
Sa

(
τ (a)) ∈ J

]
< (1 + α)Pa[B(τ) ∈ J ].
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Similarly, since 1 − α < 1
1+α/2 ,

P
[
Sa

(
τ (a)) ∈ J

]
> (1 − α)Pa[B(τ) ∈ J ].

The lemma follows, since Pa[B(τ) ∈ J ] ≤ 1. �

Using Lemma 4.4, Lemma 4.8 yields the following.

LEMMA 4.9. There exists a universal constant c > 0 such that for all α > 0,
there exists δ0 > 0 such that for all 0 < δ < δ0 the following holds:

Let D ∈ D, and let J = ϕ−1
D (I), where I ⊂ ∂U is an arc of length at least α.

Then, H(0, J ;D) ≥ c · α.

PROOF. Let η > 0 be small enough, and let D̃ be the (1, η)-approximation of
D given by Proposition 2.1. Let x ∈ ∂U be the center of I , and let A = ρ(x,α/2)∩
U. Let I be the finite family of arcs of the form I = {eis :αj/8 ≤ s ≤ α(j + 1)/8}
for 0 ≤ j ≤ 16π/α.

Let I ′ ∈ I be so that x ∈ I ′. For every ζ ∈ I ′, since |x − ζ | ≤ α/8 and
since |ϕD(ϕ−1

D̃
(ζ )) − ζ | ≤ η, we have |x − ϕD(ϕ−1

D̃
(ζ ))| ≤ η + α/8 < α/4 for

η < α/8. Thus, dist(x,ϕD(ϕ−1
D̃

(I ′)) < α/4. As in the proof of Lemma 4.4, if
δ0 is small enough (independently of D), for every v ∼ u ∈ Vδ(D), we have
|ϕD(v) − ϕD(u)| < η. Thus, by properties (1) and (3) of Proposition 2.1,

H(0, J ;D) ≥ P
[
S0

(
τ

(0)

D̃

) ∈ ϕ−1
D̃

(I ′)
] · min

y
P

[
Sy

(
τ

(y)
D

) ∈ J
]
,

where the minimum is over y ∈ Vδ(ρ(x,α/2)) such that |ϕD(y)| ≥ 1 − 2η.
By weak convergence and Proposition 3.1, if δ0 is small enough, we have that
P[S0(τ

(0)

D̃
) ∈ ϕ−1

D̃
(I ′)] is at least a universal constant times α. By Lemma 4.4, for

small enough η, δ0, we have miny P[Sy(τ
(y)
D ) ∈ J ] ≥ 1/2. �

5. Convergence of Poisson kernel. In this section we prove that one can ap-
proximate the discrete Poisson kernel by the continuous Poisson kernel.

5.1. Proof of Lemma 1.2. We begin with a proposition that is a “special case”
of Lemma 1.2 for a specific domain.

PROPOSITION 5.1. Let ε,α > 0 and let D � C be a simply connected domain
such that 0 ∈ D. Then, there exists δ0 such that for all 0 < δ < δ0 the following
holds:

Let a ∈ Vδ(D) be such that |ϕD(a)| ≤ 1 − ε, and let b ∈ ∂Vδ(D). Then,∣∣∣∣H
(δ)(a, b;D)

H(δ)(0, b;D)
− λ(a, b;D)

∣∣∣∣ ≤ α.

Roughly, Proposition 5.1 yields Lemma 1.2 by a compactness argument.
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PROOF OF LEMMA 1.2. Let α1 > 0 be small enough, and let D̃ be the (ε,α1)-
approximation of D given by Proposition 2.1. Let δ0 > 0 be small enough, and
let 0 < δ < δ0. Specifically, Proposition 5.1 holds for D̃ with ε/2 and α1. Since
|ϕ

D̃
(a)| ≤ 1 − ε/2, for every b̃ ∈ ∂Vδ(D̃),

∣∣∣∣H(a, b̃; D̃)

H(0, b̃; D̃)
− λ(a, b̃; D̃)

∣∣∣∣ ≤ α1.

Since D̃ ⊂ D, for every x ∈ Vδ(D̃),

H(x, b;D) = ∑
b̃

H (x, b̃; D̃) · H(b̃, b;D),

where the sum is over b̃ ∈ ∂Vδ(D̃), and we abuse notation and use H(b̃, b;D)

instead of H(b̃2, b;D), where b̃ = (b̃1, b̃2) [for every b′ ∈ ∂Vδ(D), define
H(b′, b;D) = 1{b=b′}]. Thus,

|H(a, b;D) − λ(a, b;D) · H(0, b;D)|
≤ ∑

b̃

H (b̃, b;D) · |H(a, b̃; D̃) − λ(a, b;D) · H(0, b̃; D̃)|
(5.1)

≤ ∑
b̃

H (b̃, b;D) · H(0, b̃; D̃) · |λ(a, b̃; D̃) − λ(a, b;D)|

+ α1 · H(0, b;D).

Let α2, α3 > 0 be small enough. Let I ⊂ ∂U be an arc of length α2 centered at
ϕD(b). Denote Ĩ = ϕ−1

D̃
(I ) ⊂ ∂D̃. We use the following two claims.

CLAIM 5.2. For every b̃ ∈ ∂Vδ(D̃) such that b̃ ∩ Ĩ �= ∅, |λ(a, b̃; D̃) −
λ(a, b;D)| ≤ α3.

PROOF. By the choice of I , |ϕ
D̃

(b̃) − ϕD(b)| ≤ α2. Since a ∈ D̃, by
property (4) of Proposition 2.1 with ξ = ϕ

D̃
(a), we have |ϕD(a) − ϕ

D̃
(a)| =

|ϕD(ϕ−1
D̃

(ξ)) − ξ | ≤ α1. By the continuity of λ(·, ·;U), if α1, α2 are small enough,

|λ(a, b̃; D̃) − λ(a, b;D)| ≤ α3. �

CLAIM 5.3. For every b̃ ∈ ∂Vδ(D̃) such that b̃ ∩ Ĩ = ∅, H(b̃, b;D) ≤ α3 ·
H(0, b;D).

PROOF. Assume that b̃ /∈ ∂Vδ(D) [otherwise, H(b̃, b;D) = 0, since b̃ ∩ I =
∅]. In this case, H(b̃, b;D) is H(b̃2, b;D) where b̃2 is the endpoint of b̃. Denote
b′ = ϕ

D̃
(b̃) ∈ ∂U. So |b′ − ϕD(b)| ≥ α2/10. By property (4) of Proposition 2.1,

|ϕD(ϕ−1
D̃

(b′)) − b′| ≤ α1. By weak convergence for small enough δ0, the length
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of the edge b̃ is small enough. Thus, by property (5) of Proposition 2.1, for small
enough δ0, we have |ϕD(b̃2) − ϕD(ϕ−1

D̃
(b′))| ≤ α1, which implies |ϕD(b̃2) − b′| ≤

2α1. Therefore, |ϕD(b̃2) − ϕD(b)| ≥ α2/10 − 2α1 > α2/20, for α1 < α2/40.
Denote ξ = ϕD(b̃2), and A = {x ∈ U : |x − ξ | > α2/50}. Also denote M =

maxy H(y, b;D), where the maximum is over y ∈ Vδ(D) such that |ϕD(y) −
ϕD(b)| ≥ α2/50. As in the proof of Lemma 4.4, if δ0 is small enough, for every
v ∼ u ∈ Vδ(D), we have |ϕD(v) − ϕD(u)| < α2/100. Thus, H(b̃, b;D) is at most
M times the probability that ϕD ◦ S

b̃2
hits A.

Since |ξ − ϕD(ϕ−1
D̃

(b′))| ≤ α1, using property (3) of Proposition 2.1, |ξ | ≥ 1 −
2α1. Let α4 > 0 be small enough. Using Lemma 4.4, for α1 small enough, the
probability that ϕD ◦ S

b̃2
hits A is at most α4.

We show that M ≤ C · H(0, b;D), for some C = C(α2) > 0. Let y ∈ Vδ(D) be
such that |ϕD(y) − ϕD(b)| ≥ α2/50. The map H(·, b;D) is harmonic with respect
to the law of the natural random walk on Gδ . Thus, there exists a path γ from y to
b in Vδ(D) such that for every z ∈ γ , H(z, b;D) ≥ H(y, b;D). Since H(·, b;D)

is nonnegative, harmonic and bounded,

H(0, b;D) ≥ P
[
S0

[
0, τ

(0)
D

] ∩ γ �= ∅
] · H(y, b;D).

Therefore, we need to show that p = P[S0[0, τ
(0)
D ] ∩ γ �= ∅] can be bounded from

below by a function of α2.
Think of γ as a continuous curve, and denote γ ′ = {ζ ∈ γ : |ϕD(ζ ) − ϕD(b)| ≤

α2/50}. Denote D′ = D \ γ ′. By the conformal invariance of the harmonic mea-
sure, the length of the arc ϕD′(γ ′) is at least a universal constant times α2. Also,
for small enough α2, we have rad(D′) ≥ 1/4. Thus, by Lemma 4.9 applied to D′
(using Lemma 4.9 with D′ = {2D :D ∈ D}), p is at least a universal constant
times α2. Set C(α2) = 1

p
.

Setting α4 · C(α2) ≤ α3, the proof is complete. �

By Claims 5.2 and 5.3,

(5.1) ≤ ∑
b̃ : b̃∩Ĩ �=∅

H(b̃, b;D) · H(0, b̃; D̃) · |λ(a, b̃; D̃) − λ(a, b;D)|

+ ∑
b̃ : b̃∩Ĩ=∅

H(b̃, b;D) · H(0, b̃; D̃) · |λ(a, b̃; D̃) − λ(a, b;D)|

+ α1 · H(0, b;D)

≤ α3 · ∑
b̃

H (b̃, b;D) · H(0, b̃; D̃) + α3 · H(0, b;D) · ∑
b̃

H (0, b̃; D̃)

+ α1 · H(0, b;D)

≤ (2α3 + α1) · H(0, b;D).

Choosing 2α3 + α1 < α completes the proof. �
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5.2. Proof of Proposition 5.1. Fix ε,α > 0. Let N be a large enough integer
so that

(
1 − c1(ε,α)

)N
<

α

8c2
,(5.2)

where c1(ε,α) > 0 is given below in Proposition 5.4, and c2 > 0 is the universal
constant given below in Proposition 5.5. Let β > 0 be small enough so that

β <
ε

50πK5N
and β <

αε5

16c3
,(5.3)

where K > 5 is the universal constant from Lemmas 3.9 and 3.10, and c3 > 0 is
the universal constant given below in (5.5), and let r = 2πβ . Let η > 0 be given by

Proposition 4.1 with α equals αε2

16 . Let δ0 > 0 be small enough (to be determined
below), and let 0 < δ < δ0.

Denote ϕ = ϕD . Denote A = { ε
100(n + m · i) ∈ (1 − ε)U :n,m ∈ Z}. The set

A is finite, and there exists ã ∈ A such that ϕ(a) ∈ ρ(ã, ε/40). Denote B =
{eπβni/20 : 0 ≤ n ≤ 100/β}. The set B is finite, and there exists b̃ ∈ B such that
|ϕ(b) − b̃| ≤ β/10. Denote I = {b̃ · eit :−πβ ≤ t ≤ πβ}, and denote J = ϕ−1(I ).
Roughly, b is an edge in the middle of the small interval J .

For j = 1,2, . . . ,N , let Rj = 5jKr , let ξj = b̃(1 − 3Rj), and let ρj =
ρ(ξj , η

3Rj). For z ∈ Vδ(D), define

T
(z)
j = min{t ≥ 0 : |ϕ(Sz(t)) − b̃| ≤ Rj }.

On the event {Sz(τ
(z)) ∈ J }, we have T

(z)
N ≤ T

(z)
N−1 ≤ · · · ≤ T

(z)
1 ≤ τ (z). Let E

(z)
j be

the event

E
(z)
j = {

ϕ ◦ S0
[
T

(0)
j+1, T

(0)
j

] ∩ ρj �= ∅
} ∩ {

ϕ ◦ Sz

[
T

(z)
j+1, T

(z)
j

] ∩ ρj �= ∅
}
.

Denote Ej = E
(a)
j .

We use the following three propositions.

PROPOSITION 5.4. Let 1 ≤ j ≤ N . Then,

P
[
Ej | Ej+1, . . . ,EN,S0

(
τ (0)) ∈ J,Sa

(
τ (a)) ∈ J

] ≥ c1

for c1 = c1(ε,α) > 0.

PROPOSITION 5.5. There exists a universal constant c2 > 0 such that for
every z ∈ {0, a},

P
[
Sz

(
τ (z)) = b | E1, . . . ,EN,S0

(
τ (0)) ∈ J,Sa

(
τ (a)) ∈ J

]
≤ c2 · P

[
S0

(
τ (0)) = b | S0

(
τ (0)) ∈ J

]
.
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PROPOSITION 5.6. For every j = 1, . . . ,N ,

∣∣∣∣P[Sa(τ
(a)) = b | EXIT,Ej ,Ej+1, . . . ,EN ]

P[S0(τ (0)) = b | EXIT,Ej ,Ej+1, . . . ,EN ] − 1
∣∣∣∣ ≤ αε2

4
.

Before proving the three propositions above, we show how they imply Proposi-
tion 5.1. Let z ∈ {0, a}. Write

H(z, b) = H(δ)(z, b;D)
(5.4)

= P
[
Sz

(
τ (z)) = b | Sz

(
τ (z)) ∈ J

] · P
[
Sz

(
τ (z)) ∈ J

]
.

By Lemma 4.8, by (1.1), and since |ϕ(z)| ≤ 1 − ε,

∣∣P[
Sz

(
τ (z)) ∈ J

] − λ(z, b) · β∣∣ ≤ c3
β2

ε3(5.5)

for a universal constant c3 > 0, which implies

∣∣∣∣P[Sa(τ
(a)) ∈ J ]

P[S0(τ (0)) ∈ J ] − λ(a, b)

∣∣∣∣ <
α

4
.(5.6)

Denote EXIT = {S0(τ
(0)) ∈ J }∩{Sa(τ

(a)) ∈ J }, and denote INT = E1 ∪E2 ∪· · ·∪
EN . Since

P
[
Sz

(
τ (z)) = b | Sz

(
τ (z)) ∈ J

]

=
N∑

j=1

P
[
Sz

(
τ (z)) = b | EXIT,Ej ,Ej+1, . . . ,EN

]

× P[Ej ,Ej+1, . . . ,EN | EXIT]
+ [

Sz

(
τ (z)) = b | EXIT, INT

] · P[INT | EXIT],
we have

∣∣P[
Sa

(
τ (a)) = b | Sa

(
τ (a)) ∈ J

] − P
[
S0

(
τ (0)) = b | S0

(
τ (0)) ∈ J

]∣∣

≤
N∑

j=1

P[Ej ,Ej+1, . . . ,EN | EXIT]

× ∣∣P[
Sa

(
τ (a)) = b | EXIT,Ej ,Ej+1, . . . ,EN

]
(5.7)

− P
[
S0

(
τ (0)) = b | EXIT,Ej ,Ej+1, . . . ,EN

]∣∣
+ 2 max

z∈{0,a}
[
Sz

(
τ (z)) = b | EXIT, INT

] · P[INT | EXIT].
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By Propositions 5.4 and 5.5,

2 max
z∈{0,a}

[
Sz

(
τ (z)) = b | EXIT, INT

] · P[INT | EXIT]
(5.8)

< P
[
S0

(
τ (0)) = b | S0

(
τ (0)) ∈ J

] · α

4
.

Plugging Proposition 5.6 and (5.8) into (5.7),∣∣P[
Sa

(
τ (a)) = b | Sa

(
τ (a)) ∈ J

] − P
[
S0

(
τ (0)) = b | S0

(
τ (0)) ∈ J

]∣∣

<
αε2

2
· P

[
S0

(
τ (0)) = b | S0

(
τ (0)) ∈ J

]
.

Thus, plugging (5.6) into (5.4),
∣∣∣∣H(a, b)

H(0, b)
− λ(a, b)

∣∣∣∣ <
α

4

(
1 + αε2

2

)
+ αε2

2
λ(a, b) < α.

5.3. Proof of Proposition 5.4. For the rest of this proof denote by E(z) the
event

E(z) = E
(z)

j+1 ∩ · · · ∩ E
(z)

N ∩ {
S0

(
τ (0)) ∈ J

} ∩ {
Sz

(
τ (z)) ∈ J

}
,

and denote E = E(a). We show that

P
[
ϕ ◦ Sa

[
T

(a)
j+1, T

(a)
j

] ∩ ρj �= ∅ | E]
(5.9)

is at least a constant (that may depend on ε and α). This implies the proposition,
since S0 and Sa are independent (and since the same argument holds for 0 as well).

CLAIM 5.7. There exists a set of vertices U ⊂ Vδ(D) such that:

• Every path from ϕ−1(ρ(ã, ε/40)) to the boundary of D \ ϕ−1((1 − ε/2)U) in
Gδ goes through U .

• For every u ∈ U , we have P[ϕ ◦ Su[T (u)
j+1, T

(u)
j ] ∩ ρj �= ∅ | E(u)] ≥ c1 with c1 =

c1(ε,α) > 0.

PROOF. Assume toward a contradiction that such a set does not exist. Since G

is planar-irreducible, there exists a path Y from ϕ−1(ρ(ã, ε/40)) to the boundary
of D \ ϕ−1((1 − ε/2)U) such that for every vertex y in Y ,

P
[
ϕ ◦ Sy

[
T

(y)
j+1, T

(y)
j

] ∩ ρj �= ∅ | E(y)] < c1(ε,α).(5.10)

Define an auxiliary random walk L; let L(·) be a natural random walk started
at 0 (independent of S0), and let τ (L) be the exit time of L(·) from D. For
j ≤ k ≤ N , let

T
(L)
k = min{t ≥ 0 : |ϕ(L(t)) − b̃| ≤ Rk},
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let

E
(L)
k = {

ϕ ◦ S0
[
T

(0)
k+1, T

(0)
k

] ∩ ρk �= ∅
} ∩ {

ϕ ◦ L
[
T

(L)
k+1, T

(L)
k

] ∩ ρk �= ∅
}

and let

E(L) = E
(L)

j+1 ∩ · · · ∩ E
(L)

N ∩ {
S0

(
τ (0)) ∈ J

} ∩ {
L

(
τ (L)) ∈ J

}
.

Consider

P
[
L

[
0, T

(L)
N

] ∩ Y �= ∅, ϕ ◦ L
[
T

(L)
j+1, T

(L)
j

] ∩ ρj �= ∅ | E(L)].(5.11)

By (5.10), and by the strong Markov property, we have (5.11) < c1(ε,α). On the
other hand, by weak convergence and Proposition 3.1, by Lemma 3.8, by Proposi-
tion 3.5, and by the planarity of G,

(5.11) ≥ P
[
ϕ ◦ L[0, T ′] �(ε/2) ã, ϕ ◦ L

[
T

(L)
j+1, T

(L)
j

] ∩ ρj �= ∅ | E(L)] ≥ c2,

where T ′ is the first time L(·) hits the set {z ∈ D : |ϕ(z)| ≥ 1 − ε/2}, and c2 =
c2(ε,α) > 0. This is a contradiction for c1 = c2. �

By Claim 5.7, and by the strong Markov property, (5.9) is a convex combination
of

P
[
ϕ ◦ Su

[
T

(u)
j+1, T

(u)
j

] ∩ ρj �= ∅ | E(u)] for u ∈ U,

which implies that (5.9) ≥ c1(ε,α).

5.4. Proof of Proposition 5.5. We use the following lemma, which is a variant
of Harnack’s inequality.

LEMMA 5.8. There exists a universal constant c > 0 such that the following
holds:

Let w ∈ Vδ(D) be such that |ϕ(w) − b̃| ≥ Kr . If P[Sw(τ (w)) ∈ J ] > 0, then

P
[
Sw

(
τ (w)) = b | Sw

(
τ (w)) ∈ J

] ≤ c · P
[
S0

(
τ (0)) = b | S0

(
τ (0)) ∈ J

]
.

Before proving the lemma, we show how the lemma implies Proposition 5.5.

PROOF OF PROPOSITION 5.5. Denote by W the set of w ∈ Vδ(D) such that
|ϕ(w) − b̃| ≥ Kr and P[Sw(τ (w)) ∈ J ] > 0. As in the proof of Lemma 4.4, if δ0 is
small enough, for every v ∼ u ∈ Vδ(D), we have |ϕ(v)−ϕ(u)| < β . By the strong
Markov property,

P
[
Sz

(
τ (z)) = b | E1, . . . ,EN,S0

(
τ (0)) ∈ J,Sa

(
τ (a)) ∈ J

]
is at most

max
w∈W

P
[
Sw

(
τ (w)) = b | Sw

(
τ (w)) ∈ J

]
.(5.12)
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Lemma 5.8 implies the proposition. �

PROOF OF LEMMA 5.8. Let

I+ = {b̃ · eit :πβ/2 ≤ t ≤ πβ} and I− = {b̃ · eit :−πβ ≤ t ≤ −πβ/2}.
Let J+ = ϕ−1(I+) and J− = ϕ−1(I−). Let U = {x ∈ D : |ϕ(x) − b̃| ≥ Kr}, let
ξ = b̃ · (1 − 3r), and let ρ = ρ(ξ, r/20).

We use the following claim and its corollary.

CLAIM 5.9. There exists a universal constant c1 > 0 such that the following
holds:

(1) There exists x0 ∈ Vδ(D) ∩ ϕ−1(ρ) such that

P
[
ϕ ◦ Sx0

[
0, τ (x0)

]
�(r) ξ, Sx0

[
0, τ (x0)

] ∩ U = ∅ | Sx0

(
τ (x0)

) ∈ J
] ≥ c1.

(2) There exists x+ ∈ Vδ(D) ∩ ϕ−1(ρ) such that

P
[
Sx+

(
τ (x+)) ∈ J+, Sx+

[
0, τ (x+)] ∩ U = ∅ | Sx+

(
τ (x+)) ∈ J

] ≥ c1.

(3) There exists x− ∈ Vδ(D) ∩ ϕ−1(ρ) such that

P
[
Sx−

(
τ (x−)) ∈ J−, Sx−

[
0, τ (x−)] ∩ U = ∅ | Sx−

(
τ (x−)) ∈ J

] ≥ c1.

PROOF. We first prove (1). Consider

P
[
ϕ ◦ S0

[
�0(ϕ

−1(ρ)), τ (0)] �(r) ξ,
(5.13)

S0
[
�0(ϕ

−1(ρ)), τ (0)] ∩ U = ∅ | S0
(
τ (0)) ∈ J

]
.

First, by weak convergence and Proposition 3.1, using Lemma 3.9, we have
(5.13) ≥ c1, for a universal constant c1 > 0. Second, by the strong Markov prop-
erty,

(5.13) ≤ max
x

P
[
ϕ ◦ Sx

[
0, τ (x)] �(r) ξ, Sx

[
0, τ (x)] ∩ U = ∅ | Sx

(
τ (x)) ∈ J

]
,

where the maximum is over x in Vδ(D) ∩ ϕ−1(ρ) such that P[Sx(τ
(x)) ∈ J ] > 0.

For the proof of property (2) we consider {Sx(τ
(x)) ∈ J+} instead of {ϕ ◦

Sx[0, τ (x)] �(r) ξ}, and use the same argument with Lemma 3.10. Similarly, for
property (3) we consider {Sx(τ

(x)) ∈ J−}. �

COROLLARY 5.10. There exists a universal constant c2 > 0 such that the
following holds:

There exists x0 ∈ Vδ(D) ∩ ϕ−1(ρ) such that

P
[
Sx0

(
τ (x0)

) ∈ J+, Sx0

[
0, τ (x0)

] ∩ U = ∅ | Sx0

(
τ (x0)

) ∈ J
] ≥ c2

and

P
[
Sx0

(
τ (x0)

) ∈ J−, Sx0

[
0, τ (x0)

] ∩ U = ∅ | Sx0

(
τ (x0)

) ∈ J
] ≥ c2.



1270 A. YADIN AND A. YEHUDAYOFF

PROOF. Let x0, x+, x− be as given in Claim 5.9. We prove the first inequality
for x0, the proof of the second one is similar. Define

h(z) = P
[
Sz

(
τ (z)) ∈ J+, Sz

[
0, τ (z)] ∩ U = ∅ | Sz

(
τ (z)) ∈ J

]
.

The map h(·) is harmonic, and so there exists a path γ from x+ to ∂D such that
h(z) ≥ h(x+) for every z ∈ γ . Since h(·) is nonnegative, harmonic and bounded,
by Claim 5.9,

h(x0) ≥ P
[
Sx0

[
0, τ

(x0)
D\U

] ∩ γ �= ∅ | Sx0

(
τ (x0)

) ∈ J
] · h(x+)

≥ P
[
ϕ ◦ Sx0

[
0, τ (x0)

]
�(r) ξ,

Sx0

[
0, τ (x0)

] ∩ U = ∅ | Sx0

(
τ (x0)

) ∈ J
] · h(x+)

≥ c2. �

Back to the proof of Lemma 5.8. For y ∈ Vδ(D), define

p(y) =
{

P
[
Sy

(
τ (y)

) = b | Sy

(
τ (y)

) ∈ J
]
, if P

[
Sy

(
τ (y)

) ∈ J
]
> 0,

0, otherwise.
Since p(·) is harmonic, there exists a path γ from w to b such that p(z) ≥ p(w)

for every z ∈ γ . Let x0 be the vertex given by Corollary 5.10. By the choice of b̃,
ϕ(b) ∈ I and ϕ(b) /∈ I+ ∪ I−. Thus, since w ∈ U , assume without loss of general-
ity that every path from x0 to J+ that does not intersect U crosses γ (otherwise,
this holds for J−). Thus, since p(·) is nonnegative, harmonic and bounded, by
Corollary 5.10,

p(x0) ≥ P
[
Sx0

[
0, τ (x0)

] ∩ γ �= ∅ | Sx0

(
τ (x0)

) ∈ J
] · p(w)

≥ P
[
Sx0

(
τ (x0)

) ∈ J+, Sx0

[
0, τ (x0)

] ∩ U = ∅ | Sx0

(
τ (x0)

) ∈ J
] · p(w)(5.14)

≥ c2 · p(w),

where c2 > 0 is a constant.
Similarly, there exists a path γ from x0 to b (we abuse notation and use γ again)

such that p(z) ≥ p(x0) for every z ∈ γ . Since G is planar-irreducible, every path
from 0 that encompasses ϕ−1(ρ) crosses γ . Since p(·) is nonnegative, harmonic
and bounded,

p(0) ≥ P
[
S0

[
0, τ (0)] ∩ γ �= ∅ | S0

(
τ (0)) ∈ J

] · p(x0)

≥ P
[
ϕ ◦ S0

[
0, τ (0)] �(r) ξ | S0

(
τ (0)) ∈ J

] · p(x0).

By weak convergence and Proposition 3.1, and by Lemma 3.9,

P
[
ϕ ◦ S0

[
0, τ (0)] �(r) ξ | S0

(
τ (0)) ∈ J

] ≥ c3,

where c3 > 0 is a constant. Using (5.14),

p(0) ≥ c3 · p(x0) ≥ c4 · p(w)

for a constant c4 > 0. �
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5.5. Proof of Proposition 5.6. For y ∈ Vδ(D), define

p(y) =
{

P
[
Sy

(
τ (y)

) = b | Sy

(
τ (y)

) ∈ J
]
, if P

[
Sy

(
τ (y)

) ∈ J
]
> 0,

0, otherwise.

Since p(·) is harmonic, for every y ∈ Vδ(D), there exists a path γy from y to ∂D

such that p(u) ≥ p(y) for every u ∈ γy . Let w,y ∈ Vδ(ρj ). Since p(·) is nonnega-
tive, harmonic and bounded,

p(w) ≥ P
[
Sw

[
0, τ (w)] ∩ γy �= ∅ | Sw

(
τ (w)) ∈ J

] · p(y).

Let σ (w) be the first time Sw exits ϕ−1(ρ(ξj , η
2Rj)). As in the proof of Lem-

ma 4.4, if δ0 is small enough, for every v ∼ u ∈ Vδ(D), we have |ϕ(v) − ϕ(u)| <

β(η − η2). By the strong Markov property,

P
[
Sw

[
0, τ (w)] ∩ γy �= ∅ | Sw

(
τ (w)) ∈ J

]

= P[Sw[0, τ (w)] ∩ γy �= ∅, Sw(τ (w)) ∈ J ]
P[Sw(τ (w)) ∈ J ]

≥ P[Sw[0, σ (w)] ∩ γy �= ∅] · minz P[Sz(τ
(z)) ∈ J ]

P[Sw(τ (w)) ∈ J ] ,

where the minimum is over z ∈ Vδ(D) such that ϕ(z) ∈ ρ(ξj , ηRj ). Define h(z) to
be the probability that Sz(τ

(z)) ∈ J . Since h(·) is harmonic, there exists a path gw

from w to ∂D such that h(u) ≥ h(w) for every u ∈ gw . Since h(·) is nonnegative,
harmonic and bounded, by the choice of η,

h(z) ≥ P
[
Sz

[
0, τ (z)] ∩ gw �= ∅

] · p(w) ≥
(

1 − αε2

16

)
· p(w).

Also by the choice of η, P[Sw[0, σ (w)] ∩ γy �= ∅] ≥ 1 − αε2

16 . Thus,

p(w) ≥
(

1 − αε2

8

)
· p(y).

The strong Markov property implies the proposition.

6. Convergence of the loop-erasure. In this section we show that the scaling
limit of the loop-erasure of the reversal of the natural random walk on G is SLE2
(for a planar-irreducible graph G such that the scaling limit of the natural random
walk on G is planar Brownian motion). Most of our proof follows the proof of
Lawler, Schramm and Werner in [9].

6.1. The observable. Let D ∈ D, and let δ > 0. For v ∈ Vδ(D), let Sv(·) be the
natural random walk on Gδ started at v and stopped on exiting D. Denote by Ŝv(·)
the loop-erasure of the reversal of Sv(·).
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REMARK 6.1. There is a technicality we need to address. Let γ ′(0), . . . ,

γ ′(T ) = v be the loop-erasure of the reversal of Sv(·). The edge e = [γ ′(0), γ ′(1)]
is not contained in D. Define γ (0) ∈ ∂D as the last point on e not in D (see the de-
finition of Poisson kernel in Section 1.1), and define γ (i) = γ ′(i) for i = 1, . . . , T .

Let γ (·) be the loop-erasure of the reversal of a natural random walk started at
0 and stopped on exiting D; that is, γ (·) has the same distribution as Ŝ0(·), but is
independent of S0(·) [from the time γ (·) hits 0 it stays there].

PROPOSITION 6.2. Let v ∈ Vδ(D). For n ∈ N, define the random variable

Mn = P[Ŝv[0, n] = γ [0, n]]
P[Ŝ0[0, n] = γ [0, n]] .

Then, Mn is a martingale with respect to the filtration generated by γ [0, n].

PROOF. By the definition of γ (·), for every w ∈ Vδ(D),

P
[
γ (n + 1) = w | γ [0, n]] = P

[
Ŝ0(n + 1) = w | Ŝ0[0, n] = γ [0, n]].

Thus,

E[Mn+1 | γ [0, n]]
= ∑

w

P
[
γ (n + 1) = w | γ [0, n]]

× P[Ŝv[0, n] = γ [0, n], Ŝv(n + 1) = w]
P[Ŝ0[0, n] = γ [0, n], Ŝ0(n + 1) = w]

= ∑
w

P
[
Ŝv(n + 1) = w | Ŝv[0, n] = γ [0, n]]P[Ŝv[0, n] = γ [0, n]]

P[Ŝ0[0, n] = γ [0, n]]
= Mn. �

Let E (v)
n be the event that Sv(·) hits the set ∂D ∪γ [0, n] at γ (n), where we think

of Sv(·) as a continuous curve (linearly interpolated on the edges of Gδ). Denote

Hn(v, γ (n)) = P
[

E (v)
n

]
.

PROPOSITION 6.3. For v ∈ Vδ(D),

Hn(v, γ (n))

Hn(0, γ (n))

is a martingale with respect to the filtration generated by γ [0, n].
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PROOF. Define

Mn = P[Ŝv[0, n] = γ [0, n]]
P[Ŝ0[0, n] = γ [0, n]]

as in Proposition 6.2. Since Mn is a martingale, it suffices to show that

P[E (v)
n ]

P[E (0)
n ] = Mn.

Let z ∈ {v,0}, and let S(·) be the path Sz[�z(γ [0, n]), τ (z)
D ]. Since {Ŝz[0, n] =

γ [0, n]} = {Ŝ[0, n] = γ [0, n]}, by the strong Markov property,

P
[
Ŝz[0, n] = γ [0, n], E (z)

n

] = P
[
Ŝ[0, n] = γ [0, n], E (z)

n

]
= P

[
Ŝγ (n)[0, n] = γ [0, n]]P[

E (z)
n

]
,

which implies

P
[
Ŝz[0, n] = γ [0, n] | E (z)

n

] = P
[
Ŝγ (n)[0, n] = γ [0, n]].(6.1)

In addition, since {Ŝz[0, n] = γ [0, n]} ⊆ E (z)
n ,

P
[
Ŝz[0, n] = γ [0, n]] = P

[
E (z)

n

]
P

[
Ŝz[0, n] = γ [0, n] | E (z)

n

]
.(6.2)

Combining (6.1) and (6.2),

P[E (v)
n ]

P[E (0)
n ] = P[E (v)

n ]
P[E (0)

n ] · P[Ŝγ (n)[0, n] = γ [0, n]]
P[Ŝγ (n)[0, n] = γ [0, n]]

= P[Ŝv[0, n] = γ [0, n]]
P[Ŝ0[0, n] = γ [0, n]] = Mn. �

6.2. The driving process. Here are some known facts about the Schramm–
Loewner evolution (for more details, see [9]). Let D ∈ D, and let δ > 0. Let γ (·)
be the loop-erasure of the reversal of a natural random walk started at 0 and stopped
on exiting D (independent of S0). For s ≥ 0, define γ [0, s] as the continuous curve
that is the linear interpolation of γ (·) on the edges of Gδ . For s ≥ 0 such that
0 /∈ γ [0, s], define ϕs :D \ γ [0, s] → U to be the unique conformal map satisfying
ϕs(0) = 0 and ϕ′

s(0) > 0. Let ts = logϕ′
s(0) − logϕ′

D(0), the capacity of γ [0, s]
from 0 in D. Let

Us = lim
z→γ (s)

ϕs(z),

where z tends to γ (s) from within D \γ [0, s]. Let W : [0,∞) → ∂U be the unique
continuous function such that solving the radial Loewner equation with driving
function W(·) gives the curve ϕD ◦ γ . Loewner’s theory gives us the relation



1274 A. YADIN AND A. YEHUDAYOFF

Us = W(ts). Let θ(·) be the function such that W(t) = W(0)eiθ(t). Let �s = θ(ts),
so we get that Us = U0e

i�s . Since ts is a strictly increasing function of s, we can
define ξ(r) to be the unique s such that ts = r [by this definition, ξ(tr ) = r]. By
the Loewner differential equation, for every z ∈ D \ γ [0, ξ(r)],

∂rgr(z) = gr(z)
Uξ(r) + gr(z)

Uξ(r) − gr(z)
,(6.3)

where gr(z) = ϕξ(r)(z).

PROPOSITION 6.4. There exists c > 0 such that for all ε > 0, there exists
δ0 > 0 such that for all 0 < δ < δ0 the following holds:

Let D ∈ D. Let m = min{1 ≤ j ∈ N : tj ≥ ε2 or |�j | ≥ ε}. Then, a.s.,

|E[�m | γ (0)]| ≤ cε3

and ∣∣E[�2
m − 2tm | γ (0)]∣∣ ≤ cε3.

PROOF. Fix v ∈ Vδ(D) such that |ϕD(v)| ≤ 1/12. Let Z = ϕ0(v) and U = U0.
We follow the proof of Proposition 3.4 in [9], using our Lemma 1.2 (used with
inner radius c1/8) to replace Lemma 2.2 in [9]. This culminates to show that a.s.

Re
(

ZU(U + Z)

(U − Z)3

)
E[2tm − �2

m | γ (0)]
(6.4)

+ Im
(

2ZU

(U − Z)2

)
E[�m | γ (0)] = O(ε3).

Let η = 1/20. Let f (z) = Re( zU(U+z)

(U−z)3 ) and g(z) = Im( 2zU
(U−z)2 ). We have

f (ηU) > 1/100, g(ηU) = 0, and g(iηU) > 1/100. There exists ε′ > 0 such that
for every z,w ∈ 1

12U, if |z−w| ≤ ε′, then |f (z)−f (w)| ≤ ε3 and |g(z)−g(w)| ≤
ε3.

Let D1,ε′/2 be the finite family of domains given by Proposition 2.1. By weak
convergence, there exists δ0 > 0 such that for all 0 < δ < δ0 and any D̃ ∈ D1,ε′/2,
there exist v1, v2 ∈ Vδ(D̃) such that |ϕ

D̃
(v1) − ηU | < ε′/2 and |ϕ

D̃
(v2) − iηU | <

ε′/2.
Let D ∈ D, and let D̃ ∈ D1,ε′/2 be the (1, ε′/2)-approximation of D. Then, D̃ ⊆

D and |ϕD(v1)−ϕ
D̃

(v1)| ≤ ε′/2, which implies that f (ϕD(v1)) = f (ηU)+O(ε3)

and g(ϕD(v1)) = O(ε3). Similarly, g(ϕD(v2)) = g(iηU)+O(ε3). Applying (6.4)
to the vertices v1 and v2, we have a.s.∣∣E[2tm − �2

m | γ (0)]∣∣ = O(ε3) and |E[�m | γ (0)]| = O(ε3). �

The following theorem shows that θ(·) converges to one-dimensional Brownian
motion.
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THEOREM 6.5. For all D ∈ D, and all α,T > 0, there exists δ0 > 0 such that
for all 0 < δ < δ0 the following holds:

Let u ∈ [0,2π ] be a uniformly distributed point, and let B1(·) be one-
dimensional Brownian motion started at u. Then, there is a coupling of γ (·) and
B1(·) such that

P
[

sup
0≤t≤T

|θ(t) − B1(2t)| > α
]
< α.

PROOF. The proof follows the proof of Theorem 3.7 in [9], using our Propo-
sition 6.4 to replace Proposition 3.4 in [9]. �

6.3. Weak convergence. In this section we show that the scaling limit of the
loop-erasure of the reversal of the natural random walk on G is SLE2. It would
seem natural to follow the proofs in Section 3.4 of [9]. However, as stated in the
Introduction there is a difficulty with this approach. The proof of tightness in [9]
uses a “natural” family of compact sets. In our setting, it is not necessarily true that
γ belongs to one of these compact sets with high probability (and so the argument
of [9] fails). To overcome this difficulty, we define a “weaker” notion of tightness,
which we are able to use to conclude the proof.

6.3.1. A sufficient condition for tightness. For a metric space X , and a set
A ⊆ X , define Aε = ⋃

a∈A ρ(a, ε), where ρ(a, ε) is the ball of radius ε centered
at a. The following are Theorems 11.3.1, 11.3.3 and 11.5.4 in [3].

THEOREM 6.6. Let X be a metric space. For any two laws μ,ν on X , let

d(μ, ν) = inf{ε > 0 :μ(A) ≤ ν(Aε) + ε for all Borel sets A ⊂ X }.
Then, d(·, ·) is a metric on the space of laws on X [d(·, ·) is called the Prohorov
metric].

THEOREM 6.7. Let X be a separable metric space. Let {μn} and μ be laws
on X . Then, {μn} converges weakly to μ if and only if d(μn,μ) → 0, where d(·, ·)
is the Prohorov metric.

Let {μδ} be a family of laws on a metric space X . We say that {μδ} is tight if for
every ε > 0, there exists a compact set Kε ⊂ X such that for all δ, μδ(Kε) ≥ 1− ε.

THEOREM 6.8. Let X be a complete separable metric space. Let {μδ} be a
family of laws on X . Then, {μδ} is tight if and only if every sequence {μδn}n∈N has
a weakly-converging subsequence.

We use these theorems to prove an equivalent condition for tightness of mea-
sures on a separable metric space.



1276 A. YADIN AND A. YEHUDAYOFF

LEMMA 6.9. Let X be a complete separable metric space. Let {μm}m∈N be
a sequence of laws on X with the following property: for any ε > 0, there exists a
compact set Kε ⊂ X such that for any α > 0, there exists M > 0 such that for all
m ≥ M ,

μm(Kα
ε ) ≥ 1 − ε.

Then, the sequence {μm} is tight.

PROOF. Let {Kn} be a sequence of compact sets such that for all α > 0, there
exists M > 0 such that for all m ≥ M , μm(Kα

n ) ≥ 1 − n−1.
Define

M(α,n) = min{j ∈ N :∀m ≥ jμm(Kα
n ) ≥ 1 − n−1}.

For k ∈ N, define M0(1/k,n) = max{M(1/k,n), k}, and for 1
k

≤ α < 1
k−1 , de-

fine M0(α,n) = M0(1/k,n). For fixed n, the function M0(·, n) has the following
properties: (i) The function M0(α,n) is right-continuous in α. (ii) The function
M0(α,n) is a monotone nonincreasing function of α. (iii) limα→0 M0(α,n) = ∞.
(iv) For every 0 < α < 1, M0(α,n) ≥ M(α,n).

For every m, define αn(m) = inf{0 < β < 1 :M0(β,n) ≤ m}. For every η > 0,
αn(M0(η, n)) ≤ η, which implies that

lim
m→∞αn(m) = 0.

In addition, M0(αn(m),n) ≤ m, which implies that for all m > 0,

μm

(
Kαn(m)

n

) ≥ 1 − n−1.(6.5)

For m and n ≥ 2, define

μm,n(A) = μm(A ∩ K
αn(m)
n )

μm(K
αn(m)
n )

for all Borel A ⊂ X . We show that for any fixed n ≥ 2, the sequence {μm,n}m∈N

is tight. Let Xm,n be a random variable with law μm,n. Since Xm,n ∈ K
αn(m)
n a.s.,

we can define a random variable X̂m,n ∈ Kn such that a.s. the distance between
Xm,n and X̂m,n is at most 2αn(m). Let μ̂m,n be the law of X̂m,n. The Prohorov
distance between μm,n and μ̂m,n is at most 2αn(m). Thus, if a sequence {μ̂mk,n}k∈N
converges to some limit in the Prohorov metric, then the sequence {μmk,n}k∈N has
a converging subsequence as well. Since {μ̂m,n} is compactly supported, it is a
tight family of measures. By Theorem 6.8, {μm,n} is also tight.

Thus, for any n ≥ 2 and any ε > 0, there exists a compact set Kn,ε ⊂ X such
that for all m > 0, μm,n(Kn,ε) ≥ 1−ε. Let ε > 0, and let n = �2/ε�. For all m > 0,
by (6.5), μm(K

αn(m)
n ) ≥ 1 − ε/2. Thus,

μm(Kn,ε/2) ≥ μm

(
Kn,ε/2 ∩ Kαn(m)

n

) = μm,n(Kn,ε/2) · μm

(
Kαn(m)

n

)
≥ (1 − ε/2)2 > 1 − ε,

which implies that the sequence {μm} is tight. �
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6.3.2. Quasi-loops. Here we give some probability estimates needed for prov-
ing tightness.

CLAIM 6.10. Let z ∈ U. For all β > 0, there exist c > 0 and δ0 > 0 such that
for all 0 < δ < δ0 and for all x ∈ Vδ(U) such that |x − z| ≥ 2β ,

P
[
Sx

[
0, τ

(x)
3U

] ∩ ρ(z,β) = ∅
] ≥ c.

PROOF. It suffices to prove that there exists a set of vertices U ⊆ Vδ(U) such
that every path starting at x and reaching ∂ρ(x,β) intersects U , and such that

P
[
Su

[
0, τ

(u)
3U

] ∩ ρ(z,β) = ∅
] ≥ c

for every u ∈ U .
Denote A = { β

100(n + m · i) ∈ U :n,m ∈ Z}. The set A is finite, and there exists
x̃ ∈ A such that x ∈ ρ(x̃, β/40).

Assume toward a contradiction that such a set U does not exist. By the planarity
of G, there exists a path Y ⊆ Vδ(U) in G starting inside ρ(x̃, β/40) and reaching
∂ρ(x̃, β/2) such that

P
[
Sy

[
0, τ

(y)
3U

] ∩ ρ(z,β) = ∅
]
< c

for every y ∈ Y . On one hand, by weak convergence and Proposition 3.1, and by
Proposition 3.5 (and the conformal invariance of Brownian motion),

P
[
S0

[
0, τ

(0)
3U

] ∩ Y �= ∅, S0
[
0, τ

(0)
3U

] ∩ ρ(z,β) = ∅
]

≥ P
[
S0

[
0, τ

(0)
3U

]
�(β/2) x̃, S0

[
0, τ

(0)
3U

] ∩ ρ(z,β) = ∅
]
> c.

On the other hand,

P
[
S0

[
0, τ

(0)
3U

] ∩ Y �= ∅, S0
[
0, τ

(0)
3U

] ∩ ρ(z,β) = ∅
]

≤ max
y∈Y

P
[
Sy

[
0, τ

(y)
3U

] ∩ ρ(z,β) = ∅
]
< c,

which is a contradiction. �

CLAIM 6.11. There exist universal constants c1, c2 > 0 such that for every
ε > 0 there exists 0 < C ≤ c1ε

−c2 such that for every β > 0, there exists δ0 > 0
such that for all 0 < δ < δ0 the following holds:

Let y ∈ Vδ(U) and let g : [0,∞] → C be a curve such that g(0) ∈ ρ(y,β/C)

and g(∞) /∈ ρ(y,β). Let τβ be the exit time of Sy(·) from ρ(y,β). Then,

P
[
Sy[0, τβ] ∩ g = ∅

]
< ε.
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PROOF. Let c > 0 be the universal constant from Corollary 4.3 with the
domain 2U. Let N > 1 be large enough so that (1 − c)N < ε, and let C =
8 · 500N . Denote A = { β

100C
(n + m · i) ∈ 2U :n,m ∈ Z}. There exists ỹ ∈ A

such that y ∈ ρ(ỹ,
β

40C
). For j = 0,1, . . . ,N , let rj = 2 · 500jβ/C, let Tj be

the first time Sy(·) exits ρ(ỹ,400rj ) and let Ej be the complement of the event
{Sy[Tj , Tj+1] �(400rj+1) ỹ}.

By Corollary 4.3, there exists δ0 > 0 (independent of y, since |A| < ∞) such
that for all 0 < δ < δ0, we have P[E0] ≤ 1 − c and P[Ej |E0, . . . , Ej−1] ≤ 1 − c for
all j = 1, . . . ,N −1. Since g is a continuous curve from ρ(y,β/C) ⊂ ρ(ỹ,2β/C)

to the exterior of ρ(y,β) ⊃ ρ(ỹ, β/2), and since rN < β/2, for all 0 < δ < δ0,

P
[
Sy[0, τβ] ∩ g = ∅

] ≤ P[E0, E1, . . . , EN−1] ≤ (1 − c)N < ε. �

Let γ = γδ be the loop-erasure of the reversal of the natural random walk on
Vδ(U), started at 0 and stopped on exiting U (γ is a simple curve from ∂U to 0).
For α,β > 0, we say that γ has a quasi-loop, denoted γ ∈ Q L(α,β), if there exist
0 ≤ s < t < ∞ such that |γ (s) − γ (t)| ≤ α and diam(γ [s, t]) ≥ β .

PROPOSITION 6.12. For all ε > 0 and all β > 0, there exists α > 0 such that
for all δ > 0,

P[γ ∈ Q L(α,β)] < ε.

PROOF. Fix ε,β > 0. For z ∈ U and α > 0, let Q L(z,α,β) be the set of all
curves g such that there exist 0 ≤ s < t < ∞ such that g(s), g(t) ∈ ρ(z,β), |g(s)−
g(t)| ≤ α and g[s, t] �⊆ ρ(z,2β). Let A = { β

100(n + m · i) ∈ U :n,m ∈ Z}.

CLAIM 6.13. For any z ∈ A and for any η > 0, there exist α1 > 0 and δ1 > 0
such that for all 0 < δ < δ1 the following holds:

Let g be the loop-erasure of S0[0, τ
(0)
U ] (g is not the loop-erasure of the rever-

sal). Then,

P[g ∈ Q L(z,α1, β)] ≤ η.

PROOF. Fix z ∈ A and η > 0. Let s1 ≥ 0 be the first time S0(·) hits ρ(z,β),
and let t1 ≥ s1 be the first time after s1 that S0(·) is not in ρ(z,2β). For j ≥ 2,
let sj ≥ tj−1 be the first time after tj−1 that S0(·) hits ρ(z,β), and let tj ≥ sj be
the first time after sj that S0(·) is not in ρ(z,2β). Define gj as the loop-erasure of

S0[0, tj ], and let Yj be the event that gj ∈ Q L(z,α1, β). Let τ = τ
(0)
3U , and let Tj

be the event that tj ≤ τ .
Let x be the first point on gj that is in S0[tj , tj+1]. Then, gj+1 is gj up to the

point x, and then continues as the loop-erasure of S0[σx, tj+1], where σx is the first
time S0[tj , tj+1] hits x.
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Denote I Oj = {tj ≤ τ < tj+1}. The event {sj < τ } implies the event {tj < τ }.
Thus, I Oj ∩ {g ∈ Q L(z,α1, β)} ⊆ Yj , which implies that for every m ≥ 1,

{g ∈ Q L(z,α1, β)} ⊆ Tm+1 ∪
m⋃

j=1

({g ∈ Q L(z,α1, β)} ∩ I Oj

)

(6.6)

⊆ Tm+1 ∪
m⋃

j=1

Yj .

By Claim 6.10, there exist c > 0 and δ2 > 0 such that for all 0 < δ < δ2 and for
all x ∈ Vδ(U) such that |x − z| ≥ 2β , we have P[Sx[0, τ

(x)
3U ] ∩ ρ(z,β) = ∅] ≥ c,

which implies that

P[Tm+1] ≤ (1 − c)m < ε/2(6.7)

for large enough m.
Fix 1 ≤ j ≤ m. Let hj+1 be the loop-erasure of S0[0, sj+1]. Let Qj be the set

of connected components of hj+1 ∩ ρ(z,2β) that intersect ρ(z,β) and are not
connected to S0(sj+1). By the definition of sj+1, the size of Qj is at most j .

Assume that the event Yj does not occur. If for every K ∈ Qj , the distance
between S0[sj+1, tj+1] and K ∩ ρ(z,β) is more than α1, then the event Yj+1 does
not occur. Otherwise, let K be the first component in Qj (according to the order
defined by time) such that the distance between S0[sj+1, tj+1] and K ∩ ρ(z,β)

is at most α1. If S0[sj+1, tj+1] intersects K , then the event Yj+1 does not occur.
Thus, the event Yj+1 \ Yj implies that there exists K ∈ Qj such that the distance
between S0[sj+1, tj+1] and K ∩ ρ(z,β) is at most α1, and S0[sj+1, tj+1] does not
intersect K . By Claim 6.11, if α1 is small enough, there exists δ3 > 0 such that for
all 0 < δ < δ3, since a.s. |Qj | ≤ m,

P[Yj+1 \ Yj ] <
ε

2m
.

Using (6.6) and (6.7), there exist α1 > 0 and δ1 > 0 such that for all 0 < δ < δ1,

P[g ∈ Q L(z,α1, β)] < ε. �

For every z ∈ U, there exists z̃ ∈ A such that z ∈ ρ(z̃, β/40). Thus, for α <

β/100,

Q L(α,8β) ⊂ ⋃
z∈A

Q L(z,α,β).(6.8)

Since the size of A does not depend on α, by Claim 6.13, there exist α1 > 0 and
δ1 > 0 such that for all 0 < δ < δ1, and for every z ∈ A,

P[g ∈ Q L(z,α1, β)] <
ε

|A| ,
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which implies

P[g ∈ Q L(α1,8β)] < ε,

where g is the loop-erasure of S0[0, τ
(0)
U ].

Let α2 > 0 be small enough so that for all z ∈ A and all δ ≥ δ1, we have that
ρ(z,α2) contains at most one vertex from Gδ . Set α = min{α1, α2}. This implies
that for any δ ≥ δ1, P[g ∈ Q L(α,8β)] = 0. Therefore, for any δ > 0,

P[g ∈ Q L(α,8β)] < ε.

By Lemma 1.1 in [15], g and γ have the same law, which completes the proof. �

PROPOSITION 6.14. For every ε > 0, there exists a monotone nondecreasing
function f : (0,∞) → (0,1] such that for all δ > 0,

P
[∃0 ≤ s < t < ∞ : dist(γ [0, s], γ [t,∞]) < f (diam(γ [s, t]))] < ε.

PROOF. By Proposition 6.12, for all n ≥ 1, there exists αn > 0 such that for
all δ > 0,

∞∑
n=1

P[γ ∈ Q L(αn,21−n)] < ε.(6.9)

Let f : (0,∞) → (0,1] be a monotone nondecreasing function such that

f (22−n) < αn for all n ≥ 1.(6.10)

Let δ > 0. Assume that there exist 0 ≤ s < t < ∞ such that

dist(γ [0, s], γ [t,∞]) < f (diam(γ [s, t])).
Then, there exist 0 ≤ s ′ < t ′ < ∞ such that |γ (s′) − γ (t ′)| < f (diam(γ [s′, t ′])).
Since γ ⊂ U, there exists n ≥ 1 such that 21−n < diam(γ [s′, t ′]) ≤ 22−n.
By (6.10), there exists n ≥ 1 such that |γ (s′) − γ (t ′)| < f (22−n) < αn and
diam(γ [s′, t ′]) > 21−n, which implies that γ ∈ Q L(αn,21−n). The proposition
follows by (6.9). �

PROPOSITION 6.15. For every ε > 0, there exists a monotone nondecreasing
function f : (0,∞) → (0,1] such that for every η > 0, there exists δ0 > 0 such that
for every 0 < δ < δ0,

P
[∃t ≥ 0 :η < 1 − |γ (t)| < f (diam(γ [0, t]))] < ε.

PROOF. By Claim 6.11 and the strong Markov property, there exist universal
constants c1, c2 > 0 such that for every m ≥ 1, there exists 0 < Cm ≤ c1ε

−c22c2m

and δm > 0 such that for every 0 < δ < δm,

P
[
diam

(
S0

[
T (21−m2

), τ
(0)
U

])
> Cm21−m2]

< ε2−m,(6.11)
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where

T (ξ) = inf{t ≥ 0 : 1 − |S0(t)| ≤ ξ}.
Since Cm ·2−m2

tends to 0 as m tends to infinity, we can define a monotone nonde-
creasing function f : (0,∞) → (0,1] such that f (Cm21−m2

) < 21−(m+1)2
for all

m ≥ 1.
Denote by Y the event that there exists t ≥ 0 such that η < 1 − |γ (t)| <

f (diam(γ [0, t])). Let M be large enough so that 21−M2
< η. The event Y implies

that there exists 1 ≤ m < M such that

21−(m+1)2
< 1 − |γ (t)| ≤ 21−m2

,

which implies

21−(m+1)2
< 1 − |γ (t)| < f (diam(γ [0, t])) ≤ f

(
diam

(
S0

[
T (21−m2

), τ
(0)
U

]))
.

By the definition of f , this implies that diam(S0[T (21−m2
), τ

(0)
U ]) > Cm21−m2

.
Using (6.11), for all 0 < δ < δ0 = min{δ1, . . . , δM},

P[Y] ≤
M∑

m=1

P
[
diam

(
S0

[
T (21−m2

), τ
(0)
U

])
> Cm21−m2]

< ε.
�

6.3.3. Tightness. In this section we show that the laws of {γδ} are tight. Re-
call C , the space of all continuous curves with the metric 
. Let

X0 = {g ∈ C :g(0) ∈ ∂U, g(∞) = 0, g(0,∞] ⊂ U, g is a simple curve}.
For a monotone nondecreasing function f : (0,∞) → (0,1], define Xf to be the
set of g ∈ X0 such that for all 0 ≤ s < t < ∞,

dist(g[0, s] ∪ ∂U, g[t,∞]) ≥ f (diam(g[s, t])).
The following is Lemma 3.10 from [9].

LEMMA 6.16. Let f : (0,∞) → (0,1] be a monotone nondecreasing func-
tion. Then, Xf is compact in the topology of convergence with respect to the met-
ric 
.

For α > 0, define

X α
f = {g ∈ X0 :∃g′ ∈ Xf such that 
(g, g′) < α}.

LEMMA 6.17. For every ε > 0, there exists a monotone nondecreasing func-
tion f : (0,∞) → (0,1] such that for any α > 0, there exists δ0 > 0 such that for
all 0 < δ < δ0,

P[γ /∈ X α
f ] < ε.
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PROOF. Let g ∈ X0 and let η,β > 0. Choose a parameterization for g and let
tη(g) = sup{t ≥ 0 : 1 − |g(t)| ≤ η}. Define gη to be the curve g[tη,∞] (the curve
gη does not depend on the choice of parameterization). We say that a curve h ∈ X0
is (η,β)-adapted to g, if hη = gη, and diam(h[0, tη(h)]) < β . Let A(g, η,β) be
the set of all curves that are (η,β)-adapted to g. Note that g is not necessarily in
A(g, η,β), and that for any two curves h, h̃ ∈ A(g, η,β),


(h, h̃) ≤ 2β.(6.12)

Define the curve γ̃ as follows. Let x ∈ ∂(1 − η)U be the starting point of γ η,
and let y = x

1−η
∈ ∂U. Let γ̃ be the curve [y, x] ∪ γ η.

By Proposition 6.15, there exists a monotone nondecreasing function f1 : (0,

∞) → (0,1] such that for every η > 0, there exists δ1 > 0 such that for every
0 < δ < δ1,

P
[∃t ≥ 0 :η < 1 − |γ (t)| < f1(diam(γ [0, t]))] < ε/4.(6.13)

By Proposition 6.14, there exists a monotone nondecreasing function f2 : (0,

∞) → (0,1] such that for all δ > 0,

P
[∃0 ≤ s < t < ∞ : dist(γ [0, s], γ [t,∞]) < f2(diam(γ [s, t]))] < ε/4.(6.14)

Define a monotone nondecreasing function f : (0,∞) → (0,1] by

f (ξ) = min{ξ/2, f1(ξ/2), f2(ξ/2)}.
Assume that there exists t ≥ 0 such that 1 − |γ̃ (t)| < f (diam(γ̃ [0, t])). Since
f (ξ) ≤ ξ , there exists t ≥ 0 such that η < 1 − |γ (t)| < f (diam(γ̃ [0, t])), and also
diam(γ̃ [0, t]) ≤ diam(γ [0, t]) + η, which implies

η < f (diam(γ̃ [0, t])) ≤ max{f (2 diam(γ [0, t])), f (2η)}
≤ max{f1(diam(γ [0, t])), η}.

Thus, there exists t ≥ 0 such that η < 1 − |γ (t)| < f1(diam(γ [0, t])).
Assume that there exist 0 ≤ s < t < ∞ such that |γ̃ (t) − γ̃ (s)| < f (diam(γ̃ [s,

t])). Let tη = tη(γ ). Parameterize γ and γ̃ so that γ (t) = γ̃ (t) for every t ≥ tη.
Since f (ξ) ≤ ξ , we have that t > tη. Assume that s < tη. Since diam(γ̃ [s, t]) ≤
diam(γ [tη, t]) + |γ̃ (tη) − γ̃ (s)|,

|γ̃ (tη) − γ̃ (s)| ≤ |γ̃ (t) − γ̃ (s)| < f (diam(γ̃ [s, t]))
≤ max{f2(diam(γ [tη, t])), |γ̃ (tη) − γ̃ (s)|},

which implies

|γ (t) − γ (tη)| ≤ |γ̃ (t) − γ̃ (s)| < f2(diam(γ [tη, t])).
If s ≥ tη, then |γ (t) − γ (s)| < f2(diam(γ [s, t])).

Therefore, if γ̃ /∈ Xf , then either there exists t ≥ 0 such that η < 1 − |γ (t)| <

f1(diam(γ [0, t])), or there exist 0 ≤ s < t < ∞ such that |γ (t) − γ (s)| <
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f2(diam(γ [s, t])). By (6.13) and (6.14), for every η > 0, there exists δ1 > 0 such
that for every 0 < δ < δ1,

P[γ̃ /∈ Xf ] < ε/2.(6.15)

By Claim 6.11 and the strong Markov property, for every α > 0, there exist
η > 0 and δ2 > 0 such that for all 0 < δ < δ2,

P
[
diam

(
S0

[
T (η), τ

(0)
U

]) ≥ α/2
]
<

ε

4
,

where T (η) = inf{t ≥ 0 : 1 − |S0(t)| ≤ η}. If 1 − |γ (t)| ≤ η, then γ [0, t] ⊂
S0[T (η), τ

(0)
U ]. Thus, for every α > 0, there exist 0 < η < α/2 and δ2 > 0 such

that for every 0 < δ < δ2,

P[
(γ, γ̃ ) ≥ α] ≤ P[γ /∈ A(γ, η,α/2)] <
ε

4
.(6.16)

Using (6.15), for any α > 0, there exist η > 0 and δ0 > 0 such that for all
0 < δ < δ0,

P[γ /∈ X α
f ] ≤ P[
(γ, γ̃ ) ≥ α] + P[γ̃ /∈ Xf ] < ε. �

Using Lemmas 6.16, 6.17 and 6.9, we have the following corollary.

COROLLARY 6.18. Let {δn} be a sequence converging to zero, and let μn be
the law of the curve γδn . Then, the sequence {μn} is tight.

6.3.4. Convergence. Here we finally show that the scaling limit of the loop-
erasure of the reversal of the natural random walk on G is SLE2. We first show
that any subsequential limit of {γδ} is a.s. a simple curve.

LEMMA 6.19. Let {δn} be a sequence converging to zero, and let μn be the
law of the curve γδn . If μn converges weakly to μ, then μ is supported on X0.

PROOF. Let d(·, ·) be the Prohorov metric. By Theorem 6.7, d(μn,μ) → 0.
As in the proof of Lemma 6.17, by (6.15) and (6.16), for every ε > 0, there

exists a monotone nondecreasing function f : (0,∞) → (0,1] such that for every
α > 0, there exists δ0 > 0 such that for all 0 < δ < δ0, we can define a curve γ α

δ

such that

P[γ α
δ /∈ Xf ] < ε and P[
(γδ, γ

α
δ ) ≥ α] < α.(6.17)

Let μα
n be the law of γ α

δn
. By (6.17), for all k ∈ N, there exists fk such that for

every m ∈ N, there exists Nm,k > m + k such that for all n ≥ Nm,k , we have
d(μn,μ

1/m
n ) < 1/m and μ

1/m
n (Xfk

) > 1 − 1/k.



1284 A. YADIN AND A. YEHUDAYOFF

Since d(μ
1/m
Nm,k

,μ) ≤ d(μ
1/m
Nm,k

,μNm,k
)+ d(μNm,k

,μ), by Theorem 6.7, for every

fixed k ∈ N, the sequence {μ1/m
Nm,k

}m∈N converges weakly to μ. Using Lemma 6.16,
the Portmanteau theorem (see Chapter III in [14]) tells us that for every k ∈ N,

μ(Xfk
) ≥ lim sup

m→∞
μ

1/m
Nm,k

(Xfk
) > 1 − 1/k.

Thus, since Xfk
⊆ X0 for all k ∈ N,

μ(X0) ≥ μ

(⋃
k

Xfk

)
= 1.

�

PROOF OF THEOREM 1.1. The proof follows by plugging Theorem 6.5,
Corollary 6.18, and Lemma 6.19 into the proof of Theorem 3.9 in [9]. �
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