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THE TASEP SPEED PROCESS1

BY GIDEON AMIR, OMER ANGEL AND BENEDEK VALKÓ

Bar Ilan University, University of British Columbia and University of Wisconsin

In the multi-type totally asymmetric simple exclusion process (TASEP)
on the line, each site of Z is occupied by a particle labeled with some number,
and two neighboring particles are interchanged at rate one if their labels are
in increasing order. Consider the process with the initial configuration where
each particle is labeled by its position. It is known that in this case a.s. each
particle has an asymptotic speed which is distributed uniformly on [−1,1].
We study the joint distribution of these speeds: the TASEP speed process.

We prove that the TASEP speed process is stationary with respect to the
multi-type TASEP dynamics. Consequently, every ergodic stationary mea-
sure is given as a projection of the speed process measure. This generalizes
previous descriptions restricted to finitely many classes.

By combining this result with known stationary measures for TASEPs
with finitely many types, we compute several marginals of the speed process,
including the joint density of two and three consecutive speeds. One striking
property of the distribution is that two speeds are equal with positive proba-
bility and for any given particle there are infinitely many others with the same
speed.

We also study the partially asymmetric simple exclusion process (ASEP).
We prove that the states of the ASEP with the above initial configuration, seen
as permutations of Z, are symmetric in distribution. This allows us to extend
some of our results, including the stationarity and description of all ergodic
stationary measures, also to the ASEP.

1. Introduction. The exclusion process on a graph describes a system of par-
ticles performing continuous time random walks, interacting with other particles
via exclusion: attempted jumps to occupied sites are suppressed. When the graph
is Z and particles jump only to the right at rate one the process is called the to-
tally asymmetric simple exclusion process (TASEP). We denote configurations
with η ∈ {1,∞}Z where particles are denoted by 1 and empty sites by ∞.2 The
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TASEP is a Markov process with generator

Lf (η) =∑
n

f (σnη) − f (η),(1)

where σn is the operation that sorts the coordinates at n,n + 1 in decreasing order

(σnη)n = max(ηn, ηn+1), (σnη)n+1 = min(ηn, ηn+1),
(2)

(σnη)k = ηk if k /∈ n,n + 1.

A second class particle is an extra particle in the system trying to perform the
same random walk while being treated by the normal (first class) particles as an
empty site. It is an intermediate state between a particle and an empty site, and
is denoted by a 2.3 This means that the second class particle will jump to the
left if there is a first class particle there who decides to jump onto the second
class particle. This is still a Markov process, with the same generator (1) and state
space {1,2,∞}Z. Note that empty sites can just be considered as particles with
the highest possible class. Thus we can equally well consider state space {1,2,3}Z

with holes represented by 3’s.
More generally, we shall consider the multi-type TASEP which has the same

generator with state space R
Z. Thus we allow particle classes to be nonintegers

or negative numbers. If there are particles with maximal class they can be con-
sidered to be holes. A special case is the N -type TASEP (without holes) where
all particles have classes in {1, . . . ,N}. If particles of class N are interpreted as
holes instead of maximally classed particles, this process becomes the traditional
(N − 1)-type TASEP (with holes). To avoid confusion, from here on all multi-type
configurations shall be without holes. (Holes will appear only in individual lines
in the multi-line configurations defined below.)

The following result is this paper’s foundation. We let Y(t) denote the TASEP
configuration at time t , with Yn(t) the value at position n. This strengthens results
of Ferrari and Kipnis [8] that get the same limit in distribution.

THEOREM 1.1 (Mountford and Guiol [15]). Consider the TASEP with initial
condition

Yn(0) =
⎧⎨⎩

1, n < 0,
2, n = 0,
3, n > 0.

Let X(t) denote the position of the second class particle at time t , defined by
YX(t)(t) = 2. Then X(t)

t

a.s.−→
t→∞U , where U is a uniform random variable on [−1,1].

3kth class particles will be denoted by k, even for k = 0. That is why it is convenient to use ∞ for
holes rather than 0.
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FIG. 1. The speed process: simulation of Un for 1 ≤ n ≤ 5000, from a simulation run to time
700,000.

Thus a second class particle with first class particles to its left and third class
particles to its right “chooses” a speed U , uniform in [−1,1] and follows that
speed: X(t) ∼ Ut . (See [10, 11] for alternative proofs of Theorem 1.1.)

Now, consider any other starting configuration such that Yn(0) < Y0(0) for all
n < 0 and Yn(0) > Y0(0) for all n > 0. The particle starting at 0 does not dis-
tinguish between higher classes, or between lower classes, so its trajectory has the
same law. This applies in particular to every particle in a multi-type TASEP Y with
starting configuration Yn(0) = n. Let Xn(t) be the location of particle n at time t ,
so that YXn(t)(t) = n [X(t) is the inverse permutation of Y(t)]. An immediate con-
sequence is the following:

COROLLARY 1.2 (The speed process). In the TASEP with starting configura-
tion Yn(0) = n, a.s. every particle has a speed: for every n

Xn(t) − n

t

a.s.−→
t→∞Un,

where {Un}n∈Z is a family of random variables, each uniform on [−1,1].

DEFINITION 1.3. The process {Un}n∈Z is called the TASEP speed process. Its
distribution is denoted by μ.

Thus μ is a measure supported on [−1,1]Z. It is clear from simulations (and
our results below) that μ is not a product measure, that is, that the speeds are not
independent. Figure 1 shows a portion of the process. Some aspects of this process
were studied in [7].

1.1. Main results. In order to study the TASEP speed process we prove two
results, which are our main tools in understanding the joint distributions of speeds.
These results are of significant interest in and of themselves. The following is a
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new and surprising symmetry of the TASEP. A version of this theorem was proved
in [2], in the context of the TASEP on finite intervals. We extend it here also to the
ASEP4 (defined in Section 1.3).

THEOREM 1.4. Consider the starting configuration Yn(0) = n and Xn(t) as
above. For any fixed t > 0 the process {Xn(t)}n∈Z has the same distribution as
{Yn(t)}n∈Z. This holds also for the ASEP.

At any time t we have that X(t) and Y(t) are permutations of Z, one the inverse
of the other. Thus this theorem implies that Y(t) as a permutation has the same
law as its inverse. It is not hard to see that this holds only for a fixed t , and not as
processes in t [e.g., X0(t) changes by at most 1 at each jump].

The next result gives additional motivation for considering the speed process,
as it relates its law μ to stationary measures of the multi-type TASEP (and ASEP).

THEOREM 1.5. μ is itself a stationary measure for the TASEP: the unique
ergodic stationary measure which has marginals uniform on [−1,1].

This means that if we consider a TASEP in [−1,1]Z where the initial config-
uration Y(0) has distribution μ then at any time t the distribution of Y(t) is also
given by μ.

It is known that the N -type process has ergodic stationary measures, and that the
distribution of Yn among the classes determines this distribution uniquely. Stan-
dard techniques (see below) can be used to show that the same holds also with
infinitely many classes. Specifically, for any distribution on R there is a unique
ergodic stationary measure for the TASEP with Y0 (and any Yn) having that dis-
tribution. For any two nonatomic distributions on R, these measures are related
by applying pointwise a nondecreasing function to the particle classes (see Lem-
ma 5.3), so every such measure can be deduced from the measure with marginals
uniform on [−1,1]. If a distribution has atoms, then the corresponding stationary
measure can still be deduced from the speed process’ law μ in the same way, but
the operation is nonreversible. Thus we have the following characterization:

COROLLARY 1.6. Every ergodic stationary measure for the TASEP can be
deduced from μ by taking the law of {F(Un)}n∈Z for some nondecreasing function
F : [−1,1] → R.

1.2. Results: Joint distribution. Computer simulations suggested early on that
U0,U1 are not independent (see Figure 2). Recent results of Ferrari, Goncalves
and Martin [7] confirm this prediction. They proved (among other things) that the

4Some sources use PASEP/ASEP, respectively, for what other sources call ASEP/TASEP (PASEP
stands for partially. . .). We adopt the latter convention.
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FIG. 2. The joint distribution of U0,U1: based on 5000 pairs from a simulation run to time 25,000.

probability that particle 0 eventually overtakes particle 1 (we identify a particle
with its class) is 2/3. It follows that P(U0 ≥ U1) ≥ 2/3 (not necessarily equal
since U0 = U1 does not a priori imply overtaking). Our first theorem describing
the joint distribution of speeds is the following:

THEOREM 1.7. The joint distribution of (U0,U1), supported on [−1,1]2, is

f (x, y) dx dy + g(x)1(x = y)dx

with

f (x, y) =

⎧⎪⎪⎨⎪⎪⎩
1

4
, x > y,

y − x

4
, x ≤ y,

g(x) = 1 − x2

8
.

In particular, P(U0 > U1) = 1/2, P(U0 = U1) = 1/6 and P(U0 < U1) = 1/3.

Remarks. Note that the density in {U0 < U1} (linear in U1 −U0, so that there is
repulsion between the speeds) can be deduced using only Theorem 1.4 (we do not
include this argument here). However, proving the—seemingly simpler—constant
density on {U0 > U1} and deriving the singular component on the diagonal re-
quires the power of Theorem 1.5. It is interesting to compare the power of The-
orem 1.4 with that of the methods of [7]. It appears that both methods run into
similar difficulties and have similar consequences, suggesting a fundamental con-
nection (there are also some parallels in the proofs). Specifically, can the density
in the region {U0 < U1} be derived using the techniques of [10]? Finally, it is inter-
esting that our proof relies nontrivially on the extension of the TASEP to infinitely
many different classes of particles, though the question and answer can both be
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posed using only 4 classes (including holes). A similar remark holds about some
other results below as well.

Additional information about the joint distribution of speeds is derived in Sec-
tion 7. We derive certain properties of the n-dimensional marginals of μ, and in
Theorem 7.7 we compute the joint distribution of three consecutive speeds.

A surprising aspect of Theorem 1.7 is that there is a positive probability (1/6)
that U0 = U1, even though each is uniform on [−1,1]. Indeed, for any two particles
there is a positive probability that their speeds are equal. This phenomenon can be
thought of as a spontaneous formation of “convoys,” sets of particles that have the
same asymptotic speed, so their trajectories remain close. Our next result gives a
full description of such a convoy.

THEOREM 1.8. Let the convoy of 0 be C0 = {j :Uj = U0}, that is, the set of
all j with the same speed as 0. Then C0 is μ-a.s. infinite with 0 density. Moreover,
conditioned on U0, C0 is a renewal process, and the nonnegative elements of C0
have the same law as the times of last increase of a random walk conditioned to
remain positive, with step distribution

P(X = 1) = P(X = −1) = 1 − U2
0

4
, P(X = 0) = 1 + U2

0

2
.

The “times of last increase” of a walk Z are those indices n for which m > n im-
plies Zm > Zn. In particular the convoys are infinite and they provide a translation
invariant partition of the integers into infinitely many infinite sets. The convoys
are essentially the process with 0 density for second class particles, seen from a
second class particle, as studied by Ferrari, Fontes and Kohayakawa in [6].

1.3. The ASEP. As the name suggests, the totally asymmetric simple exclusion
process is an extremal case of the asymmetric simple exclusion process: the ASEP.
The ASEP is defined in terms of a parameter p ∈ (1/2,1], with p = 1 being the
TASEP. While most quantities involved depend on p, the dependence will usually
be implicit.

In the ASEP particles jump one site to the right at rate p ∈ (1/2,1] and to the
left at rate p = 1 − p (we use the convention x = 1 − x). The generator of this
Markov process is

Lf (η) =∑
n

p
(
f (σnη) − f (η)

)+ p
(
f (σ ∗

n η) − f (η)
)
,(3)

where σn and σ ∗
n sort the values in n,n + 1 in decreasing and increasing order,

respectively.
While some of the questions above make sense also in this setting, there is a key

difficulty in that the analogue of Theorem 1.1 for the ASEP (conjectured below)
is still unproved. Using the methods of Ferrari and Kipnis [8] it can be proved that
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X0(t)/t converges in distribution to a random variable uniform in [−ρ,ρ], where
hereafter we denote ρ = 2p − 1. Note that the particles in the exclusion process
try to perform a random walk with drift ρ (and they cannot go faster than that),
that explains why the support of the limiting random variable is changed. In fact,
in many ways the ASEP behaves similarly to the TASEP slowed down by a factor
of ρ.

CONJECTURE 1.9. In the ASEP, limt→∞ X0(t)/t exists a.s. (and the limit is
uniform on [−ρ,ρ]).

By the discussion preceding Corollary 1.2 this is equivalent to the following:

CONJECTURE 1.10. The ASEP speed process measure μASEP is well defined
and translation invariant with each Un uniform on [−ρ,ρ].

In order for statements about the ASEP speed process to make sense we must
assume this conjecture, and therefore some of our theorems are conditional on
Conjecture 1.9. It should be noted that with minor modifications our results also
hold assuming a weaker assumption, namely a joint limit in distribution of the
speeds {Xn(t)/t}n∈Z. In that case, the speed process measure is still defined, even
though the particles may not actually have an asymptotic speed.

As noted there, Theorem 1.4 holds also for the ASEP, with no additional condi-
tion. Theorem 1.5 becomes conditional:

THEOREM 1.11. Assume Conjecture 1.9 holds. Then μASEP is a stationary
measure for the ASEP: the unique ergodic stationary measure which has marginals
uniform on [−ρ,ρ].

As in the case of the TASEP, this can be interpreted as follows: if an ASEP
is started with initial configuration in [−ρ,ρ]Z with distribution μASEP, then at
any time t > 0 the distribution of the process is also given by μASEP. Note that
both the dynamics and the measure μASEP depend implicitly on the asymmetry
parameter p.

A useful tool in studying the speed process is the understanding of the stationary
measures of the N + 1 type TASEP in terms of a multi-line process described
below, developed by Angel [1] and Ferrari and Martin [9]. There is no known
analogue for these results that describes the stationary measure of the multi-type
ASEP. Thus we need to use other (and weaker) techniques to extract information
about the marginals of the ASEP speed process. This explains the contrast in the
level of detail between the following results and the corresponding theorems above
about the TASEP.
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THEOREM 1.12. We have the following limit:

lim
t→∞P

(
X0(t) < X1(t)

)= 2 − p

3
.

Theorem 2.3 of [7] proves that the probability that particles 0 and 1 interact at
least once (i.e., one of them tries to jump onto the other) is 1+p

3p
. In the next section

we will show that this is equivalent to the just stated theorem.
Our next theorem provides information about the joint distribution of {U0,U1},

assuming Conjecture 1.9 holds.

THEOREM 1.13. Assume Conjecture 1.9 holds. Let the measure μ(2) on
[−ρ,ρ]2 be the marginal of {U0,U1} under μASEP. Denote by μ̃(2) the reflection
of μ(2) about the line x = y. Then on {(x, y) :−ρ ≤ x < y ≤ ρ} we have

p · μ(2) − p · μ̃(2) = y − x

4ρ2 dx dy.

We finish this section with a statement concerning the case U0 = U1. Consider
the total amount Ji,j of time that particles i and j spend next to each other, that is,
Ji,j = ∫∞

0 1(|Xi(t) − Xj(t)| = 1) dt .

THEOREM 1.14. In the TASEP, J0,1 = ∞ if and only if U0 = U1. If Conjec-
ture 1.9 holds, then the same holds for the ASEP.

In the TASEP J0,1 = ∞ implies that there is at least one interaction between
0 and 1 which means that they are a.s. swapped. (See the next section for a more
detailed discussion.) Thus if U0 = U1, then eventually X0(t) > X1(t). In fact, this
holds for any two particles in the same convoy: in Lemma 9.9 we will prove that in
the TASEP, particle 0 will eventually overtake all the particles in its convoy with
positive index.

1.4. Overview of the paper. The rest of the paper is organized as follows. Sec-
tion 2 provides some of the background: constructions of the processes and the
multi-line description of the stationary measure for the multi-type TASEP. Sec-
tion 3 includes the proof of the symmetry property (Theorem 1.4) and Section 4
proves the stationarity of the speed process (Theorems 1.5 and 1.11). Sections 6
and 7 include the results about various finite-dimensional marginals of the TASEP
speed process. Section 8 deals with the proof of Theorem 1.8. Finally, in Section 9
we prove our results on the ASEP speed process.

2. Preliminaries.

2.1. Construction of the process. There are several formal constructions of
the TASEP and ASEP. The one that best suits our needs seems to be Harris’s ap-
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proach [13]. We include the construction since there are several variations and the
exact details are used in some of our proofs. The process is a function Y defined
on Z × R

+. Yk(t) will denote the class of the particle at position k at time t . The
configuration at time t is Y(t) = {Yk(t)}k∈Z. The classes of particles will be real
numbers, hence the configuration at any given time is in R

Z. Setting t = 0 gives
the initial configuration Y(0).

We define the transposition operator τn, acting on R
Z by exchanging Yn and

Yn+1, while keeping all other classes equal. Using this we can alternately describe
the sorting operator σn by

σnY =
{

τnY, Yn < Yn+1,
Y, otherwise.

Thus σn has the effect of sorting Yn,Yn+1 in decreasing order, keeping other
classes the same.

The TASEP is defined using the initial configuration and the location of “jump”
points. The probability space contains a standard Poisson process on Z × R

+, that
is, a collection of independent standard Poisson processes on R

+, denoted Tn. If
(n, t) is a point of Tn, then at time t the values of Yn(t

−) and Yn+1(t
−) may be

switched. In the TASEP they are sorted, that is, Y(t) = Y(t−) · σn. This can be
described as applying each of the operators σn at rate 1 independently. A simple
percolation argument shows that this dynamic is a.s. well defined. (For any fixed
t > 0 there are a.s. infinitely many integers n so that there are no Poisson points
on {n} × [0, t] which means that to define the process up to time t it suffices to
consider finite lattices.)

The ASEP. Defining the partially asymmetric exclusion process requires ad-
ditional randomness. Given the parameter p ∈ (1/2,1], we attach to each point
(n, t) in the Poisson process an independent Bernoulli random variable Xn,t with
P(Xn,t = 1) = p. We can now define the probabilistic sorting operator ρn as fol-
lows:

ρnY =
{

σnY, if Xn,t = 1,
σ ∗

n Y, if Xn,t = 0.

Thus with probability p the smaller classed particle is moved to the right position
and with probability 1 − p it is moved to the left position. When such an event
happens we say that Yn(t) and Yn+1(t) have an interaction (regardless of whether
they were actually swapped). Note that if particles i, j interact in this way, then
their order after the swap is independent of the order before the swap. The key
observation is that after i < j interact in this way at least once, i has probability p

of being to the right of j , and this is unchanged by further interactions. Moreover, if
we condition on Ji,j (t) = ∫∞

0 1(|Xi(s) − Xj(s)| = 1) ds (the total time i, j spend
next to each other until time t), then

P
(
Xi(t) < Xj(t)|Ji,j (t)

)= e−Ji,j (t) + p
(
1 − e−Ji,j (t))= p + pe−Ji,j (t),(4)
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where the expression on the right is just the probability that there were no in-
teraction between i and j until time t plus the probability that there was some
interaction, and at time t particle i is to the left of j . One of the consequences of
(4) is that

lim
t→∞P

(
Xi(t) < Xj(t)

)= p + pEe−Ji,j .(5)

Thus Theorem 1.12 implies p + pEe−J = 2−p
3 which gives 1 − Ee−J0,1 = 1+p

3p
.

But 1 − Ee−J0,1 is exactly the probability that there is at least one interaction be-
tween 0 and 1 which shows why Theorem 2.3 of [7] and our Theorem 1.12 are
equivalent.

In the TASEP case if there is an interaction between i < j , then Xi(t) > Xj(t)

after that. Thus in that case from (5) we get

P
(
eventually Xi(t) > Xj(t)|Ji,j = ∞)= 1,

which explains the remark after Theorem 1.14.
There is an alternate construction for the ASEP, which will be used in Section 3.

Consider a Poisson process with lower intensity p on Z × R
+, but whenever it has

a point (n, t) we apply at time t the operator πn rather then ρn, where πn is defined
by

πnY =
⎧⎨⎩

τnY, Yn < Yn+1,
τnY, Yn > Yn+1 with prob. q = (1 − p)/p,
Y, Yn > Yn+1 with prob. q = (2p − 1)/p.

Thus if the pair is in increasing order it is always swapped, while if it is in de-
creasing order it is swapped only with probability q . It is easy to see that every
possible swap occurs at the same rate in the two constructions; hence the resulting
processes have the same generator.

2.2. Stationary measures for the multi-type TASEP. The following theorem
can be proved by standard coupling methods (see, e.g., [12] where the same theo-
rem is proved for the 2-type TASEP).

THEOREM 2.1. Fix every 0 ≤ λ1, . . . , λN ≤ 1 with
∑

λi = 1. There is a
unique ergodic stationary distribution νλ for the N -type TASEP with P(Y0 = k) =
λk . The measures νλ are the extremal stationary translation invariant measures.
They are the only stationary translation invariant measures with the property that
for each k, the distribution of {1[Yn ≤ k]}n∈Z is product Bernoulli measure with
density

∑
j≤k λj .

For the ordinary TASEP (with particles and holes) this stationary distribution is
just the product Bernoulli with a fixed density. If we have an (N + 1)-type TASEP
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then the structure of the stationary distribution is more complicated. The first de-
scription of νλ for N = 2 was given by the matrix method [4]. Reference [6] gave
probabilistic interpretations and proofs of the measure and its properties. Recently
combinatorial descriptions of νλ have appeared as well. The (2 + 1)-type TASEP
was treated by Angel [1] (see also Duchi–Schaeffer [5]). These results were ex-
tended for all N by Ferrari and Martin [9]. They give an elegant construction of νλ

using systems of queues.
We will now briefly describe the N -line description of νλ for the (N + 1)-type

TASEP. The two-line case suffices for most of our results, with the exception of
the results of Section 7. For a more detailed description and proofs see [9].

From here on we shall fix the parameters λ1, . . . , λN+1. Consider N indepen-
dent Bernoulli processes on Z denoted B1,B2, . . . ,BN where Bk has parameter∑

i≤k λi (these are the lines). From these lines we construct a system of N − 1
coupled queues. The lines give the service time of the queues, and the departures
from each queue are the arrivals to the next queue.

It is important to observe that the time for the queues goes from right to left,
that is, Bi (n) is followed by Bi (n − 1) and so on. The resulting system of queues
is positively recurrent, so it can be defined starting at ∞ and going over the lines
toward −∞.

The ith queue will consist of the particles that departed from the ith line and
are waiting for a service in Bi+1. This queue will consist of particles of classes
{1, . . . , i}. When a service is available in Bi+1 the lowest classed particle in the
ith queue is served and departs (to the next queue). If the queue is empty then a
particle of class i + 1 is said to depart the queue. The departure process of each
queue (i.e., the times and sequence of classes of departing customers) is the arrival
process for the next queue.

It is convenient to think of an additional queue with B1 as its service times.
This queue has no arrivals (so it is always empty). The unused services intro-
duce first class particles, which join the second queue whenever there is a service
in B1. These operations are evaluated for each n from line 1 to line N in order. Let
Qi,j (n) be the number of particles of type j in the ith queue after column n of the
multi-line process has been used.

Note that each queue has a higher rate of service than of arrivals, so the queues
sizes are tight, and the state with all queues empty is positively recurrent. In prac-
tice, the ith queue has i types of particles in it, so the whole system of queues is
described by N(N−1)

2 nonnegative integers.

THEOREM 2.2 (Ferrari–Martin). νλ is the distribution of the departure
process of BN , with class N + 1 (or empty sites) at those n when there is no
service.

As an example, and to clarify the graphic representation we use later, con-
sider the following segment of a configuration of the three-line process for



1216 G. AMIR, O. ANGEL AND B. VALKÓ

n = {1,2,3,4}. Suppose both queues are empty at time 5. (This is denoted by the
∅,∅ exponent.) Here, ! denotes a 0 in the corresponding line, and " a 1. Later,
in cases where we do not care about a specific value we may use � to denote that

!""!
"!!"
""!"

∅,∅

.

At time 4, reading the rightmost column from top to bottom, there is no service
in B1, so no first class particle joins the second queue, which therefore remains
empty. There is a service in B2, and no particles in the first queue, so a second
class particle joins the second queue. There is service in B3, so the second class
particle departs immediately. Thus at time 4 the queue states are (∅,∅).

At time 3 a first class particle arrives to the first queue, and stays there since
there is no service in the second queue. There is no further service in column 3, so
the state at time 3 is ({1},∅). There is no departure, which is denoted by a 4 (or
hole). At time 2 another first class particle arrives, and there is no particle in the
second queue so the service in B3 gives rise to a third class particle departing. The
states are now ({1,1},∅). Finally, at time 1 a first class particle is served at both
B2 and B3, departing and leaving queue states ({1},∅). The resulting segment of
νλ is (1,3,4,2).

3. Symmetry. Recall the operators πn defined above. These act randomly on
configurations, and the ASEP can be defined by applying each of the Markov op-
erators πn at rate p.

Formally, πi is defined as acting on M(S∞): probability measures on S∞.
Given a measure ν on S∞, we let πnν be the distribution of πn applied to a sample
from ν. Since τi and σi also act naturally on the measures (in the same way), one
finds the operator relation

πi = qτi + qσi.

Note that p = 1 gives q = 0 so in that case πi = σi . In the case p = 1/2 we get
q = 1 and πi = τi , so the process reduces to a symmetric random walk on S∞.

The crucial observation leading to Theorem 1.4 is the following lemma.

LEMMA 3.1. Fix any p ≥ 1/2, and sequence i1, . . . , in. Then

πin · · ·πi1 · id d= (πi1 · · ·πin · id)−1.(6)

That is, applying a sequence of πi ’s in the reverse order to the identity leads
to the inverse permutation. This is trivially true when p = 1/2 and π = τ , but
requires proof for other p. When p ∈ {1/2,1} the operator is deterministic and
this distributional identity is an equality of permutations.
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PROOF OF THEOREM 1.4. The theorem follows from Lemma 3.1 since at any
finite time at each i there is positive probability (e−t ) that no swap has occurred.
Each such i separates Z into two parts with independent behavior, so the state
of the process is a product of finite, mutually commuting permutations. The dis-
tribution of the sequence of applied operators between such inactive locations is
symmetric in time. �

We now prove Lemma 3.1. In the case of the TASEP, Lemma 3.1 and The-
orem 1.4 were first proved in [2]. To prove the lemma in the general case, we
start with the following facts about the transposition operators. The identities are
readily verified, and the last claim is known as Matsumoto’s lemma (see, e.g., [3],
Theorem 3.3.1).

FACT 3.2. The operators τi satisfy the relations

τ 2
i = I,(7)

τiτj = τj τi for |i − j | > 1,(8)

τiτi+1τi = τi+1τiτi+1,(9)

where I denotes the identity operator. With these relations the operators {τi} gen-
erate the symmetric group. Furthermore, it is possible to pass between any two
minimal words of the same permutation (i.e., words of minimal length represent-
ing that permutation) using only relations (8), (9).

The π ’s satisfy similar relations:

LEMMA 3.3. The operators {πi} satisfy the relations

π2
i = qI + qπi,(10)

πiπj = πjπi for |i − j | > 1,(11)

πiπi+1πi = πi+1πiπi+1.(12)

Note that only the first relation differs from the corresponding relation for τ .
When p = 1/2 these reduce to the relations for τ . In the case p = 1 the first relation
becomes σ 2

i = σi . In that case, the only nontrivial relation is (12) which is true
since both sides have the effect of sorting the three terms involved in decreasing
order.

PROOF OF LEMMA 3.3. Equation (10) is easy to check, and (11) is trivial.
For (12), using π = qτ + qσ and expanding, we need to show that

q3(τiτi+1τi) + q2q(τiτi+1σi + τiσi+1τi + σiτi+1τi)

+ qq2(τiσi+1σi + σiτi+1σi + σiσi+1τi) + q3(σiσi+1σi)
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TABLE 1
See proof of Lemma 3.3

η 012 021 102 120 201 210

τ0σ1σ0 · η 210 120 210 120 120 120
σ0σ1τ0 · η 210 210 201 210 201 210
σ0τ1σ0 · η 210 210 210 201 210 201

τ1σ0σ1 · η 210 210 201 201 201 201
σ1σ0τ1 · η 210 120 210 120 210 210
σ1τ0σ1 · η 210 210 210 210 120 120

is unchanged by exchanging i and i + 1. It is easy to verify that

τiτi+1τi = τi+1τiτi+1, τiτi+1σi = σi+1τiτi+1, τiσi+1τi = τi+1σiτi+1,

σiσi+1σi = σi+1σiσi+1, σiτi+1τi = τi+1τiσi+1,

so it remains to show

τiσi+1σi + σiτi+1σi + σiσi+1τi = τi+1σiσi+1 + σi+1τiσi+1 + σi+1σiτi+1.

We may assume i = 0. Since only the relative order of η0, η1, η2 matters, we may
assume these are {0,1,2} in some order. Applying these operators to the 6 possible
orders gives Table 1. In each column, the entries in the top half are a permutation
of the entries in the bottom half, so adding the first three operators gives the same
result as adding the last three. �

PROOF OF LEMMA 3.1. Given (i1, . . . , in), let X = τi1 · · · τin . If this is a min-
imal (w.r.t. length) word for X in S∞, then πin · · ·πi1 · id = X with probability 1.
In this case, the reverse word is minimal for X−1, so the claim holds.

The proof proceeds by induction on n. Take some sequence (i1, . . . , in). If the
representation τi1 · · · τin is minimal, then the claimed identity holds. Otherwise, let
k be maximal such that X = τi1 · · · τik is a minimal representation. By maximality
of k we see that Y = Xτik+1 has a shorter representation, so there is a representation
Y = τj1 · · · τjk−1 . (The length is k − 1 and not k since its parity is opposite that
of X.) Thus X = τj1 · · · τjk−1τik+1 is another minimal representation of X.

Starting with πi1 · · ·πin , we can repeatedly apply relations (11) and (12) to the
first k terms in the product, to get

πi1 · · ·πin = πj1 · · ·πjk−1π
2
ik+1

· · ·πin.

Here i2
k+1 appears twice since it is both the last term in the alternate representation

of X and the first in the remainder of the sequence. Relation (10) now gives

πi1 · · ·πin = q(πj1 · · ·πjk−1πik+2 · · ·πin) + q(πj1 · · ·πjk−1πik+1 · · ·πin).(13)
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Similarly, working with the reverse sequence,

πin · · ·πi1 = q(πin · · ·πik+2πjk−1 · · ·πj1) + q(πin · · ·πik+1πjk−1 · · ·πj1).(14)

Applying (14) and (13) to to id, and using the induction hypothesis for the shorter
sequences (j1, . . . , jk−1, ik+1, . . . , in) and (j1, . . . , jk−1, ik+2, . . . , in) completes
the proof. �

Note: the proof actually shows that any word in the π ’s can be reduced (as an
operator) to some convex combination of words corresponding to minimal words.

COROLLARY 3.4. Consider the infinite type TASEP with initial condition
Yn(0) = n. Then {Yn(t)

t
}n∈Z converges weakly to μ as t → ∞.

PROOF. For any t this process has the same law as {Xn(t)
t

}n∈Z, which con-
verges a.s. to a process with law μ. �

4. Stationarity. We will give two different proofs of the stationarity of the
distribution of the speed process. The first is specific to the TASEP, and is reminis-
cent of coupling from the past. It uses the Harris construction directly. The second
proof is based on the symmetry between {Xn(t)} and {Yn(t)} (or more specifically
Corollary 3.4). The second proof holds also for the ASEP, word by word, under
the assumption that Corollary 3.4 is true for the ASEP (which is weaker then Con-
jecture 1.9).

4.1. Coupling proof.

LEMMA 4.1. Consider two TASEPs Y,Y ′ defined via the Harris construction
as the function of the same Poisson process on Z×R

+. We set the initial conditions
as Yn(0) = n and Y ′(0) = σ0Y(0) (i.e., particles 0 and 1 are switched initially
in Y ′). Let {Un} = {limt→∞ Xn(t)/t} denote the speed process of Y , and {U ′

n} =
{limt→∞ X′

n(t)/t} denote the speed process of Y ′. Then U ′ = σ0U .

PROOF. All particles other than {0,1} are either larger or smaller than both
0 and 1, so any swaps involving a particle other than {0,1} will occur or not oc-
cur equally in Y and Y ′. It follows that for any i /∈ {0,1} we have Xi(t) = X′

i (t)

and hence Ui = U ′
i . Similarly, since 0 and 1 must fill the only vacant trajectories,

{U0,U1} = {U ′
0,U

′
1} as an unordered pair.

In Y ′ particle 0 is always to the right of particle 1, so U ′
0 = max{U0,U1} and

U ′
1 = min{U0,U1}, completing the proof. �

PROOF OF THEOREM 1.5 USING COUPLING. Consider a Poisson process on
Z × R. Half of the process, namely the restriction to Z × R

+ is used in the Harris
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construction of the TASEP. Similarly, for any s ∈ R we can translate the Poisson
process by s [i.e., take all points of the form (n, t + s) where (n, t) is in the orig-
inal process], and take the restriction to Z × R

+, which can be used in the Harris
construction to get a different (though highly dependent) instance of the TASEP.

Let Un(s) be the speed process resulting from the Harris construction using the
translated Poisson process. Clearly for every s, U(s) has the same law μ, so we are
done if we show that Un(s) evolves as a TASEP (with time parameter s). Consider
the effect of an infinitesimal positive shift s. The shift adds new σ operations, to be
applied before the original sequence of operations. These are added at rate 1 at each
location. By the previous lemma, the effect on the resulting speeds of applying σn

before using the same Poisson process is to apply σn to the speeds, which is exactly
what we need. �

It is interesting to note that in the Poisson process Z × R, the part on Z × R
+ is

used to determine the “initial” speed process U(0), and the restriction to Z × R
−

is used exactly as in the Harris construction to generate the TASEP dynamics of
U(s).

4.2. Symmetry based proof.

PROOF OF THEOREMS 1.5 AND 1.11 USING SYMMETRY. We write the proof
for μ, but it holds verbatim for μASEP under Conjecture 1.9.

Informally, we argue as follows. Fix s and let t → ∞. Both Xt

t
and Xt+s

t+s
con-

verge a.s. to a sample of μ. By Theorem 1.4 these have the same law as Yt

t
and

Yt+s

t+s
, so for large t both of these have law close to μ. However, the result of letting

Yt

t
evolve for an additional s time is Yt+s

t
, which is close to Yt+s

t+s
.

Let Ps be the evolution operator for the Markov process corresponding to the
generator L on R

Z [see (1)]. To prove stationarity it is enough to show that for
every 0 < s and every bounded continuous local function f : RZ → R we have∫

Psf (η) dμ(η) =
∫

f (η) dμ(η).(15)

Consider the process {Yn(t)}n∈Z started from Yn(0) = n and denote the distribution
of {Yn(t)

t
}n by νt . By Corollary 3.4 the weak limit of νt is μ which means that for

every local bounded continuous function f : RZ → R we have∫
f (η)dνt (η) −→

t→∞

∫
f (η) dμ(η).

For any fixed s ∫
Psf (η) dνt (η) −→

t→∞

∫
Psf (η) dμ(η).

But
∫

Psf (η) dνt (η) = ∫
f ( t+s

t
η) dνt+s(η) which (for any fixed s, as t → ∞)

converges to
∫

f (η)dμ(η). Now (15) and the theorem follow. �
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5. Basic properties of stationary distributions. In this section we present a
medley of simple results concerning the (T)ASEP and its stationary distributions.
These are only weakly related to each other, and are collected here for convenience.

PROPOSITION 5.1. μ is ergodic for the shift. Under Conjecture 1.9, so is
μASEP.

PROOF. Consider the setup of Corollary 1.2 and use the Harris construction
with independent standard Poisson processes Tn on the interval [0,∞) to define
yn(t) and the variables Xn(t). Then the limit process {Un}n∈Z is measurable with
respect to the σ -algebra F generated by the i.i.d. processes Tn (n ∈ Z). Since F is
generated by i.i.d. processes any translation invariant event in F has to be trivial.
But then the same thing must be true for any translation invariant event in the
σ -algebra generated by {Un}n∈Z as this is a sub-σ -algebra of F . �

There are three possible “reflections” for the ASEP. One may reverse the di-
rection of space, so that (low classed) particles flow to the left and not right; one
can consider the time reversal of the dynamics, and one can reverse the order of
classes (or keep the same generator but replace class k with −k, or N +1−k, etc.).
It is easy to see that reversal of both space and class order preserves the original
dynamics. This is called the space-class symmetry of the TASEP/ASEP.

The following proposition is the space-class symmetry of the speed process,
and follows directly from the corresponding symmetry of the ASEP process.

PROPOSITION 5.2. For the TASEP {Un}n∈Z

d= {−U−n}n∈Z. This also holds
for the ASEP, assuming Conjecture 1.9 holds.

The following observation and its corollary provide an important connection
between the distribution of the speed process and the stationary measures of multi-
type ASEP. These connections will be used to extract information on the joint
distribution of the speeds of several particles in Sections 6 and 7.

LEMMA 5.3. Let {ηn(t)}n,t be an ASEP, and let F : R → R be a nondecreas-
ing function. Then {F(ηn(t))}n,t is also an ASEP (with the same asymmetry para-
meter).

PROOF. The ASEP is defined as applying to η(t) each of the operators πn

independently at rate 1. Applying a nondecreasing function to each coordinate
commutes with every πi , hence {F(ηn(t))}n,t is just the ASEP with initial config-
uration {F(ηn(0)}n. �
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COROLLARY 5.4. If F : [−1,1] → {1, . . . ,N} is nondecreasing, then for the
TASEP the distribution of {F(Un)} is the unique ergodic stationary measure of the
multi-type TASEP with types {1, . . . ,N} and densities λi = 1

2 Leb(F−1(i)).
This also holds for the ASEP (and its corresponding multi-type stationary mea-

sure) under Conjecture 1.9.

PROOF. Let μF denote the distribution of {F(Un)}. Since μ is ergodic, so
is μF . The marginals are as claimed since each Un is uniform on [−1,1].

To prove that μF is stationary, start a TASEP Yn(t) with initial configuration
Yn(0) = Un. By Lemma 5.3 {F(Yn(t))}n,t is a N -type TASEP. Since μ is station-

ary, Y(t) also has law μ, and so {F(Yn(t))}n,t
d= {F(Yn(0))}n,t , hence μF is also

stationary.
The result for the ASEP follows the same way. �

The next proposition shows that a TASEP started with uniform i.i.d. classes
must converge to the speed process. In particular, even though classes in the i.i.d.
initial distribution are a.s. all different, the process converges to the speed process
which has infinite convoys of particles with the same class (see Section 8). Thus the
TASEP dynamics has the effect of aggregating particles with increasingly closer
speeds next to each other.

PROPOSITION 5.5. Consider a TASEP where Yn(0) are i.i.d. uniform on
[−1,1]. Then {Yn(t)}n∈Z converges weakly to μ. The same holds for the ASEP
under Conjecture 1.9

PROOF. Let νt be the distribution of Y(t) for the process Y of the lemma.
We need to show that

∫
g dνt −→

t→∞
∫

g dμ for any fixed bounded and continuous

function g : [−1,1]Z → R.
If we start the N -type TASEP with an i.i.d. product measure initial distribu-

tion then its distribution converges to an ergodic stationary measure with the same
one-dimensional marginal. (This can be shown by standard coupling arguments
introduced by Liggett; see, e.g., [12] or [13], Chapter 8.)

Using Lemma 5.3 and Corollary 1.6 it follows that for any nondecreasing
step function F on [−1,1] the process {F(Yn(t))}n converges in distribution to
{F(Un)}n.

For an integer M let FM(x) = 
Mx�
M

, which maps [−1,1] to {i/M, i ∈ [−M ,
M − 1]}. Define the operator F⊗

M on configurations, as the operator that applies
FM to each coordinate: F⊗

M(η)n = FM(ηn). Since g is continuous we can select M

such that ‖g − g ◦ F⊗
M‖∞ ≤ ε. By the triangle inequality we have∣∣∣∣∫ g dνt −
∫

g dμ

∣∣∣∣≤ 2ε +
∣∣∣∣∫ g ◦ F⊗

M dνt −
∫

g ◦ F⊗
M dμ

∣∣∣∣,
and g ◦ F⊗

M is g applied to a TASEP with finitely many types, so it can be made
smaller than ε by taking t large enough. �
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6. Two-dimensional marginals of the TASEP speed process. The key tool
for analyzing the joint densities of the speed process is Corollary 5.4. This states
that if the speed process is monotonously projected into {1, . . . , k, k + 1}, then
the result is the stationary measure of the multi-type TASEP with suitable den-
sities. In the TASEP, the latter is given in terms of the multi-line process (see
Section 2.2). More explicitly, we will use the following projections, to which we
refer as canonical projections. Let x = (x1, . . . , xk) be an increasing sequence
taking values in [0,1], with the conventions that x0 = 0 and xk+1 = 1. Define
F : [−1,1] → {1, . . . , k, k + 1} by

F(u) = Fx(u) = min{i : û < xi} where û = 1 + u

2
.

Note that if u is uniform on [−1,1], then F(u) = i with probability xi − xi−1. Let
Vi = F(Ui), so each Vi has distribution controlled by the x’s. It is not hard to see
that the σ -field generated by V1, . . . , Vk (or any k fixed indices) for all possible x’s
is the same as the σ -field of U1, . . . ,Uk .

The scheme of our argument should now be clear. The distribution of V is given
by a multi-line process, and can be computed explicitly. Considering the resulting
probabilities as functions of x allows us to recover the joint density of the corre-
sponding speeds. This last step is done by taking suitable derivatives w.r.t. xi ’s to
get the density. In order to find the joint density of k particles we work with the
k-line process. In this section we use this approach to prove results about two-
dimensional marginals of μ. We prove Theorem 1.7 which gives the joint distri-
bution of (U0,U1) and generalize this result for the joint distribution of any two
speeds. In the next section we give some results for higher-dimensional marginals.

6.1. Two consecutive speeds: U0,U1.

PROOF OF THEOREM 1.7. We compute the probability that V1 = 2 and V0
is each of 1,2,3 (recall that as the highest class particles, 3’s are equivalent to
holes). The queue of the two line process is a single, simple queue, so indices
are not needed. In order to have a second class particle at position 1 we need
an unused service. This means the queue must be empty: Q(2) = 0, and there
must be a particle at the bottom line but not at the top line in position 1. The
intersection of these events has probability x2 − x1 (as this is the density of second
class particles). More importantly, they depend only on the two-line configuration
in positions {1, . . . ,∞}. Since on this event the queue is also empty at position 1,
the class V0 depends only on the two-line configuration at position 0.

In particular, to get a first class particle, V0 = 1, the only possibility is to also
have particles in both lines in position 0. This leads to

P(V0 = 1,V1 = 2) = P

(
"!
""

∅
)

= x1x2(x2 − x1).
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We shall also denote this probability by μx(1,2) for compactness, as this is the
probability of seeing consecutive particles of classes 1,2 in the stationary mea-
sure μx. Similarly we have

μx(2,2) = P

(
!!
""

∅
)

= x1x2(x2 − x1),

μx(3,2) = P

(
�!
!"

∅
)

= x1(x2 − x1).

Here, � indicates no restriction on the top line in that position and y = 1 − y.
To calculate the densities of the two speeds we find, for example,

P(U0 < 2x1 − 1 < U1 < 2x2 − 1) = μx(1,2) = x1x2(x2 − x1).

Thus to find the density at (u0, u1) for u0 < u1 we need to take derivatives w.r.t.
x2 and x1, and set x2 = (1 + u1)/2, x1 = (1 + u0)/2. Remembering the Jacobians
(1/2) we find

P(U0 ∈ du0,U1 ∈ du1) =
(

1

2
∂x1

)(
1

2
∂x2

)
μx(1,2) = u1 − u0

4
du0 du1

for u0 < u1.

Similarly, to find the density at (u0, u1) for u0 > u1 noting that the Jacobians
now have reversed signs we find

P(U0 ∈ du0,U1 ∈ du1) =
(
−1

2
∂x1

)(
−1

2
∂x2

)
μx(3,2) = 1

4
du0 du1

for u0 > u1.

Finally, to find the (singular) density along the diagonal, consider μx(2,2) and
let x2, x1 → 1+u

2 . We have

P(U0,U1 ∈ du) = 1

2
lim

x1,x2→(1+u)/2

μx(2,2)

x2 − x1
= 1 − u2

8
du. �

6.2. Two distant speeds: U0,Uk . The two line process also yields formulae for
the joint density of two distant particles. However, the result is not as compact as
for the case of two consecutive particles.

THEOREM 6.1. For any k > 0 we have:

• The joint density of U0,Uk on {U0 > Uk} is 1/4 [so P(U0 > Uk) = 1/2].
• On {U0 < Uk} the density is a polynomial of degree 2k − 1.
• On the diagonal {U0 = Uk} the density is a polynomial of degree 2k. As k → ∞,

the density on the diagonal {(u,u) : |u| ≤ 1} is asymptotically
√

1−u2

16πk
.
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It is possible to prove exponential convergence of the density on {U0 < Uk}
to 1/4, though we do not pursue that direction here. The fact that as k → ∞ the
distributions of U0 and Uk become independent follows from ergodicity, or can be
read from (18) below.

The theorem follows easily from the next two lemmas. Let {Sn} be a random
walk with steps in {1,−1,0} with probabilities {p+,p−,p0}, and consider the
maximum process Mn = maxi≤n Si .

LEMMA 6.2. Fix 0 ≤ x < y ≤ 1, and let Sn,Mn be as above with

p+ = xy, p− = xy, p0 = xy + x y.

Then we have the following:

P(x < Ûk < y < Û0) = (y − x)y,(16)

P(Û0, Ûk ∈ [x, y]) = (y − x)xyP(Mk−1 = 0),(17)

P(Û0 < x < Ûk < y) = (y − x)xy + (y − x)xyP(Mk−1 > 0).(18)

Note that the steps of S are the difference of two Bernoulli random variables,

and therefore Sj
d= Bin(j, x) − Bin(j, y). In particular, for any fixed x < y we

have Sj
prob.−→
j→∞−∞, and asymptotically the speeds are independent.

PROOF OF LEMMA 6.2. By Corollary 5.4, P(x < Ûk < y < Û0) = μx,y(3,2)

(where μx,y the extremal stationary 3 type TASEP with densities x, y − x,1 − y).
Using the two-line description of μx,y we have V0 = 1,Vk = 2 if and only if we
see the two-line configuration

�· · ·!
!· · ·"

∅

.

Having the hole in the bottom line at position 0 has probability y and this is inde-
pendent of having a second class particle at position k.

Similarly, to have Û0, Ûk ∈ [x, y] we need the configuration

!· · ·!
"· · ·"

∅

with intermediate configuration leaving the queue empty at position 1. Let Sj be
the number of particles in the top line in positions {1, . . . , j} minus the number of
particles in the bottom line in those positions. The condition that the queue ends
up nonempty is equivalent to {max0<j<k−1 Sj ≥ 1}. The claim follows.

Finally, the third case follows from the first two since the three probabilities
must add up to P(Ûk ∈ [x, y]) = y − x. �
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LEMMA 6.3. Let Sn,Mn be as above with p+ = p−. Then P(Mn = 0) =
P(Sn ∈ {0,−1}).

PROOF. Reflection at the hitting time of 1 shows that

P(Mn > 0, Sn ≤ 0) = P(Mn > 0, Sn ≥ 2) = P(Sn ≥ 2) = P(Sn ≤ −2).

It follows that

P(Mn > 0) = P(Sn > 0) + P(Mn > 0, Sn ≤ 0) = 1 − P(Sn ∈ {0,−1}). �

PROOF OF THEOREM 6.1. The case U0 > Uk is just the double derivative of
(16).

For the case U0 = Uk , note from (17) that the density along the diagonal is

lim
x,y→û

P(Û0, Ûk ∈ [x, y])
2(y − x)

= 1 − u2

8
P(Mk−1 = 0),

where Mk−1 is the maximum of a symmetric random walk with p+ = p− = xx.
Using the prior lemma, since p+ = p− we get

P(Mk−1 = 0) = P(Sk−1 ∈ {0,−1}).
This is clearly polynomial. Using the local central limit theorem, P(Sk−1 = a) ∼

1√
4πxxk

for any a ∈ {0,−1}, and our claims follow.
For the case U0 < Uk , taking derivatives of (18) shows that the density is poly-

nomial as claimed. �

7. Multiple speeds. In this section we will prove some results about the joint
distribution of more than two speeds. In principle, any finite-dimensional marginal
of the distribution can be derived from Theorem 1.5 along the same lines as used
above for the joint distribution of U0,U1. This gives the joint distribution in terms
of the stationary measure of the multiple queue system. Some aspects of the joint
distribution have particularly nice formulae, and we proceed to present some of
these:

(1) The next subsection determines the probability that out of the first n parti-
cles a given one is the fastest.

(2) The following result shows that the speed of a fast particle is indepen-
dent from those of adjacent particles it overtakes. More precisely, if c ∈ [−1,1],
then conditioned on the event that U0 > c and U1, . . . ,Un < c, the random vector
(U1, . . . ,Un) and U0 are independent.

(3) Next, we show that on the event {U0 < U1 < · · · < Un} there is a pairwise
repulsion between the particles: the density function is given by n! times a Vander-
monde determinant.
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(4) Finally, we give the full description of the joint distribution of (U0,U1,U2).
Their distribution is absolutely continuous with respect to the Lebesgue measure
on each of the 13 subsets of [−1,1]3 corresponding to a given order of these speeds
(these include the cases where two or three speeds might be equal). In Theorem 7.7
we determine the densities on all of these subsets.

7.1. The fastest particle. As a first example, we compute the probability that
particle i will be the rightmost of {1, . . . , n} for all t > t0. This proves and gen-
eralizes a conjecture of Ferrari, Goncalves and Martin [7] that the probability of
particle 0 overtaking particles 1 through n is 2

n+2 . Note that this is not quite the
same as saying that Ui is the maximal of {U1, . . . ,Un}. Due to Lemma 9.9, this
event allows Ui = Uj for j > i but not for j < i.

THEOREM 7.1. For any n and any k ∈ [1, n]

lim
t→∞P

(
Xk(t) = max{X1(t), . . . ,Xn(t)})= 2n

(n + k − 1)(n + k)
.

LEMMA 7.2. Let X
d= Bin(m,p) and Y

d= Geom(q) be independent binomial
and geometric random variables. Then

P(Y ≤ X) = 1 − q(p + pq)m.

PROOF. We have P(Y > X) =∑
i

(m
i

)
pipm−iqi+1 = q(p + pq)m. �

PROOF OF THEOREM 7.1. Since the index of the rightmost particle (among
the set {1, . . . , n}) is nonincreasing in time, the event in the statement is equivalent
to particle k being the rightmost for all t > t0 for some t0. By Lemma 9.9, which
we prove in Section 9, particle i eventually passes particle j for i < j if and only
if Ui ≥ Uj . Thus k will eventually be the rightmost particle of particles {1, . . . , n}
if and only if Uk > Ui for 1 ≤ i < k and Uk ≥ Ui for k < i ≤ n. Call this event Ek .

As an intermediate step we will compute the probability that this happens and
Uk ∈ du for some u ∈ [−1,1]. Integrating over u will give the theorem. Fix x =
(x1, x2), 0 < x1 < x2 < 1 and consider the event Ek,x that for all i ∈ [1, n] we have
that

Ûi ∈
⎧⎨⎩

[0, x1], i < k,
[x1, x2], i = k,
[0, x2], i > k.

Thus Ek,x says that up to the partition resulting from the vector x, the event Ek

holds.
Projecting into the 2 + 1 type TASEP using Fx, Ek,x is mapped to the of event

of having k − 1 first class particles followed by a second class particle, followed
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by n − k particles of either class (but no holes). This requires in positions 1–n a
configuration of the following form:

"· · ·"!�· · ·�
"· · ·"""· · ·"

i
,

where the first hole in the top line is in position k, and the size i of the queue can
be no greater than the number of holes in the top line in positions {k + 1, . . . , n}.
Since the number of holes in the rest of the top line has the binomial distribution
Bin(n − k, x1) and the queue state is an independent Geom(x1x2

x1x2
), we find after

simplifying that

P(Ek,x) = xk−1
1 x1x

n
2 P

(
Geom

(
x1x2

x1x2

)
≤ Bin(n−k, x1)

)
= xk−1

1 x1x
n
2 −xn

1 xk−1
2 x2

(noting that q + pq of the previous lemma simplifies to x1/x2).
Taking a limit as x2, x1 → y we find

P(Ek, Ûk ∈ dy) = lim
x2,x1→y

P(Ek,x)

x2 − x1
= yn+k−2((n + 1 − k) − (n − k)y

)
dy.

Finally, integrating over y ∈ [0,1] gives

P(Ek) =
∫ 1

0
yn+k−2((n + 1 − k) − (n − k)y

)
dy = 2(n + 1)

(n + k − 1)(n + k)
. �

7.2. Independence when swapped. The following result shows that the speed
of a fast particle is independent of speeds of adjacent particles that it overtakes.

LEMMA 7.3. Fix c ∈ [−1,1] and a measurable set A ⊂ [−1, c]n. Then we
have

μ
(
U0 > c|(U1, . . . ,Un) ∈ A

)= μ(U0 > c).

Furthermore, conditioned on U0 > c and (U1, . . . ,Un) ∈ A we have that U0 is
uniform on [c,1].

PROOF. Since products of intervals span the σ -field, it suffices to prove the
analogous statement for the M-type TASEP (in fact M = n + 1 is enough). Con-
sider a TASEP measure μx where holes have density 1 − ĉ, so that speeds greater
than c correspond to holes. We need to show that for any classes i1, . . . , in < M

μx(V0 = M|V1 = i1, . . . , Vn = in) = μx(V0 = M).(19)

To show this we consider the multi-line process. There the classes of V1, . . . , Vn are
determined by the lines in positions [1,∞). On the other hand, V0 = M requires
only that BM(0) = 0, hence the independence.

To get the second claim, note that μ(U0 > c) = 1−c
2 and that (19) also applies

(with the same set A) for any c′ > c. �
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COROLLARY 7.4. The (U1, . . . ,Un)-marginal of μ has a constant density
function 2−n on the set {U1 > · · · > Un}.

PROOF. The events that the speeds are in small intervals around the ui’s are
independent. �

7.3. Repulsion when unswapped. Here we derive the density function of the
(n + 1)-dimensional marginal of μ on the event {U0 < · · · < Un}. The result is
given in terms of a Vandermonde determinant defined by

�a,b(x) = ∏
a≤i<j≤b

(xj − xi).

We start with a simple lemma about these determinants.

LEMMA 7.5. Let x0 < · · · < xn. Then

�0,n(x) = n!
∫
xi−1<yi<xi

�1,n(y)

n∏
i=1

dyi.

PROOF. We use the standard fact that �(y) is the determinant of the Vander-
monde matrix: �1,n(y) = det(yj−1

i )ni,j=1. Since the determinant is is linear in the
rows and each yi appears in a single row, we can integrate row by row to find∫

xi−1<yi<xi

�1,n(y)

n∏
i=1

dyi = det
∫
xi−1<yi<xi

(y
j−1
i )ni,j=1

n∏
i=1

dyi

= det
(

x
j
i−1 − x

j
i

j

)n

i,j=1
= 1

n! detM,

where M = (x
j
i−1 − x

j
i )ni,j=1. Extend M to an (n + 1) × (n + 1) matrix M ′ by

M ′ =

⎛⎜⎜⎜⎝
1 x0 · · · xn

0
0
...

0
M

⎞⎟⎟⎟⎠ .

Clearly detM = detM ′. However, by sequentially adding each row to the one be-
low it we find detM ′ = det(xj−1

i )ni,j=0 = �0,n(x), completing the proof. �

LEMMA 7.6. Let 0 = x0 < x1 < · · · < xn < xn+1 = 1, and μx be the corre-
sponding n + 1 type TASEP stationary measure. Let Qn be the probability that
all queues are empty at any specific location of the n line process. We have the
following:



1230 G. AMIR, O. ANGEL AND B. VALKÓ

(1) μx(2, . . . , n) = μ(Ûi ∈ [xi−1, xi] for all i ∈ [2, n]) = �1,n(x),
(2) μx(1, . . . , n) = μ(Ûi ∈ [xi−1, xi] for all i ∈ [1, n]) = �0,n(x),
(3) The density of Û1, . . . , Ûn on the event U1 < · · · < Un is n!�1,n(û);
(4) Qn = �1,n(x)∏n

i=1 xi−1
i xn−i

i

.

PROOF. The proof is by induction on n. For n = 1, claims (1) and (4) are
trivially true, and (2), (3) hold since the speeds are uniformly distributed.

The key observation is that the only n-line configuration giving particles of
classes 1, . . . , n is

"!!· · ·!!
""!· · ·!!
"""· · ·!!
...

...
...
. . .

...
...

"""· · ·"!
"""· · ·""

∅,...,∅

(with all queues empty). Since the queue state is independent of the configuration
in these positions, we find

μx(1, . . . , n) = Qn

n∏
i=1

xi
i x

n−i
i .

This implies equivalence of claims (2) and (4).
Similarly, the only configuration giving particles of types 2, . . . , n is

!!· · ·!!
"!· · ·!!
""· · ·!!
...

...
. . .

...
...

""· · ·"!
""· · ·""

∅,...,∅

.

This implies equivalence of claims (1) and (4) [since �0,n(x) = �1,n(x)
∏

xi ].
Next, we argue that claims (2) and (3) are equivalent. Claim (2) follows from (3)

by Lemma 7.5. Claim (2) also implies claim (3), since the density is the multiple
derivative

∏n
i=1

∂
∂xi

of the probability of claim (2).
Thus for any given n, the four claims are all equivalent. To complete the proof

(by induction) we note that claim (3) for a given n implies claim (1) for n+1. This
also follows from Lemma 7.5 in the same way as claim (2). �

7.4. Joint densities for 3 consecutive particles. This section contains the com-
plete description of the joint distribution of (U0,U1,U2). The distribution is ab-
solutely continuous with respect to the Lebesgue measure on each of the 13 subsets
of [−1,1]3 corresponding to a given order of these speeds (these include the cases
where two or all three speeds might be equal). In Theorem 7.7 we determine the
densities on all of these subsets.
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TABLE 2
Joint densities of (U0,U1,U2) according to their relative order

Order Density

u0 < u1 < u2
3
32 (u2 − u1)(u1 − u0)(u2 − u0)

u0 < u2 < u1
1
32 (u2 − u0)(2 + 4u1 − 3u2 − 3u0)

u1 < u0 < u2
1
32 (u2 − u0)(2 + 3u2 + 3u0 − 4u1)

u1 < u2 < u0
1
8 (u2 − u1)

u2 < u0 < u1
1
8 (u1 − u0)

u2 < u1 < u0
1
8

u0 = u1 < u2
1
64 (u2 − u1)(1 − u2

1)(2 + 3u2 − u1)

u0 < u1 = u2
1
64 (u1 − u0)(1 − u2

1)(2 − 3u0 + u1)

u1 < u0 = u2
1
16 (u2 − u1)(1 − u2

2)

u0 = u2 < u1
1
16 (u1 − u0)(1 − u2

0)

u1 = u2 < u0
1
16 (1 − u2

1)

u2 < u0 = u1
1
16 (1 − u2

1)

u0 = u1 = u2
1
32 (1 − u2

0)2

THEOREM 7.7. The joint distribution of U0,U1,U2 is given by Table 2,
arranged according to their relative order.

PROOF. Fix 0 < x1 < x2 < x3 < 1. Define F = Fx as above, and Vi = F(Ui).
To calculate the densities of the various simplices and facets, we calculate partly
the distribution of V , and take suitable derivatives and limits. It is interesting to
note that there are several possible class configurations for each case. For example,
the case {U0 < U1 < U2} can be deduced from each of μx(1,2,3), μx(1,2,4),
μx(1,3,4) and μx(2,3,4). Careful choice of the cases to consider can simplify
the computations significantly.

Not all cases need to be worked out. Space-class symmetry reduces several
cases to others. Theorem 1.7, Lemmas 7.3 and 7.6 and Corollary 7.4 imply several
cases. Thus even though all 13 cases can be computed using this method, only 4
are essentially new and proved below.

Table 3 summarizes the proofs for the 13 weak orders of U0,U1,U2. Here,
�(x) = �1,3(x).

The case {U0 < U1 < U2} is a special case of Lemma 7.6, while the case
{U2 < U1 < U0} is a special case of Corollary 7.4. The cases {U1 < U2 < U0}
and {U1 = U2 < U0} follow from joint distribution of U1,U2 (Theorem 1.7) to-
gether with Lemma 7.3. Each of the five cases {U2 < U0 < U1}, {U1 < U0 < U2},
{U0 < U1 = U2}, {U0 = U2 < U1} and {U2 < U0 = U1} follows by space-class
symmetry (Proposition 5.2) from the cases {U1 < U2 < U0}, {U0 < U2 < U1},
{U0 = U1 < U2}, {U1 < U0 = U2} and {U1 = U2 < U0}, respectively.
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TABLE 3
Main ingredients for the proofs of the joint densities in Theorem 7.7

Order V μx(V ) Remarks

U0 < U1 < U2 1,2,3 x1x2x3�(x) Lemma 7.6

U0 < U2 < U1 2,4,3 (x1 + x2)x3�(x) New

U1 < U0 < U2 2,1,3 x1(x2 + x3)�(x) Space-class symmetry

U1 < U2 < U0 4,2,3 x3�(x) Theorem 1.7, Lemma 7.3

U2 < U0 < U1 2,3,1 x1�(x) Space-class symmetry

U2 < U1 < U0 3,2,1 x1(x2 − x1)(x3 − x2) Corollary 7.4

U0 = U1 < U2 2,2,3 x1x2x3�(x) New

U0 < U1 = U2 2,3,3 x1x2x3�(x) Space-class symmetry

U1 < U0 = U2 3,2,3 x2x3�(x) New

U0 = U2 < U1 2,3,2 x1x2�(x) Space-class symmetry

U1 = U2 < U0 4,2,2 x1x2x3(x2 − x1) Theorem 1.7, Lemma 7.3

U2 < U0 = U1 3,3,1 x1x2x3(x3 − x2) Space-class symmetry

U0 = U1 = U2 2,2,2 x2
1x2

2 (x2 − x1) New; Theorem 1.8

It therefore remains to prove just 4 cases: {U0 < U2 < U1}, {U0 = U1 < U2},
{U1 < U0 = U2} and {U0 = U1 = U2}.

For the case {U0 < U2 < U1}, we compute μx(2,4,3). The only 3 line configu-
rations that give these types are

�!!
!"!
"!"

∅,∅

and
!!!
"�!
"!"

∅,∅

.

Therefore

μx(2,4,3) = x2
1x2x2x

2
3x3(x1 + x2)μx(empty queues)

= x2
1x2x2x

2
3x3(x1 + x2)

�1,3(x)

x2
1x2x2x

2
3

= x3(x1 + x2)�1,3(x).

Taking derivatives we find the density of Û0, Û1, Û2 in the domain {U0 < U2 < U1}
is

−∂

∂x3

∣∣∣∣
x3=û1

−∂

∂x2

∣∣∣∣
x2=û2

−∂

∂x1

∣∣∣∣
x1=û0

μx(2,4,3) = (û1 − û2)(2 + 4û1 − 3û0 − 3û2).

A linear change of variables gives the formula in terms of u1, u2, u3.
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For the case {U0 = U1 < U2}, we consider μx(2,2,3). The only three-line con-
figuration giving this result is

!!!
""!
"""

∅,∅

.

Thus

μx(2,2,3) = x3
3x2

2x2x
3
1μx(empty queues) = x1x2x3�1,3(x).

Taking a derivative w.r.t. x3 and letting x2 → x1 gives the density of the Ûi’s to be

lim
x1,x2→û0

1

x2 − x1

−∂

∂x3

∣∣∣∣
x3=û2

μx(2,2,3) = û0û0(û2 − û0)(3û2 − û0).

As above, a change of variables gives the claim.
For the case {U1 < U0 = U2} we consider μx(3,2,3). The three-line configura-

tions giving these classes are of the form

�!!
!"!
"""

∅,∅

and therefore

μx(3,2,3) = x2x3�1,3(x).

Finally, the case {U0 = U1 = U2} is related to the convoys studied in Section 8.
Indeed, the formula follows from the density of U0,U1 and the result that convoys
are renewal processes. A more direct approach follows. As there are no third-
class particles in this case, we will use the projection into the 2 + 1 type TASEP
using only x1, x2 (or equivalently, x3 = x2). The only two-line configuration giving
classes (2,2,2) is

!!!
"""

∅

and therefore

μx(2,2,2) = x2
1x

2
2(x2 − x1).

Dividing by x2 − x1 and taking a limit x2 → x1 gives the density x2
1x2

1. �

8. Convoys. The convoy phenomenon is the fact that even though each par-
ticle’s speed is uniform on [−1,1], any two particles have positive probability of
having equal speeds. Indeed, a.s. there will be infinitely many particles with the
same speed as any given particle. We refer to such sets of particles as convoys.
Thus Z is partitioned in some translation invariant way into disjoint infinite con-
voys.

Let Ck = {n :Un = Uk} denote the convoy of particle k, that is, all particles with
the same speed as k. We will restrict ourselves here to the study of a single convoy,
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though the multi-line description of the multi-type stationary distribution can in
principle be used to understand the joint distribution of several convoys.

PROOF OF THEOREM 1.8. Partition the particles into three classes, with
thresholds x = (u,u+ε). The stationary measure μx has particles of classes 1,2,3
with respective densities u, ε,1 − u − ε. It is known that the second class parti-
cles form a renewal process. The key to the proof is (as above) to condition on
Û0 ∈ [u,u + ε] and let ε → 0.

Consider the two line process giving μx, and let Tk, Sk be the counting functions
of particles in the top and bottom lines, respectively, so that Tk is the number of
particles in (0, k] in the top line. We may extend S,T to negative k by having Sk

be minus the number of particles in (−k,0] and similarly for Tk . It is clear that
{Sk}, {Tk} are random walks with {0,1} steps with P(Sk+1 − Sk = 1) = u + ε and
P(Tk+1 − Tk = 1) = u. Let V ∈ {1,2,3}Z denote the resulting configuration with
the stationary distribution with these densities.

The two-line collapsing procedure implies the identity

{V1 = 2} =
{
S1 = 1, T1 = 0,min

k>0
Sk − Tk > 0

}
=
{
min
k>0

Sk − Tk > 0
}

(since S0 = T0 = 0). Further, Vk = 2 if and only if Sk − Sk−1 = 1, Tk − Tk−1 = 0
and min�≥k S� − T� = Sk − Tk . This suggests looking at the random walk Rk =
Sk − Tk , with steps with distribution

P(Rk+1 − Rk = x) =
⎧⎨⎩

u(u + ε), x = 1,
u(u + ε) + uu + ε, x = 0,
uu + ε, x = −1.

Having the second class particle at 1 implies that R stays positive, while its
drift is O(ε). As ε → 0 the distribution of R converges (in the product topology
for sequences) to a random walk conditioned to stay positive for all n > 0 with
step distribution

P(Rk+1 − Rk = x) =
{

uu, x = ±1,
u2 + u2, x = 0.

Thus R is a lazy simple random walk, and the only effect of u is through the
probability of making a nonzero move. Having a second class particle at 1 does
not depend on values of Rn for n < 0, and this is also the case in the limit as
ε → 0.

This random walk conditioned to stay positive will a.s. tend to ∞ as n → ∞.
Furthermore, if we take u = Û0 then as ε → 0 the second class particles are exactly
at k with Uk = U0. In particular, the convoy C1 is equal in law to the times of the
last visits of R to any value

C1 = {n :m ≥ n �⇒ Rm ≥ Rn}.
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The claim that the convoys are renewal processes follows either from the corre-
sponding fact about the times of last visits of R conditioned to remain positive, or
from the fact that for any ε > 0 the second class particles form a renewal process.

If the random walk were just a simple random walk (not lazy) then the proba-
bility of having a jump of length 2k + 1 (as even lengths are impossible) would
be p2k+1 = 2−(2k+1) 1

k+1

(2k
k

)
. The laziness of the random walk implies that the

distance from a particle to the next in a convoy with speed u is a sum of K geo-
metric random variables with mean 1/(2uu) where P(K = 2k + 1) is as above. In
particular, P(dist = m) � c

uum3/2 . �

EXAMPLE 8.1. Consider P(U0 = U1 = · · · = Un). The probability that all
these speeds are in some infinitesimal du is

P(Û0, . . . , Ûn ∈ du) = (uu)n du.

(This can be seen easily from the corresponding density uudu for two particles
and the renewal property.) Integrating gives

P(U0 = · · · = Un) = n!2
(2n + 1)! .

9. Joint distribution—ASEP. We present two variations of our argument.
The first is restricted to considering the probability that two adjacent particles are
unswapped at large time. This event is roughly equivalent to {U0 < U1}, with some
contribution from {U0 = U1}.

The second variation came from an attempt to extract the complete joint distri-
bution of two speed. For the ASEP it is less successful than form the TASEP, and
is also conditional on a.s. existence of the speeds process.

9.1. Swap probabilities. The key to our analysis of swap probabilities in the
ASEP is to double count swaps happening until time t . Let R(t) be the expected
number of particles j > 0 that are swapped with 0 at time t , that is,

R(t) = E#{j > 0 :X0(t) > Xj(t)}.
Recall the time t speed process U(t) is defined by Ui(t) = Xi(t)−i

t
. Define the

empiric time t measure νt by

νt = 1

t

∑
i

δi/t,Ui(t).

The following is equivalent to the standard hydrodynamic limit theorem for the
ASEP started with the Riemann initial condition.

LEMMA 9.1. Almost surely 2ρνt converges weakly to the Lebesgue measure
on R × [−ρ,ρ].
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The following simple fact is frequently useful.

LEMMA 9.2. Let X1, X2 be topological spaces and (X(t), Y (t)), t ≥ 0 be

random variables on the product space X1 × X2. Suppose that X(t)
prob.−→
t→∞x and

Y(t)
dist−→

t→∞Y where x ∈ X1 and Y is an X2-valued random variable. Then the joint

limit also holds (X(t), Y (t))
dist−→

t→∞(x,Y ).

The application in our case involves X(t) = νt , which converges in probability
to Lebesgue measure on a stripe (in the space of measures) and Y(t) = U0(t)

which tends to U0. The conclusion implies that the hydrodynamic limit also holds
conditioned on U0.

The next lemma determines the asymptotic value of R(t).

LEMMA 9.3. R(t) ∼ ρt/3.

PROOF. Particle 0 has swapped with particle j > 0 if and only if Xj(t) <

X0(t), which can be written as

Uj(t) < U0(t) − j

t
.

It follows that
R(t)

t
= E

[
νt

({(x, y) : 0 < x < U0(t) − y})].
Now, Lemma 9.2 (see the subsequent discussion) shows that we can take a joint
limit as U0(t) converges in distribution to uniform on [−ρ,ρ], and νt converges
weakly in probability to a fixed measure which is 1/(2ρ) times Lebesgue on a
strip. Thus

lim
t→∞

R(t)

t
= E

[
1

2ρ
Leb

({(x, y) : 0 < x < U − y, y ≥ −ρ})]

= E
(U + ρ)2

4ρ
= ρ

3
. �

Consider now the following probability (Theorem 1.4 shows that the two defin-
itions are equivalent):

Q(t) = P
(
X0(t) < X1(t)

)= P
(
Y0(t) < Y1(t)

)
.(20)

Q(t) measures the probability that particles 0 and 1 are unswapped at time t—our
present objective.

LEMMA 9.4. Q(t) is monotone decreasing in t .
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PROOF. Condition on all events except those involving particles {0,1}, and
denote this σ -field by F0,1. Recall that J0,1(t) denotes the time 0 and 1 spends
next to each other up to time t and note that J0,1(t) is measurable in F0,1. Then by
(4) we have P(X0(t) < X1(t)|F0,1) = p + pe−J0,1(t). Since J0,1(t) is increasing,
Q(t) = p + pEe−J0,1(t) is decreasing. �

LEMMA 9.5. For any t we have d
dt

R(t) = pQ(t) − pQ(t) = p + Q(t) − 1.

PROOF. Let r+
i (t) [resp., r−

i (t)] be the probability that at time t particle i has
a larger indexed particle to its right (resp., left). By translation invariance these do
not depend on i. R(t) is the expectation of a random variable which increases by
one with rate p if the particle at X0(t) + 1 has a positive index and decreases by
one with rate p if the particle at X0(t) − 1 has a positive index. Thus we have

d

dt
R(t) = pr+

0 (t) − pr−
0 (t).(21)

Consider the set A of i with a higher particle to i’s right, and the set B =
{n :Yn(t) < Yn+1(t)}. By translation invariance, the density of A is r+

0 (t), and the
density of B is Q(t). There is a bijection between the sets, mapping i ∈ A to
Xi(t) ∈ B . Applying the mass transport principle (see, e.g., [14]), to the trans-
portation of a unit mass from each i ∈ A to Xi(t) ∈ B we find that r+

0 (t) = Q(t).
The same argument shows r−

0 (t) = Q(t). �

PROOF OF THEOREM 1.12. Combining the previous three lemmas gives that

ρ/3 = lim
t→∞p + Q(t) − 1

(where the limit exists due to the monotonicity proved in Lemma 9.4). Hence
limt→∞ Q(t) = 2−p

3 . �

9.2. Joint density. Throughout this subsection we assume Conjecture 1.9. Un-
der this assumption we can talk about the eventual speed of a particle, and we know
that for large t the empiric speed approximates the eventual speed. We consider the
quantity

Ra,b(t) = E

[ ∞∑
j=1

1{Uj < a,X0(t) > Xj(t)} · 1[U0 > b]
]
,

Ra,b(t) = ∑
j>0

P
(
U0 > b,Uj < a,X0(t) > Xj(t)

)
.

Thus we ask for 0 to have speed at least b and count particles of speed at most a

that it overtakes by time t . This is of interest for any pair −ρ < a < b < ρ.
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LEMMA 9.6. Assume Conjecture 1.9 holds. Then

Ra,b(t) ∼ t

∫ a

−ρ

∫ ρ

b

y − x

4ρ2 dy dx = (ρ + a)(ρ − b)(2ρ + b − a)

8ρ2 t.

Note: this essentially says that the contribution to Ra,b from 0 having speed y

(or in dy) and j ’s that have speed x is roughly y−x

4ρ2 t .

PROOF OF LEMMA 9.6. Each particle moves at rate at most 1, so we have
P(X0(t) > Xj(t)) < P(Poi(2t) ≥ j). This implies that

Ra,b(t) = o(1) +
3t∑

j=1

P
(
U0 > b,Uj < a,X0(t) > Xj(t)

)
.

The probability that any particle deviates at time t by more than ε from its eventual
speed is o(1). It follows that

Ra,b(t) = o(t) +
3t∑

j=1

P
(
U0(t) > b,Uj (t) < a,X0(t) > Xj(t)

)
.

From here on we argue as in the proof of Lemma 9.3. The hydrodynamic limit
shows that Ra,b(t) is asymptotically close to what it would be if the speeds were
independent uniform on [−ρ,ρ]
1

t
Ra,b(t) = o(1) + E

[
1{U0(t) > b} · νt

{
(x, y) :x ∈ (

0,U0(t) − y
)
, y < a,x < 3

}]
= o(1) + 1

2ρ
E
[
1{U0(t) > b}

× Leb
{
(x, y) :x ∈ (

0,U0(t) − y
)
,−ρ ≤ y < a

}]
= o(1) + 1

4ρ2 E[1{U0(t) > b} · (2U0 + ρ − a)(a + ρ)].
Simple integration completes the proof. �

Let Qa,b(t) be the probability of having at time t , in positions 0,1 two particles
of speeds in [b,1] and [−1, a], respectively,

Qa,b(t) = P
(
UY0(t) > b and UY1(t) < a

)
.

We also let Q̃a,b(t) be the probability of having the same speeds but exchanged

Q̃a,b(t) = P
(
UY0(t) < a and UY1(t) > b

)
.

LEMMA 9.7. Assume Conjecture 1.9 holds. Then for any a, b, t

d

dt
Ra,b(t) = (

pQa,b(t) − pQ̃a,b(t)
)
.
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PROOF. This is an analogue of Lemma 9.5. Ra,b(t) is the expected size of the
set of j ’s that are swapped with 0 at time t (with some constraints on U0,Uj ).
This set increases when 0 has speed at least b and swaps with a particle of speed at
most a. Using ergodicity and translation invariance, just as in Lemma 9.5, we find
that the expected rate at which j ’s are added to the set is pQa,b(t). Similarly, the
expected rate at which elements are removed from the set is pQ̃a,b(t). The claim
follows. �

Recall that we denote by μ(2) the joint distribution of U0,U1 which we assume
exists.

LEMMA 9.8. Assume Conjecture 1.9 holds. Then

lim
t→∞Qa,b(t) = μ(2)(U0 < −b and U1 > −a),

lim
t→∞ Q̃a,b(t) = μ(2)(U1 < −b and U0 > −a).

PROOF. Using A ≈ B for A − B −→
t→∞ 0, we have

Qa,b(t) = P
(
UY0(t) > b and UY1(t) < a

)
≈ P

(
UY0(t)(t) > b and UY1(t)(t) < a

)
by convergence

= P
(
Y0(t) < −bt and Y1(t) > 1 − at

)
since XYj (t)(t) = j

= P
(
X0(t) < −bt and X1(t) > 1 − at

)
by symmetry

= P
(
U0(t) < −b and U1(t) > −a

)
by definition

≈ P(U0 < −b and U1 > −a) by convergence,

Q̃ is dealt with similarly. �

PROOF OF THEOREM 1.13. Combining the above lemmas and taking the limit
as t → ∞ we find that∫ a

−ρ

∫ ρ

b

y − x

4ρ2 dy dx = pμ(2)(U0 < −b,U1 > −a) − pμ(2)(U1 < −b,U0 > −a)

= (
pμ(2) − pμ̃(2))(A),

where A = [−ρ,−b) × (−a,ρ]. These rectangles determine the measure pμ(2) −
pμ̃(2) in the set {(x, y) :−ρ ≤ x < y ≤ ρ}, and differentiating with respect to a

and b gives the statement of the theorem. �
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9.3. Equal speeds imply interaction.

PROOF OF THEOREM 1.14. Since we have that {J0,1 = ∞} ⊂ {U0 = U1}, it
suffices to to prove that P(U0 = U1, J0,1 < ∞) = 0.

In the case of the TASEP the proof is very simple. From Theorem 1.12 we
know that the probability that particles 0 and 1 never swap is 1/3. On the other
hand, Theorem 1.7 implies that P(U0 < U1) = 1/3, and clearly on this event they
never swap. Thus P(swap|U0 ≥ U1) = 1, and the result follows.

The argument for the ASEP mirrors the above, but is more delicate. Theo-
rem 1.13 takes on the role of Theorem 1.7. Start with

2 − p

3
= limQ(t) = lim

t→∞P
(
X0(t) < X1(t)

)
= lim

t→∞P
(
X0(t) < X1(t), J0,1 < ∞)+ P

(
X0(t) < X1(t), J = ∞)

(22)

= P
(
eventually X0(t) < X1(t)

)+ pP(J0,1 = ∞).

We also have

P
(
eventually X0(t) < X1(t)

)
(23)

= P(U0 < U1) + E
[
1[U0 = U1]1[J0,1 < ∞](p + pe−J0,1)

]
.

[Compare with (4) and the discussion around it.] Combining (22) and (23) and
noting that P(J0,1 = ∞) = P(J0,1 = ∞,U0 = U1) we get

2 − p

3
= P(U0 < U1) + pP(U0 = U1)

(24)
+ E

[
1[U0 = U1]1[J0,1 < ∞]pe−J0,1

]
.

On the other hand, integrating Theorem 1.13 gives

2p − 1

3
= pP(U0 < U1) − pP(U0 > U1),

which implies

2 − p

3
= P(U0 < U1) + pP(U0 = U1).

Together with (24) this implies

E
[
1[U0 = U1]1[J0,1 < ∞]pe−J0,1

]= 0,

and so P(U0 = U1, J0,1 < ∞) = 0 as needed. �

This can be extended to other particles with equal speeds. Let Ji,j be the total
time that particles i and j are in adjacent positions.
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LEMMA 9.9. For any k > i, a.s.

k = min{j > i :Uj = Ui} �⇒ Ji,k = ∞.

Consequently, in the TASEP every two particles in the same convoy swap eventu-
ally.

PROOF. Clearly this only depends on k − i. We proceed by induction on k − i.
For k = i+1 this is just Theorem 1.14. The key to the induction step is to show that
if U0 �= U1 then there is a transformation of the probability space that swaps the
eventual trajectories of 0 and 1 (and hence their speeds), keeps all other trajectories
the same, and has finite Radon–Nikodym derivative. It follows that applying this
transformation results in an absolutely continuous measure for the trajectories. If
we assume the lemma for k and 1, then

P(k = min{j > 1 :Uj = U1} and J1,k < ∞) = 0,

and hence by absolute continuity the result holds for k,0.
Recall the σ -field F0,1 of the trajectories of all particles except 0 and 1. If

U0 > U1 the transformation just eliminates all interactions between 0 and 1. This
has the effect of exchanging their trajectories from some point on. Given F0,1,
the probability of no interaction between 0 and 1 is e−J0,1 . The Radon–Nikodym
derivative is at most eJ0,1 < ∞ (on U0 �= U1).

If U0 < U1 we define the transformation as follows: consider the first time τ

at which either 0 or 1 swaps with some other particle, and replace all interactions
between 0 and 1 by a unique interaction between 0 and 1 at a time uniform on
[0, τ ]. In the ASEP, we make this new interaction exchange 0 and 1. The probabil-
ity of this pattern of interactions between 0 and 1, given F0,1 is pτe−J0,1 , thus the
Radon–Nikodym derivative in this case is at most eJ0,1/(pτ) < ∞.

Finally, in the TASEP, since any pair of consecutive particles in a convoy a.s.
swap and particles never unswap, it follows that all pairs eventually swap. �
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