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FAST TRANSPORT ASYMPTOTICS FOR STOCHASTIC RDES
WITH BOUNDARY NOISE

BY SANDRA CERRAI1 AND MARK FREIDLIN2

University of Maryland

We consider a class of stochastic reaction-diffusion equations also hav-
ing a stochastic perturbation on the boundary and we show that when the
diffusion rate is much larger than the rate of reaction, it is possible to replace
the SPDE by a suitable one-dimensional stochastic differential equation. This
replacement is possible under the assumption of spectral gap for the diffusion
and is a result of averaging in the fast spatial transport. We also study the
fluctuations around the averaged motion.

1. Introduction. In classical chemical kinetics, the evolution of concentra-
tions of various components in a reaction is described by ordinary differential
equations. Such a description turns out to be unsatisfactory in a number of ap-
plications, especially in biology (see [12]).

There are several ways to construct a more adequate mathematical model. If the
reaction is fast enough, one should take into account that the concentration is not
constant in space in the volume where the reaction takes place. Then, the change of
concentration due to spatial transport should be taken into account and the system
of ODEs should be replaced by a system of PDEs of reaction-diffusion type. In
some cases, one should also take into account random changes in time of the rates
of reaction. Then, the ODE is replaced by a stochastic differential equation. If
the rates change randomly not just in time but also in space, then evolution of
concentrations can be described by a system of SPDEs.

On the other hand, the rates of chemical reactions in the system and the diffusion
coefficients may, and as a rule do, have different orders. Some of them are much
smaller than others and this allows one to apply various versions of the averaging
principle and other asymptotic methods, thereby eventually obtaining a relatively
simple description of the system.

In this paper, we study the case where the diffusion rate is much larger than
the rate of reaction and we show that in this case, it is possible to replace SPDEs
of reaction-diffusion type by suitable SDEs. Such an approximation is valid, in

Received July 2008; revised June 2009.
1Supported in part by NSF Grant DMS-09-07295.
2Supported in part by NSF Grant DMS-08-03287.
AMS 2000 subject classifications. 60H15, 60F99, 35R60, 35K57.
Key words and phrases. Multiscaling limits for stochastic reaction-diffusion equations, boundary

noise, invariant measures, spectral gap, averaging.

369

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/10-AOP552
http://www.imstat.org
http://www.ams.org/msc/


370 S. CERRAI AND M. FREIDLIN

particular, if the reaction occurs only on the boundary of the domain (this means
that the nonlinearity is included in the boundary conditions). This replacement is
a result of averaging in the fast spatial transport. We would like to stress that our
approach allows us also to calculate the main terms of deviations of the solution
of the original problem from the simplified model. Notice, moreover, that the case
where the diffusion coefficients and some of the reaction rates are large compared
with other rates can be considered in a similar way.

More precisely, we are dealing with the following class of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε

∂t
(t, x) = 1

ε
Auε(t, x) + f (t, x, uε(t, x))

+ g(t, x, uε(t, x))
∂wQ

∂t
(t, x), t ≥ 0, x ∈ D,

1

ε

∂uε

∂ν
(t, x) = σ(t, x)

∂wB

∂t
(t, x), t ≥ 0, x ∈ ∂D,

uε(0, x) = u0(x), x ∈ D,

(1.1)

for some 0 < ε � 1. These are reaction-diffusion equations perturbed by a noise of
multiplicative type, where the diffusion term A is multiplied by a large parameter
ε−1 and a noisy perturbation is also acting on the boundary of the domain D.

Here, D is a bounded open subset of R
d , with d ≥ 1, having a regular boundary

(for more details, see Section 2) and, in the case d = 1, we take D = [a, b]. A is a
uniformly elliptic second order operator and ∂/∂ν is the corresponding conormal
derivative. This is why the same constant ε−1, which is in front of the operator A,
is also present in front of the conormal derivative ∂/∂ν. In what follows, we shall
denote by A the realization in L2(D) of the differential operator A, endowed with
the conormal boundary condition.

The coefficients f,g : [0,∞) × D × R → R are assumed to be measurable and
satisfy a Lipschitz condition with respect to the third variable, uniformly with re-
spect to the first two variables, and the mapping σ : [0,∞) × ∂D → R is bounded
with respect to the space variable.

The noisy perturbations are given by two independent cylindrical Wiener
processes, wQ and wB , defined on the same stochastic basis (�, F , Ft ,P), which
take values on L2(D) and L2(∂D), respectively, and have covariance operators
Q ∈ L+(L2(D)) and B ∈ L+(L2(∂D)), respectively.2 In space dimension d = 1,
we can take Q equal to the identity operator so that we can deal with space–time
white noise. Moreover, as L2({a, b}) = R

2, in space dimension d = 1, we do not
assume any condition on B .

Stochastic partial differential equations with a noisy term also acting on the
boundary have been studied by several authors; see, for example, da Prato and
Zabczyk [3], Freidlin and Wentzell [6] and Sowers [10]. The last two mentioned

2Here, and in what follows, given any Banach space E, we denote by L(E) the Banach space of
bounded linear operators on E and by L+(E) the subspace of nonnegative and symmetric operators.
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papers also deal with some limiting results with respect to small parameters ap-
pearing in front of the noise. However, the limiting results which we are studying
in the present paper seem to be completely new and we are not aware of any previ-
ous results dealing with the same sort of multiscaling problem, even in the simpler
case of homogeneous boundary conditions (i.e., σ = 0).

As mentioned above, our interest is in studying the limiting behavior of the so-
lution uε of problem (1.1) as the parameter ε goes to zero, under the assumption
that the diffusion Xt associated with the operator A, endowed with the conormal
boundary condition [this corresponds to a diffusion Xt on some probability space
(�̂, F̂ , F̂t , P̂) which reflect on the boundary of D], admits a unique invariant mea-
sure μ and a spectral gap occurs. That is, for any h ∈ L2(D,μ),∫

D

∣∣∣∣Êxh(Xt) −
∫
D

h(y)μ(dy)

∣∣∣∣
2

μ(dx) ≤ ce−2γ t
∫
D

|h(y)|2μ(dy)

for some constant γ > 0. This can be expressed in terms of the semigroup etA

associated with the diffusion Xt , by saying that∣∣∣∣etAh −
∫
D

h(x)μ(dx)

∣∣∣∣
L2(D,μ)

≤ ce−γ t |h|L2(D,μ).(1.2)

Moreover, as shown in Remark 2.1, the space L2(D) is continuously embedded
into L2(D,μ).

Our aim is to prove that equation (1.1) can be replaced by a suitable one-
dimensional stochastic differential equation, whose coefficients are obtained by
averaging the coefficients and the noises in (1.1) with respect to the invariant mea-
sure μ. More precisely, for any h ∈ L2(D,μ), we define

F̂ (t, h) =
∫
D

f (t, x, h(x))μ(dx), t ≥ 0,

and for any h ∈ L2(D,μ), z ∈ L2(D) and k ∈ L2(∂D), we define

Ĝ(t, h)z =
∫
D

g(t, x, h(x))z(x)μ(dx), t ≥ 0,

and

�̂(t)k = δ0

∫
D

Nδ0[σ(t, ·)k](x)μ(dx), t ≥ 0,

where Nδ0 is the Neumann map associated with A and δ0 is a suitable constant (see
Section 2, [8] and [9] for definitions). We prove that for any t ≥ 0, the mappings
F̂ (t, ·) :L2(D,μ) → R and Ĝ(t, ·) :L2(D,μ) → L2(D) are both well defined and
Lipschitz continuous, and �̂(t) ∈ L2(∂D), so that the stochastic ordinary differen-
tial equation⎧⎨

⎩
dv(t) = F̂ (t, v(t)) dt + Ĝ(t, v(t)) dwQ(t) + �̂(t) dwB(t),

v(0) =
∫
D

u0(x)μ(dx),
(1.3)
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admits, for any T > 0 and p ≥ 1, a unique strong solution u ∈ Lp(�;C([0, T ]))
which is adapted to the filtration of the noises wQ and wB . Notice that (1.3) is
a one-dimensional stochastic equation, in the sense that the space variables have
disappeared. In Section 4, we show that it can be rewritten as

dv(t) = F̂ (t, v(t)) dt + 
(t, v(t)) dβt ,

where βt is a standard Brownian motion and the diffusion coefficient 
 is explic-
itly given in terms of Q, G, B and �.

When we say that equation (1.1) can be replaced by (1.3), we mean that the
solution uε of (1.1) can be approximated by the solution v of (1.3) in the following
sense:

lim
ε→0

E sup
t∈[δ,T ]

∣∣∣∣
∫
D

|uε(t, x) − v(t)|2μ(dx)

∣∣∣∣
p

= 0(1.4)

for any fixed 0 < δ < T and p ≥ 1/2.
In order to prove (1.4), we first have to prove that for any fixed ε > 0, equation

(1.1) admits a unique adapted mild solution in Lp(�,C([0, T ];L2(D))), that is,
there exists a unique adapted process uε such that

uε(t) = etA/εu0 +
∫ t

0
e(t−s)A/εF (s, uε(s)) ds +

∫ t

0
e(t−s)A/εG(s,uε(s)) dwQ(s)

+ wε
A,B(t),

where wε
A,B(t) is the boundary term (the stochastic boundary convolution)

wε
A,B(t) = (δ0 − A)

∫ t

0
e(t−s)A/εNδ0[�(s) dwB(s)], t ≥ 0

(here, and in what follows, F and G denote the composition/multiplication opera-
tors associated with f and g, resp.). In particular, we have to show that the above
term is well defined in Lp(�,C([0, T ];L2(D))). Concerning the notion of mild
solutions and existence and uniqueness results for SPDEs like (1.1), with fixed
ε > 0, we refer to Da Prato and Zabczyk [3]. However, we would like to stress
that in the present paper, we are not imposing the Hilbert–Schmidt condition on
the covariance operators Q and B , and this makes the treatment of the stochastic
convolution and of the stochastic boundary convolution more complicated, in view
also of the a priori estimates with respect to ε > 0.

Actually, once we have a unique adapted mild solution uε for (1.1), we prove
an a priori estimate of the following type:

sup
ε∈(0,1]

E|uε(t)|pC([0,T ];L2(D))
≤ cT ,p

(
1 + |u0|pL2(D)

)
.

Due to (1.2), this allows us to proceed to the proof of (1.4).
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After we have proven (1.4), in the final section, we study the fluctuations of uε

from v. Namely, we introduce the random field

zε(t, x) := uε(t, x) − v(t)√
ε

, (t, x) ∈ [0,+∞) × D,

and show that, under the assumption that the noisy perturbation in (1.1) is of addi-
tive type (i.e., the diffusion coefficient g is independent of u), for any t > 0,

zε(t) ⇀ I0(t) in L2(D,μ), ε ↓ 0,

where I0(t, x) is the Gaussian random field taking values in L2(D,μ) for any
t > 0, defined by

I0(t, x) :=
∫ ∞

0

(
esAG(t) dwQ(s, x) − 〈Ĝ(t), dwQ(s)〉L2(D)

)

+
∫ ∞

0

(
(δ0 − A)esANδ0[�(t) dwB(s)](x) − 〈�̂(t), dwB(s)〉L2(∂D)

)
.

The random field I0(t, x) is well defined in L2(D,μ) because of the spectral
gap inequality (1.2) and, in the case where the coefficients g and σ do not depend
on t , I0(t, x) also does not depend on t so that the weak limit of zε(t, x) as ε ↓ 0
depends only on the space variable x and is constant in time for any t > 0.

2. Notation and assumptions. Let D be a bounded domain in R
d , with

d ≥ 1, satisfying the extension and exterior cone properties, and let ν be the out-
ward normal at ∂D. We assume that ∂D is a C∞ manifold and D is locally only
on one side of ∂D. In the case d = 1, D is a bounded interval (a, b).

We define H := L2(D) and Z := L2(∂D) and, for any α ≥ 0, we define Hα :=
Hα(D) and Zα := Hα(∂D) (in particular, H 0 = H and Z0 = Z).

We assume that A is a second order differential operator,

Af =
d∑

i,j=1

∂

∂xi

(
aij (x)

∂f

∂xj

)
+

d∑
i=1

bi(x)
∂f

∂xi

,

satisfying the uniform ellipticity condition

inf
x∈D

d∑
i,j=1

aij (x)ξiξj ≥ a0

d∑
i=1

ξ2
i , ξ ∈ R

d,

for some a0 > 0. The coefficients aij and bi are assumed to be smooth [for sim-
plicity, we take them to be in C∞(D)]. In what follows, we shall denote by A the
realization in H of the operator A, endowed with the boundary condition

∂h

∂ν
(x) := 〈a(x)ν(x),∇h(x)〉Rd = 0, x ∈ ∂D.(2.1)
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Namely, {
Ah = Ah, h ∈ D(A),

D(A) = {h ∈ H 2(D); 〈a(x)ν(x),∇h(x)〉Rd = 0, x ∈ ∂D}.
As is well known, the operator A generates an analytic semigroup {etA}t≥0 in H

which is also strongly continuous. Moreover,

D(Aα) = D((A�)α) ⊂ H 2α, α ≥ 0,

and

D(Aα) = H 2α, 0 ≤ α < 3
4(2.2)

(for proofs, see [11] and [8], resp.).
If, for any 1 < p ≤ ∞, we denote by Ap the realization in Lp(D) of the op-

erator A, endowed with the boundary condition (2.1), it can be proven that Ap

generates a strongly continuous analytic semigroup etAp in Lp(D). Notice that all
of these semigroups are consistent, so, in what follows, we shall denote them all
by etA.

As proved in, for example, [5], Theorem 2.4.4, since A is uniformly elliptic and
the domain D has the extension property, the semigroup etA admits an integral
kernel kt (x, y). Due to the boundary condition, the kernel satisfies

0 ≤ kt (x, y) ≤ c(t−d/2 + 1), t > 0,(2.3)

for some constant c > 0, almost everywhere in D × D.
As a consequence of our assumptions on A and D, it is possible to prove that

there exists some δ0 ∈ R such that for any δ ≥ δ0 and h ∈ Z, the elliptic boundary
value problem {

(δ − A)v(x) = 0, x ∈ D,
〈a(x)ν(x),∇v(x)〉Rd = h(x), x ∈ ∂D,(2.4)

admits a unique weak solution v ∈ H , which we will denote by Nδh. The applica-
tion Nδ :Z → H is known as the Neumann map associated with the operator A. It
is well known that Nδ maps Z into H as a bounded linear mapping. Moreover, ac-
cording to elliptic theory for domains with smooth boundaries (for a proof, see [9],
Theorem 7.4 of Volume I), we have

Nδ ∈ L(Zα,Hα+3/2), α ≥ 0.(2.5)

In what follows, we shall assume that etA has the following long-time behavior.

HYPOTHESIS 1. The semigroup etA, t ≥ 0, admits a unique invariant measure
μ and there exists some γ > 0 such that, for any h ∈ L2(D,μ),∣∣∣∣etAh −

∫
D

h(y)μ(dy)

∣∣∣∣
L2(D,μ)

≤ ce−γ t |h|L2(D,μ), t ≥ 0.(2.6)
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In what follows, we shall set Hμ := L2(D,μ) and

〈h,μ〉 :=
∫
D

h(x)μ(dx).

REMARK 2.1.

1. If A is a divergence-type operator, that is, bi ≡ 0 for any i = 1, . . . , d , then the
operator A is self-adjoint in H . This implies that it is possible to fix a complete
orthonormal system {ek}k≥0 in H and an increasing sequence of nonnegative
real numbers {αk}k≥0 such that

Aek = −αkek, k ∈ N.

Let e0 be the constant eigenfunction corresponding to the α0 = 0 eigenvalue
and let α1 be the first positive eigenvalue. It is immediate to check that

μ(dx) = e2
0 dx = |D|−1 dx(2.7)

and, in particular, that H = Hμ, with equivalence of norms. Moreover, as for
any x ∈ H , we have

etAx − 〈x,μ〉 =
∞∑
i=1

e−tαi 〈x, ei〉Hei

and α1 ≤ αi for any i ≥ 1, it is immediate to check that

|etAx − 〈x,μ〉|2Hμ
= |D|−1

∞∑
i=1

e−2tαi 〈x, ei〉2
H ≤ e−2tα1 |x|2Hμ

,

so the constant γ in (2.6) coincides with α1.
2. If A is self-adjoint, as above, for any δ > 0 and k ∈ N it holds that

N�
δ ek = 1

δ + αk

ek|∂D
.(2.8)

Actually, for any h ∈ Z, we have

〈Nδh, ek〉H = 1

δ + αk

∫
D

Nδh(x)(δ + αk)ek(x) dx

= 1

δ + αk

∫
D

Nδh(x)(δ − A)ek(x) dx.

Now, if we assume that h ∈ Z1/2, according to (2.5), we have that Nδh ∈ H 2

and then, due to the Gauss–Green formula and to (2.4), we obtain∫
D

Nδh(x)Aek(x) dx = −
∫
∂D

h(σ )ek(σ ) dσ +
∫
D

ANδh(x)ek(x) dx.
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This implies that

〈Nδh, ek〉H = 1

δ + αk

∫
D

(δ − A)Nδh(x)ek(x) dx + 1

δ + αk

∫
∂D

h(σ )ek(σ ) dσ

= 1

δ + αk

〈h, ek|∂D
〉Z

so that

〈h,N�
δ ek〉Z = 1

δ + αk

〈h, ek|∂D
〉Z.

As Z1/2 is dense in Z, we can conclude that (2.8) holds.
3. As

etAh(x) =
∫
D

kt (x, y)h(y) dy, x ∈ D,

and etA1 = 1, we have

|etAh(x)|2 ≤ etA|h|2(x), x ∈ D.

Due to the invariance of μ, this implies that for any h ∈ Hμ,∫
D

|etAh(x)|2μ(dx) ≤
∫
D

etA|h|2(x)μ(dx) =
∫
D

|h(x)|2μ(dx),

so etA acts on Hμ as a contraction, that is,

‖etA‖L(Hμ) ≤ 1, t ≥ 0.(2.9)

4. We have that H is continuously embedded into Hμ. Actually, due to the invari-
ance of μ and to the kernel representation of etA, for any h ∈ H , we have∫

D
|h(x)|2μ(dx) =

∫
D

e1A|h|2(x)μ(dx) =
∫
D

∫
D

k1(x, y)|h(y)|2 dyμ(dx).

Then, thanks to (2.3), we have

|h|2Hμ
=

∫
D

|h(x)|2μ(dx) ≤ c

∫
D

|h(y)|2dy = |h|2H .

5. As a matter of fact, there exists a nonnegative function m ∈ L∞(D) such that

μ(dx) = m(x)dx, x ∈ D.

Actually, let ϕ,ψ ∈ C2(D̄), with ϕ fulfilling the boundary condition (2.1). In-
tegrating by parts, we obtain

〈ψ, Aϕ〉H = 〈A�ψ,ϕ〉H −
∫
∂D

〈aν,∇ψ〉Rd ϕ dσ +
∫
∂D

〈b, ν〉Rd ϕψ dσ,
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where

A�ψ = ∂

∂xj

(
aij

∂ψ

∂xi

)
− 〈b,∇ψ〉Rd − divbψ.

Hence, the operator A�, endowed with the boundary condition

〈a(x)ν(x),∇ψ(x)〉Rd − 〈b(x), ν(x)〉Rd ψ(x) = 0, x ∈ ∂D,(2.10)

is the formal adjoint of the operator A, endowed with the boundary condition
(2.1).

Now, the function u = 1 is a nonzero solution of the problem{ Au(x) = 0, x ∈ D,
〈a(x)ν(x),∇u(x)〉Rd = 0, x ∈ ∂D.

Then, by the Fredholm alternative, there exists a nonzero weak solution ϕ ∈ H 1

to the adjoint problem{ A�ϕ(x) = 0, x ∈ D,
〈a(x)ν(x),∇ϕ(x)〉Rd − 〈b(x), ν(x)〉Rd ϕ(x) = 0, x ∈ ∂D.

By elliptic regularity results (cf. [7], Chapter 3), as the boundary of D and
the coefficients of A (and hence of A�) are of class C∞, we have that ϕ is a
classical solution to the adjoint problem. Hence, if A� is the adjoint of A in H ,
for any λ sufficiently large, we have

(λI − A�)−1ϕ = 1

λ
ϕ

and by taking the inverse Laplace transform, we obtain etA�
ϕ = ϕ for any t ≥ 0.

Now, due to the positivity of the semigroup etA (and hence of the semigroup
etA�

) and to the fact that etA is conservative, we have that the set

� := {ϕ ∈ H : etA�

ϕ = ϕ, t ≥ 0}
is a lattice, that is, |ϕ| ∈ � for any ϕ ∈ �. Therefore, if we set

m(x) := |ϕ(x)|∫
D |ϕ(y)|dy

, x ∈ D,

we have that etA�
m = m for any t ≥ 0 and hence m(x)dx is a probability mea-

sure and is invariant for etA. As μ is the unique invariant measure for etA, we
are done.

Concerning the coefficients f , g and σ we assume the following conditions.

HYPOTHESIS 2.

1. The mappings f,g : [0,∞) × D × R → R are measurable and the mappings
f (t, x, ·), g(t, x, ·) : R → R are Lipschitz continuous, uniformly with respect to
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(t, x) ∈ [0, T ] × D, for any T > 0. Namely, for any ξ, η ∈ R

sup
(t,x)∈[0,T ]×D

|f (t, x, ξ) − f (t, x, η)| ≤ LT,f |ξ − η|,

sup
(t,x)∈[0,T ]×D

|g(t, x, ξ) − g(t, x, η)| ≤ LT,g|ξ − η|.

2. The mapping σ : [0,∞) × ∂D → R is measurable and for any T > 0,

sup
t∈[0,T ]

|σ(t, ·)|L∞(∂D) =: cT ,σ < ∞.

In what follows, for any t ≥ 0 and h1, h2 ∈ H , we shall define

F(t, h1)(x) := f (t, x, h1(x)), x ∈ D,

and

[G(t,h1)h2](x) := g(t, x,h1(x))h2(x), x ∈ D.

Due to Hypothesis 2, we have that F(t, ·) :H → H , G(t, ·) :H → L(H,L1(D))

and G(t, ·) :H → L(L∞(D),H) are all Lipschitz continuous, uniformly with re-
spect to t ∈ [0, T ], for any T > 0.

Notice that the same is true for the mappings F(t, ·) :Hμ → Hμ, G(t, ·) :Hμ →
L(Hμ,L1(D,μ)) and G(t, ·) :Hμ → L(L∞(D;μ),Hμ).

Analogously, if, for any t ≥ 0 and z ∈ Z, we set

[�(t)z](x) := σ(t, x)z(x), x ∈ ∂D,

then we have that �(t) is a bounded linear operator on Z and for any T > 0,

‖�(t)‖L(Z) ≤ cT ,σ , t ∈ [0, T ].(2.11)

Finally, concerning the noisy perturbations wQ(t) and wB(t), we assume that
they are two independent cylindrical Wiener processes defined on the same sto-
chastic basis (�, F , Ft ,P), taking values in H and Z, respectively, with respective
covariance operators Q ∈ L+(H) and B ∈ L+(Z). Namely,

wQ(t) = ∑
k∈N

λkekβk(t), wB(t) = ∑
k∈N

θkfkβ̂k(t),

where {ek}k∈N is the orthonormal basis of H which diagonalizes Q, with eigen-
values {λk}k∈N, {fk}k∈N is the orthonormal basis of Z which diagonalizes B , with
eigenvalues {θk}k∈N, and {βk}k∈N and {β̂k}k∈N are two sequences of independent
standard Brownian motions, both defined on the stochastic basis (�, F , Ft ,P).
Notice that the two sequences above are not convergent in H and Z, but in any
Hilbert spaces U and V which contain H and Z, respectively, with Hilbert–
Schmidt embedding. Moreover, in the case d = 1, we have Z = R

2 and hence

wB(t) = �β̂(t),
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where � = diag(θ1, θ2) and β̂(t) = (β̂1(t), β̂2(t)) is a two-dimensional standard
Brownian motion.

In what follows, we shall assume the following summability conditions on the
eigenvalues λk and θk and the sup-norm of the corresponding eigenfunctions.

HYPOTHESIS 3.

1. If d ≥ 2, then there exists ρ < 2d/(d − 2) such that∑
k∈N

λ
ρ
k |ek|2∞ =: κQ < ∞.(2.12)

2. If d ≥ 2, then there exists β < 2d/(d − 1) such that∑
k∈N

θ
β
k =: κB < ∞.(2.13)

REMARK 2.2.

1. From the proofs of Lemmas 3.3, 4.3 and 5.4, it is possible to see that if the
mapping g : [0, T ] × D × R → R is uniformly bounded for any T > 0, then we
do not need to require that the sequence {ek}k∈N is contained in L∞(D) and
condition (2.12) can be replaced by∑

k∈N

λ
ρ
k < ∞.

2. As both d/(d − 2) and d/(d − 1) are strictly greater than 1, neither Q nor B

are required to be Hilbert–Schmidt operators in general. Moreover, in space
dimension d = 1, we have no conditions on the eigenvalues {λk} and we can
take Q = I . This means that we can deal with space–time white noise.

3. A priori bounds for the solution of (1.1). In this section, we are concerned
with uniform bounds for the pth moments of the C([0, T ];H)-norm of the mild
solution uε of (1.1).

We first recall some general facts about the linear parabolic equation with non-
homogeneous boundary conditions⎧⎪⎪⎨

⎪⎪⎩
∂y

∂t
(t, x) = Ay(t, x), t ≥ 0, x ∈ D,

〈a(x)ν(x),∇y(t, x)〉Rd = v(t, x), t ≥ 0, x ∈ ∂D,
y(0, x) = y0(x), x ∈ D,

(3.1)

where v is a Z-valued function. If v(·) is twice continuously differentiable and
there exists δ0 > 0 such that y0 − Nδv(0) ∈ D(A) for δ > δ0, then the solution of
problem (3.1) is given by

y(t) = etAy0 + (δ − A)

∫ t

0
e(t−s)ANδv(s) ds(3.2)
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(for a proof, see, e.g., [4], Proposition 13.2.1).
Such a formula can be extended by continuity to less regular functions v. In

particular, for each ε > 0, we can consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂y

∂t
(t, x) = 1

ε
Ay(t, x), t ≥ 0, x ∈ D,

〈a(x)ν(x),∇y(t, x)〉Rd = εσ(t, x)
∂wB

∂t
(t, x), t ≥ 0, x ∈ ∂D,

y(0, x) = 0, x ∈ D,

(3.3)

where wB is the cylindrical Wiener process defined in Z, introduced in Section 2.
In analogy to formula (3.2), by taking δ = δ0/ε and v(t) = ε�(t) ∂wB/∂t , we say
that for any ε ∈ (0,1], the process

wε
A,B(t) = (δ0 − A)

∫ t

0
e(t−s)A/εNδ0[�(s) dwB(s)], t ≥ 0,

is a mild solution to problem (3.3). The process wε
A,B(t) can be interpreted as a

boundary Ornstein–Uhlenbeck process and can be written as the infinite series

wε
A,B(t) = ∑

k∈N

(δ0 − A)

∫ t

0
e(t−s)A/εNδ0[�(s)Bfk]dβ̂k(s), t ≥ 0.

As proved in the next lemma, such a series is well defined in Lp(�;C([0, T ];H))

for any T > 0 and p ≥ 1. Moreover, a uniform estimate with respect to ε ∈ (0,1]
holds.

LEMMA 3.1. Under part 2 of Hypothesis 3, the process wε
A,B belongs to

Lp(�;C([0, T ];H)) for any T > 0, p ≥ 1 and ε ∈ (0,1], and

sup
ε∈(0,1]

E|wε
A,B |pC([0,T ];H) =: cT ,p < ∞.(3.4)

PROOF. As a consequence of the stochastic Fubini theorem and of the ele-
mentary identity∫ t

σ
(t − s)α−1(s − σ)−α ds = π

sinπα
, 0 ≤ σ ≤ t, α ∈ (0,1),

we have the factorization formula

wε
A,B(t) = sinπα

π

∫ t

0
(t − s)α−1e(t−s)A/εYε,α(s) ds,

where

Yε,α(s) =
∫ s

0
(s − r)−α(δ0 − A)e(s−r)A/εNδ0[�(r) dwB(r)]
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(for a proof, see [2]). By the Hölder inequality, this implies that for any α > 1/p,

E sup
t∈[0,T ]

|wε
A,B(t)|pH

≤ cT ,p,α

∫ T

0
E|Yε,α(s)|pH ds

(3.5)

≤ cT ,p,α

∫ T

0

(∫ s

0
(s − r)−2α

× ∑
k∈N

θ2
k

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2
H dr

)p/2

ds,

the last inequality following from the Burkholder–Davis–Gundy inequality.
Now, assume that d > 1 (the case d = 1 is simpler). According to (2.13), we

have ∑
k∈N

θ2
k

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2
H

≤ κ
2/β
B

(∑
k∈N

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2
H

)1/ζ

(3.6)

× sup
k∈N

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2(ζ−1)/ζ
H ,

where ζ := β/(β − 2). Thanks to (2.2) and (2.5), for any ρ > 0, we have

Sρ := (δ0 − A)(3−ρ)/4Nδ0 ∈ L(Z,H).(3.7)

Hence, for any ε > 0 and 0 ≤ r ≤ s ≤ T , due to (2.11), we have∑
k∈N

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2
H

= ∑
k∈N

∣∣e(s−r)/2A/ε(δ0 − A)(1+ρ)/4e(s−r)/2A/εSρ�(r)fk

∣∣2
H

= ∑
k∈N

∑
h∈N

∣∣〈fk,�(r)S�
ρ

[
(δ0 − A)(1+ρ)/4e(s−r)/2A/ε]�e(s−r)/2A�/εeh

〉
Z

∣∣2(3.8)

= ∑
h∈N

∣∣�(r)S�
ρ

[
(δ0 − A)(1+ρ)/4e(s−r)/2A/ε]�e(s−r)/2A�/εeh

∣∣2
Z

≤ cT ,ρ

[(
ε

s − r

)(1+ρ)/2

+ 1
] ∑

h∈N

∣∣e(s−r)/2A�/εeh

∣∣2
H .

As the semigroup etA admits an integral kernel kt (x, y), that is,

etAf (x) =
∫
D

kt (x, y)f (y) dy, x ∈ D,
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we have

etA�

h(y) =
∫
D

kt (x, y)h(x) dx, y ∈ D.

This implies∑
h∈N

∣∣e(s−r)/2A�/εeh

∣∣2
H = ∑

h∈N

∫
D

∣∣e(s−r)/2A�/εeh(y)
∣∣2 dy

= ∑
h∈N

∫
D

∣∣∣∣
∫
D

k(s−r)/(2ε)(x, y)eh(x) dx

∣∣∣∣
2

dy

(3.9)
= ∑

h∈N

∫
D

∣∣〈k(s−r)/(2ε)(·, y), eh

〉
H

∣∣2 dy

=
∫
D

∣∣k(s−r)/(2ε)(·, y)
∣∣2
H dy.

Now, due to (2.3), for any t > 0 and y ∈ D, we have

|kt (·, y)|2H =
∫
D

|kt (x, y)|2 dx ≤ c(t−d/2 + 1)

∫
D

kt (x, y) dx

and hence∫
D

|kt (·, y)|2H dy ≤ c(t−d/2 + 1)

∫
D×D

kt (x, y) dx dy = c|D|(t−d/2 + 1).

This implies that for any ε > 0,

∑
h∈N

∣∣e(s−r)/2A�/εeh

∣∣2
H ≤ c|D|

[(
ε

s − r

)d/2

+ 1
]
,

so, thanks to (3.8), we have(∑
k∈N

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2
H

)1/ζ

(3.10)

≤ cT ,ρ

[(
ε

s − r

)(d+1+ρ)/(2ζ )

+ 1
]
.

Next, by proceeding as in (3.8), we have

sup
k∈N

∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk]
∣∣2(ζ−1)/ζ
H

(3.11)

≤ cT ,ρ

[(
ε

s − r

)(1+ρ)(ζ−1)/(2ζ )

+ 1
]
.

Therefore, thanks to (3.5), (3.6), (3.10) and (3.11), we can conclude that for any
ε ∈ (0,1],

E sup
t∈[0,T ]

|wε
A,B(t)|pH ≤ cT ,p,α,ρ

(∫ T

0

[
s−(2α+(d+ζ )/(2ζ )+ρ/2) + 1

]
ds

)p/2

.
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Now, as in Hypothesis 3, we are assuming that β < 2d/(d − 1), so we have
(d + ζ )/2ζ < 1. This means that we can fix ᾱ > 0 and ρ̄ > 0 such that

2ᾱ + d + ζ

2ζ
+ ρ̄

2
< 1

and then, for any p > p̄ := 1/ᾱ we obtain

sup
ε∈(0,1]

E sup
t∈[0,T ]

|wε
A,B(t)|pH ≤ cT ,p.

The estimate for general p ≥ 1 follows from the Hölder inequality. �

Next, we pass to (1.1).

DEFINITION 3.2. Let T > 0 and p ≥ 1. An adapted process uε ∈ Lp(�;C([0,
T ];H)) is a mild solution of (1.1) if, for any t ∈ [0, T ],

uε(t) = etA/εu0 +
∫ t

0
e(t−s)A/εF (s, uε(s)) ds + wε

A,Q(uε)(t) + wε
A,B(t),

where, for any u ∈ Lp(�;C([0, T ];H)), we define

wε
A,Q(u)(t) :=

∫ t

0
e(t−s)A/εG(s,u(s)) dwQ(s), t ≥ 0.

As is well known, wε
A,Q(u) is the unique mild solution of the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂y

∂t
(t, x) = 1

ε
Ay(t, x) + g(t, x, u(t, x))

∂wQ

∂t
(t, x), t ≥ 0, x ∈ D,

〈a(x)ν(x),∇y(t, x)〉Rd = 0, t ≥ 0, x ∈ ∂D,
y(0, x) = 0, x ∈ D,

(3.12)

where wQ is the cylindrical Wiener process with values in H , introduced in Sec-
tion 2.

As for wε
A,B , we show that wε

A,Q satisfies a bound in Lp(�;C([0, T ];H))

which is uniform with respect to ε ∈ (0,1].

LEMMA 3.3. Assume Hypothesis 2 and part 1 of Hypothesis 3. Then, wε
A,Q

is Lipschitz continuous from Lp(�;C([0, T ];H)) into itself for any T > 0 and
p ≥ 1, and

sup
ε∈(0,1]

E|wε
A,Q(u)|pC([0,T ];H) ≤ cT ,p

(
1 + E

∫ T

0
|u(s)|pH ds

)
.(3.13)

PROOF. The proof of the Lipschitz continuity of wε
A,Q in Lp(�;C([0, T ];

H)) is classical and can be found in, for example, [1]. Concerning estimate (3.13),
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as in the proof of Lemma 3.1, we use a factorization argument and, for any α >

1/p, we get

E sup
t∈[0,T ]

|wε
A,Q(t)|pH

≤ cT ,p,αE

∫ T

0

(∫ s

0
(s − r)−2α

∑
k∈N

λ2
k

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2
H dr

)p/2

ds.

According to (2.12), if we set ζ := ρ/(ρ − 2), then we have∑
k∈N

λ2
k

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2
H

≤ κ
2/ρ
Q

(∑
k∈N

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2
H

)1/ζ

(3.14)

× sup
k∈N

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2(ζ−1)/ζ
H |ek|−4/ρ∞ .

As in the proof of (3.9), we have

∑
k∈N

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2
H =

∫
D

∣∣k(s−r)/ε(x, ·)g(r, ·, u(r))
∣∣2
H dx.

Now, thanks to (2.3), for any t > 0, x ∈ D and h ∈ H , we have

|kt (x, ·)h|2H =
∫
D

|kt (x, y)h(y)|2 dy

≤ c(t−d/2 + 1)

∫
D

kt (x, y)h2(y) dy(3.15)

= c(t−d/2 + 1)etAh2(x)

and this is meaningful since etA is well defined in L1(D). In particular, for any
ε > 0, ∑

k∈N

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2
H

≤ c

[(
ε

s − r

)d/2

+ 1
]∫

D
e(s−r)A/εg2(r, ·, u(r))(x) dx

= c

[(
ε

s − r

)d/2

+ 1
]∣∣e(s−r)A/εg2(r, ·, u(r))

∣∣
L1(D)

≤ c

[(
ε

s − r

)d/2

+ 1
]
|g(r, ·, u(r))|2H
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and, due to the linear growth of g,(∑
k∈N

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2
H

)1/ζ

(3.16)

≤ cT

[(
ε

s − r

)d/(2ζ )

+ 1
](

1 + |u(r)|2/ζ
H

)
.

By analogous arguments, we have

sup
k∈N

∣∣e(s−r)A/ε[G(r,u(r))ek]
∣∣2(ζ−1)/ζ
H |ek|−4/ρ∞ ≤ cT

(
1 + |u(r)|2(ζ−1)/ζ

H

)
(3.17)

and then, thanks to (3.14), (3.16) and (3.17), we get, for any ε ∈ (0,1],
E sup

t∈[0,T ]
|wε

A,Q(t)|pH

≤ cT ,p,αE

∫ T

0

(∫ s

0

[(
1

s − r

)2α+d/(2ζ )

+ 1
](

1 + |u(r)|2H
)
dr

)p/2

ds.

As we are assuming ρ < 2d/(d −2), we can find ᾱ > 0 such that 2ᾱ+d/(2ζ ) < 1.
Due to the Young inequality, this implies (3.13) for all p > p̄ = 1/ᾱ and hence for
all p ≥ 1. �

According to Lemmas 3.1 and 3.3, we have the following result.

THEOREM 3.4. Under Hypotheses 1, 2 and 3, for any T > 0 and p ≥ 1, and
for any u0 ∈ H and ε > 0, equation (1.1) admits a unique adapted mild solution
uε ∈ Lp(�;C([0, T ];H)). Moreover,

sup
ε∈(0,1]

E|uε|pC([0,T ];H) ≤ cT ,p(1 + |u0|pH ).(3.18)

PROOF. As both F(t, ·) :H → H and wε
A,Q :Lp(�;C([0, T ];H)) → Lp(�;

C([0, T ];H)) are Lipschitz continuous and wε
A,B ∈ Lp(�;C([0, T ];H)), we

have that the mapping 
ε defined by


ε(u)(t) = etA/εu0 +
∫ t

0
e(t−s)A/εF (s, u(s)) ds + wε

A,Q(u)(t) + wε
A,B(t)

is Lipschitz continuous from the space of adapted processes in Lp(�;C([0, T ];
H)) into itself. Therefore, by a classical fixed point argument, equation (1.1) ad-
mits a unique adapted mild solution uε ∈ Lp(�,C([0, T ];H)).

Next, for any ε > 0, we have

|uε(t)|pH ≤ cp

(
|u0|pH + ctp−1

∫ t

0

(
1 + |uε(s)|pH

)
ds

+ |wε
A,Q(uε)(t)|pH + |wε

A,B(t)|pH
)
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and then, according to (3.4) and (3.13), we conclude that

E sup
t∈[0,T ]

|uε(t)|pH ≤ cT ,p

(
1 + |u0|pH +

∫ T

0
E sup

r∈[0,s]
|uε(r)|pH ds

)
.

The Gronwall lemma allows us to obtain (3.18). �

4. The averaging result. In this section, we show that for any 0 < δ < T and
p ≥ 1, the sequence {uε}ε∈(0,1] converges in Lp(�;C([δ, T ];Hμ)) to the solution
of a suitable one-dimensional stochastic differential equation. In what follows, we
first introduce the limiting equation by constructing the coefficients and by de-
scribing a situation in which they are given by a simple expression. In the second
part of this section, we prove the convergence result.

We start with the drift term. For each t ≥ 0 and h ∈ H , we define

F̂ (t, h) := 〈F(t, h),μ〉 =
∫
D

f (t, x, h(x))μ(dx),(4.1)

where μ(dx) is the unique invariant measure associated with the semigroup etA

(see Section 2 and Hypothesis 1). According to Hypothesis 2, for any T > 0 and
h1, h2 ∈ H , we have

|f (t, x, h1(x)) − f (t, x, h2(x))| ≤ LT,f |h1(x) − h2(x)|, (t, x) ∈ [0, T ] × D,

so that

F̂ (t, ·) :Hμ → R

is Lipschitz continuous, uniformly with respect to t ∈ [0, T ], for any T > 0. Notice
that, as H ⊂ Hμ, this implies that F̂ (t, ·) :H → R is also Lipschitz continuous.

Next, we construct the term arising from the stochastic convolution wε
A,Q(u)(t).

For each t ≥ 0 and h ∈ H , we introduce the linear mapping

z ∈ H �→ ∑
k∈N

〈G(t,h)ek,μ〉〈z, ek〉H = 〈G(t,h)z,μ〉 ∈ R.

As H is continuously embedded into Hμ, for any T > 0, we have

|〈G(t,h)z,μ〉| ≤ |g(t, ·, h)|Hμ |z|Hμ ≤ cT (1 + |h|Hμ)|z|H , t ≤ T .

This means that there exists Ĝ(t, h) ∈ H such that

〈Ĝ(t, h), z〉H = 〈G(t,h)z,μ〉, z ∈ H.

Moreover, since for any h1, h2 ∈ Hμ and T > 0,

|〈G(t,h1)z,μ〉 − 〈G(t,h2)z,μ〉|
≤ |g(t, ·, h1) − g(t, ·, h2)|Hμ |z|H
≤ cT |h1 − h2|Hμ |z|H , t ≤ T ,
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we have that the mapping Ĝ(t, ·) :Hμ → H is Lipschitz continuous, uniformly
with respect to t ∈ [0, T ], for any T > 0.

This, in particular, implies that the mapping Ĝ(t, ·) is also Lipschitz continuous,
both in H and in Hμ, uniformly for t ∈ [0, T ].

Finally, we construct the term arising from the boundary convolution wε
A,B(t).

For each fixed t ≥ 0, we introduce the mapping

h ∈ Z �→ δ0〈Nδ0[�(t)h],μ〉 = δ0

∫
D

Nδ0[σ(t, ·)h](x)μ(dx) ∈ R.

As Nδ0 is a bounded linear operator from Z into H , �(t) is bounded and linear in
Z and H is continuously embedded in Hμ, such a mapping is bounded and linear
from Z into R and then, for any t ≥ 0, there exists �̂(t) ∈ Z such that for any
h ∈ Z, we have

〈�̂(t), h〉Z = δ0〈Nδ0[�(t)h],μ〉 = δ0

∫
D

Nδ0[σ(t, ·)h](x)μ(dx).(4.2)

We can now introduce the limiting equation. It is the one-dimensional stochastic
differential equation{

dv(t) = F̂ (t, v(t)) dt + 〈Ĝ(t, v(t)), dwQ(t)〉H + 〈�̂(t), dwB(t)〉Z,

v(0) = 〈u0,μ〉.(4.3)

As the mappings F̂ (t, ·) : R → R and Ĝ(t, ·) : R → H are both Lipschitz continu-
ous, uniformly with respect to t ∈ [0, T ], for any T > 0, equation (4.3) admits a
unique strong solution v ∈ Lp(�;C([0, T ];R)) for any p ≥ 1 and T > 0, that is,
there exists a unique adapted process in Lp(�;C([0, T ];R)) which is adapted to
the filtration {Ft }t≥0 such that

v(t) = 〈u0,μ〉 +
∫ t

0
F̂ (s, v(s)) ds + ŵA,Q(v)(t) + ŵA,B(t),

where

ŵA,Q(v)(t) :=
∫ t

0
〈Ĝ(s, v(s)), dwQ(s)〉H , ŵA,B(t) :=

∫ t

0
〈�̂(s), dwB(s)〉Z.

Notice that both ŵA,Q(v)(t) and ŵA,B(t) are Ft -martingales having zero mean.
Moreover, we have

E|ŵA,Q(v)(t)|2 =
∫ t

0
E|QĜ(s, v(s))|2H ds(4.4)

and

E|ŵA,B(t)|2 =
∫ t

0
E|B�̂(s)|2Z ds.(4.5)
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In particular, as wQ and wB are independent, we have that ŵA,Q(v)(t) + ŵA,B(t)

is an Ft -martingale having zero mean and covariance∫ t

0

(
E|QĜ(s, v(s))|2H + |B�̂(s)|2Z

)
ds(4.6)

so that there exists some Brownian motion βt defined on some stochastic basis
(�̂, F̂ , F̂t , P̂) such that the solution of problem (4.3) coincides in law with the
solution of the problem{

dv(t) = F̂ (t, v(t)) dt + 
(t, v(t)) dβt ,

v(0) = 〈u0,μ〉,
where


(t, v) = (|QĜ(t, v)|2H + |B�̂(t)|Z)1/2
.(4.7)

As shown in Remark 2.1, in the case where the operator A is self-adjoint, we
have

μ(dx) = 1

|D| dx

so that, due to the definition of Ĝ(t, v), we get

|QĜ(t, v)|2H = 1

|D|2 |Qg(t, ·, v)|2H = 1

|D|2
∫
D

|[Qg(t, ·, v)](x)|2 dx.

Concerning the boundary term, due to (2.8), we have

|B�̂(t)|2Z = δ2
0

|D|2
∑
k∈N

|〈Nδ0[�(t)Bfk],1〉H |2

= ∑
k∈N

δ2
0

|D|2 |〈[�(t)Bfk],N�
δ0

1〉Z|2

= ∑
k∈N

1

|D|2 |〈fk,Bσ(t, ·)〉Z|2 = 1

|D|2 |Bσ(t, ·)|2Z

= 1

|D|2
∫
∂D

|[Bσ(t, ·)](η)|2 dη.

Therefore, in the self-adjoint case, we have


(t, v) = 1

|D|
(∫

D
|[Qg(t, ·, v)](x)|2 dx +

∫
∂D

|[Bσ(t, ·)](η)|2 dη

)1/2

.

Now that we have described the candidate limit equation, we prove that uε in
fact converges to its solution.
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THEOREM 4.1. Assume Hypotheses 1, 2 and 3. Then, for any u0 ∈ H , p ≥ 1,
T > 0 and θ < 1, and for any δ > 0, we have

E sup
t∈[δ,T ]

|uε(t) − v(t)|pHμ
≤ cT ,p,θ (ε + εpθ/2)(1 + |u0|pHμ

)

(4.8)
+ e−γpδ/ε|u0|pHμ

,

where v is the solution of the one-dimensional problem (4.3). In particular,

lim
ε→0

E sup
t∈[δ,T ]

|uε(t) − v(t)|pHμ
= 0.

PROOF. We have

uε(t) − v(t) = (etA/εu0 − 〈u0,μ〉) +
∫ t

0

(
F̂ (s, uε(s)) − F̂ (s, v(s))

)
ds

+
∫ t

0

〈(
Ĝ(s, uε(s)) − Ĝ(s, v(s))

)
, dwQ(s)

〉
H + Rε(t),

where

Rε(t) :=
∫ t

0
e(t−s)A/εF (s, uε(s)) ds −

∫ t

0
F̂ (s, uε(s)) ds

(4.9)
+ wε

A,Q(uε)(t) − ŵA,Q(uε)(t) + wε
A,B(t) − ŵA,B(t).

This yields

|uε(t) − v(t)|pHμ

≤ cT ,p

(
|etA/εu0 − 〈u0,μ〉|pHμ

+
∫ t

0
|F̂ (s, uε(s)) − F̂ (s, v(s))|p ds(4.10)

+
∣∣∣∣
∫ t

0

〈(
Ĝ(s, uε(s)) − Ĝ(s, v(s))

)
, dwQ(s)

〉
H

∣∣∣∣
p

+ |Rε(t)|pHμ

)
.

Due to the Lipschitz continuity of F̂ (t, ·) :Hμ → R, for any 0 ≤ t ≤ T , we have

E sup
s∈[0,t]

∫ s

0
|F̂ (r, uε(r)) − F̂ (r, v(r))|p dr

(4.11)

≤ cT ,p

∫ t

0
E|uε(r) − v(r)|pHμ

dr.
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Analogously, due to the Lipschitz continuity of Ĝ(t, ·) :Hμ → H and the
Burkholder–Davis–Gundy inequality, for any 0 ≤ t ≤ T , we easily obtain

E sup
s∈[0,t]

∣∣∣∣
∫ s

0
〈Ĝ(r, uε(r)) − Ĝ(r, v(r)), dwQ(r)〉H

∣∣∣∣
p

(4.12)

≤ cT ,p

∫ t

0
E|uε(r) − v(r)|pHμ

dr.

Then, thanks to condition (2.6), for any 0 ≤ t ≤ T ,

E|uε(t) − v(t)|pHμ

≤ cT ,p

(
e−γpt/ε|u0|pHμ

+ E sup
t∈[0,T ]

|Rε(t)|pHμ
+

∫ t

0
E|uε(s) − v(s)|pHμ

ds

)

and, by comparison, this yields∫ t

0
E|uε(s) − v(s)|pHμ

ds ≤ cT ,p

(
ε|u0|pHμ

+ E sup
t∈[0,T ]

|Rε(t)|pHμ

)
.(4.13)

In view of (4.10), thanks to (4.11) and (4.12), for any 0 < δ < T , we obtain

E sup
t∈[δ,T ]

|uε(t) − v(t)|pHμ

≤ ce−γpδ/ε|u0|pHμ
+ cT ,p

∫ T

0
E|uε(s) − v(s)|pHμ

dt

+ cT ,pE sup
t∈[0,T ]

|Rε(t)|pHμ
.

Therefore, if we show that, for any T > 0, p ≥ 1 and θ ∈ (0,1),

E sup
t∈[0,T ]

|Rε(t)|pHμ
≤ cT ,p,θ ε

pθ/2(1 + |u0|pH ),(4.14)

then we can conclude that (4.8) holds. �

Due to (4.9), in order to prove (4.14) and hence complete the proof of Theo-
rem 4.1, we need the following three lemmas.

LEMMA 4.2. Assume Hypotheses 1, 2 and 3. Then, for any T > 0 and p ≥ 1,
and for any ε ∈ (0,1], we have

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e(t−s)A/εF (s, uε(s)) ds −

∫ t

0
F̂ (s, uε(s)) ds

∣∣∣∣p
Hμ

(4.15)
≤ cT ,p(1 + |u0|pH )εp.
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PROOF. Due to Hypothesis 1, for any t ∈ [0, T ], we have∣∣e(t−s)A/εF (s, uε(s)) − F̂ (s, uε(s))
∣∣
Hμ

≤ ce−γ (t−s)/ε|F(s,uε(s))|Hμ

≤ ce−γ (t−s)/ε|F(s,uε(s))|H
≤ cT e−γ (t−s)/ε

(
1 + sup

s≤T

|uε(s)|H
)
.

This implies that, for any t ∈ [0, T ],∣∣∣∣
∫ t

0
e(t−s)A/εF (s, uε(s)) ds −

∫ t

0
F̂ (s, uε(s)) ds

∣∣∣∣
p

Hμ

≤ cT ,p

(
1 + sup

s≤T

|uε(s)|pH
)(∫ t

0
e−γ s/ε ds

)p

so that, thanks to (3.18), for any ε ∈ (0,1], we obtain

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e(t−s)A/εF (s, uε(s)) ds −

∫ t

0
F̂ (s, uε(s)) ds

∣∣∣∣
p

Hμ

≤ cT ,p(1 + |u0|pH )εp. �

LEMMA 4.3. Assume Hypotheses 1, 2 and 3, and fix T > 0, p ≥ 1 and θ < 1.
Then, there exists some constant cT ,p,θ > 0 such that for any ε ∈ (0,1],

E sup
t∈[0,T ]

|wε
A,Q(uε)(t) − ŵA,Q(uε)(t)|pHμ

≤ cT ,p,θ ε
pθ/2(1 + |u0|pH ).(4.16)

PROOF. As in the proofs of Lemmas 3.1 and 3.3, we use a factorization argu-
ment. Since etA1 = 1, for any t ≥ 0 and α > 0, we have

wε
A,Q(uε)(t) −

∫ t

0
〈Ĝ(s, uε(s)), dwQ(s)〉H

= sinπα

π

∫ t

0
(t − s)α−1e(t−s)A/εYε,α(s) ds,

where

Yε,α(s) :=
∫ s

0
(s − r)−αe(s−r)A/ε�(r, uε(r)) dwQ(r)

and, for any h1, h2 ∈ H ,

�(r,h1)h2 := G(r,h1)h2 − 〈Ĝ(r, h1), h2〉H .
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Hence, due to (2.9), etA is a contraction in Hμ for any t ≥ 0, and by proceeding as
in the proofs of Lemmas 3.1 and 3.3, for α < 1/p, we obtain

E sup
t∈[0,T ]

∣∣∣∣wε
A,Q(uε)(t) −

∫ t

0
〈Ĝ(s, uε(s)), dwQ(s)〉H

∣∣∣∣
p

Hμ

≤ cT ,p,αE

∫ T

0

(∫ s

0
(s − r)−2α

∑
k∈N

λ2
k

∣∣e(s−r)A/ε�(r, uε(r))ek

∣∣2
Hμ

dr

)p/2

ds.

Due to the invariance of μ and condition (2.6), we have∣∣e(s−r)A/ε�(r, uε(r))ek

∣∣
Hμ

= ∣∣e(s−r)A/ε[G(r,uε(r))ek] − 〈Ĝ(r, uε(r)), ek〉H
∣∣
Hμ

= ∣∣e(s−r)/2A/ε(e(s−r)/2A/ε[G(r,uε(r))ek])
− 〈

e(s−r)/2A/ε[G(r,uε(r))ek],μ〉∣∣
Hμ

≤ ce−γ (s−r)/(2ε)
∣∣e(s−r)/2A/ε[G(r,uε(r))ek]

∣∣
Hμ

so that

E sup
t∈[0,T ]

∣∣∣∣wε
A,Q(uε)(t) −

∫ t

0
〈Ĝ(s, uε(s)), dwQ(s)〉H

∣∣∣∣
p

Hμ

≤ cT ,p,αE

∫ T

0

(∫ s

0
(s − r)−2αe−γ (s−r)/ε(4.17)

× ∑
k∈N

λ2
k

∣∣e(s−r)/2A/ε[G(r,uε(r))ek]
∣∣2
Hμ

dr

)p/2

ds.

Using the same arguments that were used in the proof of Lemma 3.3 [see (3.16)
and (3.17)], for any 0 ≤ r ≤ s ≤ T , we get

∑
k∈N

λ2
k

∣∣e(s−r)/2A/ε[G(r,uε(r))ek]
∣∣2
Hμ

≤ cT

[(
ε

s − r

)d/(2ζ )

+ 1
](

1 + |uε(r)|2H
)
,

with ζ = ρ/(ρ − 2) if d > 1 and with ζ = 1 if d = 1. Thanks to (3.18), this yields

E sup
t∈[0,T ]

∣∣∣∣wε
A,Q(uε)(t) −

∫ t

0
〈Ĝ(s, uε(s)), dwQ(s)〉H

∣∣∣∣
p

Hμ

≤ cT ,p,α(1 + |u0|pH )ε−αp

(∫ T

0

[(
ε

t

)(2α+d/(2ζ ))

+ 1
]
e−γ t/ε dt

)p/2

.

Now, according to the first condition in Hypothesis 3, we have d/2ζ < 1 so that,
for any θ < 1, we can fix ᾱ > 0 such that

1 − 2ᾱ > θ, 2ᾱ + d

2ζ
< 1.
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Then, with a change of variable, we easily obtain

E sup
t∈[0,T ]

∣∣∣∣wε
A,Q(uε)(t) −

∫ t

0
〈Ĝ(s, uε(s)), dwQ(s)〉H

∣∣∣∣
p

Hμ

≤ cT ,p,θ ε
pθ/2(1 + |u0|pH )

for any p > p̄ := 1/ᾱ. By the Hölder inequality, we obtain an analogous estimate
for any p ≥ 1 and (4.16) then follows. �

LEMMA 4.4. Assume Hypotheses 1, 2 and 3, and fix any T > 0, p ≥ 1 and
θ < 1. Then, there exists some constant cT ,p,θ > 0 such that for any ε ∈ (0,1],

E sup
t∈[0,T ]

|wε
A,B(t) − ŵA,B(t)|pHμ

≤ cT ,p,θ ε
pθ/2.(4.18)

PROOF. Notice that (δ0 − A)etA1 = δ0 for any t ≥ 0. Then, as in Lemma 3.1,
by factorization, we obtain

wε
A,B(t) −

∫ t

0
〈�̂(s), dwB(s)〉Z = sinπα

π

∫ t

0
(t − s)α−1e(t−s)A/εYε,α(s) ds,

where

Yε,α(s) :=
∫ s

0
(s − r)−α(δ0 − A)e(s−r)A/ε�(r) dwB(r),

and for any h ∈ Z,

�(r)h := Nδ0[�(r)h] − 1

δ0
〈�̂(r), h〉Z.

Hence, according to (2.9), by arguing as in the proofs of Lemmas 3.1 and 3.3, for
any p > 1/α, we obtain

E sup
t∈[0,T ]

∣∣∣∣wε
A,B(t) −

∫ t

0
〈�̂(s), dwB(s)〉Z

∣∣∣∣
p

Hμ

≤ cT ,p,α

∫ T

0

(∫ s

0
(s − r)−2α

× ∑
k∈N

θ2
k

∣∣(δ0 − A)e(s−r)A/ε[�(r)fk]
∣∣2
Hμ

dr

)p/2

ds.

Due to the invariance of μ and to condition (2.6), we have∣∣(δ0 − A)e(s−r)A/ε[�(r)fk]
∣∣
Hμ

= ∣∣(δ0 − A)e(s−r)A/εNδ0[�(r)fk] − δ0〈Nδ0[�(r)fk],μ〉∣∣Hμ

= ∣∣e(s−r)/2A/ε((δ0 − A)e(s−r)/2A/εNδ0[�(r)fk])
− 〈

(δ0 − A)e(s−r)/2A/εNδ0[�(r)fk],μ〉∣∣
Hμ

≤ ce−γ (s−r)/(2ε)
∣∣(δ0 − A)e(s−r)/2A/εNδ0[�(r)fk]

∣∣
Hμ

.
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This implies that

E sup
t∈[0,T ]

∣∣∣∣wε
A,B(t) −

∫ t

0
〈�̂(s), dwB(s)〉Z

∣∣∣∣
p

Hμ

≤ cT ,p,α

∫ T

0

(∫ s

0
(s − r)−2αe−γ (s−r)/ε

× ∑
k∈N

θ2
k

∣∣(δ0 − A)e(s−r)/2A/εNδ0[�(r)fk]
∣∣2
Hμ

dr

)p/2

ds

and, hence, by proceeding as in the proof of Lemma 3.1, we conclude that

E sup
t∈[0,T ]

∣∣∣∣wε
A,B(t) −

∫ t

0
〈�̂(s), dwB(s)〉Z

∣∣∣∣
p

Hμ

≤ cT ,p,α,ρε−αp

(∫ T

0

[(
ε

s

)2α+(d sign(d−1)+ζ )/(2ζ )+ρ/2

+ 1
]
e−γ s/ε ds

)p/2

,

where ρ is a positive constant to be chosen and where ζ = β/(β − 2) if d > 1 and
ζ = 1 if d = 1. Now, as we are assuming β < 2d/(d − 1) when d ≥ 2, for any
θ < 1, we can fix ᾱ and ρ̄ both positive such that

1 − 2ᾱ > θ, 2ᾱ + d sign(d − 1) + ζ

2ζ
+ ρ̄

2
< 1.

Then, with a change of variable, for any p > p̄ = 1/ᾱ,

E sup
t∈[0,T ]

∣∣∣∣wε
A,B(t) −

∫ t

0
〈�̂(s), dwB(s)〉Z

∣∣∣∣
p

Hμ

≤ cT ,pεpθ/2

and this implies (4.18) for any p ≥ 1. �

REMARK 4.5.

1. Notice that from (4.13), we have

E|uε − v|pLp(0,T ;Hμ) ≤ cT ,p,θ (ε
pθ/2 + ε)(1 + |u0|pHμ

)(4.19)

so that

lim
ε→0

E|uε − v|pLp(0,T ;Hμ) = 0.

2. If we take u0 = 〈u0,μ〉, then, for any p ≥ 1, T > 0 and θ < 1, we have the
stronger estimate

E sup
t∈[0,T ]

|uε(t) − v(t)|pHμ
≤ cT ,p,θ ε

pθ/2(1 + |u0|p).(4.20)
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3. From the proofs of Lemmas 4.3 and 4.4, we easily see that for any T > 0 and
p ≥ 1,

sup
t∈[0,T ]

E|wε
A,Q(uε)(t) − ŵA,Q(t)|pHμ

≤ cT ,pεp/2(1 + |u0|pH )(4.21)

and

sup
t∈[0,T ]

E|wε
A,B(t) − ŵA,B(t)|pHμ

≤ cT ,pεp/2.(4.22)

Then, for any T > 0 and p ≥ 1,

sup
t∈[0,T ]

E|Rε(t)|pHμ
≤ cT ,pεp/2(1 + |u0|pHμ

), ε ∈ (0,1].

Then, by repeating the arguments used in the proof of Theorem 4.1, we have

sup
t∈[δ,T ]

E|uε(t) − v(t)|pHμ
≤ cT ,p(ε + εp/2)(1 + |u0|pHμ

) + e−γpδ/ε|u0|pHμ
.

Moreover, if u0 = 〈u0,μ〉, as in (4.20), we have

sup
t∈[0,T ]

E|uε(t) − v(t)|pHμ
≤ cT ,pεp/2(1 + |u0|p).(4.23)

5. Fluctuations around the averaged motion. In this section, we analyze the
fluctuations of the motion uε around the averaged motion v. More precisely, we
will study the limiting behavior of the random field

zε(t, x) := uε(t, x) − v(t)√
ε

, t ≥ 0, x ∈ D,(5.1)

as the parameter ε goes to zero.
In what follows, in addition to Hypothesis 2, we shall assume that the coeffi-

cients f and g satisfy the following conditions.

HYPOTHESIS 4.

1. The mapping f (t, x, ·) : R → R is of class C1, with Lipschitz continuous deriv-
ative, uniformly with respect to x ∈ D and t ∈ [0, T ], for any T > 0.

2. The mapping g does not depend on the third variable, that is, g(t, x, η) =
g(t, x) for any t ≥ 0, x ∈ D and η ∈ R.

3. For any x ∈ D, the mappings g(·, x) : [0,∞) → R and σ(·, x) : R → R are
Hölder continuous of exponent α > 0 and

sup
x∈D

[g(·, x)]Cα([0,+∞)) = Lg < ∞,

(5.2)
sup

η∈∂D

[σ(·, η)]Cα([0,+∞)) = Lσ < ∞.



396 S. CERRAI AND M. FREIDLIN

From Hypothesis 4, we easily obtain that the mapping F̂ (t, ·) :Hμ → R is
Fréchet differentiable and, for any t ≥ 0 and h, k ∈ Hμ, we have

DF̂ (t, h)k =
∫
D

∂f

∂ξ
(t, x, h(x))k(x)μ(dx) =

〈
∂f

∂ξ
(t, ·, h)k,μ

〉
.

Moreover, DF̂ (t, ·) :Hμ → H is Lipschitz continuous, uniformly for t ∈ [0, T ].

THEOREM 5.1. Assume Hypotheses 1–4. Then, for any t > 0,

zε(t, x) ⇀ I0(t, x), ε ↓ 0,(5.3)

in Hμ, where I0(t, x) is the Gaussian random field defined for any t > 0 and x ∈ D

by

I0(t, x) :=
∫ ∞

0
�esAG(t) dwQ(s, x)

(5.4)
+

∫ ∞
0

�(δ0 − A)esANδ0[�(t) dwB(s)](x).

[For any x ∈ Hμ, we have set �x := x − 〈x,μ〉. Notice that, due to the invariance
of μ,

�etAh = etA�h, t ≥ 0, h ∈ Hμ, �Ah = A�h, h ∈ D(A).]

We now define

IG(t) :=
∫ ∞

0
�esAG(t) dwQ(s)(5.5)

and

I�(t) :=
∫ ∞

0
�(δ0 − A)esANδ0[�(t) dwB(s)].(5.6)

Before proceeding with the proof of Theorem 5.1, it is important to see that the
two terms IG(t) and I�(t) are both well defined in L2(�;Hμ) for any t ≥ 0.

LEMMA 5.2. Under Hypotheses 1–3,

E|IG(t)|2Hμ
< ∞, t ≥ 0.

PROOF. Due to the invariance of μ, we have

IG(t) =
∞∑

k=1

∫ ∞
0

λk

(
esA[G(t)ek] − 〈G(t)ek,μ〉)dβk(s)
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so that, by proceeding as in the proof of Lemma 3.3, thanks to (2.12), we have

E|IG(t)|2Hμ
=

∫ ∞
0

∞∑
k=1

λ2
k|esA[G(t)ek] − 〈G(t)ek,μ〉|2Hμ

ds

≤ c

∫ ∞
0

( ∞∑
k=1

∣∣esA([G(t)ek] − 〈G(t)ek,μ〉)∣∣2Hμ

)1/ζ

(5.7)

× sup
k∈N

|esA[G(t)ek] − 〈G(t)ek,μ〉|2(ζ−1)/ζ
Hμ

|ek|−4/ρ∞ ds,

where ζ = (ρ − 2)/ρ and ρ is the constant appearing in (2.12). Due to (2.6) and
the invariance of μ, we have∣∣esA([G(t)ek] − 〈G(t)ek,μ〉)∣∣2Hμ

≤ e−γ s |es/2A[G(t)ek]|2Hμ

so that, according to (3.16), we have( ∞∑
k=1

∣∣esA([G(t)ek] − 〈G(t)ek,μ〉)∣∣2Hμ

)1/ζ

≤ cte
−γ s/ζ (

s−d/(2ζ ) + 1
)
.

Analogously, according to (3.17), we have

sup
k∈N

|esA[G(t)ek] − 〈G(t)ek,μ〉|2(ζ−1)/ζ
Hμ

|ek|−4/ρ∞ ≤ cte
−γ (ζ−1)s/ζ

and hence, in view of (5.7), we conclude that

E|IG(t)|2Hμ
≤ ct

∫ ∞
0

e−γ s(s−d/(2ζ ) + 1
)
ds ≤ ct . �

As far as I� is concerned, we have the following, analogous, result.

LEMMA 5.3. Under Hypotheses 1–3

E|I�(t)|2Hμ
< ∞, t ≥ 0.

PROOF. Due to the invariance of μ, we have

I�(t) =
∞∑

k=1

∫ ∞
0

θk

(
(δ0 − A)esANδ0[�(t)fk] − δ0〈Nδ0[�(t)fk],μ〉)dβ̂k(s).

Using the same arguments used in Lemma 4.4, due to (2.6) and the invariance of μ,
we have

|(δ0 − A)esANδ0[�(t)fk] − δ0〈Nδ0[�(t)fk],μ〉|2Hμ

≤ ce−γ s |(δ0 − A)es/2ANδ0[�(t)fk]|2Hμ
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and then, as in the proof of Lemma 3.1, due to (2.13), we get

E|I�(t)|2Hμ
≤ c

∫ ∞
0

e−γ s

( ∞∑
k=1

|(δ0 − A)es/2ANδ0[�(t)fk]|2Hμ

)1/ζ

× sup
k∈N

|(δ0 − A)es/2ANδ0[�(t)fk]|2(ζ−1)/ζ
Hμ

ds.

By using (3.10) and (3.11), this allows us to conclude that for some ρ̄ > 0 such
that (d + ζ )/2ζ + ρ̄/2 < 1,

E|I�(t)|2Hμ
≤ ct

∫ ∞
0

e−γ s(s−(d+ζ )/(2ζ )+ρ̄/2 + 1
)
ds < +∞. �

5.1. Proof of Theorem 5.1. It is immediate to check that for any t ≥ 0,

zε(t) =
∫ t

0
DF̂ (s, v(s))zε(s) ds + Rε(t) + Iε(t),

where

Rε(t) := 1√
ε
(et/εAu0 − 〈u0,μ〉)

+ 1√
ε

∫ t

0

(
e(t−s)A/εF (s, uε(s)) − F̂ (s, uε(s))

)
ds

+
∫ t

0

∫ 1

0

[
DF̂

(
s, v(s) + θ

(
uε(s) − v(s)

)) − DF̂ (s, v(s))
]
zε(s) ds dθ

=:
3∑

i=1

Rε,i(t)

and

Iε(t) := 1√
ε

(
wε

A,Q(t) − ŵA,Q(t)
) + 1√

ε

(
wε

A,B(t) − ŵA,B(t)
)
.(5.8)

Due to (1.2), we have

|Rε,1(t)|Hμ ≤ c√
ε
e−γ t/ε|u0|Hμ.(5.9)

For Rε,2(t), with a change of variables, due to (2.6), we have, for any t ∈ [0, T ],
|Rε,2(t)|Hμ ≤ c√

ε

∫ t

0
e−γ (t−s)/ε|F(s,uε(s))|Hμ ds

≤ ct√
ε

(
1 + sup

s∈[0,t]
|uε(s)|Hμ

)∫ t

0
e−γ s/ε ds

≤ ct

√
ε
(
1 + sup

s∈[0,t]
|uε(s)|Hμ

)
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and then, thanks to (3.18), we get

E sup
t∈[0,T ]

|Rε,2(t)|Hμ ≤ cT

√
ε(1 + |u0|Hμ).(5.10)

Finally, for Rε,3(t), due to the Lipschitz continuity of DF̂ (s, ·) :Hμ → H , uniform
with respect to s ∈ [0, t], and estimate (4.19) with p = 2 and θ ∈ (1/2,1), we get

E|Rε,3(t)|Hμ ≤ ct√
ε

∫ T

0
E|uε(s) − v(s)|2Hμ

ds

(5.11)
≤ cT εθ−1/2(1 + |u0|2).

Therefore, collecting together (5.9), (5.10) and (5.11), we can conclude that for
any T > 0 and ε ∈ (0,1],

E|Rε(t)|Hμ ≤ c√
ε
e−γ t/ε|u0|Hμ + cT (1 + |u0|2Hμ

)εθ−1/2, t ∈ [0, T ].(5.12)

Next, for any ε > 0, we introduce the problem

ζ(t) =
∫ t

0
DF̂ (s, v(s))ζ(s) ds + Iε(t),

where Iε(t) is the process introduced in (5.8). For any ε > 0, we denote by ζε its
unique solution.

We have the following result, whose proof is postponed to the end of this sec-
tion.

LEMMA 5.4. Under Hypotheses 1–4, for any t > 0, we have

ζε(t) ⇀ I0(t), ε ↓ 0,

in Hμ, where I0(t) is the Hμ-valued Gaussian vector field defined in (5.4).

Now, for any ε > 0 and t > 0, we define ρε(t) := zε(t) − ζε(t). We have

ρε(t) =
∫ t

0
DF̂ (s, v(s))ρε(s) ds + Rε(t)

so that

E|ρε(t)|Hμ ≤ cT

∫ t

0
E|ρε(s)|Hμ + E|Rε(t)|Hμ.

By comparison, we get

E|ρε(t)|Hμ ≤ cT E|Rε(t)|Hμ + cT

∫ t

0
E|Rε(s)|Hμ ds
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and, thanks to (5.12), this implies that

E|ρε(t)|Hμ ≤ cT√
ε
e−γ t/ε|u0|Hμ + cT (1 + |u0|2Hμ

)εθ−1/2

+ cT√
ε

∫ t

0
e−γ s/ε ds |u0|Hμ.

Hence, we can conclude that for any t > 0,

lim
ε→0

E|zε(t) − ζε(t)|Hμ = lim
ε→0

E|ρε(t)|Hμ = 0

so that, in view of Lemma 5.4, Theorem 5.1 is proved.

5.1.1. Proof of Lemma 5.4. For any x ∈ D and t > 0, we have

ζε(t, x) =
∫ t

0

∫
D

∂f

∂ξ
(s, y, v(s))ζε(s, y)μ(dy) ds + Iε(t, x).

Then, if we multiply both sides above by ∂f/∂ξ(t, x, v(t)) and integrate in x with
respect to the measure μ, we get

�ε(t) = H(t)

∫ t

0
�ε(s) ds + Kε(t),

where

�ε(t) :=
∫
D

∂f

∂ξ
(t, x, v(t))ζε(t, x)μ(dx)

and

H(t) :=
∫
D

∂f

∂ξ
(t, x, v(t))μ(dx),

Kε(t) :=
∫
D

∂f

∂ξ
(t, x, v(t))Iε(t, x)μ(dx).

It is then immediate to check that∫ t

0
�ε(s) ds =

∫ t

0
exp

(∫ t

s
H(r) dr

)
Kε(s) ds

so that

ζε(t, x) =
∫ t

0
H(t, s)Kε(s) ds + Iε(t, x),

where

H(t, s) := exp
(∫ t

s
H(r) dr

)
.



FAST TRANSPORT ASYMPTOTICS FOR STOCHASTIC RDES 401

Step 1. We show that for any t ≥ 0,

lim
ε→0

E

∣∣∣∣
∫ t

0
H(t, s)Kε(s) ds

∣∣∣∣
2

= 0.(5.13)

Due to (5.8) and the stochastic Fubini theorem, we have∫ t

0
H(t, s)Kε(s) ds

= 1√
ε

∞∑
k=0

∫ t

0

∫ t

σ
H(t, s)

〈
∂f

∂ξ
(s, ·, v(s)),

e(s−σ)A/ε�[G(σ)Qek]
〉
Hμ

ds dβk(σ )

+ 1√
ε

∞∑
k=0

∫ t

0

∫ t

σ
H(t, s)

〈
∂f

∂ξ
(s, ·, v(s)),

(δ0 − A)e(s−σ)A/ε

× �[Nδ0(�(σ)Bfk)]
〉
Hμ

ds dβ̂k(σ ).

Then, as wQ and wB are independent and ∂f/∂ξ is uniformly bounded, we get

E

∣∣∣∣
∫ t

0
H(t, s)Kε(s) ds

∣∣∣∣
2

≤ κt

ε

∫ t

0

∞∑
k=0

(∫ t

σ
eκt (t−s)

∣∣e(s−σ)A/ε�[G(σ)Qek]
∣∣
Hμ

ds

)2

dσ

+ κt

ε

∫ t

0

∞∑
k=0

(∫ t

σ
eκt (t−s)

∣∣(δ0 − A)e(s−σ)A/ε

× �[Nδ0(�(σ)Bfk)]
∣∣
Hμ

ds

)2

dσ

=: κt

ε

∫ t

0

(
Jε,1(t, σ ) + Jε,2(t, σ )

)
dσ.

For the first term Jε,1, in view of (2.6), for any α ∈ (0,2), we have

Jε,1(t, σ )

≤
∞∑

k=0

λ2
k

(∫ t

σ
eκt (t−s)e−γ (s−σ)/(2ε)

∣∣e(s−σ)A/(2ε)�[G(σ)ek]
∣∣
Hμ

ds

)2

≤
(∫ t

σ
eκt (2−α)(t−s)e−γ (2−α)(s−σ)/(2ε) ds

)2/(2−α)
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×
∞∑

k=0

λ2
k

(∫ t

σ

∣∣e(s−σ)A/(2ε)[G(σ)ek]
∣∣(2−α)/(1−α)
Hμ

ds

)2(1−α)/(2−α)

≤ ctε
2/(2−α)

∞∑
k=0

λ2
k

(∫ t

σ

∣∣e(s−σ)A/(2ε)[G(σ)ek]
∣∣(2−α)/(1−α)
Hμ

ds

)2(1−α)/(2−α)

.

Then, if we set ζ = ρ/(ρ − 2), by using the Hölder inequality for infinite series,
we get

Jε,1(t, σ )

≤ ctε
2/(2−α)κ

2/ρ
Q

×
(∫ t

σ

( ∞∑
k=0

∣∣e(s−σ)A/(2ε)[G(σ)ek]
∣∣2ζ
H

× |ek|−4/(ρ−2)∞

)1/ζ(2−α)/(2(1−α))

ds

)2(1−α)/(2−α)

and, by proceeding as in the proof of Lemma 3.3, we conclude that for ε ∈ (0,1],

Jε,1(t, σ ) ≤ ctε
2/(2−α)κ

2/ρ
Q

(∫ t

σ

(
(s −σ)−d/(2ζ )(2−α)/(2(1−α)) +1

)
ds

)2(1−α)/(2−α)

.

Now, in view of Hypothesis 3, we have d/2ζ < 1 and can fix ᾱ1 > 0 such that

d

2ζ

2 − ᾱ1

2(1 − ᾱ1)
< 1

and then

κt

ε

∫ t

0
Jε,1(t, σ ) dσ ≤ ct,ᾱ1ε

ᾱ1/(2−ᾱ1), ε ∈ (0,1], t ≥ 0.(5.14)

The same arguments can be repeated for the term Jε,2, so we can find some ᾱ2 > 0
such that

κt

ε

∫ t

0
Jε,2(t, σ ) dσ ≤ ct,ᾱ2ε

ᾱ2/(2−ᾱ2), ε ∈ (0,1], t ≥ 0.

This, together with (5.14), implies that

E

∣∣∣∣
∫ t

0
H(t, s)Kε(s) ds

∣∣∣∣
2

≤ ctε
γ , ε ∈ (0,1], t ≥ 0,

where

γ = ᾱ1 ∧ ᾱ2

2 − ᾱ1 ∧ ᾱ2
,

so (5.13) follows.
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Step 2. We show that for any fixed t > 0,

Iε(t) ⇀ I0(t), ε ↓ 0.(5.15)

With a change of variable, we have

Iε(t) = 1√
ε

(∫ t

0
e(t−s)A/ε�[G(s)dwQ(s)]

+
∫ t

0
(δ0 − A)e(t−s)A/ε�[Nδ0(�(s) dwB(s))]

)

=
∫ t/ε

0
erA�[G(t − εr) dw

Q
ε,t (r)]

+
∫ t/ε

0
(δ0 − A)erA�

[
Nδ0

(
�(t − εr) dwB

ε,t (r)
)]

,

where

w
Q
ε,t (r) = 1√

ε

(
wQ(t) − wQ(t − εr)

)
, wB

ε,t (r) = 1√
ε

(
wB(t) − wB(t − εr)

)
.

This means that for any ε > 0 and t > 0,

L(Iε(t)) = L(Îε(t)),

where

Îε(t) :=
∫ t/ε

0
erA�[G(t − εr) dwQ(r)]

+
∫ t/ε

0
(δ0 − A)erA�

[
Nδ0

(
�(t − εr) dwB(r)

)]
.

Thus, in order to obtain (5.15), it is sufficient to prove

lim
ε→0

E|Îε(t) − I0(t)|2Hμ
= 0.(5.16)

We have

Îε(t) − I0(t) =
∫ t/ε

0
erA�

[(
G(t − εr) − G(t)

)
dwQ(r)

]

+
∫ t/ε

0
(δ0 − A)erA�

[
Nδ0

((
�(t − εr) − �(t)

)
dwB(r)

)]

−
∫ ∞
t/ε

erA�[G(t) dwQ(r)]

−
∫ ∞
t/ε

(δ0 − A)erA�[Nδ0(�(t) dwB(r))]

=:
4∑

i=1

Jε,i(t).
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With the same arguments used several times throughout the paper, we have

E|Jε,1(t)|2Hμ
≤ c

∫ t/ε

0
e−γ s(s−d/(2ζ ) + 1

)|g(t − εs, ·) − g(t, ·)|2Hμ
ds.

Then, due to Hypothesis 4, we have

E|Jε,1(t)|2Hμ
≤ ctε

2α
∫ ∞

0
e−γ s(s−d/(2ζ ) + 1

)
s2α ds ≤ ctε

2α.(5.17)

Analogously, we have

E|Jε,2(t)|2Hμ
≤ ctε

2α.(5.18)

Concerning Jε,3(t), we have

E|Jε,3(t)|2Hμ
≤ c

∫ ∞
t/ε

e−γ s(s−d/(2ζ ) + 1
)
ds |g(t, ·)|2Hμ

≤ ct

∫ ∞
t/ε

e−γ s(s−d/(2ζ ) + 1
)
ds

so that

lim
ε→0

E|Jε,3(t)|2Hμ
= 0.(5.19)

In an identical way, we can show that

lim
ε→0

sup
t∈[δ,T ]

E|Jε,4(t)|2Hμ
= 0

and this, together with (5.17), (5.18) and (5.19), implies (5.16).
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