
The Annals of Probability
2011, Vol. 39, No. 3, 1137–1160
DOI: 10.1214/10-AOP576
© Institute of Mathematical Statistics, 2011

NONPARAMETRIC SEQUENTIAL PREDICTION FOR
STATIONARY PROCESSES

BY GUSZTÁV MORVAI1 AND BENJAMIN WEISS

MTA-BME Stochastics Research Group and Hebrew University of Jerusalem

We study the problem of finding an universal estimation scheme
hn : Rn → R, n = 1,2, . . . which will satisfy

lim
t→∞

1

t

t∑
i=1

|hi(X0,X1, . . . ,Xi−1)

− E(Xi |X0,X1, . . . ,Xi−1)|p = 0 a.s.

for all real valued stationary and ergodic processes that are in Lp . We will
construct a single such scheme for all 1 < p ≤ ∞, and show that for p = 1
mere integrability does not suffice but L log+ L does.

1. Introduction. The problem of sequentially predicting the next value Xn

of a stationary process after observing the initial values Xi for 0 ≤ i < n is one
of the central problems in probability and statistics. Usually, one bases the pre-
diction on the conditional expectation E(Xn|Xn−1

0 ) where we write for brevity
Xn−1

0 = {X0,X1, . . . ,Xn−1}. However, when one does not know the distribution
of the process one is faced with the problem of estimating the conditional ex-
pectation from a single sample of length n. It was shown long ago by Bailey [5]
(cf. also Ryabko [30] and Györfi Morvai and Yakowitz [10]) that even for binary
processes no universal scheme hn(X

n−1
0 ) exists which will almost surely satisfy

limn→∞(hn(X
n−1
0 ) − E(Xn|Xn−1

0 )) = 0. This is in contrast to the backward esti-
mation problem where one is trying to estimate E(X0|X−1−∞) based on the succes-
sive observations of X−1−∞. Here, it was Ornstein [29] who constructed the first such
universal estimator for finite valued processes. This was generalized to bounded
processes by Algoet [1], Morvai [16] and Morvai Yakowitz and Györfi [18]. For
unbounded processes, several universal estimators were constructed (see Algoet
[3] and Györfi et al. [9]).

Returning to our original problem of sequential prediction it was already ob-
served by Bailey that backward schemes could be used for the sequential predic-
tion problem successfully in the sense that that the error tends to zero in the Cesáro
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mean. To establish this, he applied a generalized ergodic theorem which requires
some technical hypotheses which were satisfied in his case.

Over the years some authors have extended this work, namely of adapting back-
ward schemes to sequential prediction, but only for bounded processes (see Algoet
[1, 3], Morvai [16], Morvai Yakowitz and Györfi [18] and Györfi et al. [9]).

Another approach to the sequential prediction used a weighted average of ex-
pert schemes, and with these results were extended to the general unbounded case
by Nobel [28] and Ottucsak [12] (see also the survey of Feder and Merhav [8]).
However, none of these results were optimal in the sense that moment conditions
higher than necessary were assumed. It is our purpose to obtain these optimal con-
ditions and to show why they are necessary. We consider the following problem
for 1 ≤ p ≤ ∞. Does there exist a scheme hn(X

n−1
0 ) which will satisfy

lim
t→∞

1

t

t∑
i=1

|hi(X
i−1
0 ) − E(Xi |Xi−1

0 )|p = 0 a.s.

for all real valued stationary and ergodic processes that are in Lp . The only case
that has been solved completely is when p is infinity. Even the recent schemes
Nobel [28] and Györfi and Ottucsak [12] put a higher moment condition on the
process than is manifestly required. Our main result is that the basic scheme first
introduced by the first author in his thesis can be adapted to give a scheme which
will answer our problem positively for all 1 < p. For p = 1, we shall show that
stronger hypothesis is necessary, as is usually the case, and we will establish the
convergence under the hypothesis that X0 ∈ L log+ L.

In the third section, we will show how this hypothesis cannot be weakened to
X0 ∈ L1. Our construction will be based on one of the simplest ergodic transfor-
mation, the adding machine, and illustrates the richness of behavior that is possible
for processes that are almost periodic (in the sense of Besicovich).

As soon as one knows that the errors converge to zero in Cesáro mean, it fol-
lows that there is a set of density one of time moments along which the errors
converge to zero. However, in general one does not know what this sequence is.
In the framework of estimation, schemes adapted to a sequence of stopping times
(see [19–21, 23–26]) one may ask can one find a sequence of stopping times with
density one along which the errors of a universal sequential prediction scheme will
tend to zero. We have been unable to do this in general and regard it as an important
open problem. Finally, we refer the interested reader to some other papers which
are relevant to this line of research [2, 11, 17, 27, 34].

Some technical probabilistic results have been relegated to the Appendix, they
are of a classical nature and may be known, but we were unable to find references.

2. The main result. Let X = {Xn} denote a real-valued doubly infinite sta-
tionary ergodic time series. Let

X
j
i = (Xi,Xi+1, . . . ,Xj )
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be notation for a data segment, where i may be minus infinity. Let

X− = X−1−∞.

Let Gk denote the quantizer

Gk(x) =
⎧⎨
⎩

0, if −2−k < x < 2−k ,
−i2−k, if −(i + 1)2−k < x ≤ −i2−k for some i = 1,2, . . . ,

i2−k, if i2−k ≤ x < (i + 1)2−k .

Define the sequences λk−1 and τk recursively (k = 1,2, . . .). Put λ0 = 1 and let τk

be the time between the occurrence of the pattern

B(k) = (Gk(X−λk−1), . . . ,Gk(X−1)) = Gk(X
−1
−λk−1

)

at time −1 and the last occurrence of the same pattern prior to time −1. More
precisely, let

τk = min{t > 0 :Gk(X
−1−t
−λk−1−t ) = Gk(X

−1
−λk−1

)}.
Put

λk = τk + λk−1.

Define

Rk = 1

k

∑
1≤j≤k

X−τj
.(2.1)

To obtain a fixed sample size t > 0 version, let κt be the maximum of integers k

for which λk ≤ t . For t > 0, put

R̂−t = 1

κt

∑
1≤j≤κt

X−τj
.(2.2)

Motivated by Bailey [5], for t > 0 consider the estimator

R̂t (ω) = R̂−t (T
tω),

which is defined in terms of (X0, . . . ,Xt−1) in the same way as R̂−t (ω) was de-
fined in terms of (X−t , . . . ,X−1). (T denotes the left shift operator.) The esti-
mator R̂t may be viewed as an online predictor of Xt . This predictor has special
significance not only because of potential applications, but additionally because
Bailey [5] proved that it is impossible to construct estimators R̂t such that always
R̂t − E(Xt |Xt−1

0 ) → 0 almost surely.

THEOREM 1. Let {Xn} be stationary and ergodic. Assume that

E(|X0| log+(|X0|)) < ∞.
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Then

lim
t→∞

1

t

t∑
i=1

|R̂i − E(Xi |Xi−1
0 )| = 0 a.s.(2.3)

and

lim
t→∞

1

t

t∑
i=1

|R̂i − Xi | = E
(|E(X0|X−1−∞) − X0|) a.s.(2.4)

Furthermore, if for some 1 < p < ∞, E(|X0|p) < ∞, then

lim
t→∞

1

t

t∑
i=1

|R̂i − E(Xi |Xi−1
0 )|p = 0 a.s.(2.5)

and

lim
t→∞

1

t

t∑
i=1

|R̂i − Xi |p = E
(|E(X0|X−1−∞) − X0|p)

a.s.(2.6)

PROOF. The proof will follow the same pattern in all four cases. We will ver-
ify that the backward estimator scheme converges almost surely and we will see
that the sequence of errors is dominated by an integrable function. This allows
us to conclude from the generalized ergodic theorem of Maker (rediscovered by
Breiman, cf. Theorem 1 in Maker [15] or Theorem 12 in Algoet [2]) that the for-
ward scheme converges in Cesaro mean. For the first case, we will carry this out
in full detail, for the others we will just check the requisite properties for the back-
ward scheme. First, consider

Rk = 1

k

∑
1≤j≤k

[X−τj
− Gj(X−τj

)]

+ 1

k

∑
1≤j≤k

[Gj(X−τj
) − E(Gj(X−τj

)|Gj−1(X
−1
−λj−1

))]

+ 1

k

∑
1≤j≤k

[E(Gj(X−τj
)|Gj−1(X

−1
−λj−1

)) − E(X−τj
|Gj−1(X

−1
−λj−1

))]

+ 1

k

∑
1≤j≤k

[E(X−τj
|Gj−1(X

−1
−λj−1

)) − E(X0|Gj−1(X
−1
−λj−1

))]

+ 1

k

∑
1≤j≤k

E(X0|Gj−1(X
−1
−λj−1

))

= Ak + Bk + Ck + Dk + Ek.
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Obviously,

|Ak| + |Ck| ≤ 2

k

∑
1≤j≤k

2−j ≤ 2

k
→ 0.

Now we will deal with Dk . By Lemma 1, in Morvai, Yakowitz and Györfi [18],

P
(
X−τj

∈ C|Gj−1(X
−1
−λj−1

)
) = P

(
X0 ∈ C|Gj−1(X

−1
−λj−1

)
)
.

Using this, we get that Dk = 0.
Assume that E(|X0| log+(|X0|)) < ∞. Toward mastering Bk , one observes that

{X−τj
} are identically distributed by Lemma 1 in Morvai, Yakowitz and Györfi

[18] and Bk is an average of martingale differences. By Proposition 1 in the Ap-
pendix, |Bk| → 0 almost surely and E(sup1≤k |Bk|) < ∞.

Now we deal with the last term Ek . By assumption,

σ(Gj (X
−1
−λj

)) ↑ σ(X−).

Consequently by the a.s. martingale convergence theorem, we have that

E(X0|Gj(X
−1
−λj

)) → E(X0|X−) a.s.,

and thus

Ek → E(X0|X−) a.s.

Furthermore, by Doob’s inequality, cf. Theorem 1 on page 464, Section 3, Chap-
ter VII in Shiryayev [32], E(sup1≤k|Ek|) ≤ E(sup1≤j |E(X0|Gj(X

−1
−λj

))|) < ∞.
We have so far proved that

Rk → E(X0|X−) almost surely

and

E
(
sup
1≤k

|Rk|
)

< ∞.

This in turn implies that

lim
t→∞ R̂−t = E(X0|X−) almost surely

and

E
(
sup
1≤t

|R̂−t |
)

< ∞.

Now since E(X0|X−1−t ) → E(X0|X−) almost surely,

lim
t→∞|R̂−t − E(X0|X−1−t )| = 0 almost surely
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and by Doob’s inequality,

E
(
sup
1≤t

|R̂−t − E(X0|X−1−t )|
)

≤ E
(
sup
1≤t

|R̂−t |
)

+ E
(
sup
1≤t

|E(X0|X−1−t )|
)

< ∞.

Now, apply the generalized ergodic theorem to conclude that

lim
t→∞

1

t

t∑
i=1

(|R̂−i − E(X0|X−1
−i )|(T iω)

) = lim
t→∞

1

t

t∑
i=1

|R̂i − E(Xi |Xi−1
0 )|

= 0 a.s.

and the proof of (2.3) is complete. Similarly,

lim
t→∞|R̂−t − X0| = |E(X0|X−1−∞) − X0| almost surely

and

E
(
sup
1≤t

|R̂−t − X0|
)

≤ E
(
sup
1≤t

|R̂−t |
)

+ E(|X0|) < ∞

and the generalized ergodic theorem gives

lim
t→∞

1

t

t∑
i=1

(|R̂−i − X0|(T iω)
) = lim

t→∞
1

t

t∑
i=1

|R̂i − Xi |

= E
(|E(X0|X−1−∞) − X0|) a.s.

and the proof of (2.4) is complete.
Now, we assume that for some 1 < p < ∞, E(|X0|p) < ∞, and we prove (2.5).

Observe that

|Rk|p ≤ 3p

[(
2

k

)p

+ |Bk|p + |Ek|p
]

and since by Proposition 2 in the Appendix |Bk| → 0 almost surely and
E(sup1≤k|Bk|p) < ∞ and by Doob’s inequality, E(sup1≤k|Ek|p) < ∞ and Ek →
E(X0|X−) almost surely (for the same reason as before).

We have so far proved that

Rk → E(X0|X−) almost surely

and

E
(
sup
1≤k

|Rk|p
)

< ∞.
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This in turn implies that

lim
t→∞ R̂−t = E(X0|X−) almost surely

and

E
(
sup
1≤t

|R̂−t |p
)

< ∞.

Now since E(X0|X−1−t ) → E(X0|X−) almost surely,

lim
t→∞|R̂−t − E(X0|X−1−t )|p = 0 almost surely

and by Doob’s inequality,

E
(
sup
1≤t

|R̂−t − E(X0|X−1−t )|p
)

≤ 2pE
(
sup
1≤t

|R̂−t |p
)

+ 2pE
(
sup
1≤t

|E(X0|X−1−t )|p
)

< ∞.

By Maker’s (or Breiman’s) generalized ergodic theorem (cf. Theorem 1 in Maker
[15] or Theorem 12 in Algoet [2]) one gets (2.5). Similarly,

lim
t→∞|R̂−t − X0|p = |E(X0|X−1−∞) − X0|p almost surely

and

E
(
sup
1≤t

|R̂−t − X0|p
)

≤ 2pE
(
sup
1≤t

|R̂−t |p
)

+ 2pE(|X0|p) < ∞.

Now, apply Maker’s (or Breiman’s) generalized ergodic theorem to prove (2.6).
The proof of Theorem 1 is complete. �

REMARK 1. We are indebted to the referee for the following remark. Using
the notion of Bochner integrability of strongly measurable functions with values
in c0 and the extension of Birkhoff’s ergodic theorem to Banach space valued
functions (see Krengel [14], page 167), one can give an easy proof of Maker’s
theorem. The key condition now becomes the fact that the norm of the sequence
{f − fk} in c0 is integrable, and then the convergence in the norm of c0 allows
one to deduce the convergence of the diagonal sequence which is what appears in
Maker’s theorem.

3. Integrability alone is not enough. In Theorem 1 for the Cesáro conver-
gence in the L1 norm, we assumed that X0 was not merely in L1 but in L1 log+ L.
In this section, we shall show that some additional condition is really necessary.
We will first give an example to show that the maximal function of the conditional
expectations sup1≤n|E(X0|X−1−n)| may be nonintegrable for an integrable process.
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We shall do so in an indirect fashion by showing that the the estimate E(Xn|Xn−1
0 )

for E(Xn|Xn−1−∞) does not converge in Cesáro mean to zero. This means that even
though we are may be in the distant future the information of the prehistory can
make a serious difference. This example serves as a model for the main result of
the section where we show that for any estimation scheme for E(Xn|Xn−1

0 ) which
converges almost surely in Cesáro mean for all bounded processes there will be
some ergodic integrable process where it fails to converge. Indeed the processes
that we need to consider are countably valued and in fact are zero entropy and
finitarily Markovian (see below for a definition), a generalization of finite order
Markov chains.

First, let us fix the notation. Let {Xn}∞n=−∞ be a stationary and ergodic time se-
ries taking values from finite or countable alphabet X . (Note that all stationary time
series {Xn}∞n=0 can be thought to be a two sided time series, that is, {Xn}∞n=−∞.)

DEFINITION 1. The stationary time series {Xn} is said to be finitarily Markov-
ian if almost surely the sequence of the conditional distributions L (X1|X0−k) is
constant for large k (it is random how large k should be).

This class includes of course all finite order Markov chains but also many
other processes such as the finitarily determined processes of Kalikow, Katznelson
and Weiss [13], which serve to represent all isomorphism classes of zero entropy
processes.

For some concrete examples that are not Markovian, consider the following
example.

EXAMPLE 1. Let {Mn} be any stationary and ergodic first order Markov chain
with finite or countably infinite state space S. Let s ∈ S be an arbitrary state with
P(M1 = s) > 0. Now let Xn = I{Mn=s}. By Shields [31], Chapter I.2.c.1, the bi-
nary time series {Xn} is stationary and ergodic. It is also finitarily Markovian.
Indeed, the conditional probability P(X1 = 1|X0−∞) does not depend on values
beyond the first (going backward) occurrence of one in X0−∞ which identifies the
first (going backward) occurrence of state s in the Markov chain {Mn}. The result-
ing time series {Xn} is not a Markov chain of any order in general.

We note that Morvai and Weiss [22] proved that there is no classification rule
for discriminating the class of finitarily Markovian processes from other ergodic
processes. For more about estimation for finitarily Markovian processes, see Mor-
vai and Weiss [23, 24, 26].

THEOREM 2. Let X = {0,10−k, 2k

3m , k = 1,2, . . . ,m = 1,2, . . .}. There exists
a stationary and ergodic finitarily Markovian time series {Xn} taking values from
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X such that E|X0| < ∞ and

lim sup
N→∞

1

N

N∑
n=1

|E(Xn|Xn−1
0 ) − E(Xn|Xn−1−∞)| = ∞

almost surely. Therefore,

E
(
sup
1≤n

|E(X0|X−1−n)|
)

= ∞.

PROOF. Let � be the one sided sequence space over {0,1}. Let ω =
(ω1,ω2, . . .) ∈ �. Define the transformation T :� → � as follows:

(T ω)i =
⎧⎨
⎩

0, if ωj = 1 for all j ≤ i,
1, if ωi = 0 and for all j < i :ωj = 1,
ωi, otherwise.

Consider the product measure P = �∞
i=1{1/2,1/2} on � which is preserved by T .

It is well known (cf. Aaronson [4], page 25) that (�,P,T ) is an ergodic process,
called the adding machine or dyadic odometer. The process will be defined by a
function f :� → R as Xn(ω) = f (T nω). Let l3 < · · · < lk−1 < lk → ∞. Define
ak = a and bk = b when k = 2a + b where 1 ≤ b ≤ 2a . Define

Ck = {ω :ωi = 1 for 1 ≤ i < lk,ωlk = 0},
clearly P(Ck) = 2−lk . Let

Dk = {ω :ωi = 1 for 1 ≤ i < lk − ak,ωlk−ak
= 0,ωi = 1 for lk − ak < i < lk}

and

Ek =
2lk−ak−1−1⋃

i=0

T −iDk.

Notice that

Ek = {ω :ωlk−ak
= 0,ωj = 1, for all lk − ak < j < lk}.

It is clear that if the lk’s are chosen large enough so that for all k′ > k lk < lk′ −2ak′ :

• the family Ck,Dl k, l ≥ 3 consists of disjoint sets,
• the intervals [lk − ak, lk − 1] are also disjoint and therefore the sets Ek are inde-

pendent.

The signaling function u is defined by

u(ω) =
∞∑

k=3

10−kIDk
(ω)
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and the main contributor to f will be

v(ω) =
∞∑

k=3

2lk

3ak
ICk

(ω).

Clearly,

E(v(ω)) =
∞∑

k=3

2lk

3ak
P (Ck) =

∞∑
k=3

1

3ak
=

∞∑
a=1

2a∑
b=1

1

3a

=
∞∑

a=1

(
2

3

)a

< ∞.

Define a process by f (ω) = u(ω) + v(ω) and

Xn(ω) = f (T nω).

Notice that Xn ∈ {0,10−k, 2lk

3ak , k = 3,4, . . .}. Observe that P(Ek) = 2−ak and

∞∑
k=3

P(Ek) =
∞∑

a=1

2a∑
b=1

2−a =
∞∑

a=1

1 = ∞.

By the Borel–Cantelli lemma, a point ω belongs to Ek infinitely often. When
ω ∈ Ek ,

T i0ω ∈ Dk for some 0 ≤ i0 ≤ 2lk−ak−1 − 1.

For ω ∈ Ek , we know that Xi0(ω) = 10−k . At time i0 + 2lk−ak−1 − 1,

(T i0+2lk−ak−1−1(ω))j =
⎧⎨
⎩

0, if j = 1,
1, if 1 < j ≤ lk − 1,
ωj , otherwise.

Let’s compute for a fixed i0 such that T i0ω ∈ Dk (i.e., Xi0 = 10−k)

E(Xi0+2lk−ak |Xi0+2lk−ak −1
0 ).

Take N = 2lk−ak and consider

1

N

N∑
n=1

|E(Xn|Xn−1
0 ) − E(Xn|Xn−1−∞)|.

For ω ∈ T −i0Dk (i.e., Xi0 = 10−k ), we know that

(T i0+2lk−ak−1
ω)j =

{
1, if 1 ≤ j ≤ lk − 1,
ωj , otherwise.
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Therefore if Xi0+2lk−ak−1 > 0, then we must have

T i0+2lk−ak−1
ω ∈ Ck ∪ ⋃

j>k

(Cj ∪ Dj)

(because if k′ < k then lk′ < lk and Ck′ , Dk′ are defined by zero values of ωi with
i < lk) and

E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1
0 )

= 2lk /3ak 2−lk + ∑
j>k 2lj /3aj 2−lj + ∑

j>k 10−j 2−lj + 0

P(Dk)

≥ (2/3)ak+1

2 · 2−lk

= 1

2
2lk

(
2

3

)ak+1

.

Similarly,

E(Xi0+2lk−ak |Xi0+2lk−ak −1
0 )

= 2lk /3ak 2−lk + ∑
j>k 2lj /3aj 2−lj + ∑

j>k 10−j 2−lj + 0

P(Dk)

≤ 10−k−1 + ∑∞
i=0(2/3)ak+i

2 · 2−lk

= 1

2
2lk

(
10−k−1 +

(
2

3

)ak

3
)

≤ 4 · 2lk

(
2

3

)ak

.

On the other hand, X
i0+2lk−ak−1−1
−∞ determines exactly the value of Xi0+2lk−ak−1 .

There are four cases. If Xi0+2lk−ak−1 is equal with 0, 2lk

3ak , or for some k < k′ : 10−k′

or 2l
k′

3a
k′ . That is,

E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1
−∞ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2lk

3ak
, if T i0+2lk−ak−1

ω ∈ Ck ,

10−k′
, if T i0+2lk−ak−1

ω ∈ Dk′ for some k < k′,
2lk′

3ak′ , if T i0+2lk−ak−1
ω ∈ Ck′ for some k < k′,

0, if otherwise.
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Now

|E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1
0 ) − E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1

−∞ )|

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.52lk
2ak

3ak
, if T i0+2lk−ak−1

ω ∈ Ck ,

10−k′
, if T i0+2lk−ak−1

ω ∈ Dk′ for some k < k′,
2lk , if T i0+2lk−ak−1

ω ∈ Ck′ for some k < k′,

0.52lk

(
2

3

)ak+1

, if otherwise,

where we assumed that lk′ − 2ak′ > lk if k′ > k. Now

|E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1
−∞ ) − E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1

−∞ )|

≥ 1

4
2lk

(
2

3

)ak+1

.

Therefore,

1

N

N∑
n=1

|E(Xn|Xn−1
0 ) − E(Xn|Xn−1−∞)| ≥ 1

N

1

4
2lk

(
2

3

)ak+1

= 2−lk+ak
1

4
2lk

(
2

3

)ak+1

= 1

6

(
4

3

)ak

.

Since lim supk→∞ ak = ∞, the proof of Theorem 2 will be complete as soon as
we verify that the process is ergodic and finitarily Markovian. The first property
follows from the fact that T is an ergodic transformation. To see the second, what
we need to do is to show that the values of f (T −nω) will reveal to us more and
more of the values of ωm as n increases. Almost every point is in infintely many

T 2lj −aj
Ej ’s. For any such j , there is a unique i < 2lj−aj such that T i−2lj −aj

ω ∈ Dj

and this is revealed to us by the value of f at the point in the negative orbit of ω.
This information will give us the values of ωm for all m up to lj − aj and this
completes the proof. �

REMARK 2. The referee pointed out that a simpler and equivalent formulation
of the first statement of the theorem above is as follows.

Let X = {0,10−k, 2k

3m , k = 1,2, . . . ,m = 1,2, . . .}. There exists a stationary and
ergodic finitarily Markovian time series {Xn} taking values from X such that
E|X0| < ∞ and

lim sup
N→∞

1

N

N∑
n=1

|E(Xn|Xn−1
0 )| = ∞
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almost surely.
[This is because E(Xn|Xn−1−∞)(ω) = E(X0|X−1−∞)(T nω) and by the ergodic the-

orem

lim
N→∞

1

N

N∑
n=1

E(Xn|Xn−1−∞) = E(X0) < ∞

almost surely.]

THEOREM 3. Let X = {0,10−k, 2k

3m k = 1,2, . . . ,m = 1,2, . . .}. Suppose
hm : X m → R is a scheme that for any bounded ergodic finitarily Markovian
process {Yn} taking values from X , almost surely satisfies

lim
N→∞

1

N

N∑
n=1

|E(Yn|Yn−1
0 ) − hn(Y

n−1
0 )| = 0.

Then there is an ergodic finitarily Markovian process {Xn} taking values from X
for which

E|X0| < ∞
and

lim sup
N→∞

1

N

N∑
n=1

|E(Xn|Xn−1
0 ) − hn(X

n−1
0 )| = ∞

almost surely.

PROOF. I. A Master process. We shall prepare a master process with many
possibilities for constructing a process such as in the earlier example with lk in a
fashion that will be dictated by the estimation scheme. For 1 ≤ j ≤ n, define

q(n, j) = (n2 + j)!
and sets

Cq(n,j) = {
ω :ωi = 1 for 1 ≤ i < q(n, j),ωq(n,j) = 0

}
,

clearly P(Cq(n,j)) = 2−q(n,j). Let

Dq(n,j) = {
ω :ωi = 1 for 1 ≤ i < q(n, j) − j,

ωq(n,j)−j = 0,ωi = 1 for q(n, j) − j < i < q(n, j)
}

and

Eq(n,j) =
2q(n,j)−j−1−1⋃

i=0

T −iDq(n,j).
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Notice that

Eq(n,j) = {
ω :ωq(n,j)−j = 0,ωi = 1, for all q(n, j) − j < i < q(n, j)

}
and it follows that the sets {Eq(n,j),1 ≤ j ≤ n,n ∈ N} are mutually independent.
Letting

u(ω) =
∞∑

n=1

n∑
j=1

10−q(n,j)IDq(n,j)
(ω)

the master process is defined by Yn(ω) = u(T nω). For later use, observe that the
Dq(n,j)’s are disjoint.

We will need the following easy consequence of our assumption on the estima-
tors hn, namely that for any bounded process Yn defined on � as in the theorem
and for any k there is an integer Nk and a set Hk ⊂ � with P(Hk) ≥ 1 − 2−k and
for all ω ∈ Hk and m ≥ Nk we have: |hm(Y0, . . . , Y

(k−1))| ≤ m
10 .

II. The construction. We shall now define a sequence lk , k = 2ak +bk , 1 ≤ b ≤ 2a

inductively, together with functions vk which are bounded. As k tends to infinity,
the vk will converge to v and we will use u+ v to get our desired process. We may
take v2 = 0 to start the inductive construction.

Assume that we have already defined l3 < l4 < · · · < lk−1 a subsequence of the
q(n, j)’s and

vk−1 =
k−1∑
i=3

(
2li

3ai

)
ICli

we want to define lk and vk . Recalling the notation k − 1 = 2ak−1 + bk−1, we have
that bk−1 = bk −1 unless k−1 = 2a , in which case ak−1 = a−1 and bk−1 = 2a−1.

Since vk−1 is bounded, the process defined by

X(k−1)
n = fk−1(T

nω) = u(T nω) + vk−1(T
nω)

is bounded. Now, by assumption, there is an Nk and a set Hk with P(Hk) ≥ 1−2−k

and for all ω ∈ Hk and m ≥ Nk we know that∣∣hm

(
X

(k−1)
0 , . . . ,X

(k−1)
m−1

)∣∣ ≤ m

10
.

Choose n large enough so that 2q(n,ak)−ak > 10Nk and we make sure that
q(n, ak) − ak > 10lk−1. Set

lk = q(n, ak)

and

vk = vk−1 +
(

2lk

3ak

)
IClk

.



NONPARAMETRIC SEQUENTIAL PREDICTION 1151

This defines a new process

X(k)
n (ω) = fk(T

nω) = u(T nω) + vk(T
nω).

It is important to observe that if for some i0 ≤ 2lk−ak−1 we have T i0ω ∈ Dlk then
for all 0 ≤ j ≤ i0 + 2lk−ak−1 − 1

X
(k)
j (ω) = X

(k−1)
j (ω).

This is because the way Clk is defined, we know that T i0+2lk−ak−1
ω can be in Clk

which implies that earlier iterates of ω cannot be there. Indeed,

Cq(n,j) ⊂ T 2lk−ak−1
Dlk for all q(n, j) ≥ lk,

which implies that during all the later stages of the construction the values of
X

(k−1)
i in this range will not change. So we will have for

v =
∞∑

k=3

(
2lk

3ak

)
IClk

and

Xn(ω) = f (T nω) = u(T nω) + v(T nω)

that

Xj(ω) = X
(k−1)
j (ω) for all 0 ≤ j ≤ i0 + 2lk−ak−1 − 1,

if T i0ω ∈ Dlk .
It is clear that if the lk’s are chosen large enough so that for all k′ > k lk <

lk′ − 2ak′ :

• the sets {Ck,Dk}∞k=3 are disjoint,
• the intervals [lk − ak, lk − 1] are also disjoint and therefore the sets Elk are

independent.

The signaling function u is bounded and the main contributor to f will be

v(ω) =
∞∑

k=3

2lk

3ak
IClk

(ω).

Clearly,

E(v(ω)) =
∞∑

k=3

2lk

3ak
P (Clk ) =

∞∑
k=3

1

3ak
=

∞∑
a=1

2a∑
b=1

1

3a
=

∞∑
a=1

(
2

3

)a

< ∞.

Define a process by f (ω) = u(ω) + v(ω) and

Xn(ω) = f (T nω).
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Note that Xn ∈ X as advertised.
III. Checking the properties. Observe that P(Elk ) = 2−ak and

∞∑
k=3

P(Elk ) =
∞∑

a=1

2a∑
b=1

2−a =
∞∑

a=1

1 = ∞.

By the Borel–Cantelli lemma, a point ω belongs to Elk infinitely often. In addition,
since P(Hk) > 1 − 2−k , almost every point will belong to Hk for all sufficiently
large k. Suppose then that ω ∈ Elk ∩ Hk . When ω ∈ Elk ,

T i0ω ∈ Dk for some 0 ≤ i0 ≤ 2lk−ak−1 − 1.

For ω ∈ Elk , we know that Xi0(ω) = 10−lk . At time i0 + 2lk−ak−1 − 1,

(T i0+2lk−ak−1−1(ω))j =
⎧⎨
⎩

0, if j = 1,
1, if 1 < j ≤ lk − 1,
ωj , otherwise.

Let’s compute for a fixed i0 such that T i0ω ∈ Dlk (i.e., Xi0 = 10−lk )

E(Xi0+2lk−ak |Xi0+2lk−ak −1
0 ).

For ω ∈ T −i0Dlk (i.e., Xi0 = 10−lk ) we know that

(T i0+2lk−ak−1
ω)j =

{
1, if 1 ≤ j ≤ lk − 1,
ωj , otherwise.

Therefore if Xi0+2lk−ak−1 > 0, then we must have

T i0+2lk−ak−1
ω ∈ Clk ∪ ⋃

m>k

Cm ∪ ⋃
1≤n,1≤j≤2n : q(n,j)>lk

Dq(n,j),

because if k′ < k then lk′ < lk and the Ck′ , are defined by zero values of ωi with
i < lk , and similarly for Dq(n,j) with q(n, j) < lk ,

E(Xi0+2lk−ak−1 |Xi0+2lk−ak−1−1
0 )

= 2lk /3ak 2−lk + ∑
j>k 2lj /3aj 2−lj + ∑

q(n,j)>lk
10−q(n,j)2−q(n,j) + 0

P(Dlk )

≥ (2/3)ak+1

2 · 2−lk

= 1

2
2lk

(
2

3

)ak+1

.
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Similarly,

E(Xi0+2lk−ak |Xi0+2lk−ak −1
0 )

= 2lk /3ak 2−lk + ∑
j>k 2lj /3aj 2−lj + ∑

q(n,j)>lk
10−q(n,j)2−q(n,j) + 0

P(Dlk )

≤ 10−lk + ∑∞
i=0(2/3)ak+i

2 · 2−lk

= 1

2
2lk

(
10−k−1 +

(
2

3

)ak

3
)

≤ 4 · 2lk

(
2

3

)ak

.

On the other hand, because ω ∈ Hk and our remark about Xj = X
(k−1)
j for 0 ≤

j ≤ 2lk−ak−1 − 1, we have that

|hi0+2lk−ak−1(X
i0+2lk−ak−1−1
0 )| ≤ i0 + 2lk−ak−1 − 1

10
.

Therefore, if we take N = 2lk−ak

1

N

N∑
n=1

|E(Xn|Xn−1
0 ) − hn(X

n−1
0 )| ≥ 1

N

1

4
2lk

(
2

3

)ak+1

= 2−lk+ak
1

4
2lk

(
2

3

)ak+1

= 1

6

(
4

3

)ak

.

Since lim supk→∞ ak = ∞, the proof of Theorem 3 is complete. �

APPENDIX

The next result is a generalization of a result due to Elton; cf. Theorems 2 and
4 in Elton [7].

PROPOSITION 1. For n = 0,1,2, . . . , let Fn be an increasing sequence of
σ -fields, and Xn random variables measurable with respect to Fn, be identically
distributed with E(|X0| log+(|X0|)) < ∞. Let gn(Xn) be quantizing functions so
that for all n, |gn(Xn) − Xn| ≤ 1, and for an increasing sequence of sub σ -fields,
Gn ⊆ Fn such that gn(Xn) = Yn is measurable with respect to Gn, form the se-
quence of martingale differences

Zn = gn(Xn) − E(gn(Xn)|Gn−1) = Yn − E(Yn|Gn−1).
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Then

E

(
sup
1≤n

∣∣∣∣∣1

n

n∑
i=1

Zi

∣∣∣∣∣
)

< ∞(A.1)

and

lim
n→∞

1

n

n∑
i=1

Zi = 0 almost surely.(A.2)

PROOF. We follow Elton [7], who gave the proof when the martingale differ-
ences Zn are identically distributed. Write

Yn = Y ′
n + Y ′′

n ,

where |Y ′
n| ≤ n and |Y ′′

n | > n. Now

Zn = Y ′
n − E(Y ′

n|Gn−1) + Y ′′
n − E(Y ′′

n |Gn−1).

Since for any sequence of real numbers {ai},

sup
1≤n

1

n

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ ≤ 2

(
sup
1≤n

∣∣∣∣∣
n∑

i=1

1

i
ai

∣∣∣∣∣
)
,

(cf. Lemma 7 in Elton [7]), letting

dn = Y ′
n − E(Y ′

n|Gn−1)

and

en = Y ′′
n − E(Y ′′

n |Gn−1)

we get

E

(
sup
1≤n

1

n

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣
)

(A.3)

≤ 2E

(
sup
1≤n

∣∣∣∣∣
n∑

i=1

1

i
Zi

∣∣∣∣∣
)

(A.4)

≤ 2E

(
sup
1≤n

∣∣∣∣∣
n∑

i=1

1

i
di

∣∣∣∣∣
)

(A.5)

+ 2E

(
sup
1≤n

∣∣∣∣∣
n∑

i=1

1

i
ei

∣∣∣∣∣
)
.(A.6)

For (A.5) by Davis’ inequality (valid for all martingale differences cf. e.g.,
Shiryayev [32], page 470), we get

2E

(
sup
1≤n

∣∣∣∣∣
n∑

i=1

1

i
di

∣∣∣∣∣
)

≤ 2BE

[( ∞∑
i=1

1

i2 (di)
2

)0.5]
≤ 2B

[
E

( ∞∑
i=1

1

i2 (di)
2

)]0.5

.
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Now, E((di)
2) ≤ E((Y ′

i )
2). But since |Yi − Xi | ≤ 1, we get

E((Y ′
i )

2) = E
(
(Yi)

2I{|Yi |≤i}
) ≤ E

(
(Xi + 1)2I{|Xi−1|≤i}

)
and the Xi’s are identically distributed therefore

∞∑
i=1

1

i2 E
(
(Xi + 1)2I{|Xi−1|≤i}

)

=
∞∑
i=1

(
E

(
(Xi + 1)2I{i−1<|Xi−1|≤i}

)( ∞∑
j=i

1

j2

))

≤ KE(|X0|),
where K is a suitable constant (cf. the last line of the proof of Lemma 1 in Elton
[7]).

For (A.6),

E|en| ≤ 2E|Y ′′
n | ≤ 2E

(
(1 + |Xn|)I{|Xn|>n−1}

)
and now Xn’ are identically distributed. Now since E(|X| log+(|X|)) < ∞,
Lemma 2 in Elton [7] implies that

∞∑
n=1

1

n
E

(
(1 + |Xn|)I{|Xn|>n−1}

)
< ∞

and so

2E

(
sup
1≤n

∣∣∣∣∣
n∑

i=1

1

i
ei

∣∣∣∣∣
)

≤ 2
n∑

i=1

1

i
E|ei |

< ∞
and this completes the proof of (A.1).

Now, we prove (A.2). By (A.4),

Un =
n∑

i=1

1

i
Zi

is a martingale with

sup
1≤n

E(|Un|) < ∞

and by Doob’s convergence theorem Un converges almost surely. Then by Kro-
necker’s lemma (cf. Shiryayev [32], page 365),

lim
n→∞

1

n

n∑
i=1

Zi = 0

almost surely. The proof of Proposition 1 is complete. �
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PROPOSITION 2. Let {φn, Fn} be a martingale difference sequence. If, for
some 1 < p < ∞, sup1≤n E(|φn|p) < ∞ then

lim
n→∞

1

n

n∑
i=1

φi = 0 almost surely(A.7)

and

E

(
sup
1≤n

∣∣∣∣∣1

n

n∑
i=1

φi

∣∣∣∣∣
p)

< ∞.(A.8)

PROOF. Choose a positive integer K such that K(p − 1) > 1. Define

fn = 1

n

n∑
i=1

φi.

Assume first that 1 < p ≤ 2. Now by Theorem 2 in von Bahr and Esseen [33],

E(|fn|p) ≤ 2
n

np
sup
1≤i

E(|φi |p) = 2
sup1≤i E(|φi |p)

n(p−1)
.(A.9)

Define

F =
∞∑

n=1

|fnK |p.

By (A.9), and since by assumption sup1≤n E(|φn|p) < ∞, K(p − 1) > 1,

E(F) = 2
∞∑

n=1

sup1≤i E(|φi |p)

nK(p−1)
< ∞.(A.10)

Define

gn = max
1≤k<(n+1)K−nK

|fnK − fnK+k|p

and let

G =
∞∑

n=1

gn.

To complete the proof of (A.7) and (A.8), it is enough to show that E(F +G) < ∞.
By (A.10), it is enough to show that E(G) < ∞. Now for some m = nK + k,
1 ≤ k < (n + 1)K − nK ,

fm = (fnK+k − fnK ) + fnK

and

|fm|p ≤ 2p(|fnK+k − fnK |p + |fnK |p) ≤ 2p(gn + |fnK |p) ≤ 2p(G + F).
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Now

|fnK+k − fnK | =
(

1

nK
− 1

nK + k

) nK∑
i=1

φi − 1

nK + k

k∑
j=1

φnK+j

and so

|fnK+k − fnK |p ≤ 2p

(∣∣∣∣∣ k

nK(nK + k)

nK∑
i=1

φi

∣∣∣∣∣
p

+
∣∣∣∣∣ 1

nK + k

k∑
j=1

φnK+j

∣∣∣∣∣
p)

≤ 2p

(∣∣∣∣∣(n + 1)K − nK − 1

nKnK

nK∑
i=1

φi

∣∣∣∣∣
p

+
∣∣∣∣∣ 1

nK

k∑
j=1

φnK+j

∣∣∣∣∣
p)

.

Now

gn ≤ 2p

(∣∣∣∣∣(n + 1)K − nK

nKnK

nK∑
i=1

φi

∣∣∣∣∣
p

+
∣∣∣∣∣ 1

nKp
max

1≤k<(n+1)K−nK

k∑
j=1

φnK+j

∣∣∣∣∣
p)

.

Now by von Bahr and Eseen [33] and Doob’s inequality (cf. e.g., Theorem 1,
Chapter 3 in Shiryayev [32]),

E(gn) ≤ 2p

(
(n + 1)K − nK

n2K

)p

2nK
(
sup
1≤i

E(|φi |p)
)

+
(

p

(p − 1)

)p 1

nK
E

(∣∣∣∣∣
(n+1)K−nK∑

j=1

φnK+j

∣∣∣∣∣
p)

≤ 2p

(
(n + 1)K − nK

n2K

)p

2nK
(
sup
1≤i

E(|φi |p)
)

+
(

p

(p − 1)

)p(
(n + 1)K − nK

nK

)p

sup
1≤i

E(|φi |p)

and the right-hand side is summable. We have completed the proof for 1 < p ≤ 2.
Now assume 2 < p < ∞. By the theorem of Dharmadhikari, Fabian and

Jogdeo [6],

E(|fn|p) ≤ C(p)
sup1≤i E(|φi |p)

np/2 .

Applying this one gets that

E

( ∞∑
n=1

|fn|p
)

≤
∞∑

n=1

C(p)
sup1≤i E(|φi |p)

np/2 < ∞.
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Thus,
∞∑

n=1

|fn|p < ∞ almost surely

and this yields (A.7) and (A.8). The proof of Proposition 2 is complete. �

REMARK 3. The referee pointed out that the second statement of the prepo-
sition above could be proved in a simpler way as follows. By maximal Doob in-
equality and Burkholder inequality, we obtain(

E sup
n

∣∣∣∣∣1

n

n∑
i=1

φi

∣∣∣∣∣
p)1/p

≤ 2p max
{

1,
1

(p − 1)2

}[
E

( ∞∑
i=1

(
φi

i

)2
)p/2]1/p

.

Now if p ≥ 2, then by the triangle inequality in Lp/2,{[
E

( ∞∑
i=1

(
φi

i

)2
)p/2]2/p}1/2

≤
[ ∞∑

i=1

(
E

|φi |p
ip

)2/p
]1/2

≤
( ∞∑

i=1

1

ip

)1/2

sup
i

(E|φi |p)1/p.

If p ≤ 2, then since (∑
i

ai

)p/2

≤ ∑
i

(ai)
p/2

for all positive numbers ai we get[
E

( ∞∑
i=1

(
φi

i

)2
)p/2]1/p

≤
∞∑
i=1

(
E

|φi |p
ip

)1/p

≤
( ∞∑

i=1

1

i2

)1/2

sup
i

(E|φi |p)1/p.

Thus, in each case it is(
E sup

n

∣∣∣∣∣1

n

n∑
i=1

φi

∣∣∣∣∣
p)1/p

≤ Cp sup
i

(E|φi |p)1/p.
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