The Annals of Applied Statistics

2011, Vol. 5, No. 2A, 684-704

DOI: 10.1214/10-A0AS401

© Institute of Mathematical Statistics, 2011

POINT PROCESS MODELING OF WILDFIRE HAZARD IN
LOS ANGELES COUNTY, CALIFORNIA

BY HAIYONG XU AND FREDERIC PAIK SCHOENBERG
University of California, Los Angeles

The Burning Index (BI) produced daily by the United States govern-
ment’s National Fire Danger Rating System is commonly used in forecasting
the hazard of wildfire activity in the United States. However, recent evalua-
tions have shown the Bl to be less effective at predicting wildfires in Los An-
geles County, compared to simple point process models incorporating similar
meteorological information. Here, we explore the forecasting power of a suite
of more complex point process models that use seasonal wildfire trends, daily
and lagged weather variables, and historical spatial burn patterns as covari-
ates, and that interpolate the records from different weather stations. Results
are compared with models using only the BI. The performance of each model
is compared by Akaike Information Criterion (AIC), as well as by the power
in predicting wildfires in the historical data set and residual analysis. We find
that multiplicative models that directly use weather variables offer substantial
improvement in fit compared to models using only the BI, and, in particular,
models where a distinct spatial bandwidth parameter is estimated for each
weather station appear to offer substantially improved fit.

1. Introduction. This paper explores the use of space-time point process
models for the short-term forecasting of wildfire hazard in Los Angeles County,
California. The region is especially well suited to such an analysis, since the Los
Angeles County Fire Department and Department of Public Works have collected
and compiled detailed records on the locations burned by large wildfires dating
back over a century. The landscape in Los Angeles County is uniquely vulnera-
ble to high intensity crown-fires, largely because the predominant local vegetation
consists of dense, highly flammable contiguous chaparral shrub [Keeley (2000)].
In addition, the dry summers and early autumns in Los Angeles County are typ-
ically followed by high winds known locally as Santa Ana winds [Keeley and
Fotheringham (2003)]. These offshore winds reach speeds exceeding 100 kph at a
relative humidity below 10%, and are annual events lasting several days to several
weeks, creating the most severe fire weather in the United States [Schroeder et al.
(1964)].

In order to forecast wildfire hazard, the United States National Fire Danger Rat-
ing System (NFDRS), created in 1972, produces several daily indices that are de-
signed to aid in planning fire control activities on a fire protection unit [Deeming et
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al. (1977); Bradshaw et al. (1983); Burgan (1988)]. These include the Occurrence
Index, the Burning Index (BI), and the Fire Load Index. These indices are derived
from three fire behavior components—a Spread Component, an Energy Release
Component, and an Ignition Component, that are in turn computed based on fuel
age, environmental parameters (slope, vegetation type, etc.), and meteorological
variables such as wind, temperature, and relative humidity. Local wildfire man-
agement agencies may combine these components in different ways or calibrate
the inherent parameters to adapt the system to the local environment for wildfire
hazard assessment.

Fire managers use this information in making decisions about the appropriate-
ness of prescribed burning or alerts for increased preparedness, both in terms of
fire suppression staffing and fire prevention activities. Since fireline intensity is an
important factor in predicting fire containment and the likelihood of fire escape,
the Burning Index is the rating of most interest to many fire managers [Schoen-
berg et al. (2010)]. This is especially the case for natural crown-fire ecosystems
such as southern California shrublands, where BI is commonly employed to as-
sess fire danger [Mees and Chase (1991)]. Indeed, in Los Angeles County, as well
as at least 90% of counties nationwide, the BI is the index primarily used by fire
department officials as a measure of overall wildfire hazard, and its use has been
justified largely based on its observed empirical correlation with wildfire incidence
and burn area in different regions [Haines et al. (1983); Haines, Main and Simard
(1986); Mees and Chase (1991); Andrews, Loftsgaarden and Bradshaw (2003)].
However, several recent investigations have shown that the BI is far from an ideal
predictor of wildfire incidence in Los Angeles County; Schoenberg et al. (2010)
showed that a simple point process model, which used only the same weather
variables as those incorporated by the BI, vastly outperformed the BI in terms of
predictive efficacy in Los Angeles County, using historical data from 1977-2000.
In fact, the simple model in Schoenberg et al. (2010) not only offered improvement
in terms of likelihood scores such as the Akaike Information Criterion (AIC), but
the study suggested that substantial improvement in short-term forecasting could
be achieved by the simple model using the weather variables directly, compared to
a point process model that interpolates BI measurements.

Here, we adopt the same basic modeling framework of Schoenberg et al. (2010),
but extend the models in two important ways. First, we consider not only daily
weather variables but also additional covariates with management relevance, such
as historical spatial burn patterns and wind direction, using the directional kernel
regression method described in Schoenberg and Xu (2008). Second, unlike the
simple models of Mees and Chase (1991) and Schoenberg et al. (2010) that av-
erage daily weather variables over weather stations within Los Angeles County,
here we explore models that interpolate the records from different weather sta-
tions, weighting these data based on their spatial distance from the location where
wildfire hazard is to be estimated. Thus, the models considered here should have
more direct relevance for forecasting wildfire hazard in precise spatial locations
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within Los Angeles County, compared to previous work that essentially averaged
weather variables and hazard estimates over Los Angeles County as a whole. As
with Schoenberg et al. (2010), our results are compared with models using the BI
measurements recorded at each of the weather stations, so that the effectiveness of
the BI in summarizing the wildfire hazard as a function of the weather variables
may be assessed.

While alternative models may be more useful for forecasting long-term wild-
fire hazard, that is, estimating the number of wildfires occurring within a month,
season, or year, the focus here is on forecasting short-term wildfire hazard, that
is, the probability of a wildfire occurring within a specific day. To compare the
overall performance of the models considered, we employ diagnostics including
likelihood-based numerical summaries such as the Akaike Information Criterion
(AIC), as well as power diagrams summarizing the predictive efficacy of each
model for short-term forecasting. Residual analysis is also used to highlight spe-
cific areas and times where the performance of a model is poor and to suggest areas
for improvement.

The paper proceeds as follows. Section 2 describes the wildfire and weather
data that are used in the analysis. The models used, as well as methods for their
estimation, are outlined in Section 3, and methods for goodness-of-fit assessment
are discussed in Section 4. Section 5 presents the main results, and a discussion is
given in Section 6.

2. Data.

2.1. Wildfire data. Los Angeles County is an ideal test site for models for
wildfire hazard, with detailed wildfire data having been collected and compiled by
various agencies, including the Los Angeles County Fire Department (LACFD)
and the Los Angeles County Department of Public Works, the Santa Monica
Mountains Recreation Area, and the California Department of Forestry and Fire
Protection. Regional records of the occurrence of wildfires date back to 1878, and
include information on each fire, including its origin date, the polygonal outline
of the resulting area burned, and the centroidal location of this polygon. LACFD
officials have noted that the records prior to 1950 are believed to be complete
for fires greater than 0.405 km? (100 acres), and data since 1950 are believed
to be complete for fires burning greater than 0.0405 km?, or 10 acres [Schoen-
berg et al. (2003)]. As in Schoenberg et al. (2010), our analysis in this paper is
focused primarily on models for the occurrences of the 592 wildfires burning at
least 0.0405 km? recorded between January 1976 and December 2000. The daily
burn area is highly right-skewed and closely follows the tapered Pareto distrib-
ution [Schoenberg, Peng and Woods (2003)]. For further details, images of the
spatial locations of these wildfires, and information about missing data, see Peng,
Schoenberg and Woods (2005).
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2.2. Meteorological data. Since 1976, daily meteorological observations from
the Remote Automatic Weather Stations (RAWS) were archived across the United
States. The analysis here is based on sixteen RAWS located within Los Ange-
les County, California. The RAWS record daily measures of many meteorological
variables, including air temperature, relative humidity, precipitation, wind speed,
and wind direction [Warren and Vance (1981)]. Summaries of these records are
collected daily at 1300 hr and transmitted by satellite to a central archiving sta-
tion. These daily RAWS data are used as inputs by the NFDRS in order to con-
struct fire behavior components that are in turn combined to construct the BI. It
should be noted that data were missing on certain days for several of the 16 RAWS,
though the biases resulting from such missing data are likely to be small; see Peng,
Schoenberg and Woods (2005) for details.

3. Methodology. We follow previous research including Schoenberg et al.
(2010) in modeling the catalog of wildfire centroids in Los Angeles County as
a realization of a point process that may depend on daily meteorological variables.
We begin with a basic reference model using merely a spatial background rate and
seasonal component, and a model using the Burning Index in addition to the spa-
tial and seasonal background rates. We then introduce competing models that use
daily meteorological variables recorded at the RAWS, and extend the research of
Schoenberg et al. (2010) by including additional covariates, such as wind direction
and fuel age. Further, instead of averaging daily weather variables or the Burning
Index over all weather stations within Los Angeles County, here we explore meth-
ods of obtaining an estimated spatial intensity at any location x on any particular
day by interpolating the meteorological variables from different weather stations,
weighting each record based on its distance from the location x in question.

3.1. A review of point process modeling. A spatial-temporal point process N is
mathematically defined as a random measure on a spatial-temporal region S, taking
values in the nonnegative integers Z™ or infinity [Daley and Vere-Jones (2003)].
In this framework the measure N (A) represents the number of points falling in the
subset A of S. Since any analytical spatial-temporal point process is characterized
uniquely by its associated conditional rate (or intensity) A(s), assuming it exists,
modeling of such point processes is typically performed by specifying a parametric
model for this rate. For the case where the spatial region is planar, for any point ¢
in time and location (x, y) in the plane, the conditional rate is defined as a limiting
frequency at which events are expected to occur within time range (¢,t + Afr)
and rectangle (x, x + Ax) x (¥, y + Ay), conditional on the prior history, H;, of
the point process up to time ¢. For references on space—time point processes and
conditional rates, see, for example, Daley and Vere-Jones (1988) or Schoenberg,
Brillinger and Guttorp (2002).

Given a parametric function for A (¢, x, y), estimates of the parameters 6 may be
obtained by maximizing the log-likelihood function [see Schoenberg, Brillinger
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and Guttorp (2002), page 1576, or Daley and Vere-Jones (2003), page 232, equa-
tion 7.24]:

L(G)=/T0Tl/x/ylog[)»(t,x,y;@)]dN(t,x,y)—/.TOTIL/yk(t,x,y;,0)dydxdt

n T
=Zlogk(ti,xi,yi;9)—/ f/k(t,x,y;é)dydxdt-
i=1 To JxJy

In the case of a Poisson process, the intuition behind this formula is that
]_[,’-’:1 Ati, xi, yi; 0) reflects the likelihood associated with the observed events,

and exp{ fTTO ' [ JyA(t, x, y; 0)dy dx dt} represents the probability of no events in
any other portions of the spatial-temporal region, the full likelihood is the product
of these two terms, and the logarithm of this product yields L(6) above. Under
rather general conditions, the maximum likelihood estimates (MLEs) are consis-
tent, asymptotically normal, and efficient [Ogata (1978)], and estimates of their
variance can be derived from the negative of the diagonal elements of the inverse
Hessian of the likelihood function [Ogata (1978), Rathbun and Cressie (1994)]. In
most cases, explicit solutions for MLEs are not available and iterative numerical
optimization methods are used instead.

3.2. A simple reference model. In this analysis we explore several spatial-
temporal point process models for predicting wildfire occurrence rates. As an ini-
tial baseline model, one may consider an inhomogeneous Poisson process, where
the conditional intensity at time ¢ and at location (x, y) depends only on the season
associated with time ¢, as well as the background rate m (x, y) of wildfires for the
location in question. That is, one may consider a baseline model such as

(D At x,y) =ym(x,y) +aS(1),

where y and « are parameters to be estimated in modeling fitting.

Parametric or nonparametric methods can be used to estimate the seasonal pat-
tern S(¢) and spatial background m(x, y). While nonparametric methods can be
especially flexible for estimating complex patterns such as spatial burn averages,
a possible drawback to such methods is their potential for overfitting, particularly
when the same data are used for fitting and evaluation of the fit of the model. As
in Schoenberg et al. (2010), we propose estimating the spatial background m(x, y)
for fires between 19762000 by kernel smoothing the centroidal locations of wild-
fires recorded during the previous 25 years, that is, from January 1950 to December
1975. That is,

10 _ . .
m(x. y) = 1 K(Il(x,y) (xj,yj)ll),

where K is a kernel function, 8, is a bandwidth to be estimated in modeling fit-
ting, (x;, y;) indicates the spatial coordinates of the jth wildfire between 1950
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and 1975, ng is the number of observed 1951-1975 wildfire occurrences, and
(x,y) — (x;, y;)|l is the Euclidian distance between (x, y) and (x;, y;). Stan-
dard kernel functions can be used, and attention is usually limited to functions that
are unimodal, symmetric about zero, and that integrate to 1, such as the Gaussian
density of the Epanechnikov kernel [Hardle (1994)]. It is well known that the re-
sults are far more sensitive to the choice of bandwidth than the choice of kernel
function, and much research has focused on automated methods for choosing band-
width parameters, including cross-validation, penalty functions, and plug-in meth-
ods [Silverman (1986); Hirdle (1994)]. Here, since the data (x;, y;) used in the
estimation of m(x, y) is distinct from that used in the rest of the model fitting and
in the evaluation, the problem of overfitting is far less severe, and the bandwidth
parameter may simply be fitted by maximum likelihood.

Figure 1 shows an estimate of the spatial background rate m (x, y), with band-
width estimated by maximum likelihood. One sees the general pattern of fire ac-
tivity in Los Angeles County during 1951-1975, with most fires occurring in the
Angeles National Forest, as well as parts of the Los Padres National Forest and
the Santa Monica Mountains, while many other wildfires were located in or near
Buckweed, Santa Clarita, and Glendale, California.

Helmers, Magku and Zitikis (2003) propose a kernel-based estimate for the con-
sistent estimation of a seasonal time series. Here, in order to safeguard against
overfitting, we propose estimating the seasonal pattern S(¢) describing the over-
all seasonal variation of wildfire activity in a fashion similar to that used for the
spatial background rate, that is, by kernel smoothing the times of wildfires during
previous years:

no * _ TR (f.
S 1 (T (1) T(t])>‘

K
nO,Bt j=1 18[

In the above equation, T*(¢) represents the date within the year associated with
time ¢, that is, 7*(¢) is the number of days since the beginning of the year for time
t, tj is the time of the jth wildfire occurrence in the data set (1950-1975), and p;
is a bandwidth parameter to be estimated. A wrapped kernel function K should
be used so that, for instance, January 1 and December 31 are treated as one day
apart. The bandwidth may be estimated by maximum likelihood, fitting the kernel
smoothing of the 1950-1975 data to the 1976-2000 data set. This procedure may
be preferable for relatively small data sets such as the one considered here in order
to prevent overfitting.

Figure 2 displays the smoothed function S(¢) applied to wildfire incidence in
Los Angeles County from January 1950 to December 1975, with bandwidth esti-
mated by MLE by fitting the resulting function to wildfire data from 1976-2000. It
is evident that the mean number of wildfires is highest between July and October
and rapidly decreases during November and December, reaching its minimum in
January and February. Schoenberg et al. (2010) pointed out that the Burning Index
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F1G. 1. Spatial background rate m(x,y), with centroid locations of wildfires occurring during
1878-1976. (The spatial bandwidth By, is 0.6 miles).

typically assumes moderate values in December, January, and February, though
few wildfires occur during these months.

3.3. A point process model using Burning Index. To evaluate the potential of
the Burning Index (BI) in predicting wildfire incidence, one may consider a model
such as

() AM(t,x,y)=ym(x,y) +aS(t) + upiB(, x, y)

for some function B(¢, x, y) which interpolates the BI records at time ¢ and lo-
cation (x, y), since BI records are only available at fixed RAWS sites. Different
methods of interpolation are possible. One possibility is to average the BI records
on day ¢, weighing each by the distance between the RAWS and the location (x, y)
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FI1G. 2. Estimate of the seasonal pattern S(t) for model (1), using kernel regression with a wrapped
Gaussian kernel and bandwidth B; = 9.86 days, estimated by MLE.

in question. That is,

B(t,x,y) =

Z{K(Il(x,y) — (xs,ys)H)BI(t’S)}’

1
CBI SGS{ ﬂBI

where BI(z, s) is the BI value recorded at time ¢ from the sth station, (xg, ys) are
the coordinates of the sth station, S; represents the collection of stations for which
BI records are available on day ¢, and Cgj is a normalizing constant given by

Cor = Z{K<Il(x,y) ;Bixs,ys)ll)}_

SGS[

3.4. Models using spatial interpolation of meteorological variables, including
wind speed and wind direction. As an alternative to the model (2) incorporating
BI measurements, one may instead consider examining the direct impact on wild-
fire hazard estimates of meteorological variables used in the computation of the
BI, by replacing the function B(¢, x, y) in (2) by functions of the meteorological
variables themselves. That is, one may consider models such as

3) A3(t,x,y) =ym(x,y) +aS{) + Fi(t, x, y),

where F(¢, x, y) takes into account the contribution of temperature (7), relative
humidity (H), wind speed (W), and precipitation (P) at time ¢ from each RAWS
where the data are available.

Since nonlinearities have been detected in the dependence of burn area on cli-
matic variables [Schoenberg et al. (2003)], one may wish to avoid simple averaging
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of the meteorological variables in estimating wildfire hazard. Instead, one option
is to describe the association between each climatic variable and wildfire burn area
by an explicit function g and weight the information from each RAWS by the dis-
tance to the point (x, y) to be estimated using kernel smoothing. This suggests a
model such as

Fi(tox.y) = %SES[{K(II(x,y) ;T(xs,ys)ll)gT(T(t’s))}
n Z_ZS;&{K<II(x,y) ;H(xs,ys)ll>gH(H(t’s))}
n Z_Z‘E&{K(Il(x,y) ;v;xs’yS)l')gw(W(t,s))}
n /é_isg{K(ll(x,y) ;;xs’yS)”)gp(P(t,s))},

where T(t,s), H(t,s), W(t,s), and P(t,s) are records of temperature, relative
humidity, directed wind speed, and precipitation, respectively, on day ¢ at the sth
RAWS, the parameters ur, Ug, Uw, and pup represent weights associated with
these meteorological variables, 87, By, Bw, and Sp are bandwidths to be esti-
mated, and Cr, Cg, Cw, and Cp are normalizing constants.

Note that the bandwidth parameters are somewhat different here than in or-
dinary kernel regression models. While ordinarily in kernel regression or kernel
density estimation bandwidth parameters may not typically be estimated by max-
imum likelihood because the likelihood would tend to increase as the bandwidth
shrinks to O [Silverman (1986)], here this is not the case. Instead, the bandwidth
parameters B, Ba, Bw, and Bp in model (3) merely control the spheres of influ-
ence of the relative weather stations in terms of the impact of each on wildfire
hazard. That is, if 7 is small, for instance, then each RAWS station’s recorded
temperature will affect the wildfire incidence more locally, whereas if Br is very
large, then the wildfire hazard at any particular location will depend more closely
on the average temperature throughout Los Angeles County.

Functional forms can be suggested for g7, g, gw, and gp, by individually ex-
amining the empirical relationship between daily area burned and each of these
variables. In order to smooth these relationships, one possibility would be to use
local linear regression or segmented regression, since the relationships between
wildfire burn area and temperature, precipitation, and other weather variables ap-
pear to have thresholds [Schoenberg et al. (2003)]. Another possibility is to use
kernel regression of daily area burned on the average temperature, relative hu-
midity, and precipitation over all RAWS, respectively. For instance, the impact of
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temperature may be estimated via

YILAK (T = Tj1/hr)Aj)
YAKAT = Tjl/hr)}

where Aj; is the area burned on the jth day during 1976-2000, T; is the aver-
age temperature readings over all RAWS on that day, i1 is the bandwidth of the
kernel regression which can be selected by methods such as cross-validation or the
plug-in method [Silverman (1986)], and n is the number of days with records dur-
ing this period. Figure 3 displays such kernel regression estimates of g7, gn, and
gp. Not surprisingly, one sees that daily area burned generally increases as tem-
perature increases, and decreases as relative humidity and precipitation increase,
though some local fluctuations are seen in the kernel regressions on temperature
and relative humidity. These fluctuations are likely attributable to the high vari-
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FI1G. 3. Kernel regression estimates of the relationship between daily burn area and (a) tempera-

ture, (b) relative humidity, and (c) precipitation. Gaussian kernels are used, bandwidths are estimated
by cross-validation, and edge correction is performed via reflection [Silverman (1986)].
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ability of the estimates due to the relatively small sample of large fires contained
in the catalog.

Special care should be taken in estimating gw, since wind is directional, and
this direction may provide important information related to wildfire incidence. One
possible way to estimate the relationship between daily area burned and directional
wind speed is via directional kernel regression, as outlined in Schoenberg and Xu
(2008). An example of a two-dimensional directional kernel is the von Mises dis-
tribution suggested by Mardia and Jupp (2000):

vMO; p, k) = ée“osw_“),
27 I (k)
where Iy denotes the modified Bessel function of the first kind and order O, w is
the directional center, and « is known as the concentration parameter. Following
Schoenberg and Xu (2008), the corresponding two-dimensional kernel regression
function gw would then be estimated via

SILUK (W = Wil /hw)vM (6 — 63 o, ko)A )
SILUK (W = Wil /hw)vM (6 —6;; po, ko))

where W; and 6; represent the mean wind speed and wind direction, respectively,
onday j.Cross-validation can be used to optimize the estimates of &, o, and k.

Figure 4 displays a kernel regression estimate of the relationship between daily
burning area and daily mean wind direction, weighted by wind speed, averaged
over all 16 RAWS stations. The sharp increase in mean wildfire burn area, indi-
cated by darker shading in Figure 4, is very strongly associated with higher wind
speeds. In addition, one sees from Figure 4 the extent to which winds from the
northeast, which are often warm, dry Santa Ana winds, are associated with higher
burn areas. Since the impact on average wildfire burn area of wind direction might
be different at distinct weather stations, one might wish to estimate 16 distinct

gw(W,0) =

kernel regression functions gg,f,) , one for each RAWS station s.

The model (3) described above is additive in each of the weather variables,
implying that an extreme value in only one weather variable may lead to a high es-
timate of wildfire hazard on the corresponding day, which might be questionable.
For instance, one would expect few large wildfires occur on days when tempera-
tures are extremely high yet there is some moderate amount of precipitation and
relative humidity. An alternative approach is to use a multiplicative component
instead, where once again

4 Aa(t,x,y)=ym(x,y)+aS{t) +pnka(t, x,y),

where now the fire weather (F) term has the multiplicative form

1 ’ - §s s
Fz<r,x,y>=C—Z{K(”(x Y Z(X y)”)gm,s)gH(t,s)gwa,s)gp(r,s)}.

2 SES; ’B
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FI1G. 4. Two-dimensional kernel regression of burn area versus wind speed and wind direction.
Wind speed and wind direction are represented in a polar system: wind speed is represented by the
distance to the center and wind direction is represented by the angle. The grey scale represents the
smoothed average wildfire burn area during 1976-2000.

3.5. Models allowing records at different RAWS to have different relationships
with wildfire hazard. In both model (3) and model (4), g7, g5, and gp may be
estimated using kernel regression of burn area on average temperature, relative
humidity, and precipitation over all weather stations, where each station has the
same regression function. However, because of differences in the locations of the
weather stations, including differing altitudes of these stations, some stations may
have lower average temperatures or higher relative humidities than others through-
out the year. Hence, a particular temperature and relative humidity at one station
might indicate a very different wildfire hazard than the same values observed at a
different RAWS station. In order to deal with this, one may estimate distinct kernel
regression curves for each RAWS in model (3) and model (4). That is, one might
consider

©) As(t,x,y) =ym(x,y) +aS(t) + F3(t, x, y),
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where
Fi(t, x,y) = Z{K<”(x y) — (xaaya)”)g;f)(t’s)}
TGS;
{K<|I(x Y — (XS’yS)”)gg)(z,s)}
SE t
nw {K(”(X yY) — (xh))v)”> (s)(t }
CW sES, t
{K<||(x Y — (xs,ys)||> (s)(t }
S‘GS;
or
(6) re(t,x,y) =ym(x,y) +as(t)+ uFst, x,y),
where
Fu(z, x, y)
_ ! Z{ (Il(x,)’) —ﬁ(xs,ys)H) (‘)(t s)g(‘)(t S)g(v)(l‘ s)g(‘)(t,s)}.

S‘ES

The kernel regression functions such as gT)(t s) for each station s may be esti-
mated as in models (3) and (4), that is, by kernel regression of the total daily burn
area in Los Angeles County against the temperature at station s.

3.6. Incorporating fuel age. One may further improve the models by adding
fuel age as a covariate. Fuel age, or its proxy, the time since the location’s last
recorded burn, appears to have a nonlinear, threshold-type relationship with burn
area [Peng and Schoenberg (2008)]. Indeed, burn area appears to increase steadily
with fuel age up to ages of approximately 20-30 years [Peng and Schoenberg
(2008)]. This suggests incorporating the contribution of fuel age into model (5) by
a truncated linear function, that is,

(7 A, x,y)=ym(x,y) +ast)+ F3(t,x, y) + upmin{D(t, x, y), ¥},

where D(t, x, y) is the fuel age at the space—time pixel (z, x, y), and where i is
an upper truncation time. Fuel age may be incorporated similarly into model (6) as
well:

@)  Agt,x,y)=ym(x,y) +aSt) + pnFs(t,x,y) +pupmin{D(t, x,y), V}.
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4. Model assessment. Equations (1)—(8) describe eight point process models
that may be used to predict wildfire hazard at any time and location within Los
Angeles County. In order to compare the performance of these models, one com-
monly used method is the Akaike Information Criterion (AIC), which is defined
as —2L(B) + 2p, where L(p) is the log-likelihood and p is the number of fitted
parameters in the model. Smaller values of AIC indicate better fit. The AIC makes
a good trade-off between model complexity and overfitting by rewarding a higher
likelihood while penalizing the addition of more parameters [Akaike (1977)].

The predictive capacity of competing point process models may also be com-
pared by examining the models’ performance on the 1976-2000 wildfire data, as
suggested in Schoenberg et al. (2010). Consider a grid of space—time cells, with
each cell’s center separated by some distance Ad in space and a temporal distance
A, and let these cells represent locations and times where alarms may potentially
be issued. For any such space—time point (¢, x, y), one may compute the estimated
conditional intensity A, x, y) for a particular model. Consider issuing an alarm
if the value of i(l, X, y) is above some certain threshold. We say the alarm is suc-
cessful if a wildfire occurs within the cell; otherwise, it is a false alarm. The false
positive rate of the alarms, defined as the proportion of cells without wildfires
where A exceeded the alarm threshold, can be compared to the true positive rate,
that is, the proportion of wildfires occurring in cells where A exceeded the alarm
threshold, using traditional Receiver Operating Characteristic (ROC) curves. Each
possible alarm threshold represents a single point on the ROC curve, and the re-
sulting curve summarizes the potential efficacy of a model in forecasting wildfires.

While numerical likelihood scores such as AIC and ROC curves can be useful
in evaluating the overall performance of a point process model, neither method
is useful at identifying particular times and locations where a model fits poorly
or suggesting ways in which a model might be improved. For these purposes, it is
useful to inspect plots of residuals, which may be defined as the difference between
the number of events occurring in a certain space—time interval and the integral of
the estimated conditional intensity over the same interval [Baddeley et al. (2005)].
Negative residuals indicate overestimates of wildfire hazard, and very large resid-
uals indicate places and times where the model underestimated wildfire hazard.

5. Results. The maximum likelihood estimates of the parameters for the mod-
els (1)—(8) are listed in Tables 1 and 2. In Tables 1 and 2, the parameter 1 was fixed
at 22 years for models 7 and 8, based on Peng and Schoenberg (2008); this para-
meter was also fit by maximum likelihood, yielding very similar results, so, for
simplicity, here we report the fit of the model with i fixed at 22 years. The band-
widths in spatial background S,, range from 0.25 km to 1.20 km and the bandwidth
in the seasonal component fall within 8.6 to 34.1 days. The bandwidths related to
spatially kernel smoothing the weather variables range from 0.024 km to 0.40 km
in models (3), (5), and (7), with the smallest value for wind speed in model (7) and
the largest value corresponding to relative humidity in model (3). As mentioned in
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TABLE 1

Maximum likelihood estimates of scaling parameters

Model y o "B ’r rH rw np n ID
1 24 2.0
(1.3)  (0.20)
) 49 065 86x1074
(0.26) (0.039) (2.0 x 1075)
Q3) 6.4  0.66 0.18 021 1.0 0.15
(0.64) (0.043) 0.017) (0.012) (0.071) (0.010)
) 64 27 2.1 x 103
0.31) (0.24) (130)
5) 13 0.60 058  0.19 17 2.1
(0.84) (0.051)  (0.054) (0.011) (0.85) (0.14)
6 12 1.0 5.1 x 103
(0.15) (0.057) (260)
) 69  0.60 0.19 021 52 0.71 1.0
0.44) (0.054) 0.018) (0.020) (2.4)  (0.068) (0.066)
) 48 054 1980 x 103 0.10
(0.37) (0.049) (85 x 103) (0.0094)

All entries have been multiplied by 103 for brevity.

Maximum likelihood estimates of bandwidth parameters

TABLE 2

Model By, (km) By (day) Bp (km) Br (km) Bgy (km) Bw (km) Bp (km) B (km)
(1 1.20 9.86
(0.004) (2.8)
) 0.92 8.64 0.40
(0.00077)  (3.30) (0.0055)
3) 0.36 29.6 0.37 0.40 0.30 0.24
(0.002) (5.6) (0.002) (0.001)  (0.004) (0.001)
4) 0.92 8.6 0.03
0.1) (2.3) (0.003)
(5) 0.34 34 0.31 0.20 0.04 0.28
(0.002) (8.3) (0.001) (0.001)  (0.002) (0.0005)
(6) 0.25 20 0.19
(0.025) 0.7 (0.003)
@) 0.46 19 0.36 0.39 0.024 0.20
(0.00069) (5.2) (0.00071) (0.0011) (3.2e—8) (0.00025)
(8) 0.99 13 0.037
(0.17) (2.6) (0.00064)
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TABLE 3
Relative AIC values

Model » @ 6 @& 6 ©O @O O
Relative AIC 3783 2859 2509 2631 2223 2209 1308 0
p 4 6 12 6 12 6 137

Section 3, these bandwidths can perhaps be interpreted as reflecting the scales of
influence of the weather variables in terms of their effect on wildfire incidence.

Table 3 presents the relative AIC values for models (1)—(8). For simplicity and
ease of presentation, the AIC for the best fitting model (8) has been subtracted from
the AIC of each model. It is evident that the BI model (2) offers very substantial
improvement over the baseline model (1). However, all the other models that use
weather information directly have much better fits than the BI model (2). The
multiplicative model (8) with fuel age appears to offer by far the best fit among
these models, without using the BI directly, and only involves one more fitted
parameter than the BI model.

Figure 5 shows a comparison of the predictive efficacy of models described in
Section 3. Models (6) and (8) vastly outperform the other models. The performance
was evaluated using a regular space—time grid, so that each alarm’s success or
failure was evaluated over a space—time window with Ad =4.0 km and Af =1.0
day.

For any given success rate, the models that directly use the meteorological data
offer substantially fewer false alarms than the model (2) that uses the BI. For in-
stance, for a false positive rate fixed at 0.08, model (8) correctly signals approxi-
mately 29% of the wildfires in the data set, compared to 18% for model (2). Model
(6), which uses only temperature, relative humidity, wind speed, wind direction,
and precipitation, but does not use fuel age, signals nearly 25% of the wildfires
correctly with a false positive rate of 0.08. Note that this method of evaluating pre-
dictive efficacy over a fine grid of spatial-temporal locations is rather cuambersome
for models (7)—(8), due to the need to individually estimate the fuel age associated
with each wildfire, with respect to each spatial-temporal grid location and time,
and each such evaluation requires a rather burdensome computation described in
Peng and Schoenberg (2008).

The fit of the models can be evaluated by examining their spatial-temporal resid-
uals over a relatively coarse grid. For instance, Figure 6 shows the medians of the
absolute values of the residuals in each month, for models (1)—(8), where each
residual is computed over a space—time grid of 25.6 sgkm x 30.0 days. It is evident
that models (3), (5), (6), (7), and (8) outperform the other three models, especially
in the late Summer and Fall months when most wildfires in Los Angeles County
occur. The months of October and November are especially critical, since Santa
Ana winds prevail and can cause catastrophic wildfires. Figure 7 shows a spatial
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FI1G. 7. Median absolute value of residuals, by location, using a space—time grid of 25.6 sgkm x
30.0 days.

plot of the medians of the absolute values of the residuals, over all months. From
Figure 7 one sees that the eight models perform surprisingly comparably in terms
of the median absolute residual, though models (3)—(8), which use meteorological
data directly, have better performance than model (2) in the sense that the corre-
sponding residuals are generally closer to zero in most areas. These residual plots
also indicate that several of the models may require improvement in the North-
west portion of the Angeles National Forest, as well as near the border with San
Bernardino County on the Eastern side of Los Angeles County. From the resid-
uals in Figure 7, one can observe that the residuals for models (5), (7), and (8)
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are highly concentrated around zero except a few large values that occur in the
Northwest part and east part of Los Angeles County.

6. Discussion. The models explored here use the identical information
recorded at the RAWS stations and used as inputs into the computation of the
BI. Hence, it seems relevant to compare the fit of such models with comparable
spatial interpolations of BI measurements, and the fact that the models using the
weather variables directly appear to offer superior fit suggests that the BI may not
be effective as a short-term forecasting measure of wildfire hazard in Los Angeles
County.

It should be noted that the empirical relationship between a fire danger rating
index such as the BI and wildfire incidence is only one way to evaluate the effec-
tiveness of such an index; alternatives may include assessing the cost-effectiveness
of staffing or other decisions made based on the index. Furthermore, the use of fire
danger ratings by fire department officials for wildfire suppression and prevention
activities may confound the empirical relationship between fire danger ratings and
observed wildfire activity. Nevertheless, most evaluation studies of fire danger rat-
ing systems relate such indices to ultimate fire responses, including fire incidence
and fire size. Indeed, Andrews and Bradshaw (1997), whose work was instrumental
in the current implementation of the BI, suggested that the value of a fire danger
index be evaluated according to its relationship with fire activity, which may be
defined as the incidence of large wildfires. Such empirical relationships have been
used as support for the use of such rating systems for predictive purposes [Haines
et al. (1983); Haines, Main and Simard (1986); Mees and Chase (1991); Man-
dallaz and Ye (1997a, 1997b); Viegas et al. (1999); Andrews, Loftsgaarden and
Bradshaw (2003)]. The results here suggest that, for the purpose of forecasting
wildfire hazard, point process models using RAWS records and previous wildfire
activity as covariates may represent a promising alternative to existing indices that
use essentially the same information.

However, we must emphasize that the point process models proposed here re-
main rather simplistic and could potentially be improved by incorporating a host of
other important variables, such as detailed vegetation type, vegetation cover, soil
characteristics, other weather variables such as cloud cover and lightning, as well
as human factors such as land use and public policy. The exclusion of such vari-
ables from this analysis is solely motivated by our aim to optimize forecasts given
the same remote, automatically-recorded information used in the computation of
the BI. The models considered here could also perhaps be improved in various
ways. For instance, one might allow long-term temporal trends and/or allow the
seasonal component to vary from year to year. In addition, one may consider esti-
mating the kernel function in models (5) and (6) for each station using only local
wildfires close to the corresponding station, or perhaps by some more sophisti-
cated weighting scheme where nearby fires are given higher weight in the esti-
mation of this function. Because daily burn areas are right-skewed [Schoenberg,
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Peng and Woods (2003)], perhaps kernel regressions where the response variable
is some transformation of the daily burn area might yield superior results. An addi-
tional important direction for future work is the exploration of similar point process
models for wildfire occurrences in other locations and for other vegetation types or
alternative wildfire regimes, as well as the use of such models for actual prospec-
tive predictions of wildfire activity, rather than merely the empirical assessment of
goodness of fit to historical data.
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