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Dose-finding studies are frequently conducted to evaluate the effect of
different doses or concentration levels of a compound on a response of inter-
est. Applications include the investigation of a new medicinal drug, a herbi-
cide or fertilizer, a molecular entity, an environmental toxin, or an industrial
chemical. In pharmaceutical drug development, dose-finding studies are of
critical importance because of regulatory requirements that marketed doses
are safe and provide clinically relevant efficacy. Motivated by a dose-finding
study in moderate persistent asthma, we propose response-adaptive designs
addressing two major challenges in dose-finding studies: uncertainty about
the dose-response models and large variability in parameter estimates. To
allocate new cohorts of patients in an ongoing study, we use optimal de-
signs that are robust under model uncertainty. In addition, we use a Bayesian
shrinkage approach to stabilize the parameter estimates over the successive
interim analyses used in the adaptations. This approach allows us to calculate
updated parameter estimates and model probabilities that can then be used
to calculate the optimal design for subsequent cohorts. The resulting designs
are hence robust with respect to model misspecification and additionally can
efficiently adapt to the information accrued in an ongoing study. We focus
on adaptive designs for estimating the minimum effective dose, although al-
ternative optimality criteria or mixtures thereof could be used, enabling the
design to address multiple objectives. In an extensive simulation study, we
investigate the operating characteristics of the proposed methods under a va-
riety of scenarios discussed by the clinical team to design the aforementioned
clinical study.

1. Introduction. Dose-finding studies have several challenges in common.
First, they usually address two distinct objectives, which lead to different require-
ments on the study design [Ruberg (1995), Bretz et al. (2008)]: (i) assessing evi-
dence of a drug effect, and (ii) estimating relevant target doses. Second, the form
of the dose-response relationship is unknown prior to the study, leading to model
uncertainty. This problem is often underestimated, although ignoring model un-
certainty can lead to highly undesirable effects [Chatfield (1995), Draper (1995),
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Hjorth (1994)]. Third, data from dose-finding studies are usually highly variable.
This issue is of particular importance in pharmaceutical drug development, be-
cause sample sizes are kept to a minimum for ethical and financial reasons. It is
therefore critical to develop efficient dose-finding study designs that use the lim-
ited information as efficiently as possible, while addressing the above challenges.

Many approaches have been proposed in the optimal design literature to dis-
tribute patients efficiently with regard to given study objectives; see Wu (1988),
Fedorov and Leonov (2001) and King and Wong (2004), among many others.
However, most of this work has concentrated on an assumed fixed dose-response
model. As there is typically considerable model uncertainty at the planning stage
of a dose-response study, these methods have limited practical use. Based on con-
cepts introduced by Läuter (1974) [see also Cook and Wong (1994), Zhu and Wong
(2000, 2001), Biedermann, Dette and Pepelyshev (2006)], Dette et al. (2008) inves-
tigated model-robust designs that provide efficient target dose estimates for a set
of candidate dose-response models, rather than for a single dose-response model.
However, their designs require knowledge about the unknown parameters associ-
ated with the anticipated dose-response models as well as the prespecification of
model probabilities.

A natural remedy is to investigate response-adaptive designs (adaptive designs,
in short) with several cohorts of subjects. After each stage the accumulated infor-
mation of the ongoing study is used to update the initial information of the underly-
ing model parameters and model probabilities, which in turn is used to calculate the
design for the subsequent stage(s). Several adaptive designs have been developed
for this problem; see, for example, Miller, Guilbaud and Dette (2007) and Dragalin,
Hsuan and Padmanabhan (2007) for recent approaches using optimal design the-
ory, or Zhou et al. (2003), Müller et al. (2006), and Wathen and Thall (2008) for
recent Bayesian adaptive designs. Dragalin et al. (2010) performed an extensive
simulation study that compared five different adaptive dose-finding methods.

In this paper we propose adaptive designs addressing the three major challenges
described above: multiple study objectives, model uncertainty and large variability
in the data. For this purpose we use the model-robust designs proposed by Dette
et al. (2008) together with a Bayesian shrinkage approach to stabilize the parame-
ter estimates, especially in the early part of a study. This allows one to calculate
parameter estimates as well as model probabilities that can then be used to calcu-
late model-robust designs for the subsequent stage(s) of the study. The resulting
designs are robust with respect to model misspecification and additionally adapt to
the continuously accrued information in an ongoing study. We focus on adaptive
designs for estimating the minimum effective dose (MED), that is, the smallest
dose achieving a clinically relevant benefit over the placebo response. However,
alternative optimality criteria or mixtures of optimality criteria could be used, en-
abling the design to address multiple objectives.
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2. Asthma dose-finding study. The research for this article was motivated
by a Phase II dose-finding study for the development of a new pharmaceutical
compound in asthma. This was a multi-center, randomized, double-blind, placebo
controlled, parallel group study in patients with moderate persistent asthma, who
were randomized to one of seven active dose levels or placebo. The primary end-
point was change from baseline in a lung function parameter (forced expiratory
volume in 1 second, FEV1) after 28 days of administration, scaled such that larger
values indicated a better outcome. The objective of the trial was to evaluate the
dose effects over placebo for the primary endpoint and to assess whether there
was any evidence of a drug effect. Once such a dose-response signal had been de-
tected, one would subsequently estimate relevant target doses, where the primary
focus was on estimating the MED.

Based on discussions with the clinical team, a homoscedastic normal model was
assumed for the primary endpoint with a standard deviation of 350 ml, a placebo
effect of 100 ml and a maximum treatment effect of 300 ml within the dose range
[0, 50] under investigation. The available doses were 0 (= placebo), 0.5, 1.0, 2.5, 5,
10, 20 and 50. The clinically relevant benefit over the placebo effect was set to 200
ml. That is, an increase in treatment effect of less than 200 ml over the observed
placebo response was considered to be clinically irrelevant. Furthermore, all dose
levels within the investigated dose range were considered safe based on previous
studies, so that efficacy was of primary interest.

Because this study was conducted early in the drug development program, lim-
ited information about the dose-response shape was available at the planning stage.
A set of candidate dose-response models was derived before starting the study; see
Table 1 and Figure 1 for the full model specifications (including a preliminary
specification of the model parameters). An increase of the dose-response curve in
the lower part of the investigated dose range was considered likely, so two concave
increasing models (Emax1, Emax2) were included in the model set. In addition, S-
shaped (Logistic1), unimodal (Beta) and convex (Logistic2) models were included
in the candidate model set to robustify the statistical analysis with respect to model
uncertainty. We refer to Pinheiro, Bornkamp and Bretz (2006) for details on the use

TABLE 1
Candidate dose response models as a function of dose d , where B(a, b) = (a + b)a+b/(aabb)

Model Full model specification Model parameters True MED

Beta θ0 + θ1B(θ2, θ3)(d/60)θ2(1 − d/60)θ3 (100, 300, 0.43, 0.6) 5.21
Emax1 θ0 + θ1d/(θ2 + d) (100, 420, 20) 18.18
Emax2 θ0 + θ1d/(θ2 + d) (100, 330, 5) 7.69
Logistic1 θ0 + θ1/{1 + exp[(θ2 − d)/θ3]} (98, 302, 17.5, 3.3) 19.82
Logistic2 θ0 + θ1/{1 + exp[(θ2 − d)/θ3]} (92, 615, 50, 11.5) 42.28
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FIG. 1. Graphical display of the dose-response models in Table 1. Open dots denote the potential
responses at the seven active dose levels and placebo available in the study. Dotted horizontal lines
indicate the clinical relevance threshold on top of placebo response and dotted vertical lines the
resulting MED.

of candidate models in dose-response studies and the elicitation of best guesses for
the model parameters.

Given the information and constraints above, the clinical team was faced at the
planning stage with several remaining key questions on the study design:

(A) Should an adaptive design be employed at all or would a nonadaptive de-
sign be sufficient?

(B) If the decision was to employ an adaptive design, how many interim analy-
ses should be conducted?

(C) How many dose levels should be included in the study, that is, are all seven
active dose levels from above needed?

(D) If not all active dose levels were needed, which of them should then be
investigated?

In addition to these statistical questions, many further considerations were dis-
cussed by the clinical team: adaptive designs require more logistical effort to set
up the repeated data collection and cleaning/analysis processes than nonadaptive
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designs; including all seven active doses in the study would pose serious chal-
lenges to the drug manufacturing and supply departments, especially if the alloca-
tion changed during the study course; and how to ensure trial integrity and validity.
In the following we focus on the statistical questions and describe the proposed
methodology for the study.

3. Methodology. Assume k distinct dose levels d1, . . . , dk , where d1 = 0 de-
notes placebo. Let ni patients be allocated to dose di and N = ∑k

i=1 ni . The vector
of allocation weights is denoted by w = (w1, . . . ,wk)

′, where wi = ni/N . Let fur-
ther Yij ∼ N(f (di, θ), σ 2) denote the observation of patient j = 1, . . . , ni at dose
di, i = 1, . . . , k, where the dose-response model f (·) is parameterized through the
parameter vector θ and N(μ,σ 2) denotes the normal distribution with mean μ and
variance σ 2.

Most dose-response models used in practice, including those in Table 1, can be
decomposed as

f (d, θ) = θ0 + θ1f
0(d, θ0),(3.1)

where θ = (θ0, θ1, θ
0′

)′ = (θ0, . . . , θp)′. The parameters θ∗ = (θ0, θ1)
′ enter the

model function f linearly and determine its location and scale, while f 0 is typ-
ically a nonlinear function that determines the shape of the model function f

through the parameters θ0.
The minimum effective dose producing a clinically relevant effect � over the

placebo response is defined as

MED = min
d∈(d1,dk]

{f (d, θ) > f (d1, θ) + �},(3.2)

where we assume that a beneficial effect is associated with larger values of the
response variable. Note that the MED may not exist, as no dose in (d1, dk] may
produce an improvement of � compared with placebo.

3.1. Robust designs for MED estimation. Given a function f 0, it follows from
(3.2) that the MED (provided it exists) is a solution to

θ0 + θ1f
0(0, θ0) + � = θ0 + θ1f

0(MED, θ0).(3.3)

Consequently, MED = b(θ) = h0(f 0(0, θ0) + �/θ1), where h0(x) = inf{z|
f 0(z) ≥ x} denotes the (generalized) inverse of the function f 0 with respect
to the variable d . Standard asymptotic theory for nonlinear models [Seber and
Wild (1989)] yields that the maximum likelihood (ML) estimate θ̂ is approxi-
mately multivariate normal distributed with mean vector θ and covariance ma-
trix σ 2

N
M−1(θ,w), where M(θ,w) = ∑k

i=1 wig(di, θ)g(di, θ)′ denotes the in-

formation matrix and g(d, θ) = ∂f (d,θ)
∂θ the gradient of the dose-response model

f with respect to θ . It follows from the δ-method [see van der Vaart (1998)]
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that the MED estimator based on θ̂ , M̂ED = b(̂θ), is asymptotically normally
distributed with mean b(θ) and variance V (θ ,w) = σ 2

N
∇b(θ)′M−1(θ,w)∇b(θ),

where ∇b(θ) = ∂b(θ)
∂θ . Hence, minimizing V (θ,w) with respect to w ∈ Sk =

{w|∑k
i=1 wi = 1,w ≥ 0} results in optimal designs that minimize the approximate

variance of M̂ED. This design criterion has also an appealing decision theoretic
justification: The asymptotic normal distribution of M̂ED approximates the poste-
rior distribution of the MED in a Bayesian model framework. Hence, minimizing
the log-variance of M̂ED is equivalent to minimizing the (approximate) Shannon
entropy of the posterior distribution of the MED [Chaloner and Verdinelli (1995)].

In principle, the above optimization could be done with respect to the number
and choice of doses and their corresponding allocation ratios [Dette et al. (2008)],
but, in practice, manufacturing constraints often determine the available doses, as
it was the case in the asthma study from Section 2. In the following we thus restrict
the optimization to the weights w for prespecified doses d1, . . . , dk .

The true dose-response function f is unknown and optimal designs are typically
not robust with respect to model misspecification [Dette et al. (2008)]. In the fol-
lowing we assume a set of M candidate models fm(d, θm) = θ0m + θ1mf 0

m(d, θ0
m),

m = 1, . . . ,M , such as those described in Table 1. We “integrate” the design cri-
terion conditional on model m with respect to the model probabilities αm. Hence,
using the design criterion

∑M
m=1 αm log(Vm(θm,w)) or, equivalently,

�(w) =
M∏

m=1

(Vm(θm,w))αm(3.4)

leads to designs that are robust with respect to model misspecification, where
Vm(θm,w) denotes the variance of the estimate for the MED in the mth model
(m = 1, . . . ,M). Note that because of taking logarithms above, there is no need
to standardize the individual model variances. Otherwise this would be necessary
to avoid that some models dominate the design criterion [the Vm(θm,w) can be
quite model dependent and differing in size]. However, the numerical calcula-
tion of robust designs using the criterion (3.4) requires the knowledge of θm and
αm,m = 1, . . . ,M . In the following sections we describe how the initial best para-
meter guesses can be updated during an ongoing study such that subsequent stages
can be redesigned based on the updated estimates for θm and αm,m = 1, . . . ,M ;
see Section 3.3 for a description of the complete procedure in an algorithmic form.

3.2. Updating of model parameters and weights. Reliably estimating the para-
meters θ1, . . . , θM is a challenging problem, particularly in early stages of a study.
ML estimates for these parameters are typically highly variable, and may even
not exist without imposing bounds on the parameter space. One way of stabilizing
estimates is to use a shrinkage approach based on, for example, penalized maxi-
mum likelihood or maximum a-posteriori (MAP) estimates. Here, one optimizes
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the log-likelihood function plus a term which determines the prior plausibility of
the parameters (the log prior distribution). The estimate is then a compromise be-
tween the information contained in data and the prior distribution. This stabilizes
the estimates in early stages due to the shrinkage toward a priori reasonable val-
ues. In later stages the shrinkage effect decreases because the log prior remains
constant while the log likelihood receives more weight with increasing sample
sizes. If a completely flat prior distribution is used, standard ML and MAP estima-
tion coincide, so that using nonuniform priors is desirable. We discuss the choice
of nonuniform priors in more detail further below.

Apart from stable parameter estimates θ1, . . . , θM for the dose-response mod-
els, one needs to update the model probabilities α1, . . . , αM at an interim analysis.
We propose using a probability distribution over the different dose-response mod-
els and evaluating the posterior probabilities for each model after having observed
the data; see, for example, Kass and Raftery (1995) for a detailed description of
posterior probabilities and Bayes factors. These posterior model probabilities can
then be used in the design criterion (3.4). A computationally efficient approach
to approximate the posterior model probabilities is the Bayesian information cri-
terion (BIC). However, previous simulation studies in the context of dose-finding
studies showed that the BIC approximation frequently favors too simplistic models
for realistic variances and sample sizes [see Bornkamp (2006)]. Other approximate
methods, such as fractional Bayes factors, or intrinsic Bayes factors [see O’Hagan
(1995) or Berger and Pericchi (1996)], either depend on arbitrary tuning parame-
ter values or are computationally prohibitive. Thus, for each model we will use
the exact posterior probabilities resulting from the prior distributions assumed for
the MAP estimation. In our case, these probabilities can be calculated using effi-
cient numerical quadrature without the need to resort to computationally expensive
Markov chain Monte Carlo techniques. In the remainder of this section we provide
details on the prior elicitation and the calculation of posterior probabilities.

3.2.1. Selection of prior distributions for θm. We utilize the factorization in
(3.1) to derive a prior distribution for (θ0m, θ1m, θ0

m,σ 2). If θ0
m were known, the

nonlinear models would reduce to a linear model. It is therefore reasonable to use
for a given θ0

m the conditionally conjugate normal-inverse gamma (NIG) distribu-
tion

p(θ∗
m,σ 2|θ0

m) ∝ (σ 2)−(ν+4)/2 exp[−{(θ∗
m − μ)′V−1(θ∗

m − μ) + a}/(2σ 2)]
for (θ∗

m,σ 2) [see O’Hagan and Forster (2004)], where the parameter θ∗ is defined
after equation (3.1), a, ν > 0, μ ∈ R2 and V ∈ R2×2 denotes a positive definite ma-
trix. The NIG distribution marginally induces a bivariate t-distribution for θ∗

m with
ν degrees of freedom, finite mean μ and covariance matrix a/(ν − 2)V, provided
that ν > 2. The marginal prior distribution for σ 2 is given by an IG distribution
with mode a/(ν + 2), mean a/(ν − 2) and variance 2a2/{(ν − 2)2(ν − 4)}. It has
a finite mean when ν > 2 and a finite variance when ν > 4.



1618 BORNKAMP, BRETZ, DETTE AND PINHEIRO

To set up the NIG distribution for (θ∗
m,σ 2), one can employ available infor-

mation about the placebo effect, the maximum treatment effect and the standard
deviation. For example, one can choose the marginal bivariate t-distribution for
θ∗

m (conditional on θ0
m) such that the desired mean and covariance are achieved for

the placebo effect and the maximum effect of the underlying dose-response model.
When the linear parameters θ∗

m cannot be interpreted as placebo and maximum ef-
fect, one can use a suitable transformation to achieve the desired moments. Then,
one can adjust a and d so that the marginal distribution of σ 2 achieves the desired
mode. An attractive choice is to use ν = 4, leading to a prior with infinite variance
for σ 2 and a heavy tailed marginal prior for θ∗

m.
For the nonlinear parameters θ0

m, we propose selecting suitable bounds for the
parameters and then eliciting a bounded prior distribution. This is typically not
difficult, as the interpretation of the nonlinear parameters is straightforward, and
excessively large parameter values usually correspond to a priori unlikely model
shapes. We propose using a scaled beta distribution B(α,β) with mode equal to
the initial parameter guesses. The curvature of the prior determines the amount of
shrinkage that one is willing to employ for the MAP estimates. In the simulations
we used the sum S = α + β as a measure of curvature with S > 2 to ensure uni-
modality of the beta distribution. Note that already relatively small values of S,
such as S = 10 or S = 20, lead to strong shrinkage effects; see Figure 2 for an
illustration of the θ2 parameter in the Emax1 model, where the initial parameter

FIG. 2. Beta priors on [0.5,75] with mode 20 and different S values.



RESPONSE-ADAPTIVE DOSE-FINDING UNDER MODEL UNCERTAINTY 1619

guess is 20. For dose-response models with more than one nonlinear parameter, we
repeat this procedure for all parameters and assume independence among them.

For selecting prior model probabilities, it is convenient to use a uniform distri-
bution across the models unless some models are deemed a priori more plausible
than others.

3.2.2. Calculation of posterior probabilities. Let y denote the data available
at an interim analysis and p(y|θm,m) the likelihood under model m with corre-
sponding prior distribution p(θm|m) and prior model probability p(m). Then the
marginal likelihood is given by

p(m|y) ∝ p(m)

∫
p(y|θm,σ 2,m)p(θm,σ 2|m)d(θm,σ 2)

∝ p(m)

∫ ∫
p(y|θm,σ 2,m)p(θ∗

m,σ 2|θ0
m,m)d(θ∗

m,σ 2)p(θ0
m|m)dθ0

m.

The inner integral in the last equation is the product of a likelihood and a conjugate
prior distribution. One can hence reduce the integration to

p(m|y) ∝ p(m)

∫
p(y|θ0

m,m)p(θ0
m|m)dθ0

m,(3.5)

where p(y|θ0
m,m) now denotes the integrated likelihood. In our applications, the

integral (3.5) is one- or two-dimensional over a bounded region and hence straight-
forward to calculate numerically. This allows us to calculate the marginal likeli-
hoods efficiently, without resorting to Markov chain Monte Carlo calculations; see
Section 3.4 for details. The posterior model probabilities p(m|y) can be obtained
by normalizing the marginal likelihoods (multiplied by the prior model probabili-
ties).

We use the maximum θ̃
0
m of the marginal posterior p(y|θ0

m,m)p(θ0
m|m) as

an estimate of θ0
m. Conditional on this value, we use the maximum θ̃

∗
m of

p(θ∗
m|θ̃0

m,y,m) as an estimate for θ∗
m. Therefore, the overall estimate of the pa-

rameter θm is given by θ̃m = (θ̃
∗
m, θ̃

0
m). This is a slight variation of the MAP ap-

proach described above, but reduces further the computational effort, as it reuses
the calculations from the integration to obtain the marginal likelihoods.

3.3. Main algorithm. We now summarize the complete response-adaptive
dose-finding design in algorithmic form.

Before trial start:

(1) Select a starting design using either a balanced allocation across the avail-
able doses or an unbalanced allocation based on optimal design considerations.

(2) Select candidate dose-response models fm(d, θm).
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(3) Conditional on θ0
m, calculate a NIG prior distribution for (θ∗

m, σ 2) based
on “best guesses” for the placebo effect, the maximum treatment effect and σ 2

(together with suitable variability assumptions for both parameters).
(4) Choose “best guesses” for the nonlinear parameters θ0

m and select the para-
meter S.

(5) Choose prior model probabilities p(m) for the different dose-response func-
tions.

At interim analysis:

(1) Calculate posterior model probabilities

p(m|y) ∝ p(m)

∫
p(y|θm,m)p(θm|m)dθm.(3.6)

Exploiting the conjugacy properties of the NIG distribution, this reduces to one-
or two-dimensional integrals; see Section 3.4 for computational details.

(2) For each dose-response model, estimate θm by using the maximum of
p(y|θ0

m,m)p(θ0
m|m), where the abscissas calculated in step 1 can be reused. Con-

ditional on this value, use the maximum of p(θ∗
m|θ̃0

m,y,m) as an estimate for θ∗
m

to obtain θ̃m

(3) Plug the obtained parameter estimates θ̃m into (3.4) and set αm = p(m|y).
Then, minimize with respect to w ∈ S , where S = {w ∈ Sk|w = (nold +
Nnextwnext)(Nold + Nnext)

−1,wnext ∈ Sk}. Here, nold denotes the vector of sam-
ple sizes per dose and Nold the total sample size until the current interim analysis.
Further, Nnext denotes the sample size and wnext ∈ Sk the design weights for the
next cohort of patients. We therefore optimize the design for the next stage taking
into account the patient allocation until the current interim analysis; see Section 3.4
for computational details.

(4) Allocate the next cohort of patients according to wnext by applying an ap-
propriate rounding technique, such as described in Pukelsheim (1993), Chapter 12.

Note that the Bayesian approach is used here for design adaptation purposes.
The final analysis may or may not be done using a fully Bayesian approach. The
development of the Bayesian design methodology above is motivated by the MCP-
Mod methodology described in Bretz, Pinheiro and Branson (2005) to address
model uncertainty. This method requires prior estimates for the placebo effect, the
maximum treatment effect, and σ 2 at the design stage and “best guesses” of the
nonlinear parameters θ0

m for the analysis. The additional information needed to set
up the above adaptive design procedure is hence minimal. Obviously, any other
strategy that allows one to use a set of candidate dose-response models might also
be used for the final analysis.

3.4. Technical details. In this section we provide further details of the algo-
rithm presented above.
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For the calculation of the one- and two-dimensional integrals in (3.5) we used
quasi-uniformly distributed point sets based on good lattice points u1, . . . ,un,
where ui ∈ [0,1]d and d is the dimension of θ0

m; see Fang and Wang (1994) for
details on the construction of such integration grids. Let π(θ0

m|y) = p(y|θ0
m,m) ×

p(θ0
m|m) denote the integrand from (3.5) and let bl and bu denote the vector of

lower and upper bounds for θ0
m. One first transforms the good lattice points to ob-

tain u∗
i = ui(bu − bl) + bl for i = 1, . . . , n, and then approximates the integral

(3.5) by
∏d

j=1(buj − blj )
∑n

i=1 π(u∗
i |y)/n. This approach also allows one to cal-

culate the approximate maximum in the subsequent optimization step by using the
grid point u∗

i corresponding to maxi π(u∗
i |y). We found that using a grid of size

100 in the one-dimensional case and the good lattice point set of size 1597 in the
two-dimensional case [Fang and Wang (1994)] provide sufficiently reliable and
computationally efficient results (both for integration and optimization).

The optimization in (3.4) is a constrained optimization problem because the
weights wnext lie in the (k − 1)-dimensional probability simplex. A simple but
efficient approach to perform the optimization is to use a mapping Rk−1 �→ Sk

and then to employ a standard unconstrained optimizer, as described in Atkinson,
Donev and Tobias (2007), page 131. To account for the already allocated pa-
tients until an interim analysis, one can optimize �(

nold+Nnextwnext
Nold+Nnext

) with respect

to wnext ∈ Sk . Due to potential multiple optima in the design surface, one cannot
be sure whether indeed an optimal design has been found by the optimizer. We
thus propose using lower bounds of the resulting relative efficiencies based on the
underlying geometry of the optimization problem.

To be precise, suppose that the vector w∗ has been found by the optimizer. The
following result gives a lower bound on r(w∗) = �(wopt)

�(w∗) ∈ [0,1], where wopt is
the (unknown) true optimal design at the end of the next stage, accounting for the
patients allocated until the current interim analysis. A proof of the result is given
in the Appendix.

THEOREM 3.1. A design w with cm(θm) = ∇bm(θm) ∈ Range(Mm(θm,w)),
m = 1, . . . ,M , minimizes �(w) with respect to wnext, where w = Nold+Nnextwnext

Nold+Nnext
, if

and only if there exist generalized inverses G1, . . . ,Gm of Mm(θm,w), such that
the inequality

h(d,w) =
∑M

m=1 αm(gT
m(d, θm)Gmcm(θm))2/cT

m(θm)Gmcm(θm)∑M
m=1 αmcm(θm)GT

mMm(θm,wnext)Gmcm(θm)/cT
m(θ)Gmcm(θ)

≤ 1

is satisfied for all d ∈ {d1, . . . , dk}. Moreover, the efficiency of any design w can be
bounded from below by

r(w) ≥ 1

k∗(w, γ )
≥ 1

h∗(w)
,(3.7)
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where γ = Nold
Nold+Nnext

, h∗(w) = minG1,...,Gm
maxd∈{d1,...,dk} h(d,w),

k∗(w, γ ) =
[

1 + (1 − γ ) min
G1,...,Gm

max
v∈Sk

M∑
m=1

αmcT
m(θm)GT

m

× (
Mm(θm,v) − Mm(θm,wnext)

)
× Gmcm(θ)/(cT

m(θm)Gmcm(θm))

]−1

,

and the minimum is taken over all generalized inverses G1, . . . ,Gm of the matrices
M1(θ1,w), . . . ,MM(θM,w).

When the matrices M1(θ1,w), . . . ,MM(θM,w) are invertible, h∗(w) is just the
maximum of h(d,w) over the k doses and straightforward to calculate [and so is
the lower bound on r(w)]. This lower bound is useful in several respects: we do
not need to know the actual optimal design wopt in order to calculate the lower
bound. If the lower bound for our calculated design w∗ is equal to 1, we know
that w∗ is the optimal design. Otherwise, we have a conservative estimate on how
much percent off one would be when using w. The bound based on k∗(w, γ ) is
sharper, however harder to implement.

If one does not use a fully Bayesian approach for the final analysis, one typically
has to fit nonlinear regression models to the data. When there are only few doses
available, as it is often the case in drug development practice, calculating the ML
estimate may be difficult. One way to simplify the problem is by exploiting the fact
that θ0 and θ1 enter the model function linearly in (3.1). We thus apply the nonlin-
ear optimization only on the nonlinear parameters θ0

m, similar in spirit to Golub and
Pereyra (2003). Using the Frisch–Waugh–Lovell theorem [Baltagi (2008), Chap-
ter 7], we can recalculate the residual sum of squares efficiently, without the need
to solve the full least squares problems in each iteration of the nonlinear optimiza-
tion (this effect becomes even more important when there are additional linear
covariates in the model equation, such as gender, baseline values, etc.). In addi-
tion, we impose bounds on the nonlinear parameters θ0

m to guarantee the existence
of the least squares estimate [Seber and Wild (1989), Chapter 12]. As mentioned
in Section 3.2.1, such bounds are not a severe restriction in practice and ensure
that the optimization problem is well posed.

4. Asthma study revisited. In this section we revisit the asthma case study
from Section 2 and address the four open design questions using the proposed
methodology from Section 3. To this end, we investigated in an extensive simula-
tion study the operating characteristics for different design options and parameter
configurations.
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4.1. Design of simulation study. We generated normally distributed observa-
tions according to the dose-response models given in Table 1 with σ = 350 ml.
To investigate the robustness of the proposed methods, we also simulated from
a linear model (with baseline 100 ml and maximum effect 300 ml) that was not
included in the candidate model set. The total sample size was fixed at 300 (con-
straint imposed by the clinical team). To evaluate the benefit of including addi-
tional doses, we compared two design options, one with the four active doses 2.5,
10, 20, 50 (plus placebo) and another one with the seven active doses 0.5, 1, 2.5, 5,
10, 20 and 50 (plus placebo). In addition, we evaluated the benefit of additional in-
terim analyses by varying their number from 0 (= no interim analysis) to 9, where
the interim looks were chosen equally spaced in time. In all cases, we assumed a
balanced first stage design. The designs from the second stage onward were deter-
mined using the observed data according to the algorithm from Section 3.3. When
the MED estimate did not exist for certain models at an interim analysis, they were
removed from the model set for the purpose of design calculation and the model
probabilities were reweighted accordingly. When the MED estimate did not exist
for any model, a balanced allocation was used for the next cohort of patients.

For the final analysis we employed the MCP-Mod procedure from Bretz, Pin-
heiro and Branson (2005). A potential dose-response signal was assessed using
model-based multiple contrast tests based on the candidate model set from Table 1.
Subsequently, if there were significant models, the dose-response model with low-
est Akaike Information Criterion (AIC) among the significant models was chosen
to estimate the MED.

The methodology from Section 3 was applied with uniform prior probabilities
for the different models. We further assumed a priori distributions with mean 100
and variance 100,000 for the placebo effect and mean 300 and variance 100,000
for the maximum treatment effect, which were then transformed into the lin-
ear parameters for all dose-response models. The mode of the marginal distrib-
ution for σ 2 was chosen as 3502 with ν = 4, resulting in an infinite variance.
For the nonlinear parameters we assumed beta distributions (or products thereof)
with mode equal to the values specified in Table 1 and S = 3. The parameter
bounds were chosen to ensure that all reasonable dose-response shapes remained
included within the bounds. That is, we chose θ2 ∈ [0.05,75] for the Emax models,
(θ2, θ3) ∈ [0.5,4]×[0.5,4] for the beta models and (θ2, θ3) ∈ [0.05,75]×[0.5,25]
for the the logistic model. For each scenario we used 5000 simulation runs.

4.2. Simulation results. For the chosen standard deviation of σ = 350 ml,
the power of the MCP-Mod procedure to detect a dose-response signal was al-
most always close to 1. Thus, the MCP-Mod procedure was essentially reduced to
choosing the nonlinear model with lowest AIC value under the constraint that only
models with significant contrast test statistics were included in the model selec-
tion step. Simulations with σ values larger than 350 ml indicated that the power
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FIG. 3. Mean absolute estimation error for MED estimation.

quickly dropped to lower levels (results not shown here), although the estimation
results remained qualitatively similar to the ones shown below.

In Figure 3 we display, for each simulation scenario, the mean absolute esti-
mation error for the MED against the number of interim analyses. In all scenarios
one observes a benefit from adapting, while most of the improvement is already
achieved after 1, 2 or 4 interim analyses. The largest relative improvement (com-
paring no adaptations vs 9 adaptations) can be observed for the Logistic1 and the
Beta model scenarios, particularly in the case of 7 active doses. The worst rela-
tive improvement can be observed for the Logistic2 scenario, where the overall
largest absolute estimation error can be observed. This is not surprising, because
even when adapting one cannot achieve a good design for this model, as there are
no doses available for administration in the interval (20,50) containing the MED;
see also Figure 1. It is remarkable to see that adaptation also works in the linear
model scenario, although the linear model is not included in the candidate model
set. It seems that other models in the candidate set are able to capture the shape of
a linear model reasonably well.

The comparison between 4 and 7 active doses is not entirely clear. If no in-
terim analyses are performed, it seems that the design with a balanced allocation
across the 4 active doses is slightly better than the design with a balanced alloca-
tion across all 7 active doses. If one decides to adapt, however, it seems beneficial
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FIG. 4. Average patient allocation after 1, 2, 4 and 9 interim analysis under the Emax2 model. Last
panel: locally MED-optimal design for the Emax2 model with true MED = 7.7.

in some cases to have more doses available, particularly if many interim analyses
are performed, while in other cases 4 active doses are sufficient.

To illustrate how adaptation changes the allocation of patients to the different
doses, we display in Figure 4 the average patient allocations for the Emax2 model
after 1, 2, 4 and 9 interim analyses and with 7 available active doses. The adaptive
design tends to allocate more patients both on placebo and nearby the actual MED.
This is intuitively plausible, as the MED estimate depends on the precision of the
estimated placebo effect as well as of the estimated function f (·) around the true
MED. It also follows from Figure 4 that for a large number of interim analyses
the overall allocation is close to the one under a locally optimal design for the
Emax2 model, with the variability in the allocations due to the uncertainty both
in estimating the correct model and the model parameters at the interim analysis.
Similar conclusions also hold for other models than the Emax2 model (not reported
here).

We now investigate to which extent the precision gain observed in Figure 3
translates into sample size savings when performing an adaptive design. In other
words, how many additional patients are required for a nonadaptive, balanced de-
sign to achieve a similar estimation error as with an adaptive design using 300
patients. We again considered the Emax2 model and iterated the total sample size
until the mean absolute estimation error was approximately 4 (which is the mean
absolute estimation error obtained after 9 interim analyses, as seen in Figure 3).
For both design options with 4 and 7 active doses, this was achieved after roughly
500 patients. Thus, using a nonadaptive, balanced design, one would need 200 ad-
ditional patients to achieve a similar precision in MED estimation as compared to
an adaptive design using 300 patients.

The adaptive design benefits observed so far depend on several input parame-
ters, such as the starting design for the first stage. One may argue that starting
with a bad design that allocates patients at the “wrong” doses may be improved
by adapting at one or more interim looks. On the other hand, starting with a good
design may lead to adaptations following random noise at the interim analyses. To
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FIG. 5. Mean absolute estimation error for MED estimation, under the the Logistic1 model for
good and bad starting designs.

illustrate this effect, we report the results for the simulations under the Logistic1
model (similar results were also obtained for other models and scenarios, but are
not reported here). We used four different starting designs. We used w = (0.35,

0.03,0.22,0.35,0.05) and w = (0.35,0.02,0.02,0.02,0.02,0.20,0.30,0.07) as
good starting designs with 4 and 7 active doses, respectively. These designs work
well because they allocate patients on placebo and around the MED, while keeping
some mass on the remaining doses. In addition, we used w = (0.1,0.3,0.05,0.05,

0.5) and w = (0.1,0.2,0.22,0.02,0.02,0.02,0.02,0.4)′ as bad starting designs,
as they have relatively few patients on placebo and around the MED. It follows
from Figure 5 that substantial improvements are possible when using bad start-
ing designs. On the other hand, for good starting designs no benefit is achieved
by adapting and the performance may even deteriorate, because the possibility of
adapting may lead one to deviate from the already good starting design. In prac-
tice, one does not know whether an employed design is good or bad, but one should
keep in mind the possibility that adaptive designs will not always improve upon
the initial design.

To further investigate the robustness of the proposed methods, we repeated the
simulation study from Figure 3 by increasing the standard deviation to 450 ml and
700 ml. The overall results remain similar, but with increased absolute estimation
errors. However, the relative benefit of 9 interim analyses vs. no adaptation de-
creases slightly. Due to the larger noise, one obtains less reliable information at an
interim analysis and one may end up with a worse design for the next stage. We
also investigated the effect of prior misspecification. For this purpose we misspeci-
fied the prior means or prior modes by adding or subtracting 20% of the true value,
but leaving the variability (variance of baseline and maximum effect and the value
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S for the beta distribution) unchanged as in the original simulations. The results
are largely identical to those presented in Figure 3, indicating that the proposed
methods are robust under moderate prior misspecifications.

4.3. Conclusions for asthma study. Many more simulations than presented
above were conducted at the planning stage of the asthma study to address the
four questions stated in Section 2. Regarding question (A), it was felt that the po-
tential benefits of conducting an adaptive design (more precise MED estimation)
outweighed the additional logistical requirements, especially in view of the per-
ceived sample size gain of 100–200 patients when compared to a fixed-sample
study designed to achieve a similar precision. For question (B) it was decided
to have one interim analysis: based on Figure 3 and other simulation results, the
potential further reduction of the mean absolute estimation error with two or more
interim analyses was perceived as too small to justify the additional logistical com-
plexity.

For similar reasons, it was decided against having all seven actives doses from
the beginning on question (C). Instead, 150 patients ought to be allocated equally
across the four active doses 2.5, 10, 20, 50 (plus placebo) in the first stage. Once
the interim results are available and analyzed with the methods from Section 3,
however, patients could be allocated to all seven active doses (or a subset thereof)
in the second stage. For practical reasons, the clinical team decided to incorporate
constraints on the minimum number of patients allocated per dose in the second
stage: if the algorithm would allocate less than 5% of the patients on a certain dose,
that dose would be dropped altogether and the corresponding patients reallocated
to the remaining doses.

5. Discussion. Motivated by a dose finding study in moderate persistent
asthma, we described a response-adaptive approach that addresses common chal-
lenges encountered in dose-finding studies: multiple objectives, model uncertainty,
and large variability. When planning an adaptive dose-finding design it is important
to realize that it may not always be better than a nonadaptive design. It is necessary
to employ a factored view, as many parameters may impact the performance of a
study design. Often, an unbalanced fixed-sample design derived from optimal de-
sign theory might already provide benefit over a balanced fixed-sample design and
adaptation may not bring further advantages, particularly if the variability is large
(which is common in practice). Thus, adaptive designs are promising in situations
where the initial design is not good and/or interim parameter estimates have low
variability. In practice, one never knows how good the initial design will be, before
trial start, and adaptive designs may guard against bad initial designs. However, the
benefits of adaptive dose-finding designs have to be balanced against the increased
logistical requirements to implement processes for repeated data collection, clean-
ing and analyses, to maintain trial integrity and validity, and to overcome potential
challenges in drug manufacturing and supply.
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In this paper we focused on designs based on the compound optimality crite-
rion (3.4) to address model uncertainty and to minimize the variance of M̂ED.
The criterion depends on the parameters of the different dose-response models as
well as on the model probabilities and we used a Bayesian approach to continu-
ously update parameter values and model probabilities based on the information
accrued in the trial. The approach was implemented based on optimization and nu-
merical quadrature, so that computationally intensive Markov chain Monte Carlo
techniques could be avoided. Computational efficiency is of extreme importance,
as the frequentist operating characteristics of any adaptive design methodology
needs to be evaluated in extensive simulations under multiple scenarios.

The proposed method can be extended immediately if alternative optimality
criteria [such as EDp- or D-optimal designs, see Dette et al. (2010)] or mixtures
thereof are of interest. Alternatively, optimal discrimination designs could be ap-
plied that allow one to differentiate among several candidate nonlinear regression
models [Atkinson and Fedorov (1975), Dette and Titoff (2009)]. It would be inter-
esting to address multiple objectives by considering different optimality criteria at
different stages, such as using a model discrimination design in earlier stages, and
MED-optimal design in later stages. This will be investigated in future research,
but see Dragalin et al. (2010) for initial results.

The R functions used for the simulations are available with the DoseFinding
R package [see Bornkamp, Pinheiro and Bretz (2010)].

APPENDIX: PROOF OF THEOREM 3.1

Obviously the first part of the theorem follows from the lower bound (3.7) on
the efficiency. For a proof of (3.7) let γ = Nold/(Nold + Nnext) ∈ (0,1) and note
that the total information of the experiment in the mth model is given by

Mm(θ ,wold,wnext) = γ Mm(θm,wold) + (1 − γ )Mm(θm,wnext),(A.1)

where we collect in the vector θ = (θ1, . . . , θM) the parameters of the different
models. Define a block diagonal matrix by

M(θm,wold,wnext)
(A.2)

= diag(M1(θm,wold,wnext), . . . ,MM(θM,wold,wnext))

(all other entries in this matrix are 0) and, similarly,

K = diag(c1(θ1), . . . , cM(θM)),

where the vector cm(θ) is given by cm(θ) = ∇bm(θ),m = 1, . . . ,M . For a design
wnext, such that cm(θ) ∈ Range(Mm(θm,wold,wnext)) (m = 1, . . . ,M), we con-
sider the information matrix

CK(M(θ,wold,wnext)) = (KT M
−
(θ ,wold,wnext)K)−1

= diag((cT
1 (θ1)M

−
1 (θ1,wold,wnext)c1(θ1))

−1, . . . ,

(cT
M(θM)M−

M(θM,wold,wnext)cM(θM))−1).
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Note that the optimal design maximizes

�−1(wnext) = Nold + Nnext

σ 2 · α(CK(M(θ,wold,wnext)))

= Nold + Nnext

σ 2

M∏
m=1

(cT
m(θ)M−

M(θm,wold,wnext)cm(θ))−αm,

where the last identity defines the criterion α and we have used the nota-
tion α(diag(λ1, . . . , λM)) = ∏M

m=1 λ
αm
m . Now according to Theorem 1 in Dette

(1996), a lower bound for the efficiency of the design wnext

r(w) = ψ−1(w)

ψ−1(wopt)
= α(Ck(M(θ ,wold,wnext)))

maxv∈Sk α(CK(M(θ ,wold,v)))

is obtained as

e =
[
min

G
max
A∈A

tr{GKCK(M(θ ,wold,wnext))

× ECK(M(θ ,wold,wnext))K
T GT A}

]−1
,

where the minimum is taken over the set of all generalized inverses of the matrix
M(θ ,wold,wnext) and the set A is defined by

A = {M(θ ,wold,v) | v ∈ Sk}
and the matrix E is given by

E = diag(α1c
T
1 (θ)M−

1 (θ1,wold,v)c1(θ), . . . , αMcT
M(θ)M−

M(θM,wold,v)cm).

Therefore, observing the identity

Mm(θm,wold,v) = Mm(θm,wold,wnext) + (1 − γ )
(
M(θm,v) − M(θ,wnext)

)
,

we obtain

e =
[

1 + (1 − γ )min
Gm

max
v∈Sk

M∑
m=1

αmcT
m(θm)GT

m

(
Mm(θm,v) − Mm(θm,wnext)

)

× Gmcm(θ)/(cT
m(θm)Gmcm(θm))

]−1

≥
[

min
G1,...,Gm

max
d∈{d1,...,dk}

M∑
m=1

αm

(gT
m(d, θm)Gmcm(θm))2

cT
m(θm)Gmcm(θm)

/ M∑
m=1

αm

cT
m(θm)GT

mMm(θm,wnext)Gmcm(θm)

cT
m(θm)Gmcm(θm)

]−1

,
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where we have used the inequality

[1 + (1 − γ )(A − B)]−1 ≥
[
A

B

]−1

for A ≥ B ≥ 0, (1 − γ )B ≤ 1 and standard arguments in design theory.
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