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We consider the problem of speaker diarization, the problem of segment-
ing an audio recording of a meeting into temporal segments corresponding to
individual speakers. The problem is rendered particularly difficult by the fact
that we are not allowed to assume knowledge of the number of people partic-
ipating in the meeting. To address this problem, we take a Bayesian nonpara-
metric approach to speaker diarization that builds on the hierarchical Dirich-
let process hidden Markov model (HDP-HMM) of Teh et al. [J. Amer. Sta-
tist. Assoc. 101 (2006) 1566–1581]. Although the basic HDP-HMM tends to
over-segment the audio data—creating redundant states and rapidly switching
among them—we describe an augmented HDP-HMM that provides effective
control over the switching rate. We also show that this augmentation makes
it possible to treat emission distributions nonparametrically. To scale the re-
sulting architecture to realistic diarization problems, we develop a sampling
algorithm that employs a truncated approximation of the Dirichlet process
to jointly resample the full state sequence, greatly improving mixing rates.
Working with a benchmark NIST data set, we show that our Bayesian non-
parametric architecture yields state-of-the-art speaker diarization results.

1. Introduction. A recurring problem in many areas of information technol-
ogy is that of segmenting a waveform into a set of time intervals that have a useful
interpretation in some underlying domain. In this article we focus on a particular
instance of this problem, namely, the problem of speaker diarization. In speaker
diarization, an audio recording is made of a meeting involving multiple human par-
ticipants and the problem is to segment the recording into time intervals associated
with individual speakers [Wooters and Huijbregts (2007)]. This segmentation is to
be carried out without a priori knowledge of the number of speakers involved in
the meeting; moreover, we do not assume that we have a priori knowledge of the
speech patterns of particular individuals.
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Our approach to the speaker diarization problem is built on the framework of
hidden Markov models (HMMs), which have been a major success story not only
in speech technology but also in many other fields involving complex sequential
data, including genomics, structural biology, machine translation, cryptanalysis
and finance. An alternative to HMMs in the speaker diarization setting would be to
treat the problem as a changepoint detection problem, but a key aspect of speaker
diarization is that speech data from a single individual generally recurs in multi-
ple disjoint intervals. This suggests a Markovian framework in which the model
transitions among states that are associated with the different speakers.

An apparent disadvantage of the HMM framework, however, is that classical
treatments of the HMM generally require the number of states to be fixed a priori.
While standard parametric model selection methods can be adapted to the HMM,
there is little understanding of the strengths and weaknesses of such methods in
this setting, and practical applications of HMMs generally fix the number of states
using ad hoc approaches. It is not clear how to adapt HMMs to the diarization
problem where the number of speakers is unknown.

Building on the work of Beal, Ghahramani and Rasmussen (2002), Teh et al.
(2006) presented a Bayesian nonparametric version of the HMM in which a
stochastic process—the hierarchical Dirichlet process (HDP)—defines a prior
distribution on transition matrices over countably infinite state spaces. The result-
ing HDP-HMM is amenable to full Bayesian posterior inference over the num-
ber of states in the model. Moreover, this posterior distribution can be integrated
over when making predictions, effectively averaging over models of varying com-
plexity. The HDP-HMM has shown promise in a variety of applied problems, in-
cluding visual scene recognition [Kivinen, Sudderth and Jordan (2007)], music
synthesis [Hoffman, Cook and Blei (2008)], and the modeling of genetic recom-
bination [Xing and Sohn (2007)] and gene expression [Beal and Krishnamurthy
(2006)].

While the HDP-HMM seems like a natural fit to the speaker diarization prob-
lem given its structural flexibility, as we show in Section 8, the HDP-HMM does
not yield state-of-the-art performance in the speaker diarization setting. The prob-
lem is that the HDP-HMM inadequately models the temporal persistence of states.
This problem arises in classical finite HMMs as well, where semi-Markovian mod-
els are often proposed as solutions. However, the problem is exacerbated in the
nonparametric setting, in which the Bayesian bias toward simpler models is insuf-
ficient to prevent the HDP-HMM from giving high posterior probability to models
with unrealistically rapid switching. This is demonstrated in Figure 1, where we
see that the HDP-HMM sampling algorithm creates redundant states and rapidly
switches among them. (The figure also displays results from the augmented HDP-
HMM—the “sticky HDP-HMM” that we describe in this paper.) The tendency to
create redundant states is not necessarily a problem in settings in which model
averaging is the goal. For speaker diarization, however, it is critical to infer the
number of speakers as well as the transitions among speakers.
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FIG. 1. (a) Multinomial observation sequence; (b) true state sequence; (c) and (d) estimated state
sequence after 30,000 Gibbs iterations for the original and sticky HDP-HMM, respectively, with
errors indicated in red. Without an extra self-transition bias, the HDP-HMM rapidly transitions
among redundant states.

Thus, one of our major goals in this paper is to provide a general solution to the
problem of state persistence in HDP-HMMs. Our approach is easily stated—we
simply augment the HDP-HMM to include a parameter for self-transition bias, and
place a separate prior on this parameter. The challenge is to execute this idea coher-
ently in a Bayesian nonparametric framework. Earlier papers have also proposed
self-transition parameters for HMMs with infinite state spaces [Beal, Ghahramani
and Rasmussen (2002); Xing and Sohn (2007)], but did not formulate general so-
lutions that integrate fully with Bayesian nonparametric inference.

Another goal of the current paper is to develop a more fully nonparametric
version of the HDP-HMM in which not only the transition distribution but also
the emission distribution (the conditional distribution of observations given states)
is treated nonparametrically. This is again motivated by the speaker diarization
problem—in classical applications of HMMs to speech recognition problems, it is
often the case that emission distributions are found to be multimodal, and high-
performance HMMs generally use finite Gaussian mixtures as emission distribu-
tions [Gales and Young (2007)]. In the nonparametric setting it is natural to replace
these finite mixtures with Dirichlet process mixtures. Unfortunately, this idea is
not viable in practice, because of the tendency of the HDP-HMM to rapidly switch



THE STICKY HDP-HMM 1023

between redundant states. As we show, however, by incorporating an additional
self-transition bias, it is possible to make use of Dirichlet process mixtures for the
emission distributions.

An important reason for the popularity of the classical HMM is its computa-
tional tractability. In particular, marginal probabilities and samples can be obtained
from the HMM via an efficient dynamic programming algorithm known as the
forward–backward algorithm [Rabiner (1989)]. We show that this algorithm also
plays an important role in computationally efficient inference for our generalized
HDP-HMM. Using a truncated approximation to the full Bayesian nonparametric
model, we develop a blocked Gibbs sampler which leverages forward–backward
recursions to jointly resample the state and emission assignments for all observa-
tions.

The paper is organized as follows. In Section 2 we begin by summarizing related
prior work on the speaker diarization task and analyzing the key characteristics of
the data set we examine in Section 8. In Section 3 we provide some basic back-
ground on Dirichlet processes. Then, in Section 4 we overview the hierarchical
Dirichlet process, and in Section 5 discuss how it applies to HMMs and can be
extended to account for state persistence. An efficient Gibbs sampler is also de-
scribed in this section. In Section 7 we treat the case of nonparametric emission
distributions. We discuss our application to speaker diarization in Section 8. A list
of notational conventions can be found in the Supplementary Material [Fox et al.
(2010)].

2. The speaker diarization task. There is a vast literature on the speaker
diarization task, and in this section we simply aim to provide an overview of the
most common techniques. We refer the interested reader to Tranter and Reynolds
(2006) for a more thorough exposition on the subject.

Classical speaker diarization techniques typically employ a two-stage procedure
that first segments the audio (or features thereof) using one of a variety of change-
point algorithms. The inferred segments are then regrouped into a set of speaker
labels via a clustering algorithm. For example, Reynolds and Torres-Carrasquillo
(2004) propose a changepoint detection method based on the Bayesian Information
Criterion (BIC). Specifically, a penalized likelihood ratio test is used to compare
whether the data within a fixed window are better modeled via a single Gaussian
or two Gaussians. The window gradually grows at each test until a changepoint is
inferred, at which point the window is reinitialized at the inferred changepoint. An
alternative changepoint detection technique, first proposed in Siegler et al. (1997),
uses fixed length windows and computes the symmetric Kullback–Leibler (KL)
divergence between a pair of Gaussians each fit by the data in their respective win-
dows. A post-processing step then sets the changepoints equal to the peaks of the
computed KL that exceed a predetermined threshold. In order to group the inferred



1024 FOX, SUDDERTH, JORDAN AND WILLSKY

segments into a set of speaker labels, a common approach is to use hierarchical
agglomerative clustering with a BIC stopping criterion, as proposed in Chen and
Gopalakrishnam (1998).

The simple two-stage approach outlined above suffers from the fact that errors
made in the segmentation stage can degrade the performance of the subsequent
clustering stage. A number of algorithms instead iterate between multiple stages
of resegmentation (typically via Viterbi decoding) and clustering; for example, see
Barras et al. (2004); Wooters et al. (2004). Iterative segmentation and clustering al-
gorithms employing a Gaussian mixture model for each cluster (i.e., speaker), such
as those proposed by Gauvain, Lamel and Adda (1998); Barras et al. (2004), have
been shown to improve diarization performance. Overall, however, agglomerative
clustering is extremely sensitive to the specified threshold for cluster merging, with
different settings leading to either over- or under-clustering of the segments into
speakers. The thresholds are typically set based on testing on an extensive training
database.

A number of more recent approaches have considered the problem of joint seg-
mentation and clustering by employing HMMs to capture the repeated returns of
speakers. To handle the fact that the state space is unknown, Meignier et al. (2000)
introduces the use of an evolutive-HMM which is further developed in Meignier,
Bonastre and Igounet (2001). The HMM is initialized to have one state and at each
iteration a segment of speech is assumed to arise from an undetected speaker who
is added to the model. The revised HMM is then used to resegment the audio, and
this iterative procedure continues until the speaker labels have converged. An al-
ternative HMM formulation is presented in Wooters and Huijbregts (2007). The
data are initially split into K states, with K assumed to be larger than the num-
ber of true speakers, and the HMM states are iteratively merged according to a
metric based on changes in BIC. At each iteration, Viterbi decoding is performed
to resegment the features of the audio, and the inferred segments are used to fit
a new HMM via expectation maximization (EM). Then, the BIC criterion is ap-
plied to decide whether to merge HMM states. The algorithm also includes HMM
substates to impose minimum speaker durations.

Our approach also seeks to jointly segment and cluster the audio into speaker-
homogenous regions, as targeted by the HMM approaches of Meignier, Bonastre
and Igounet (2001); Wooters and Huijbregts (2007), but within a Bayesian non-
parametric framework that avoids relying on the heuristics employed by these pre-
viously proposed algorithms and allows for coherent Bayesian inference.

The data set we consider in the experiments of Section 8 is a standard bench-
mark data set distributed by NIST as part of the Rich Transcription 2004–
2007 meeting recognition evaluations [NIST (2007)]. The data set consists of
21 recorded meetings, each of which may have different sets of speakers both
in number and identity. We use the first 19 Mel Frequency Cepstral Coefficients
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FIG. 2. Normalized histogram of speaker durations of the preprocessed audio features from the 21
meetings in the NIST database. A Geom(0.1) density is also shown for comparison.

(MFCCs),1 computed over a 30 ms window every 10 ms, as a feature vector. After
these features are computed, a speech/nonspeech detector is run to identify and
remove observations corresponding to nonspeech. (Nonspeech refers to time inter-
vals in which nobody is speaking.) The preprocessing step of removing nonspeech
observations is important in ensuring that the fitted acoustic models are not cor-
rupted by nonspeech information.

When working with this data set, we discovered that the high frequency con-
tent of these features contained little discriminative information. Since minimum
speaker durations are rarely less than 500 ms, we chose to define the observations
as averages over 250 ms, nonoverlapping blocks. This preprocessing stage also
aids in achieving speaker dynamics at the correct granularity (as opposed to finer
temporal scale features leading to inferring within-speaker dynamics in addition to
global speaker changes). In Figure 2 we plot a histogram of the speaker durations
of our preprocessed features based on the ground truth labels provided for each
of the 21 meetings. From this plot, we see that a geometric duration distribution
fits this data reasonably well. This motivates our approach of simply increasing the
prior probability of self-transitions within a Markov framework rather than moving
to the more complicated semi-Markov formulation of speaker transitions.

Another key feature of the speaker diarization data is the fact that the speaker
specific emissions are not well approximated by a single Gaussian; see Figure 3.
This observation has led many researchers to consider a mixture-of-Gaussians
speaker model, as previously described. As demonstrated in Section 8, we show

1Mel-frequency cepstral coefficients (MFCCs) comprise a representation of the short-term power
spectrum of a sound on the mel scale (a nonlinear scale of frequency based on the human auditory
system response). Specifically, the computation of an MFCC typically involves (i) taking the Fourier
transform of a windowed excerpt of a signal, (ii) mapping the log powers of the obtained spectrum
onto the mel scale and (iii) performing a discrete cosine transform of the mel log powers. The MFCCs
are the amplitudes of the resulting spectrum.
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FIG. 3. Contour plots of the best fit Gaussian (top) and kernel density estimate (bottom) for the
top two principal components of the audio features associated with each of the four speakers present
in the AMI_20041210-1052 meeting. Without capturing the non-Gaussianity of the speaker-specific
emissions, the speakers are challenging to identify.

that achieving state-of-the-art performance within our framework also relies on
allowing for non-Gaussian emissions.

3. Dirichlet processes. A Dirichlet process (DP) is a distribution on probabil-
ity measures on a measurable space �. This stochastic process is uniquely defined
by a base measure H on � and a concentration parameter γ ; we denote it by
DP(γ,H). Consider a random probability measure G0 ∼ DP(γ,H). The DP is
formally defined by the property that, for any finite partition {A1, . . . ,AK} of �,

(G0(A1), . . . ,G0(AK))|γ,H ∼ Dir(γH(A1), . . . , γH(AK)).(3.1)

That is, the measure of a random probability distribution G0 ∼ DP(γ,H) on every
finite partition of � follows a finite-dimensional Dirichlet distribution [Ferguson
(1973)]. A more constructive definition of the DP was given by Sethuraman
(1994). Consider a probability mass function (p.m.f.) {βk}∞k=1 on a countably infi-
nite set, where the discrete probabilities are defined as follows:

vk|γ ∼ Beta(1, γ ), k = 1,2, . . . ,
(3.2)

βk = vk

k−1∏
�=1

(1 − v�), k = 1,2, . . . .

In effect, we have divided a unit-length stick into lengths given by the weights βk :
the kth weight is a random proportion vk of the remaining stick after the previous
(k − 1) weights have been defined. This stick-breaking construction is generally
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denoted by β ∼ GEM(γ ). With probability one, a random draw G0 ∼ DP(γ,H)

can be expressed as

G0 =
∞∑

k=1

βkδθk
, θk|H ∼ H,k = 1,2, . . . ,(3.3)

where δθ denotes a unit-mass measure concentrated at θ and where {θk} are drawn
independently from H . From this definition, we see that the DP actually defines
a distribution over discrete probability measures. The stick-breaking construction
also gives us insight into how the concentration parameter γ controls the relative
magnitude of the mixture weights βk , and thus determines the model complexity
in terms of the expected number of components with significant probability mass.

The DP has a number of properties which make inference based on this nonpara-
metric prior computationally tractable. Consider a set of observations {θ ′

i } with
θ ′
i ∼ G0. Because probability measures drawn from a DP are discrete, there is

a strictly positive probability of multiple observations θ ′
i taking identical values

within the set {θk}, with θk defined as in equation (3.3). For each value θ ′
i , let zi be

an indicator random variable that picks out the unique value k such that θ ′
i = θzi

.
Blackwell and MacQueen (1973) introduced a Pólya urn representation of the θ ′

i :

θ ′
i |θ ′

1, . . . , θ
′
i−1 ∼ γ

γ + i − 1
H +

i−1∑
j=1

1

γ + i − 1
δθ ′

j

(3.4)

= γ

γ + i − 1
H +

K∑
k=1

nk

γ + i − 1
δθk

,

implying the following predictive distribution for the indicator random variables:

p(zN+1 = z|z1, . . . , zN, γ ) = γ

N + γ
δ(z,K + 1) + 1

N + γ

K∑
k=1

nkδ(z, k).(3.5)

Here, nk = ∑N
i=1 δ(zi, k) is the number of indicator random variables taking the

value k, and K + 1 is a previously unseen value. We use the notation δ(z, k) to
indicate the discrete Kronecker delta. This representation can be used to sample
observations from a DP without explicitly constructing the countably infinite ran-
dom probability measure G0 ∼ DP(γ,H).

The distribution on partitions induced by the sequence of conditional distribu-
tions in equation (3.5) is commonly referred to as the Chinese restaurant process.
The analogy, which is useful in developing various generalizations of the Dirichlet
process we consider in this paper, is as follows. Take i to be a customer entering a
restaurant with infinitely many tables, each serving a unique dish θk . Each arriving
customer chooses a table, indicated by zi , in proportion to how many customers
are currently sitting at that table. With some positive probability proportional to
γ , the customer starts a new, previously unoccupied table K + 1. The Chinese
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FIG. 4. Dirichlet process (left) and hierarchical Dirichlet process (right) mixture models repre-
sented in two different ways as graphical models. (a) Indicator variable representation in which
β|γ ∼ GEM(γ ), θk |H,λ ∼ H(λ), zi |β ∼ β and yi |{θk}∞k=1, zi ∼ F(θzi ). (b) Alternative rep-
resentation with G0|γ,H ∼ DP(γ,H), θ ′

i |G0 ∼ G0, and yi |θ ′
i ∼ F(θ ′

i ). (c) Indicator variable
representation in which β|γ ∼ GEM(γ ), πk |α,β ∼ DP(α,β), θk |H,λ ∼ H(λ), zji |πj ∼ πj ,
and yji |{θk}∞k=1, zji ∼ F(θzji ). (d) Alternative representation with G0|γ,H ∼ DP(γ,H),
Gj |G0 ∼ DP(α,G0), θ ′

ji |Gj ∼ Gj and yji |θ ′
ji ∼ F(θ ′

ji ). The “plate” notation is used to com-
pactly represent replication [Teh et al. (2006)].

restaurant process captures the fact that the DP has a clustering property such that
multiple draws from the random measure take the same value.

The DP is commonly used as a prior on the parameters of a mixture model
with a random number of components. Such a model is called a Dirichlet process
mixture model and is depicted as a graphical model in Figure 4(a) and (b). To gen-
erate observations, we choose θ ′

i ∼ G0 and yi ∼ F(θ ′
i ) for an indexed family of

distributions F(·). This sampling process is also often described in terms of the
indicator random variables zi ; in particular, we have zi ∼ β and yi ∼ F(θzi

). The
parameter with which an observation is associated implicitly partitions or clusters
the data. In addition, the Chinese restaurant process representation indicates that
the DP provides a prior that makes it more likely to associate an observation with
a parameter to which other observations have already been associated. This rein-
forcement property is essential for inferring finite, compact mixture models. It can
be shown under mild conditions that if the data were generated by a finite mixture,
then the DP posterior is guaranteed to converge (in distribution) to that finite set of
mixture parameters [Ishwaran and Zarepour (2002b)].

4. Hierarchical Dirichlet processes. In the following section we describe
how ideas based on the Dirichlet process have been used to develop a Bayesian
nonparametric approach to hidden Markov modeling in which the number of states
is unknown a priori. To develop this nonparametric version of the HMM, the
Dirichlet process does not suffice; rather, it is necessary to develop a hierarchical
Bayesian model involving a tied collection of Dirichlet processes. This has been
done by Teh et al. (2006) whose hierarchical Dirichlet process (HDP) we describe
in this section. The HDP is applicable to general problems involving related groups
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of data, each of which can be modeled using a DP, and we begin by describing the
HDP at this level of generality, subsequently specializing to the HMM.

To describe the HDP, suppose there are J groups of data and let {yj1, . . . , yjNj
}

denote the set of observations in group j . Assume that there are a collection of DP
mixture models underlying the observations in these groups:

Gj =
∞∑
t=1

π̃j t δθ∗
j t
, π̃j |α ∼ GEM(α), j = 1, . . . , J,

θ∗
j t |G0,∼ G0, t = 1,2, . . . ,(4.1)

θ ′
ji |Gj ∼ Gj, yji |θ ′

ji ∼ F(θ ′
ji), j = 1, . . . , J, i = 1, . . . ,Nj .

We wish to tie the DP mixtures across the different groups such that atoms that
underly the data in group j can be used in group j ′. The problem is that if G0 is
absolutely continuous with respect to the Lebesgue measure (as it generally is for
continuous parameters), then the atoms in Gj will be distinct from those in Gj ′
with probability one. The solution to this problem is to let G0 itself be a draw from
a DP:

G0 =
∞∑

k=1

βkδθk
, β|γ ∼ GEM(γ ),

(4.2)
θk|H,λ ∼ H(λ), k = 1,2, . . . .

In this hierarchical model, G0 is atomic and random. Letting G0 be a base measure
for the draw Gj ∼ DP(α,G0) implies that only these atoms can appear in Gj .
Thus, atoms can be shared among the collection of random measures {Gj }. The
HDP model is depicted graphically in two different ways in Figure 4(c) and (d).

Teh et al. (2006) have also described the marginal probabilities obtained from
integrating over the random measures G0 and {Gj }. They show that these mar-
ginals can be described in terms of a Chinese restaurant franchise (CRF) that is
an analog of the Chinese restaurant process. The CRF is comprised of J restau-
rants, each corresponding to an HDP group, and an infinite buffet line of dishes
common to all restaurants. The process of seating customers at tables, however, is
restaurant specific. Each customer is preassigned to a given restaurant determined
by that customer’s group j . Upon entering the j th restaurant in the CRF, customer
yji sits at currently occupied tables tj i with probability proportional to the number
of currently seated customers, or starts a new table Tj + 1 with probability pro-
portional to α. The first customer to sit at a table goes to the buffet line and picks
a dish kjt for their table, choosing the dish with probability proportional to the
number of times that dish has been picked previously, or ordering a new dish θK+1
with probability proportional to γ . The intuition behind this predictive distribution
is that integrating over the global dish probabilities β results in customers mak-
ing decisions based on the observed popularity of the dishes throughout the entire
franchise. See the Supplementary Material for further details [Fox et al. (2010)].
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Recalling equations (4.1) and (4.2), since each distribution Gj is drawn from a
DP with a discrete base measure G0, multiple θ∗

j t may take an identical value θk

for multiple unique values of t . As we see in the Supplemental Material [Fox et al.
(2010)], this corresponds to multiple tables in the same restaurant being served the
same dish. We can write Gj as a function of the unique dishes:

Gj =
∞∑

k=1

πjkδθk
, πj |α,β ∼ DP(α,β), θk|H ∼ H,(4.3)

where πj now defines a restaurant-specific distribution over dishes served rather
than over tables, with

πjk = ∑
t |θ∗

j t=θk

π̃j t .(4.4)

Let zji be the indicator random variable for the unique dish selected by observa-
tion yji . An equivalent representation for the generative model is in terms of these
indicator random variables:

πj |α,β ∼ DP(α,β), zji |πj ∼ πj , yji |{θk}, zji ∼ F(θzji
),(4.5)

and is shown in Figure 4(c).

5. The sticky HDP-HMM. Recall that the hidden Markov model, or HMM,
is a class of doubly stochastic processes based on an underlying, discrete-valued
state sequence, which is modeled as Markovian [Rabiner (1989)]. Let zt denote
the state of the Markov chain at time t and πj the state-specific transition dis-
tribution for state j . Then, the Markovian structure on the state sequence dictates
that zt ∼ πzt−1 . The observations, yt , are conditionally independent given this state
sequence, with yt ∼ F(θzt ) for some fixed distribution F(·).

The HDP can be used to develop an HMM with an infinite state space—the
HDP-HMM [Teh et al. (2006)]. In the speaker diarization task, each state con-
stitutes a different speaker and our goal in moving to an infinite state space is
to remove upper bounds on the total number of speakers present. Conceptually,
we envision a doubly-infinite transition matrix, with each row corresponding to
a Chinese restaurant. That is, the groups in the HDP formalism here correspond
to states, and each Chinese restaurant defines a distribution on next states. The
CRF links these next-state distributions. Thus, in this application of the HDP, the
group-specific distribution, πj , is a state-specific transition distribution and, due to
the infinite state space, there are infinitely many such groups. Since zt ∼ πzt−1 , we
see that zt−1 indexes the group to which yt is assigned (i.e., all observations with
zt−1 = j are assigned to group j ). Just as with the HMM, the current state zt then
indexes the parameter θzt used to generate observation yt [see Figure 5(a)].

By defining πj ∼ DP(α,β), the HDP prior encourages states to have similar
transition distributions (E[πjk|β] = βk). However, it does not differentiate self-
transitions from moves between different states. When modeling data with state
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FIG. 5. (a) Graphical representation of the sticky HDP-HMM. The state evolves as
zt+1|{πk}∞k=1, zt ∼ πzt , where πk |α,κ,β ∼ DP(α + κ, (αβ + κδk)/(α + κ)) and β|γ ∼ GEM(γ ),
and observations are generated as yt |{θk}∞k=1, zt ∼ F(θzt ). The original HDP-HMM has
κ = 0. (b) Sticky HDP-HMM with DP emissions, where st indexes the state-specific mixture
component generating observation yt . The DP prior dictates that st |{ψk}∞k=1, zt ∼ ψzt for
ψk |σ ∼ GEM(σ ). The j th Gaussian component of the kth mixture density is parameterized by θk,j

so yt |{θk,j }∞k,j=1, zt , st ∼ F(θzt ,st ).

persistence, the flexible nature of the HDP-HMM prior allows for state sequences
with unrealistically fast dynamics to have large posterior probability. For example,
with multinomial emissions, a good explanation of the data is to divide different
observation values into unique states and then rapidly switch between them (see
Figure 1). In such cases, many models with redundant states may have large poste-
rior probability, thus impeding our ability to identify a compact dynamical model
which best explains the observations. The problem is compounded by the fact that
once this alternating pattern has been instantiated by the sampler, its persistence
is then reinforced by the properties of the Chinese restaurant franchise, thus slow-
ing mixing rates. Furthermore, this fragmentation of data into redundant states can
reduce predictive performance, as is discussed in Section 6. In many applications,
one would like to be able to incorporate prior knowledge that slow, smoothly vary-
ing dynamics are more likely.

To address these issues, we propose to instead model the transition distributions
πj as follows:

β|γ ∼ GEM(γ ),
(5.1)

πj |α,κ,β ∼ DP
(
α + κ,

αβ + κδj

α + κ

)
.

Here, (αβ + κδj ) indicates that an amount κ > 0 is added to the j th component
of αβ . Informally, what we are doing is increasing the expected probability of
self-transition by an amount proportional to κ :

E[πjk|β,κ] = αβk + κδ(j, k)

α + κ
.(5.2)
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More formally, over a finite partition (Z1, . . . ,ZK) of the positive integers Z+, the
prior on the measure πj adds an amount κ only to the arbitrarily small partition
containing j , corresponding to a self-transition. That is,

(πj (Z1), . . . , πj (ZK))|α,β
(5.3)

∼ Dir
(
αβ(Z1) + κδj (Z1), . . . , αβ(ZK) + κδj (ZK)

)
.

When κ = 0 the original HDP-HMM of Teh et al. (2006) is recovered. Because
positive κ values increase the prior probability E[πjj |β] of self-transitions, we
refer to this extension as the sticky HDP-HMM. See Figure 5(a). Note that this
formulation assumes that the stickiness of each HMM state is the same a priori.
The parameter could be made state-dependent through a hierarchical model that
ties together a collection of state-specific sticky parameters. However, such state-
specific stickiness is unnecessary for the speaker diarization task at hand since
each speaker is assumed to have similar expected durations. Differences between
speaker-specific transitions become more distinguished in the posterior.

The κ parameter is reminiscent of the self-transition bias parameter of the in-
finite HMM, an urn model for hidden Markov models on infinite state spaces that
predated the HDP-HMM [Beal, Ghahramani and Rasmussen (2002)]. The connec-
tion between the (sticky) HDP-HMM and the infinite HMM is analogous to that
between the DP and the Pólya urn; in both cases the latter is obtained by inte-
grating out the random measures in the former. In particular, the infinite HMM
employs a two-level urn model in which the top-level urn places a probability on
transitions to existing states in proportion to how many times these transitions have
been seen, with an added bias for a self-transition even if this has not previously
occurred. With some remaining probability, an oracle is called, representing the
second-level urn. This oracle chooses an existing state in proportion to how many
times the oracle previously chose that state, regardless of the state transition in-
volved, or chooses a previously unvisited state. The original HDP-HMM provides
an interpretation of this urn model in terms of an underlying collection of linked
random probability measures, however, without the self-transition parameter. In
addition to the conceptual clarity provided by the random measure formalism, the
HDP-HMM has the practical advantage that it makes it possible to use standard
MCMC algorithms for posterior inference; working within the urn model formu-
lation, Beal, Ghahramani and Rasmussen (2002) needed to resort to a heuristic
approximation to a Gibbs sampler. The sticky HDP-HMM, an early version of
which was presented in Fox et al. (2008), restores the self-transition parameter of
the infinite HMM to this class of models, doing so in a way that integrates with a
full Bayesian nonparametric specification.

As with the DP, this specification in terms of random measures yields various
interesting characterizations of marginal probabilities. In particular, as described
in the Supplemental Material [Fox et al. (2010)], the partitioning structure induced
by the sticky HDP-HMM has an interpretation as an extension of the Chinese
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restaurant franchise (CRF) which we refer to as a CRF with loyal customers. Here,
each restaurant in the franchise has a specialty dish with the same index as that
of the restaurant. Although this dish is served elsewhere, it is more popular in the
dish’s namesake restaurant. Recall that while customers in the CRF of the HDP
are pre-partitioned into restaurants based on the fixed group assignments, in the
HDP-HMM the value of the state zt determines the group assignment (and thus
restaurant) of customer yt+1. The increased popularity of the house specialty dish
(determined by the sticky parameter κ) implies that children are more likely to
eat in the same restaurant as their parent (zt = zt−1 = j ) and, in turn, more likely
to eat the restaurant’s specialty dish (zt+1 = j ). This develops family loyalty to a
given restaurant in the franchise. However, if the parent chooses a dish other than
the house specialty (zt = k, k �= j ), the child will then go to the restaurant where
this dish is the specialty and will in turn be more likely to eat this dish, too. One
might say that for the sticky HDP-HMM, children have similar taste buds to their
parents and will always go to the restaurant that prepares their parent’s dish best.
Often, this keeps many generations eating in the same restaurant.

Throughout the remainder of the paper, we use the following notational
conventions. Given a random sequence {x1, x2, . . . , xT }, we use the short-
hand x1:t to denote the sequence {x1, x2, . . . , xt } and x\t to denote the set
{x1, . . . , xt−1, xt+1, . . . , xT }. Also, for random variables with double subindices,
such as xa1a2 , we will use x to denote the entire set of such random variables,
{xa1a2,∀a1,∀a2}, and the shorthand notation xa1· = ∑

a2
xa1a2 , x·a2 = ∑

a1
xa1a2

and x·· = ∑
a1

∑
a2

xa1a2 .

5.1. Sampling via direct assignments. In this section we present an inference
algorithm for the sticky HDP-HMM of Section 5 and Figure 5(a) that is a mod-
ified version of the direct assignment Rao-Blackwellized Gibbs sampler of Teh
et al. (2006). This sampler circumvents the complicated bookkeeping of the CRF
by sampling indicator random variables directly. The resulting sticky HDP-HMM
direct assignment Gibbs sampler is outlined in Algorithm 1 of the Supplemen-
tary Material [Fox et al. (2010)], which also contains the full derivations of this
sampler.

The basic idea is that we marginalize over the infinite set of state-specific transi-
tion distributions πk and parameters θk , and sequentially sample the state zt given
all other state assignments z\t , the observations y1:T , and the global transition
distribution β . A variant of the Chinese restaurant process gives us the prior prob-
ability of an assignment of zt to a value k based on how many times we have seen
other transitions from the previous state value zt−1 to k and k to the next state value
zt+1. As derived in the Supplementary Material [Fox et al. (2010)], this conditional
distribution is dependent upon whether either or both of the transitions zt−1 to k

and k to zt+1 correspond to a self-transition, most strongly when κ > 0. The prior
probability of an assignment of zt to state k is then weighted by the likelihood of
the observation yt given all other observations assigned to state k.
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Given a sample of the state sequence z1:T , we can represent the posterior distrib-
ution of the global transition distribution β via a set of auxiliary random variables
m̄jk , mjk and wjt , which correspond to the j th restaurant-specific set of table
counts associated with the CRF with loyal customers described in the Supplemen-
tal Material [Fox et al. (2010)]. The Gibbs sampler iterates between sequential
sampling of the state zt for each individual value of t given β and z\t ; sampling
of the auxiliary variables m̄jk , mjk and wjt given z1:T and β; and sampling of β

given these auxiliary variables.
The direct assignment sampler is initialized by sampling the hyperparameters

and β from their respective priors and then sequentially sampling each zt as if
the associated yt was the last observation. That is, we first sample z1 given y1, β ,
and the hyperparameters. We then sample z2 given z1, y1:2, β , and the hyperpara-
meters, and so on. Based on the resulting sample of z1:T , we resample β and the
hyperparameters. From then on, the sampler continues with the normal procedure
of conditioning on z\t when resampling zt .

5.2. Blocked sampling of state sequences. The HDP-HMM sequential, direct
assignment sampler of Section 5.1 can exhibit slow mixing rates since global state
sequence changes are forced to occur coordinate by coordinate. This phenomenon
is explored in Scott (2002) for the finite HMM. Although the sticky HDP-HMM re-
duces the posterior uncertainty caused by fast state-switching explanations of the
data, the self-transition bias can cause two continuous and temporally separated
sets of observations of a given state to be grouped into two states. See Figure 6(b)
for an example. If this occurs, the high probability of self-transition makes it chal-
lenging for the sequential sampler to group those two examples into a single state.

We thus propose using a variant of the HMM forward–backward procedure
[Rabiner (1989)] to harness the Markovian structure and jointly sample the state
sequence z1:T given the observations y1:T , transition probabilities πk , and para-
meters θk . There are two main mechanisms for sampling in an uncollapsed HDP
model (i.e., one that instantiates the parameters πk and θk): one is to employ slice
sampling while the other is to consider a truncated approximation to the HDP. For
the HDP-HMM, a slice sampler, referred to as beam sampling, was recently de-
veloped [Van Gael et al. (2008)]. This sampler harnesses the efficiencies of the
forward–backward algorithm without having to fix a truncation level for the HDP.
However, as we elaborate upon in Section 6.1, this sampler suffers from slower
mixing rates than the block sampler we propose, which utilizes a fixed-order trun-
cation of the HDP-HMM. Although a fixed truncation reduces our model to a
parametric Bayesian HMM, the specific hierarchical prior induced by a truncation
of the fully nonparametric HDP significantly improves upon classical paramet-
ric Bayesian HMMs. Specifically, a fixed degree L truncation encourages each
transition distribution to be sparse over the set of L possible HMM states, and
simultaneously encourages transitions from different states to have similar spar-
sity structures. That is, the truncated HDP prior leads to a shared sparse subset of
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FIG. 6. (a) Observation sequence (blue) and true state sequence (red) for a three-state HMM with
state persistence. (b) Example of the sticky HDP-HMM direct assignment Gibbs sampler splitting
temporally separated examples of the same true state (red) into multiple estimated states (blue)
at Gibbs iteration 1000. (c) Histogram of the inferred self-transition proportion parameter, ρ, for
the sticky HDP-HMM blocked sampler. For the original HDP-HMM, the median (solid blue) and
10th and 90th quantiles (dashed red) of Hamming distance between the true and estimated state
sequences over the first 1000 Gibbs samples from 200 chains are shown for the (d) direct assign-
ment sampler, and (e) blocked sampler. (f) Hamming distance over 30,000 Gibbs samples from three
chains of the original HDP-HMM blocked sampler. (g)–(i) Analogous plots to (d) and (f) for the
sticky HDP-HMM. (k) and (l) Plots analogous to (e) and (f) for a nonsticky HDP-HMM using beam
sampling. (j) A histogram of the effective beam sampler truncation level, Leff, over the 30,000 Gibbs
iterations from the three chains (blue) compared to the fixed truncation level, L = 20, used in the
truncated sticky HDP-HMM blocked sampler results (red).
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the L possible states. See Section 6.3 for a comparison with standard parametric
modeling.

There are multiple methods of approximating the countably infinite transition
distributions via truncations. One approach is to terminate the stick-breaking con-
struction after some portion of the stick has already been broken and assign the
remaining weight to a single component. This approximation is referred to as the
truncated Dirichlet process. Another method is to consider the degree L weak limit
approximation to the DP [Ishwaran and Zarepour (2002c)],

GEML(α) � Dir(α/L, . . . , α/L),(5.4)

where L is a number that exceeds the total number of expected HMM states.
Both of these approximations, which are presented in Ishwaran and Zarepour
(2000a, 2002c), encourage the learning of models with fewer than L components
while allowing the generation of new components, upper bounded by L, as new
data are observed. We choose to use the second approximation because of its sim-
plicity and computational efficiency. The two choices of approximations are com-
pared in Kurihara, Welling and Teh (2007), and little to no practical differences are
found. Using a weak limit approximation to the Dirichlet process prior on β (i.e.,
employing a finite Dirichlet prior) induces a finite Dirichlet prior on πj :

β|γ ∼ Dir(γ /L, . . . , γ /L),(5.5)

πj |α,β ∼ Dir(αβ1, . . . , αβL).(5.6)

As L → ∞, this model converges in distribution to the HDP mixture model [Teh
et al. (2006)].

The Gibbs sampler using blocked resampling of z1:T is derived in the Supple-
mentary Material [Fox et al. (2010)]; an outline of the resulting algorithm is also
presented (see Algorithm 3). A similar sampler has been used for inference in HDP
hidden Markov trees [Kivinen, Sudderth and Jordan (2007)]. However, this work
did not consider the complications introduced by multimodal emissions, which we
explore in Section 7.

The blocked sampler is initialized by drawing L parameters θk from the base
measure, β from its L-dimensional symmetric Dirichlet prior, and the L transi-
tion distributions πk from the induced L-dimensional Dirichlet prior specified in
equation (5.5). The hyperparameters are also drawn from the prior. Based on the
sampled parameters and transition distributions, one can block sample z1:T and
proceed as in Algorithm 3 of the Supplementary Material [Fox et al. (2010)].

5.3. Hyperparameters. We treat the hyperparameters in the sticky HDP-
HMM as unknown quantities and perform full Bayesian inference over these quan-
tities. This emphasizes the role of the data in determining the number of occupied
states and the degree of self-transition bias. Our derivation of sampling updates for
the hyperparameters of the sticky HDP-HMM is presented in the Supplementary
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Material [Fox et al. (2010)]; it roughly follows that of the original HDP-HMM [Teh
et al. (2006)]. A key step which simplifies our inference procedure is to note that
since we have the deterministic relationships

α = (1 − ρ)(α + κ),
(5.7)

κ = ρ(α + κ),

we can treat ρ and α + κ as our hyperparameters and sample these values instead
of sampling α and κ directly.

6. Experiments with synthetic data. In this section we explore the perfor-
mance of the sticky HDP-HMM relative to the original model (i.e., the model with
κ = 0) in a series of experiments with synthetic data. We judge performance ac-
cording to two metrics: our ability to accurately segment the data according to the
underlying state sequence, and the predictive likelihood of held-out data under the
inferred model. We additionally assess the improvements in mixing rate achieved
by using the blocked sampler of Section 5.2.

6.1. Gaussian emissions. We begin our analysis of the sticky HDP-HMM per-
formance by examining a set of simulated data generated from an HMM with
Gaussian emissions. The first data set is generated from an HMM with a high prob-
ability of self-transition. Here, we aim to show that the original HDP-HMM inad-
equately captures state persistence. The second data set is from an HMM with a
high probability of leaving the current state. In this scenario, our goal is to demon-
strate that the sticky HDP-HMM is still able to capture rapid dynamics by inferring
a small probability of self-transition.

For all of the experiments with simulated data, we used weakly informative hy-
perpriors. We placed a Gamma(1,0.01) prior on the concentration parameters γ

and (α + κ). The self-transition proportion parameter ρ was given a Beta(10,1)

prior. The parameters of the base measure were set from the data, as will be de-
scribed for each scenario.

State persistence. The data for the high persistence case were generated from a
three-state HMM with a 0.98 probability of self-transition and equal probability of
transitions to the other two states. The observation and true state sequences for the
state persistence scenario are shown in Figure 6(a). We placed a normal inverse-
Wishart prior on the space of mean and variance parameters and set the hyperpa-
rameters as follows: 0.01 pseudocounts, mean equal to the empirical mean, three
degrees of freedom, and scale matrix equal to 0.75 times the empirical variance.
We used this conjugate base measure so that we may directly compare the perfor-
mance of the blocked and direct assignment samplers. For the blocked sampler, we
used a truncation level of L = 20.

In Figure 6(d)–(h), we plot the 10th, 50th and 90th quantiles of the Hamming
distance between the true and estimated state sequences over the 1000 Gibbs iter-
ations using the direct assignment and blocked samplers on the sticky and original
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HDP-HMM models. To calculate the Hamming distance, we used the Munkres
algorithm [Munkres (1957)] to map the randomly chosen indices of the estimated
state sequence to the set of indices that maximize the overlap with the true se-
quence.

From these plots, we see that the burn-in rate of the blocked sampler using
the sticky HDP-HMM is significantly faster than that of any other sampler-model
combination. As expected, the sticky HDP-HMM with the sequential, direct as-
signment sampler gets stuck in state sequence assignments from which it is hard
to move away, as conveyed by the flatness of the Hamming error versus iteration
number plot in Figure 6(g). For example, the estimated state sequence of Fig-
ure 6(b) might have similar parameters associated with states 3, 7, 10 and 11 so
that the likelihood is in essence the same as if these states were grouped, but this
sequence has a large error in terms of Hamming distance and it would take many
iterations to move away from this assignment. Incorporating the blocked sampler
with the original HDP-HMM improves the Hamming distance performance rela-
tive to the sequential, direct assignment sampler for both the original and sticky
HDP-HMM; however, the burn-in rate is still substantially slower than that of the
blocked sampler on the sticky model.

As discussed earlier, a beam sampling algorithm [Van Gael et al. (2008)] has
been proposed which adapts slice sampling methods [Robert (2007)] to the HDP-
HMM. This approach uses a set of auxiliary slice variables, one for each observa-
tion, to effectively truncate the number of state transitions that must be considered
at every Gibbs sampling iteration. Dynamic programming methods can then be
used to jointly resample state assignments. The beam sampler was inspired by a
related approach for DP mixture models [Walker (2007)], which is conceptually
similar to retrospective sampling methods [Papaspiliopoulos and Roberts (2008)].
In comparison to our fixed-order, weak-limit truncation of the HDP-HMM, the
beam sampler provides an asymptotically exact algorithm. However, the beam
sampler can be slow to mix relative to our blocked sampler on the fixed, trun-
cated model (see Figure 6 for an example comparison). The issue is that in order
to consider a transition which has low prior probability, one needs a correspond-
ingly rare slice variable sample at that time. Thus, even if the likelihood cues are
strong, to be able to consider state sequences with several low-prior-probability
transitions, one needs to wait for several rare events to occur when drawing slice
variables. By considering the full, exponentially large set of paths in the truncated
state space, we avoid this problem. Of course, the trade-off between the computa-
tional cost of the blocked sampler on the fixed, truncated model (O(T L2)) and the
slower mixing rate of the beam sampler yields an application-dependent sampler
choice.

The Hamming distance plots of Figure 6(k) and (l), when compared to those
of Figure 6(e) and (f), depict the substantially slower mixing rate of the beam
sampler compared to the blocked sampler (both using a nonsticky HDP-HMM).
However, the theoretical computational benefit of the beam sampler can be seen
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in Figure 6(j). In this plot, we present a histogram of the effective truncation level,
Leff, used over the 30,000 Gibbs iterations on three chains. We computed this ef-
fective truncation level by summing over the number of state transitions considered
during a full sweep of sampling z1:T and then dividing this number by the length
of the data set, T , and taking the square root. Finally, on a more technical note,
our fixed, truncated model allows for more vectorization of the code than the beam
sampler. Thus, in practice, the difference in computation time between the sam-
plers is significantly less than the O(L2/L2

eff) factor obtained by counting state
transitions.

From this point onward, we present results only from blocked sampling since
we have seen the clear advantages of this method over the sequential, direct as-
signment sampler.

Fast state-switching. In order to warrant the general use of the sticky model,
one would like to know that the sticky parameter incorporated in the model does
not preclude learning models with fast dynamics. To this end, we explored the
performance of the sticky HDP-HMM on data generated from a model with a high
probability of switching between states. Specifically, we generated observations
from a four-state HMM with the following transition probability matrix:⎡

⎢⎢⎣
0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.1
0.1 0.1 0.4 0.4
0.1 0.1 0.4 0.4

⎤
⎥⎥⎦ .(6.1)

We once again used a truncation level L = 20. Since we are restricting ourselves
to the blocked Gibbs sampler, it is no longer necessary to use a conjugate base
measure. Instead we placed an independent Gaussian prior on the mean parameter
and an inverse-Wishart prior on the variance parameter. For the Gaussian prior, we
set the mean and variance hyperparameters to be equal to the empirical mean and
variance of the entire data set. The inverse-Wishart hyperparameters were set such
that the expected variance is equal to 0.75 times that of the entire data set, with
three degrees of freedom.

The results depicted in Figure 7 confirm that by inferring a small probability
of self-transition, the sticky HDP-HMM is indeed able to capture fast HMM dy-
namics, and just as quickly as the original HDP-HMM (although with higher vari-
ability). Specifically, we see that the histogram of the self-transition proportion
parameter ρ for this data set [see Figure 7(d)] is centered around a value close to
the true probability of self-transition, which is substantially lower than the mean
value of this parameter on the data with high persistence [Figure 6(c)].

6.2. Multinomial emissions. The difference in modeling power, rather than
simply burn-in rate, between the sticky and original HDP-HMM is more pro-
nounced when we consider multinomial emissions. This is because the multino-
mial observations are embedded in a discrete topological space in which there
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FIG. 7. (a) Observation sequence (blue) and true state sequence (red) for a four-state HMM with
fast state switching. For the original HDP-HMM using a blocked Gibbs sampler: (b) the median
(solid blue) and 10th and 90th quantiles (dashed red) of Hamming distance between the true and
estimated state sequences over the first 1000 Gibbs samples from 200 chains, and (c) Hamming
distance over 30,000 Gibbs samples from three chains. (d) Histogram of the inferred self-transition
parameter, ρ, for the sticky HDP-HMM blocked sampler. (e) and (f) Analogous plots to (b) and (c)
for the sticky HDP-HMM.

is no concept of similarity between nonidentical observation values. In contrast,
Gaussian emissions have a continuous range of values in R

n with a clear notion of
closeness between observations under the Lebesgue measure, aiding in grouping
observations under a single HMM state’s Gaussian emission distribution, even in
the absence of a self-transition bias.

To demonstrate the increased posterior uncertainty with discrete observations,
we generated data from a five-state HMM with multinomial emissions with a 0.98
probability of self-transition and equal probability of transitions to the other four
states. The vocabulary, or range of possible observation values, was set to 20. The
observation and true state sequences are shown in Figure 8(a). We placed a sym-
metric Dirichlet prior on the parameters of the multinomial distribution, with the
Dirichlet hyperparameters equal to 2 [i.e., Dir(2, . . . ,2)].

From Figure 8, we see that even after burn-in, many fast-switching state se-
quences have significant posterior probability under the nonsticky model, leading
to sweeps through regions of larger Hamming distance error. A qualitative plot of
one such inferred sequence after 30,000 Gibbs iterations is shown in Figure 1(c).
Such sequences have negligible posterior probability under the sticky HDP-HMM
formulation.
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FIG. 8. (a) Observation sequence (blue) and true state sequence (red) for a five-state HMM with
multinomial observations. (b) Histogram of the predictive probability of test sequences using the
inferred parameters sampled every 100th iteration from Gibbs iterations 10,000–30,000 for the sticky
and original HDP-HMM. The Hamming distances over 30,000 Gibbs samples from three chains are
shown for the (c) sticky HDP-HMM and (d) original HDP-HMM.

In some applications, such as the speaker diarization problem that is explored in
Section 8, one cares about the inferred segmentation of the data into a set of state
labels. In this case, the advantage of incorporating the sticky parameter is clear.
However, it is often the case that the metric of interest is the predictive power of
the fitted model, not the accuracy of the inferred state sequence. To study per-
formance under this metric, we simulated 10 test sequences using the same pa-
rameters that generated the training sequence. We then computed the likelihood
of each of the test sequences under the set of parameters inferred at every 100th
Gibbs iteration from iterations 10,000–30,000. This likelihood was computed by
running the forward–backward algorithm of Rabiner (1989). We plot these results
as a histogram in Figure 8(b). From this plot, we see that the fragmentation of data
into redundant HMM states can also degrade the predictive performance of the in-
ferred model. Thus, the sticky parameter plays an important role in the Bayesian
nonparametric learning of HMMs even in terms of model averaging.

6.3. Comparison to independent sparse Dirichlet prior. We have alluded to
the fact that the shared sparsity of the HDP-HMM induced by β is essential for
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FIG. 9. (a) State transition diagram for a nine-state HMM with one main state (labeled 1) and
eight sub-states (labeled 2–9). All states have a significant probability of self-transition. From the
main state, all other states are equally likely. From a sub-state, the most likely nonself-transition is
a transition back to the main state. However, all sub-states have a small probability of transitioning
to another sub-state, as indicated by the dashed arcs. (b) Observation sequence (top) and true state
sequence (bottom) generated by the nine-state HMM with multinomial observations.

inferring sparse representations of the data. Although this is clear from the perspec-
tive of the prior model, or, equivalently, the generative process, it is not immedi-
ately obvious how much this hierarchical Bayesian constraint helps us in posterior
inference. Once we are in the realm of considering a fixed, truncated approxima-
tion to the HDP-HMM, one might propose an alternate model in which we simply
place a sparse Dirichlet prior, Dir(α/L, . . . , α/L) with α/L < 1, independently on
each row of the transition matrix. This is equivalent to setting β = [1/L, . . . ,1/L]
in the truncated HDP-HMM, which can also be achieved by letting the hyper-
parameter γ tend to infinity. Indeed, when the data do not exhibit shared spar-
sity or when the likelihood cues are sufficiently strong, the independent sparse
Dirichlet prior model can perform as well as the truncated HDP-HMM. However,
in scenarios such as the one depicted in Figure 9, we see substantial differences
in performance by considering the HDP-HMM, as well as the inclusion of the
sticky parameter. We explored the relative performance of the HDP-HMM and
sparse Dirichlet prior model, with and without the sticky parameter, on such a
Markov model with multinomial emissions on a vocabulary of size 20. We placed
a Dir(0.1, . . . ,0.1) prior on the parameters of the multinomial distribution. For
the sparse Dirichlet prior model, we assumed a state space of size 50, which is
the same as the truncation level we chose for the HDP-HMM (i.e., L = 50). The
results are presented in Figure 10. From these plots, we see that the hierarchical
Bayesian approach of the HDP-HMM does, in fact, improve the fitting of a model
with shared sparsity. The HDP-HMM consistently infers fewer HMM states and
more representative model parameters. As a result, the HDP-HMM has higher
predictive likelihood on test data, with an additional benefit gained from using the
sticky parameter.
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FIG. 10. (a) The true transition probability matrix (TPM) associated with the state transition di-
agram of Figures 9. (b) and (c) The inferred TPM at the 30,000th Gibbs iteration for the sticky
HDP-HMM and sticky sparse Dirichlet model, respectively, only examining those states with more
than 1% of the assignments. For the HDP-HMM and sparse Dirichlet model, with and without the
sticky parameter, we plot: (d) the Hamming distance error over 10,000 Gibbs iterations, (e) the in-
ferred number of states with more than 1% of the assignments, and (f) the predictive probability of
test sequences using the inferred parameters sampled every 100th iteration from Gibbs iterations
5000–10,000.

Note that the results of Figure 10(f) also motivate the use of the sticky parameter
in the more classical setting of a finite HMM with a standard Dirichlet sparsity
prior. A motivating example of the use of sparse Dirichlet priors for finite HMMs
is presented in Johnson (2007).

7. Multimodal emission densities. In many application domains, the data as-
sociated with each hidden state may have a complex, multimodal distribution. We
propose to model such emission distributions nonparametrically, using a DP mix-
ture of Gaussians. This formulation is related to the nested DP [Rodriguez, Dunson
and Gelfand (2008)], which uses a Dirichlet process to partition data into groups,
and then models each group via a Dirichlet process mixture. The bias toward self-
transitions allows us to distinguish between the underlying HDP-HMM states. If
the model were free to both rapidly switch between HDP-HMM states and asso-
ciate multiple Gaussians per state, there would be considerable posterior uncer-
tainty. Thus, it is only with the sticky HDP-HMM that we can effectively fit such
models.

We augment the HDP-HMM state zt with a term st indexing the mixture com-
ponent of the zt th emission density. For each HDP-HMM state, there is a unique
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stick-breaking measure ψk ∼ GEM(σ ) defining the mixture weights of the kth
emission density so that st ∼ ψzt . Given the augmented state (zt , st ), the observa-
tion yt is generated by the Gaussian component with parameter θzt ,st . Note that
both the HDP-HMM state index and mixture component index are allowed to take
values in a countably infinite set. See Figure 5(b).

7.1. Direct assignment sampler. Many of the steps of the direct assignment
sampler for the sticky HDP-HMM with DP emissions remain the same as for the
regular sticky HDP-HMM. Specifically, the sampling of the global transition dis-
tribution β , the table counts mjk and m̄jk , and the override variables wjt are un-
changed. The difference arises in how we sample the augmented state (zt , st ).

The joint distribution on the augmented state, having marginalized the transition
distributions πk and emission mixture weights ψk , is given by

p(zt = k, st = j |z\t , s\t , y1:T , β,α,σ, κ, λ)

= p(st = j |zt = k, z\t , s\t , y1:T , σ,λ),

p(zt = k|z\t , s\t , y1:T , β,α, κ,λ).

We then block-sample (zt , st ) by first sampling zt , followed by st conditioned on
the sampled value of zt . The term p(st = j |zt = k, z\t , s\t , y1:T , σ,λ) relies on how
many observations are currently assigned to the j th mixture component of state k.
These conditional distributions are derived in the Supplementary Material [Fox
et al. (2010)], which also contains an outline of the resulting Gibbs sampler in
Algorithm 2.

7.2. Blocked sampler. To implement blocked resampling of (z1:T , s1:T ), we
use weak limit approximations to both the HDP-HMM and DP emissions, approx-
imated to levels L and L′, respectively. The posterior distributions for β and πk

remain unchanged from the sticky HDP-HMM; that of ψk is given by

ψk|z1:T , s1:T , σ ∼ Dir(σ/L′ + n′
k1, . . . , σ/L′ + n′

kL′),(7.1)

where n′
k� is the number of st taking a value � when zt = k. (i.e., the number of

observations assigned to the kth state’s �th mixture component). The procedure for
sampling the augmented state (z1:T , s1:T ) is derived in the Supplementary Material
[see Algorithm 4, Fox et al. (2010)].

7.3. Assessing the multimodal emissions model. In this section we evaluate
the ability of the sticky HDP-HMM to infer multimodal emission distributions rel-
ative to the model without the sticky parameter. We generated data from a five-state
HMM with mixture-of-Gaussian emissions, where the number of mixture compo-
nents for each emission distribution was chosen randomly from a uniform distri-
bution on {1,2, . . . ,10}. Each component of the mixture was equally weighted
and the probability of self-transition was set to 0.98, with equal probabilities of
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FIG. 11. (a) Observation sequence (blue) and true state sequence (red) for a five-state HMM with
mixture-of-Gaussian observations. (b) Histogram of the predictive probability of test sequences using
the inferred parameters sampled every 100th iteration from Gibbs iterations 10,000–30,000 for the
sticky and original HDP-HMM. The Hamming distance over 30,000 Gibbs samples from three chains
are shown for the (c) sticky HDP-HMM and (d) original HDP-HMM, both with DP emissions.

transitions to the other states. The large probability of self-transition is what dis-
ambiguates this process from one with many more HMM states, each with a single
Gaussian emission distribution. The resulting observation and true state sequences
are shown in Figure 11(a).

We once again used a nonconjugate base measure and placed a Gaussian prior
on the mean parameter and an independent inverse-Wishart prior on the variance
parameter of each Gaussian mixture component. The hyperparameters for these
distributions were set from the data in the same manner as in the fast-switching
scenario. Consistent with the sticky HDP-HMM concentration parameters γ and
(α + κ), we placed a weakly informative Gamma(1,0.01) prior on the concentra-
tion parameter σ of the DP emissions. All results are for the blocked sampler with
truncation levels L = L′ = 20.

In Figure 11 we compare the performance of the sticky HDP-HMM with DP
emissions to that of the original HDP-HMM with DP emissions (i.e., DP emis-
sions, but no bias toward self-transitions). As with the multinomial observations,
when the distance between observations does not directly factor into the grouping
of observations into HMM states, there is a considerable amount of posterior un-
certainty in the underlying HMM state of the nonsticky model. Even after 30,000
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Gibbs samples, there are still state sequence sample paths with very rapid dynam-
ics. The result of this fragmentation into redundant states is a slight reduction in
predictive performance on test sequences, as in the multinomial emission case. See
Figure 11(b).

8. Speaker diarization results. Recall the speaker diarization task from Sec-
tion 2, which involves segmenting audio recordings from the NIST Rich Transcrip-
tion 2004–2007 database into speaker-homogeneous regions while simultaneously
identifying the number of speakers. In this section we present our results on apply-
ing the sticky HDP-HMM with DP emissions to the speaker diarization task.

A minimum speaker duration of 500 ms was set by associating two preprocessed
MFCCs with each hidden state. We also tied the covariances of within-state mix-
ture components (i.e., each speaker-specific mixture component was forced to have
identical covariance structure), and used a nonconjugate prior on the mean and
covariance parameters. We placed a normal prior on the mean parameter with
mean equal to the empirical mean and covariance equal to 0.75 times the em-
pirical covariance, and an inverse-Wishart prior on the covariance parameter with
1000 degrees of freedom and expected covariance equal to the empirical covari-
ance. Our choice of a large degrees of freedom is akin to an empirical Bayes ap-
proach in that it concentrates the mass of the prior in reasonable regions based on
the data. Such an approach is often helpful in high-dimensional applied problems
since our sampler relies on forming new states (i.e., speakers) based on parame-
ters drawn from the prior. Issues of exploration in this high-dimensional space
increase the importance of the setting of the base measure. For the concentra-
tion parameters, we placed a Gamma(12,2) prior on γ , a Gamma(6,1) prior on
α + κ , and a Gamma(1,0.5) prior on σ . The self-transition parameter ρ was given
a Beta(500,5) prior. For each of the 21 meetings, we ran 10 chains of the blocked
Gibbs sampler for 10,000 iterations for both the original and sticky HDP-HMM
with DP emissions. We used a sticky HDP-HMM truncation level of L = 15, where
the DP-mixture-of-Gaussians emission distribution associated with each of these
L HMM states was truncated to L′ = 30 components. Our choice of L signifi-
cantly exceeds the typical number of speakers, which in the NIST database tends
to be between 4 and 6. In practice, our sampler never approached using the full set
of possible states and emission components.

In order to explore the importance of capturing the temporal dynamics, we also
compare our sticky HDP-HMM performance to that of a Dirichlet process mixture
of Gaussians that simply pools together the data from each meeting, ignoring the
time indices associated with the observations. We considered a truncated Dirichlet
process mixture model with L = 50 components and a Gamma(6,1) prior on the
concentration parameter γ . The base measure was set as in the sticky HDP-HMM.

For the NIST speaker diarization evaluations, the goal is to produce a single
segmentation for each meeting. Due to the label-switching issue (i.e., under our
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exchangeable prior, labels are arbitrary entities that do not necessarily remain con-
sistent over Gibbs iterations), we cannot simply integrate over multiple Gibbs-
sampled state sequences. We propose two solutions to this problem. The first,
which we refer to as the likelihood metric, is to simply choose from a fixed set
of Gibbs samples the one that produces the largest likelihood given the estimated
parameters (marginalizing over state sequences), and then produce the correspond-
ing Viterbi state sequence. This heuristic, however, is sensitive to overfitting and
will, in general, be biased toward solutions with more states.

An alternative, and more robust, metric is what we refer to as the minimum
expected Hamming distance. We first choose a large reference set R of state se-
quences produced by the Gibbs sampler and a possibly smaller set of test se-
quences T . Then, for each sequence z(i) in the test set T , we compute the em-
pirical mean Hamming distance between the test sequence and the sequences in
the reference set R; we denote this empirical mean by Ĥi . We then choose the test
sequence z(j∗) that minimizes this expected Hamming distance. That is,

z(j∗) = arg min
z(i)∈T

Ĥi .

The empirical mean Hamming distance Ĥi is a label-invariant loss function since it
does not rely on labels remaining consistent across samples—we simply compute

Ĥi = 1

|R|
∑

z(j)∈R
Hamm

(
z(i), z(j)),

where Hamm(z(i), z(j)) is the Hamming distance between sequences z(i) and z(j)

after finding the optimal permutation of the labels in test sequence z(i) to those in
reference sequence z(j). At a high level, this method for choosing state sequence
samples aims to produce segmentations of the data that are typical samples from
the posterior. Jasra, Holmes and Stephens (2005) provide an overview of some
related techniques to address the label-switching issue. Although we could have
chosen any label-invariant loss function to minimize, we chose the Hamming dis-
tance metric because it is closely related to the official NIST diarization error
rate (DER) that is calculated during the evaluations. The final metric by which the
speaker diarization algorithms are judged is the overall DER, a weighted average
over the set of meetings based on the length of each meeting.

In Figure 12(a) we report the DER of the chain with the largest likelihood
given the parameters estimated at the 10,000th Gibbs iteration for each of the
21 meetings, comparing the sticky and original HDP-HMM with DP emissions.
We see that the sticky model’s temporal smoothing provides substantial perfor-
mance gains. Although not depicted in this paper, the likelihoods based on the
parameter estimates under the original HDP-HMM are almost always higher than
those under the sticky model. This phenomenon is due to the fact that without the
sticky parameter, the HDP-HMM over-segments the data and thus produces pa-
rameter estimates more finely tuned to the data, resulting in higher likelihoods.
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FIG. 12. (a)–(c) For each of the 21 meetings, comparison of diarizations using sticky vs. original
HDP-HMM with DP emissions. In (a) we plot the DERs corresponding to the Viterbi state sequence
using the parameters inferred at Gibbs iteration 10,000 that maximize the likelihood, and in (b) the
DERs using the state sequences that minimize the expected Hamming distance. Plot (c) is the same
as (b), except for running the 10 chains for meeting 16 out to 50,000 iterations. (d)–(f) Comparison
of the sticky HDP-HMM with DP emissions to the ICSI errors under the same conditions.

Since the original HDP-HMM is contained within the class of sticky models (i.e.,
when κ = 0), there is some probability that state sequences similar to those under
the original model will eventually arise using the sticky model. Thus, since the
parameters associated with these fast-switching sequences result in higher likeli-
hood of the data, the likelihood metric is not very robust—one would expect the
performance under the sticky model to degrade given enough Gibbs chains and/or
iterations. In Figure 12(b) we instead report the DER of the chain whose state se-
quence estimate at Gibbs iteration 10,000 (this defines the test set T ) minimizes
the expected Hamming distance to the sequences estimated every 100 Gibbs iter-
ation, discarding the first 5000 iterations (this defines the reference set R). Due
to the slow mixing rate of the chains in this application, we additionally discard
samples whose normalized log-likelihood is below 0.1 units of the maximum at
Gibbs iteration 10,000. From this figure, we see that the sticky model still signif-
icantly outperforms the original HDP-HMM, implying that most state sequences
produced by the original model are worse, not just the one corresponding to the
most likely sample. Example maximum likelihood and minimum expected Ham-
ming distance diarizations are displayed in Figure 13. One noticeable exception
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FIG. 13. Qualitative results for meetings AMI_20041210-1052 (meeting 1, top),
CMU_20050228-1615 (meeting 3, middle) and NIST_20051102-1323 meeting (meeting 16,
bottom). (a) True state sequence with the post-processed regions of overlapping- and nonspeech time
steps removed. (b) and (c) Plotted only over the time-steps as in (a), the state sequences inferred
by the sticky HDP-HMM with DP emissions at Gibbs iteration 10,000 chosen using the most likely
and minimum expected Hamming distance metrics, respectively. Incorrect labels are shown in red.
For meeting 1, the maximum likelihood and minimum expected Hamming distance diarizations are
similar, whereas in meeting 3 we clearly see the sensitivity of the maximum likelihood metric to
overfitting. The minimum expected Hamming distance diarization for meeting 16 has more errors
than that of the maximum likelihood due to poor mixing rates and many samples failing to identify a
speaker.

to this trend is the NIST_20051102-1323 meeting (meeting 16). For the sticky
model, the state sequence using the maximum likelihood metric had very low
DER [see Figure 13(b)]; however, there were many chains that merged speakers
and produced segmentations similar to the one in Figure 13(c), resulting in such a
sequence minimizing the expected Hamming distance. See Section 9 for a discus-
sion on the issue of merged speakers. Running meeting 16 for 50,000 Gibbs itera-
tions improved the performance, as depicted by the revised results in Figure 12(c).
We summarize our overall performance in Table 1, and note that (when using the
50,000 Gibbs iterations for meeting 16 and 10,000 Gibbs iterations for all other
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TABLE 1
Overall DERs for the sticky and original HDP-HMM with DP emissions using the minimum

expected Hamming distance and maximum likelihood metrics for choosing state
sequences at Gibbs iteration 10,000

Overall DERs (%) Min Hamming Max likelihood 2-Best 5-Best

Sticky HDP-HMM 19.01 (17.84) 19.37 16.97 14.61
Nonsticky HDP-HMM 23.91 25.91 23.67 21.06

Notes: For the maximum likelihood criterion, we show the best overall DER if we consider the top
two or top five most likely candidates. The number in the parentheses is the performance when
running meeting 16 for 50,000 Gibbs iterations. The overall ICSI DER is 18.37%, while the best
achievable DER with the chosen acoustic preprocessing is 10.57%.

meetings2) we obtain an overall DER of 17.84% using the sticky HDP-HMM ver-
sus the 23.91% of the original HDP-HMM model. Alternatively, when constrained
to single Gaussian emissions the sticky HDP-HMM and original HDP-HMM have
overall DERs of 34.97% and 36.89%, respectively, which clearly demonstrates the
importance of considering DP emissions. When considering the DP mixture-of-
Gaussians model (ignoring the time indices associated with the observations), the
overall DER is 72.67%. If one uses the ground truth labels to map multiple in-
ferred DP mixture components to a single speaker label, the overall DER drops
to 54.19%. The poor performance of the DP mixture-of-Gaussians model, even
when assuming that ground truth labels are available, which would not be the case
in practice, illustrates the importance of the temporal dynamics captured by the
HMM.

As a further comparison, the algorithm that was by far the best performer at the
2007 NIST competition—the algorithm developed by a team at the International
Computer Science Institute (ICSI) [Wooters and Huijbregts (2007)]—has an over-
all DER of 18.37%. The ICSI team’s algorithm uses agglomerative clustering, and
requires significant tuning of parameters on representative training data. In con-
trast, our hyperparameters are automatically set meeting-by-meeting, as outlined
at the beginning of this section. An additional benefit of the sticky HDP-HMM
over the ICSI approach is the fact that there is inherent posterior uncertainty in this
task, and by taking a Bayesian approach, we are able to provide several interpreta-
tions. Indeed, when considering the best per-meeting DER for the five most likely
samples, our overall DER drops to 14.61% (see Table 1). Although not helpful

2On such a large data set, running 10 chains for 50,000 iterations for each of the 21 meetings
would have represented a significant computational burden and, thus, we only ran the chains to
50,000 iterations for meeting 16, which clearly had not mixed after 10,000 iterations (based on an
examination of trace plots of log-likelihoods; see Figure 15). In meeting 16 the differences between
two of the speakers are especially subtle, and our sampler has difficulty in reliably finding parameters
that separate these speakers.
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FIG. 14. (a) Chart comparing the DERs of the sticky and original HDP-HMM with DP emissions
to those of ICSI for each of the 21 meetings. Here, we chose the state sequence at the 10,000th Gibbs
iteration that minimizes the expected Hamming distance. For meeting 16 using the sticky HDP-HMM
with DP emissions, we chose between state sequences at Gibbs iteration 50,000. (b) DERs associ-
ated with using ground truth speaker labels for the post-processed data. Here, we assign undetected
nonspeech a label different than the preprocessed nonspeech.

in the NIST evaluations, which require a single segmentation, providing multiple
segmentations could be useful in practice.

To ensure a fair comparison, we use the same speech/nonspeech preprocessing
and acoustic features as ICSI, so that the differences in our performance are due
to changes in the identified speakers. As depicted in Figure 14, both our perfor-
mance and that of ICSI depend significantly on the quality of this preprocessing
step. For the periods of nonspeech that are incorrectly identified as speech during
preprocessing, we are forced to produce errors on these sections since they will
be assigned an HMM label (and thus a speaker label) that is separate from the
label assigned to the preprocessed sections labeled as nonspeech. Another source
of errors are periods of overlapping speech, which impede our ability to clearly
identify a single speaker. In Figure 14(a) we compare the meeting-by-meeting
DERs of the sticky HDP-HMM, the original HDP-HMM, and the ICSI algorithm.
If we use the ground truth speaker labels for the post-processed data (assigning
undetected nonspeech a label different than the preprocessed nonspeech), the re-
sulting overall DER is 10.57% with meeting-by-meeting DERs displayed in Fig-
ure 14(b). This number provides a lower bound on the achievable performance
using the speech/nonspeech preprocessing, our block-averaging of features, and
our assumptions of minimum duration. Beyond these forced errors, it is clear from
Figure 14(a) that the sticky HDP-HMM with DP emissions provides performance
comparable to that of the ICSI algorithm, while the original HDP-HMM with DP
emissions performs significantly worse. Overall, the results presented in this sec-
tion demonstrate that the sticky HDP-HMM with DP emissions provides an elegant
and empirically effective speaker diarization method.
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9. Discussion. We have developed a Bayesian nonparametric approach to the
problem of speaker diarization, building on the HDP-HMM presented in Teh et al.
(2006). Although the original HDP-HMM does not yield competitive speaker di-
arization performance due to its inadequate modeling of the temporal persistence
of states, the sticky HDP-HMM that we have presented here resolves this problem
and yields a state-of-the-art solution to the speaker diarization problem.

We have also shown that this sticky HDP-HMM allows a fully Bayesian non-
parametric treatment of multimodal emissions, disambiguated by its bias toward
self-transitions. Accommodating multimodal emissions is essential for the speaker
diarization problem and is likely to be an important ingredient in other applications
of the HDP-HMM to problems in speech technology.

We also presented efficient sampling techniques with mixing rates that improve
on the state of the art by harnessing the Markovian structure of the HDP-HMM.
Specifically, we proposed employing a truncated approximation to the HDP and
block-sampling the state sequence using a variant of the forward–backward al-
gorithm. Although the blocked samplers yield substantially improved mixing rates
over the sequential, direct assignment samplers, there are still some pitfalls to these
sampling methods. One issue is that for each new considered state, the parameter
sampled from the prior distribution must better explain the data than the parameters
associated with other states that have already been informed by the data. In high-
dimensional applications, and in cases where state-specific emission distributions
are not clearly distinguishable, this method for adding new states poses a signif-
icant challenge. Indeed, both issues arise in the speaker diarization task and we
did have difficulties with mixing. Further evidence of this is presented in the trace
plots in Figure 15, where we plot log-likelihoods, Hamming distances and speaker
counts for 10,000 Gibbs sampling iterations of meeting 5 and 100,000 iterations of
meeting 16. As discussed previously, meeting 16 is the most problematic meeting
in our data set, and these plots provide clear evidence that our sampler is not mix-
ing on this meeting. But even on meeting 5, which is more representative of the
full set of meetings and which is segmented effectively by our procedure, we see a
relatively slow evolution of the sampler, particularly as measured by the number of
speakers. Our use of the minimum expected Hamming distance procedure to select
samples mitigates this difficulty, but further work on sampling procedures for the
sticky HDP-HMM is needed. One possibility is to consider split-merge algorithms
similar to those developed in Jain and Neal (2004) for the DP mixture model.

A limitation of the HMM in general is that the observations are assumed condi-
tionally i.i.d. given the state sequence. This assumption is often insufficient in cap-
turing the complex temporal dependencies exhibited in real-world data. Another
area of future work is to consider Bayesian nonparametric versions of models bet-
ter suited to such applications, like the switching linear dynamical system (SLDS)
and switching VAR process. A first attempt at developing such models is presented
in Fox et al. (2009). An inspiration for the sticky HDP-HMM actually came from
considering the original HDP-HMM as a prior for an SLDS. In such scenarios
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FIG. 15. Trace plots of (a) log-likelihood, (b) Hamming distance error and (c) number of speakers
for 10 chains for two meetings: CMU_20050912-0900 / meeting 5 (top) and NIST_20051102-1323 /
meeting 16 (bottom). For meeting 5, which has behavior representative of the majority of the meet-
ings, we show traces over the 10,000 Gibbs iterations used for the results in Section 8. For meeting
16, we ran the chains out to 100,000 Gibbs iterations to demonstrate the especially slow mixing rate
for this meeting. The dashed blue vertical lines indicate 10,000 iterations.

where one does not have direct observations of the underlying state sequence, the
issues arising from not properly capturing state persistence are exacerbated. The
sticky HDP-HMM presented in this paper provides a robust building block for
developing more complex Bayesian nonparametric dynamical models.
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SUPPLEMENTARY MATERIAL

Supplement: Notational conventions, Chinese restaurant franchises and
derivations of Gibbs samplers (DOI: 10.1214/10-AOAS395SUPP; .pdf). We
present detailed derivations of the conditional distributions used for both the direct
assignment and blocked Gibbs samplers, as well as the associated pseudo-code.
The description of these derivations relies on the Chinese restaurant analogies
associated with the HDP and sticky HDP-HMM, which are expounded upon in

http://dx.doi.org/10.1214/10-AOAS395SUPP
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this supplementary material. We also provide a list of notational conventions used
throughout the paper.
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