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We introduce a new version of forward stepwise regression. Our modifi-
cation finds solutions to regression problems where the selected predictors ap-
pear in a structured pattern, with respect to a predefined distance measure over
the candidate predictors. Our method is motivated by the problem of predict-
ing HIV-1 drug resistance from protein sequences. We find that our method
improves the interpretability of drug resistance while producing comparable
predictive accuracy to standard methods. We also demonstrate our method in
a simulation study and present some theoretical results and connections.

1. Introduction. About twenty antiretroviral drugs are currently available for
the treatment of human immunodeficiency virus type 1 (HIV-1). The great majority
of these function by inhibiting the activity of various proteins produced by the
HIV-1 virus, effectively impairing the virus’ ability to reproduce. Resistance to
these drugs develops when a mutation changes the structure of the target protein
enough to frustrate the drug while still maintaining the function of the protein.
HIV-1 is capable of rapid mutation, and is thus often able to adapt to antiretroviral
therapy. Understanding the genetic basis for this developed resistance would allow
more effective development of new drugs, as well as more informed prescription
of the currently available drugs.

Sequencing HIV-1 proteins can be done reliably, and well-designed in-vitro ex-
periments are available for testing the resistance of a particular strain of HIV-1
to drugs; see Petropoulos et al. (2000) and Zhang et al. (2005). We approach this
problem using regression. This problem setting leads us to build models to predict
drug resistance using mutations in the amino acid sequence of the target proteins.
We desire models that are easy to interpret and take into account properties of pro-
teins and amino acids. In particular, it is well known that proteins generally func-
tion using areas called active sites, that are, simply, areas of the sequence where
the protein binds or otherwise interacts with other molecules. This fact leads us to
believe that important mutations will tend to be clustered around such sites.

Protein sequences can be thought to have two layers of structure: the primary
sequence consisting of a single string of adjacent amino acids, and a secondary

Received February 2010; revised September 2010.
1Supported in part by the National Institutes of Health SBIR Grant 7R44GM074313-04 at Insili-

cos LLC.
Key words and phrases. Sparsity, variable selection, regression, greedy algorithms.

628

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/10-AOAS428
http://www.imstat.org


STRUCTURED SPARSITY 629

structure created by protein folding. We can measure the distance between amino
acids in a protein sequence roughly using the differences in position in the pri-
mary sequence. When the protein’s folding structure is known, three-dimensional
distance can be calculated for any two amino acid positions. But even when the
structure of the protein is unknown, because of the continuity of the primary se-
quence, clustering in three-dimensional space generally corresponds to clustering
in the protein primary sequence.

We therefore build models for predicting resistance from mutations that have the
following two properties: (1) Sparsity—a model that uses only a few mutations is
easier to interpret and apply. (2) Structure—following the concept of active sites,
we wish to use mutations that are clustered in the protein primary sequence. Note
that this second property is desirable in other applications. For example, Liu, Lin
and Ghosh (2007) use genetic pathways to model the genetic influences on prostate
cancer. These pathways can be modeled as a structure on individual genes. In this
paper we introduce a variable selection method that builds regression models that
satisfy these two properties.

Forward stepwise regression and the lasso are two popular automatic variable
selection techniques that are effective at finding sparse regression models. Given
data (X1, Y1), . . . , (Xn,Yn) where Yi ∈ R and Xi ∈ R

p , the lasso β̂lasso estimator
due to Tibshirani (1996) minimizes

n∑
i=1

(Yi − XT
i β)2 + λ‖β‖1,(1)

where ‖β‖1 = ∑
j |βj | and λ > 0 is a tuning parameter which controls the amount

of regularization. Forward stepwise regression is a greedy method that adds one
predictor, that is, one element Xi , at a time. Both produce sparse solutions, mean-
ing that β̂j = 0 for most j . Sparse solutions are attractive both computationally
and for interpretation.

Recent results show that both methods yield estimators with good proper-
ties. See Bunea, Tsybakov and Wegkamp (2007), Greenshtein and Ritov (2004),
Wainwright (2007) for results on the lasso, and Barron et al. (2008) for results on
forward stepwise regression. These papers show that, under weak conditions, both
approaches yield predictors that are O(n−1/4) close to the optimal sparse linear
predictor. Moreover, this rate cannot be improved. In our application, extra infor-
mation is available—we expect nonzero βj ’s to cluster together. In this case, we
would like to add an additional constraint to the regression.

In this paper we introduce a modification of forward stepwise regression that
encourages the selection of new predictors that are “close”—with respect to a dis-
tance measure over the predictors—to those already included in the model. We
show that our method, Clustered and Sparse Regression (CaSpaR), is useful in
regression problems where we desire both a sparse and structured solution.
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2. Data. The Stanford HIV drug resistance database described in Rhee et
al. (2003) is a large data set of HIV-1 protease sequences, along with resistance
phenotypes for up to seven different protease inhibitor (PI) drugs for each se-
quence. This database is a combination of smaller data sets collected in different
clinical trials. Since both the genotyping and phenotyping experiments are well
standardized, such a joining of data will not give rise to significant heterogeneity-
in-sample concerns. Each protease protein sequence is 99 amino acids long. The
phenotypes are obtained from in-vitro experiments, and are measured in terms of
number of multiples of standard dose of drug needed to suppress virus reproduc-
tion.

We can cast the problem of connecting genotype to phenotype as a regression
problem by treating each mutation as a predictor. Previous studies by Rhee et
al. (2006) and Beerenwinkel et al. (2003) have used most modern sparse regression
and classification techniques to attack this problem. We seek a model that will take
into account protein active sites.

3. CaSpaR. We first introduce the usual regression setting. We have an n×p

data matrix X and n × 1 response vector Y. We use the usual linear model

Y = Xβ + ε.(2)

Define the support of β by

supp(β) = {j :βj �= 0, j = 1, . . . , p}.(3)

We assume that β is sparse (most βj ’s are 0) and also that supp(β) has structure.
We base this structure on a distance measure d(·, ·) over the set of predictors:

d(·, ·) : {1, . . . , p} × {1, . . . , p} → R.(4)

Specifically, we assume that the nonzero elements of β are spatially clustered with
respect to d(·, ·). In other words, the nonzero entries of β appear in some number of
groups in which the members are “close” to each other—as defined by d(·, ·). Our
goal is to accurately recover β , with particular emphasis on this sparsity structure.

We want to modify a sparse regression technique to produce solutions with clus-
ters of nonzero coefficients. Penalized techniques such as the lasso are difficult to
modify for this purpose. Recall that the lasso finds β̂ that minimizes

Q(β) =
n∑

i=1

(Yi − XT
i β)2 + λ

∑
j

|βj |.(5)

The lasso is computationally efficient because Q(β) is convex. It is difficult to add
a penalty to Q(β) that encourages clustered solutions while maintaining convexity.
Note that the fused lasso due to Tibshirani et al. (2005) adds a penalty of the form∑

j |βj − βj−1|. This forces nearby coefficients to be close together in sign and
magnitude. We want the support points to be close together, but we do not want
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TABLE 1
Forward stepwise regression

1. Input: A = ∅, X, Y, ε > 0.
2. Fit an OLS model: β̂ = arg minβ ‖Xβ − y‖2

2, s.t. supp(β) ⊆ A.
3. Set i∗ = arg max{i /∈A} |(Xβ − y)T xi |.
4. If |xT

i∗ (Xβ − y)| < ε then stop, else set A = A ∪ i∗ and go to step 2.

to force the values of the coefficients to be close together. Instead, we are only
concerned with the inclusion or exclusion of predictors.

Stepwise procedures are more flexible and easier to modify, because we do not
need to worry about maintaining the convexity of an objective function. We there-
fore propose a modification to forward stepwise regression (see Table 1 for a de-
scription of forward stepwise regression). We call our algorithm CaSpaR (Clus-
tered and Sparse Regression); see Table 2.

In each iteration of forward stepwise regression, the following quantities are
used to select the next predictor to be added to the model:

Cj = |(Xβ − Y)T xj |,(6)

where xj denotes the j th column of X. Note that the Cj are proportional to the cor-
relations between each candidate predictor and the current residuals if the columns
of X are scaled to empirical mean zero, variance one. We wish to encourage the
selection of predictors that are close, with respect to d(·, ·), to those already in the
model. To do this, we multiply the Cj by a kernel, which we construct based on
the current active set A. This kernel will weight the Cj so that predictors that are
close to those already in the model receive more weight than those that are not.

Formally, suppose we have a kernel Kh that is centered at 0, where h denotes
the bandwidth parameter. Then, for all l /∈ A, we compute

Wl = 1

|A|
∑

{l∈A}
Kh(d(l, k)).(7)

TABLE 2
CaSpaR: Clustered and Sparse Regression

1. Input: A = ∅, X, Y, h > 0, α ∈ (0,1), ε > 0.
2. Fit an OLS model: β̂ = arg minβ ‖Xβ − y‖2

2, s.t. supp(β) ⊂ A.
3. ∀l /∈ A, calculate: Wl = 1

|A|
∑

{k∈A} Kh(d(l, k)). If this is the first iteration of the
algorithm, set Wl = 1, ∀l.

4. Set l∗ = arg max{l /∈A} Wl |(Xβ − y)T xl |.
5. If |xT

l∗ (Xβ − y)| < ε then stop, else set A = A ∪ l∗ and go to step 2.
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FIG. 1. The Stetson kernel, with an Epanechnikov kernel.

We then select the next predictor j∗ using a weighted criterion: Wj(Xβ − y)T xj .
For most familiar kernels, such as a Gaussian kernel or an Epanechnikov kernel,
this has the effect of boosting the criterion for predictors “near” those already in-
cluded in the model, and diminishing the criterion for those “far away.” For practi-
cal application, we recommend a mixture of a familiar kernel, such as a boxcar or
Epanechnikov, and a uniform distribution. This mixture, which we call the Stetson
kernel, introduces an additional mixing parameter α:

Kh,α(x) = α + (1 − α)Kh(d(x)),(8)

where Kh is a kernel such as a boxcar, Epanechnikov or Gaussian. An example
of this kernel appears in Figure 1. We particularly recommend the Epanechnikov
or the boxcar kernel, because these kernels have no impact at all on predictors
outside their bandwidth, and so Wi = α for these predictors. While this usually
makes no difference in predictor selection, it simplifies precise computation and
interpretation.

The advantage of the Stetson kernel is that this mixture allows multiple groups
of predictors to appear in the sparsity structure. If we were instead to only use a
familiar kernel, then we would have Wj = 0 (or extremely small) for those j far
enough away from predictors already included in the model. This approach would
lead to only a single group in the sparsity structure, built around the first selected
predictor, whereas most applications call for multiple groups. The Stetson kernel
avoids this problem. The uniform part of the Stetson kernel allows new predictor
groups to enter the model. The kernel part of the mixture encourages clustering
around predictors already included in the model.

Finally, note that CaSpaR is closely related to forward stepwise regression. In-
deed, with α = 1 CaSpaR reduces to forward stepwise regression. Therefore, as
long we consider α = 1 when picking parameters, we always consider the forward
stepwise regression solution. Consequently, we have a loose guarantee that CaS-
paR does no worse than forward stepwise regression. Moreover, we expect that
some theoretical results relating to forward stepwise regression can be adapted to
CaSpaR.
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3.1. Tuning parameters. CaSpaR has three tuning parameters: ε,h and α. The
parameter ε controls the sparsity of the fitted model. The parameters h and α con-
trol the amount of structure in the estimated support. For the Stetson kernel, as
the bandwidth h decreases, the predictors become more tightly grouped. As α in-
creases, new clusters are allowed to form more easily. In the special case where
α = 1, the method reduces to the usual forward stepwise regression method. Let
CV(ε, h,α) denote the cross-validation score. We choose the parameters by mini-
mizing CV(ε, h,α). Note that since small changes in h or α do not affect the order
of predictor selection, this tuning can be accomplished using a simple grid search.

4. Results. We now return to our application to HIV drug resistance. Our data
set consists of 553 amino acid sequences, all 99 amino acids in length. Each amino
acid sequence corresponds to a different strain of HIV found within a patient. Each
sequence has resistance measurements for up to seven HIV inhibiting drugs. Thus,
the number of sequences available for our analysis varies depending on which drug
we consider.

After we choose a drug and take the appropriate subset of our 553 sequences, we
create our predictors. With twenty known amino acids, each position in these se-
quences thus takes twenty possible values. We thus define our mutation predictors
as follows. At each of the 99 positions, we first search across all of the available
sequences and record the set of amino acids that appear at that position in the data.
This set is the collection of possible mutations at that particular position. If there is
only one amino acid in this set, this corresponds to the case where that particular
position displays no variation in amino acid over the data, and thus can be dropped
from the analysis. We use mutations from positions with M > 1 possible amino
acids to create M − 1 predictors. Each of these predictors is an indicator variable
which, for a particular sequence, is equal to 1 if the particular amino acid appears
at that particular position and 0 otherwise. We refer to these predictors as muta-
tions. Since each mutation has an associated position in the primary sequence, we
can define a distance between predictors as the absolute difference of their posi-
tions. Thus, the mutations that occur at the same position are distance 0 from each
other.

Our design matrix X is thus an ndrug ×pdrug matrix. Here ndrug is the number of
sequences with measurements of the resistance score for the drug of interest. The
number of sequences with resistance measurements for each drug are as follows:
453 for drug APV, 212 for ATV, 496 for IDV, 300 for LPV, 510 for NFV, 465
for RTV, and 493 for SQV. We then create the pdrug mutation indicator predictors
as described above. Since the number of samples varies with the drug, so does
the number of mutation predictors. The number of predictors for each drug are as
follows: 210 for drug APV, 180 for ATV, 215 for IDV, 199 for LPV, 219 for NFV,
215 for RTV, and 218 for SQV.

We compare CaSpaR to forward stepwise regression and lasso models. For all
methods, we use ten-fold cross-validation to choose all the tuning parameters. We
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TABLE 3
Summary of results across all models and drugs. For each model, we give the mean-square-error, as

well as the number of mutations (predictors) selected in parentheses. We see that CaSpaR is
comparable to forward stepwise regression in terms of MSE, with about the same number of

predictors included in the model. The lasso does better in MSE, but includes many more mutations
than either stepwise method. As we previously noted, neither forward stepwise regression nor the

lasso allows for a structured sparse solution

Drug name Stepwise CaSpaR Lasso

APV 0.514 (7) 0.477 (14) 0.422 (51)
ATV 0.588 (6) 0.494 (11) 0.477 (39)
IDV 0.541 (13) 0.580 (10) 0.449 (77)
LPV 0.614 (5) 0.507 (15) 0.518 (35)
NFV 0.650 (19) 0.637 (22) 0.661 (40)
RTV 0.659 (8) 0.714 (5) 0.570 (58)
SQV 0.426 (31) 0.508 (21) 0.447 (63)

use the R package glmnet [Friedman, Hastie and Tibshirani (2010)] to obtain the
lasso solution. For CaSpaR, we use the Stetson kernel and perform a grid search
over α = {0,0.1,0.2, . . . ,1}, and over h = {1,2,3,4} to find the optimal tuning
parameters.

We present a summary of our results in Table 3. Compared to stepwise re-
gression, CaSpaR has comparable mean-squared-error (MSE) and number of mu-
tations selected. In most cases, CaSpaR selects a few more mutations and has
a slightly lower MSE. The lasso generally does better in terms of MSE, but in-
cludes many more mutations. These results are complicated and cumbersome to
interpret as a model of resistance. Overall, CaSpaR gives relatively sparse models,
as desired.

Figure 2 compares the sparsity structure in the CaSpaR and stepwise solu-
tions in four of the drugs. If we compare the sparsity patterns of the stepwise
and CaSpaR solutions, we see that CaSpaR gives more clustered solutions, as ex-
pected. As mentioned before, CaSpaR and stepwise regression select about the
same number of mutations. The clustered CaSpaR solutions, however, select mu-
tations from fewer positions than stepwise regression. The CaSpaR models there-
fore give a comparable level of prediction accuracy and sparsity, while also having
a better biological interpretation: these clusters may correspond to a functional
area of the protein.

5. Simulation study. We next report the results of a simulation study. We
show that CaSpaR recovers a structured sparsity pattern more effectively than for-
ward stepwise regression and lasso. For CaSpaR, we use a Stetson kernel, and
tune the parameters with a grid of h = {1,2,3,4}, and α = {0.1,0.2, . . . ,1}. For
each method, we use 10-fold cross-validation to choose all tuning parameters and
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FIG. 2. Comparison of stepwise and CaSpaR models across four drugs: APV, ATV, RTV and SQV.
Each plot gives the coefficients for the selected mutation predictors, versus the locations of these
mutations in the protein sequence. Each vertical line represents the magnitude of the coefficient for
a mutation predictor. Note that some sequence locations can have multiple mutations.

stopping times. To measure the performance of each method, we use

Recovery Error = ‖β̂ − β‖2
2

‖β‖2
2

,(9)

where β̂ is the coefficient estimated by the method and β is the true coefficient
vector. This metric appeals to us since it captures both selection and estimation
performance. We also compare the true positive rate and false positive rate in order
to directly measure selection performance. Here, a true positive is when a nonzero
entry of β̂ is also nonzero in β . A false positive is when a nonzero entry of β̂ is
zero in β .

We simulate 100 n × p data matrices X with p = 250 columns. Each entry of
these X is an i.i.d. draw from a standard normal distribution. We generate 100
corresponding true coefficient vectors β so that each has 7 groups of 5 nonzero
coefficients, randomly placed. Thus, there are 35 nonzero entries in each β . Within
each nonzero group, we set one entry of β equal to 6, and the rest equal to 3 (see
the top panel of Figure 3 for a display of a sample coefficient vector). We then
randomize the signs of the nonzero entries. We add independent Gaussian noise
with variance 1 to the simulated response.
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FIG. 3. Recovery of coefficients for a single simulated data set (n = 100). The top panel displays
the target coefficient vector. The next three panels show the estimated coefficients for Stepwise, CaS-
paR and LASSO, having recovery errors 0.848, 0.059, 0.542, respectively.

To compare the three methods, we increase n from 50 to 150 (n = 50,75,100,

125,150) and compare the average recovery errors of the three methods; cf. Fig-
ure 4. CaSpaR gives near-optimal performance with fewer data points than the
other methods. An example of the differences in performance between the three
methods on a single simulated data set (n = 100) is given in Figure 3. CaSpaR
recovers the signal well, while the other two methods do not. Figures 5 and 6 dis-
play a comparison of the true positive rates and false positive rates of the three
methods. We see that CaSpaR achieves the best balance of these two properties,
with near optimal performance when n = 150—a property not seen with stepwise
regression or the lasso. We therefore conclude that CaSpaR can reconstruct sparse
signals more effectively than stepwise regression or the lasso.

6. Theoretical properties. In this section we discuss the theoretical proper-
ties of CaSpaR. We begin by explaining how CaSpaR relates to other methods.

6.1. Related work. Several existing regression methods take into account
structure as well as sparsity. Yuan and Lin (2006) introduced the grouped lasso,
which allows only groups of predictors to be selected at once. This is desirable
when the groups represent closely linked predictors—such as a set of predictors
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FIG. 4. Recovery error (‖β̂−β‖2
2/‖β‖2

2) on simulated data with 1-dimensional structured sparsity.
Black points: stepwise regression; green points: lasso; red points: CaSpaR. We can see that with less
data CaSpaR achieves a much better recovery rate than either of the other two methods.

FIG. 5. True positive rate (number of correctly identified nonzero entries of β in β̂/total number
of nonzero entries of β) on simulated data with 1-dimensional structured sparsity. Black points:
stepwise regression; green points: lasso; red points: CaSpaR. CaSpaR is competitive with the other
two methods. Note that the superior true positive rate of the lasso comes at the cost of a high rate of
false positives.
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FIG. 6. False negative rate (number of incorrect nonzero entries of β̂ with respect to β/total number
of nonzero entries of β) on simulated data with 1-dimensional structured sparsity. black points:
stepwise regression; green points: lasso; red points: CaSpaR. CaSpaR achieves a superior rate to the
lasso. Note that the y-axis range is [0,0.2].

that code the levels of a multilevel factor predictor. Since this method modifies
the lasso, it can be cast as a convex minimization problem. However, the groups
have to be predefined, and the method does not allow for overlap between groups,
making this method somewhat inflexible.

Huang, Zhang and Metaxas (2009) introduced an algorithm called StructOMP
that modifies forward stepwise regression (also known as orthogonal matching
pursuit or OMP). Here, the desired sparsity structure is encoded as a set of blocks,
each of which is assigned a cost. The algorithm proceeds by greedily adding blocks
one at a time to reduce the loss, scaled by the cost of the added block. StructOMP
allows for very flexible sparsity structures. In particular, it can approximate a gen-
eral class of sparsity structures the authors term graph sparsity, which we discuss
in Section 6.2.

Recent work by Jacob, Obozinski and Vert (2009) relating to the grouped lasso
extends the possible group structures to include overlapping groups. Like Struc-
tOMP, the overlapping group penalty can produce models that approximately fol-
low graph sparsity. This approach has the advantage of being a convex minimiza-
tion problem. As we discuss in the next section, for graph sparsity, this method,
like StructOMP, gives only an approximation to graph sparsity because of compu-
tational considerations.

6.2. Graph sparsity. Graph sparsity is a specific type of structured sparsity in-
troduced by Huang, Zhang and Metaxas (2009). Consider a graph G whose nodes
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include the set I = {1,2, . . . , p}. Thus, each predictor is a node of G, but for
generality we allow other nodes to be in the graph as well. We then define the
neighborhood of a node v as the set of nodes with an edge connecting it to v. More
generally, we could allow for k-neighborhoods—the set of all nodes with a path
of at most k edges connecting it to v. We then consider a sparsity structure where
the important predictors appear within neighborhoods, or a series of connected
neighborhoods.

For example, consider a grid graph, such as in the case of a pixelated image.
Each pixel is connected to four neighbors, one to each cardinal direction. The
sparsity structure for this graph connects visually related components in the image.

CaSpaR can approximate graph sparsity if we employ an appropriate distance
function and bandwidth. Given a graph G, the distance function can be defined in
terms of the graph:

d(l,m) = min{Length of paths from l to m, as defined by G}.(10)

More generally, each edge can be weighted, and d(·, ·) can be the minimal
weighted path length. We then can define neighborhood size via the bandwidth h.
For the Stetson kernel, the mixing parameter α controls the number of connected
neighborhoods, where α = 0 allows only one. In the image example, we can define
d(·, ·) as above. Then, with h ∈ (1,2), CaSpaR would find a sparsity structure of
connected pixels.

CaSpaR is a very flexible way to approximate graph sparsity. First, it allows
for neighborhoods to be locally defined through the bandwidth while still allowing
neighborhoods to grow arbitrarily large as the method proceeds. Second, when
used with the Stetson kernel, CaSpaR allows the user to control the degree to
which graph sparsity is adhered via the mixing parameter α.

In comparison, the algorithms for the StructOMP of Huang, Zhang and
Metaxas (2009) and graph lasso of Jacob, Obozinski and Vert (2009) approxi-
mate graph sparsity by constructing a set of node neighborhoods, based on the
graph structure. These generate a set of blocks or groups, that are then used in the
OMP or group lasso framework, respectively. However, to control the computa-
tional cost, they limit the neighborhood size used to make these blocks or groups.
Because CaSpaR grows neighborhoods instead of seeking to add them all at once
as a group or block, this is not necessary. These algorithms can handle large groups
or blocks, but only at significant computational cost.

Further, in StructOMP, there is no clear way to control the degree to which
graph sparsity is followed in the solution. The blocks are each assigned a cost,
but this cost is relatively restrictive. In graph lasso, the group penalty is controlled
by a parameter λ, just as with the �1 lasso penalty. However, the group penalty
controls sparsity as well as the structure, so as λ decreases, the model becomes
less sparse as well as less structured. A separate �1 penalty could allow the model
to be controlled for sparsity and structure separately.
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6.3. Consistency. We now explain how a result in Zhang (2009) on stepwise
regression can be adapted to CaSpaR. We summarize the result from the literature
as follows: under assumptions about the data matrix and the response, it can be
shown that with high probability, when the forward stepwise procedure stops, it
stops with all correctly selected predictors—that is, all the nonzero entries of the
final β̂ are also nonzero in the true target β . Note that there may be additional
“false negatives.” Moreover, if all of the target coefficients are above a threshold
set by the noise level, then the entire sparsity pattern is captured exactly.

We closely follow the proof in Zhang (2009). This result requires more con-
ditions than the similar result for stepwise regression. However, since we assume
that we have a certain set of tuning parameters {α,h}, the assumptions are not too
harsh. For ease of reference, we use notation similar to Zhang (2009).

We have an n × p matrix X consisting of p n-vectors {x1,x2, . . . ,xp}, and an
n-vector y. We assume that there is a target β ∈ R

p , such that

Ey = Xβ.(11)

This assumption means that the linear model is correct. It also roughly means there
is a target coefficient vector β that estimates y well, relative to the noise level. For
both stepwise and CaSpaR methods, we define β(k) as the coefficient vector after
the kth step. Recall the definition of the support of a vector:

supp(β) = {j :βj �= 0}.(12)

We then define F (k) = supp(β(k)), F = supp(β). Let

β̂X(F,y) = arg min
β∈Rp

‖Xβ − y‖2
2 subject to supp(β) ⊆ F.(13)

Finally, we define two technical quantities:

μX(F) = max
j /∈F

‖(XT
F
XF )−1XT

F
xj‖1(14)

and

ρX(F ) = inf
β

{
1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}
.(15)

For CaSpaR, we define a distance measure on our predictor index 1,2, . . . , p:
d(·, ·). We assume that we are using a boxcar kernel, or a Stetson kernel with a box-
car kernel: Kh,m(l) = Id(md(k,l)<h. We then define the following set, which repre-
sents the candidate predictors—predictors not already included in the model—
“underneath” the kernel:

A
(k) = {

m :d(l,m) < h,m /∈ F (k)}.(16)

It follows that

Wj =
{

α + (1 − α)/k : j ∈ A
(k),

α : j /∈ A
(k).

(17)
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Finally, recall that we have ε as the stopping criterion for CaSpaR. If at step k

we select xi(k) as the next predictor to be included in the model, then if
∣∣xT

i(k)

(
Xβ(k−1) − y

)∣∣ ≤ ε,(18)

CaSpaR stops at step k − 1.

THEOREM 1. Suppose that:

1. 1
n
‖xj‖2

2 = 1 ∀j ∈ 1,2, . . . , p.
2. ∃β ∈ R

p , with F = supp(β) s.t. y = Xβ .
3. μX(F ) < 1.
4. ρX(F ) > 0.
5. The elements of y; [yi]i=1,2,...,n are independent sub-Gaussian random vari-

ables: ∃σ > 0 s.t. ∀i,∀t ∈ R,Eet(yi−Eyi) ≤ eσ 2t2/2.
6. Given η ∈ (0,1), let the stopping criterion satisfy

ε >
1

1 − μX(F)
σ

√
2 log(2p/η).

7. There are {α,h} such that for each k, at least one of the following conditions
holds:

(a)
maxj /∈F |xT

j (Xβ(k−1)−y)|
maxi∈F |xT

i (Xβ(k−1)−y)| < α,

(b) A
(k−1) ⊆ F ,

(c) A
(k−1) ⊇ F .

Then, when the procedure stops at step k −1, with probability greater than 1−2η,
the following hold:

1. F (k−1) ⊂ F ,
2. |F − F (k−1)| ≤ 2|{j ∈ F : |βj | < 3ερX(F )−1/

√
n}|,

3. ‖β(k−1) − β̂X(F ,y)‖2 ≤ ερX(F )−1
√

|F − F (k−1)|/n,

4. ‖β̂X(F ,y) − β‖∞ ≤ σ

√
2 log(2|F/η)/(nρX(F )).

We omit the proof as it is very similar to the proof in Zhang (2009).

6.3.1. Discussion of the result. The theorem states that when the procedure
stops: (1) the selected predictors have truly nonzero βi ; (2) the number of false
negatives is bounded by the number of small truly nonzero βj —relative to the
noise level; (3) the estimator is close to the best possible β , which is estimated in
the presence of noise using all the truly nonzero predictors; and (4) the difference
between the best estimate in the presence of noise and that of the true β is bounded.

The proof of this result is based on induction at each step of the procedure. The
extra conditions are motivated by the following analysis. We denote any predictor
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for which βj = 0 as a noise predictor and any predictor for which βj �= 0 as a sig-
nal predictor. When we consider adding a predictor in a step of forward stepwise
regression, we consider two quantities:

max
j /∈F

∣∣xT
j

(
Xβ(k−1) − y

)∣∣,(19)

max
i∈F

∣∣xT
i

(
Xβ(k−1) − y

)∣∣.(20)

These are, respectively, proportional to the maximum correlation between the cur-
rent residuals and a noise predictor and the maximum correlation between the cur-
rent residuals and a signal predictor. We refer to these two predictors as the “best”
signal predictor and the “best” noise predictor.

For CaSpaR, we must consider how the weights applied to these quantities affect
the analysis. We therefore consider the cases where: (a) the best signal predictor
and the best noise predictor are in A

(k), (b) neither the best signal predictor nor
the best noise predictor are in A

(k), or (c) the best signal predictor is in A
(k) but

the best noise predictor is not, or (d) the best noise predictor is in A
(k) but the

best signal predictor is not. Except for scenario (d), the original result for stepwise
regression holds. We therefore make additional assumptions to ensure that case (d)
does not occur. Those conditions are as follows:

1. The ratio of the criterion for the best noise predictor to the best signal predictor
is less than α.

2. All of the predictors under the kernel are signal predictors.
3. All of the signal predictors are under the kernel.

The first ensures that in case (d) the correlation between the signal predictor is
large enough to be selected even in this case. Because the weights Wj only depend
on membership in A

(k), the second and third conditions ensure that case (d) never
occurs: the second means there are only signal predictors in A

(k), and the third
means that there are no signal predictors not in A

(k).
These assumptions are fairly mild, especially if we have a strong belief that

supp(β) is truly structured. We propose that the first condition holds for early
steps of CaSpaR. We can reasonably assume that it is possible for an oracle α to
be such that the signal is sufficiently dominant over noise. The last two conditions
should hold for later steps of the algorithm: enough points within each cluster have
already been discovered so that it only remains to fill in the clusters.

7. Conclusion. We introduced a new method, CaSpaR, that allows us to build
sparse regression models where we have some additional information about the
structure of the sparsity pattern. We presented an application as well as a simula-
tion study that show the method performs differently than the most popular sparse
regression techniques. We discussed the general concept of graph sparsity, and
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showed that, under high “signal-to-noise” conditions ‖β‖2/σ ≈ 500, our method
provides a flexible way to approximate graph sparsity.

Our simulation study suggests that under structured sparsity conditions, CaS-
paR can recover the true target with less data than standard techniques. This moti-
vates future work to show that this property has a theoretical basis. Other topics of
interest include adding backward steps to the CaSpaR algorithm as well as an ex-
tension to a convex minimization procedure, which may have some computational
advantages over the stepwise procedure.
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