
The Annals of Applied Statistics
2010, Vol. 4, No. 4, 2099–2113
DOI: 10.1214/10-AOAS362
© Institute of Mathematical Statistics, 2010

MODEL-ROBUST REGRESSION AND A BAYESIAN “SANDWICH”
ESTIMATOR

BY ADAM A. SZPIRO, KENNETH M. RICE AND THOMAS LUMLEY

University of Washington, University of Washington and University of Washington

We present a new Bayesian approach to model-robust linear regression
that leads to uncertainty estimates with the same robustness properties as the
Huber–White sandwich estimator. The sandwich estimator is known to pro-
vide asymptotically correct frequentist inference, even when standard model-
ing assumptions such as linearity and homoscedasticity in the data-generating
mechanism are violated. Our derivation provides a compelling Bayesian justi-
fication for using this simple and popular tool, and it also clarifies what is be-
ing estimated when the data-generating mechanism is not linear. We demon-
strate the applicability of our approach using a simulation study and health
care cost data from an evaluation of the Washington State Basic Health Plan.

1. Introduction. The classical theory of uncorrelated linear regression is
based on three modeling assumptions: (i) the outcome variable is linearly related
to the covariates on average, (ii) random variations from the linear trend are ho-
moscedastic, and (iii) random variations from the linear trend are Normally distrib-
uted. Under these assumptions, classical frequentist methods give point estimates
and exact probability statements for the sampling distribution of these estimates.
Equivalent uncertainty estimates are derived in the Bayesian paradigm, but are
stated in terms of the posterior distribution for the unknown slope parameter in the
assumed linear model. However, in a typical application none of these modeling
assumptions can reasonably be expected to hold in the data-generating mechanism.

We study the relationship between age and average annual outpatient health care
costs using data from the evaluation of the Washington State Basic Health Plan.
The plan provided subsidized health insurance for low income residents starting
in 1989, and the evaluation study included 6918 subjects followed for an average
of 22 months (range 1 to 44 months) [Diehr et al. (1993)]. Previous analysis of
this data set has shown that the variability is heteroscedastic and not Normally
distributed [Lumley et al. (2002)], and it appears from Figure 1 that the relationship
deviates from linearity. We are still motivated to estimate a “linear trend” since
this appears to be a dominant feature of the data, and while we could consider a
transformation to stabilize the variance, this may not be desirable since the primary
policy interest is in total or mean dollars not in log-dollars [Diehr et al. (1999)]. We
also consider simulated data sets with similar features as illustrated in Figure 2.
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FIG. 1. Outpatient health care costs from the evaluation of Washington States Basic Health
Plan. Top panel: Average annual costs for 6918 subjects enrolled in the study. Middle panel:
Semi-parametric smoothing estimates of the average annual cost vs. age, fit with Bayesian O’Sullivan
splines. Bottom panel: Semi-parametric smoothing estimate of the standard deviation of annual
health care costs vs. age, fit with Bayesian O’Sullivan splines. In each of the bottom two panels,
the thick red line is the posterior mean of the spline fit, and the thin dashed red lines are example
draws from the posterior distribution.

For the classical theory of linear regression to hold, the Normality assumption
is only necessary if we want to derive exact sampling probabilities for the point
estimates. In the large sample limit, the central limit theorem alone guarantees
that the sampling distribution is asymptotically Normal and that the classical stan-
dard error estimates are correct. The linearity and homoscedasticity assumptions,
however, are a different matter. If either of these is violated in the data-generating
mechanism, then classical standard error estimates are incorrect, even asymptoti-
cally. Furthermore, without the assumption of linearity, it is not immediately clear
what quantity we are trying to estimate.

A modern frequentist approach to analyzing data that do not conform to classi-
cal assumptions is to directly state what we want to know about moments of the
data-generating mechanism by way of estimating equations, without making any
assumptions about validity of an underlying model. The associated “robust” or
“sandwich”-based standard errors provide accurate large sample inference, at no
more computational effort than fitting a linear model [Huber (1967); White (1980);
Liang and Zeger (1986); Royall (1986)]. The Huber–White sandwich estimator is
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FIG. 2. Example scatterplots (red dots) and mean functions (black lines) from the four simulation
scenarios considered in Section 5 with n = 400. The four scatterplots correspond to all possible
combination of the linear and nonlinear mean functions and homoscedastic and heteroscedastic
variance functions defined in Section 5.

easy to implement with standard software and is widely used in biostatistics. As
long as the data have a dominant linear structure, this strategy provides relevant
inference for the linear trend and does not depend on detailed modeling of the
variance or mean structures.

Finding a Bayesian analogue of estimating equations and the sandwich estima-
tor has been an open problem for some time. In this paper we describe a novel
Bayesian framework for linear regression that assumes neither linearity nor ho-
moscedasticity. Even in the absence of a slope parameter, we give a natural defin-
ition for the “linear trend” quantity to be estimated and how to measure its uncer-
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tainty. We show that in the random covariate setting our Bayesian robust posterior
standard deviations are asymptotically equivalent to the commonly used sandwich
estimator. Furthermore, with fixed covariates our Bayesian robust uncertainty es-
timates exhibit better frequentist sampling properties than the sandwich estimator,
when the true data-generating mechanism is nonlinear in the covariates.

In Section 2 we set out our notation and define the model-robust Bayesian re-
gression paradigm. In Section 3 we derive our main theoretical results for the case
of randomly sampled covariates from a discrete space. In Section 4 we consider
extensions to continuous covariates and to a fixed design matrix. We demonstrate
the properties of our methodology in a simulation study in Section 5, and in Sec-
tion 6 we apply it to the annual health care cost data described above. We conclude
in Section 7 with a discussion.

2. Notation and definitions.

2.1. Target of inference. We consider the familiar situation for multivariate
linear regression of having observed an n-vector of outcomes Y and an n × m

matrix of covariate values X, with the stated objective of estimating the “linear
relationship” between X and Y . Before determining operationally how to do this,
we take care to clarify the quantity of interest in terms of a true (but unknown)
data-generating mechanism, without assuming that there is an underlying linear
relationship.

We assume that X represents n independent identically distributed observations
in R

m of the m-dimensional covariate random variable x, and that Y represents n

corresponding independent observations of the real-valued outcome random vari-
able y. We think of the probability distribution for x as representing the frequency
of different covariate values in the population to which we wish to generalize, and
the distribution of y conditional on x as the distribution of the outcome for indi-
viduals with covariate values x. Suppose that the true joint distribution for x and y

admits a density function λ(·) for x (with respect to the Lebesgue measure on R
m)

such that for any measurable set A

P(x ∈ A) =
∫
A

λ(v) dv(1)

and a measurable function φ(·) on R
m for the mean of y conditional on x such that

E(y|x = v) = φ(v).(2)

Throughout, we use v as a dummy variable for x.
Heuristically, we can say that we are interested in the “linear relationship” be-

tween x and the true conditional mean of y. If φ(·) were known to be linear, we
would simply be interested in its coefficients. Since we are not assuming that the
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true mean function is linear, one possible approach is to define the quantity of
interest as the m-vector of minimizing coefficients from the least-squares linear fit

β = argmin
α

∫ (
φ(v) − vα

)2
λ(v) dv.(3)

We can describe β as the set of m coefficients that minimizes the average squared
error over the entire population in approximating the mean value of y by a linear
function of x.

The definition of β is essentially a statement about the scientific question of
interest, and it is not concerned with the details of random sampling of the ob-
servations. We have identified the deterministic function φ(·) as representing the
mean dependence of y on x, and our objective is to approximate this curve by a
straight line. We define β as the best linear approximation to the curve φ(·) by
the method of least-squares, an idea that dates to the early work of Gauss (1809),
Legendre (1805) and Jacobi (1841). Our goal is inference for β , not for the full
function φ(·).

Freedman (2006) has pointedly described the dangers of fitting a linear model
when such a model does not hold and then deriving “robust” standard error esti-
mates for an uninterpretable parameter. Our approach is fundamentally different in
that we explicitly recognize that the data-generating mechanism may be nonlinear,
and we define β as a quantity of interest that summarizes the linear feature in the
data-generating mechanism (this corresponds to the standard definition of β if the
data-generating mechanism is linear). While β can be defined mathematically in a
very general setting, consistent with the ideas in Freedman (2006), we recommend
it as a relevant target of inference only when the data suggest a dominant linear
trend.

2.2. Bayesian inference. Since we do not know the true mean function φ(·) or
the true covariate density λ(·), we cannot directly calculate β from equation (3),
and we need to take advantage of the observations in order to make inference about
β . To do this, we embed φ(·) and λ(·) in a flexible Bayesian model in such a way
that we can derive posterior distributions for these functions and, thus, derive a
posterior distribution for β . The key consideration in constructing the Bayesian
model is that it be highly flexible, assuming neither linearity nor homoscedasticity.

We adopt the conditionally Normal model for y,

y|x,φ(·), σ 2(·) ∼ N(φ(x), σ 2(x)),

where we have introduced the ancillary unknown variance function σ 2(·). To com-
plete the Bayesian model, it remains to specify a prior distribution, with probability
measure π(λ(·), φ(·), σ 2(·)), which will be chosen to have a density that can be
written

p(λ(·), φ(·), σ 2(·)) = pλ(λ(·))pφ,σ 2(φ(·), σ 2(·)).(4)
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We will give specific examples of priors in the remainder of this paper.
Defining priors for the discrete covariate case is relatively straightforward be-

cause we can specify a saturated model for the mean and variance functions φ(·)
and σ 2(·), and use a Dirichlet distribution for λ(·). We derive our main theoret-
ical results for that setting in Section 3. Later, in Section 4, we present a simple
and effective approach for extending the method to continuous covariates by using
spline-based priors for φ(·) and σ 2(·).

Once we have specified priors in equation (4), standard Bayesian calculus gives
a posterior distribution for φ(·) and λ(·),

π(λ(·), φ(·)|X,Y ),

and therefore a posterior distribution for the m-dimensional vector β ,

π(β|X,Y ) = π

(
argmin

α

∫ (
φ(v) − vα

)2
λ(v) dv

∣∣∣X,Y

)
.(5)

Following common practice, we define a point estimate by taking the posterior
mean of β ,

β̂j = Eπ(βj |X,Y ), j = 1, . . . ,m,(6)

and we use its posterior standard deviation as a measure of uncertainty

σ̂βj
= diag(Covπ(β|X,Y ))

1/2
j , j = 1, . . . ,m.(7)

We can construct approximate moment-based 95% credible intervals with the for-
mulation

CI95j
= β̂j ± 1.96σ̂βj

, j = 1, . . . ,m.

3. Discrete covariates. In this section we complete the specification of the
Bayesian model for the discrete covariate case and derive our main theoretical
results in that setting. Let ξ = (ξ1, . . . , ξK) consist of K nonzero deterministic m-
vectors that span R

m, and suppose that the covariate x can take these values. Let
nk be the number of i = 1, . . . , n such that Xi = ξk , where Xi is the ith row of X.
We let λ(·) be a density with mass restricted to ξ ⊂ R

m, written in the form

λ(·) =
K∑

k=1

λkδξk
(·),

where δξk
is the Dirac delta function with point mass at ξk . That is,

P
(
x = ξk;λ(·)) = λk,

K∑
k=1

λk = 1.

We use an improper Dirichlet prior for λ(·) such that its density can be written

pλ(λ(·)) ∝
K∏

k=1

λ−1
k

(
0 if

K∑
k=1

λk �= 1

)
.
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The posterior distribution of λ(·) is also Dirichlet with density

pλ|X(λ(·)) ∝
K∏

k=1

λ
−1+nk

k

(
0 if

K∑
k=1

λk �= 1

)
.

One way to simulate values from the posterior is to draw independent gamma
variates gk with shape parameters nk and unit scale parameters and then set
λk = gk/(g1, . . . , gK) [Davison and Hinkley (1997)]. There is also a connection
between the posterior distribution for x and bootstrap resampling [Rubin (1981)].

Since we can assume multiple samples at each covariate value, it is straightfor-
ward to compute the posterior distribution for completely unstructured priors on
the functions φ(·) and σ 2(·). We introduce vector notation φ(·) = (φ1, . . . , φK),
σ 2(·) = (σ 2

1 , . . . , σ 2
K) with

φk = φ(ξk), σ 2
k = σ 2(ξk),

and independent noninformative prior densities such that

pφ,σ 2(φ(·), σ 2(·)) =
K∏

k=1

pφk,σ
2
k
(φk, σ

2
k )

and

pφk,σ
2
k
(φk, σ

2
k ) ∝ σ−2

k .

It turns out that for nk ≥ 4, φk has a posterior t-distribution with easily computable
mean and scale parameters. Formulas based on the data X and Y are given in the
Online Supplement [Szpiro, Rice and Lumley (2010)].

Our main theoretical result is contained in the following theorem, which is
proved in the Online Supplement [Szpiro, Rice and Lumley (2010)]. It states that,
asymptotically, the posterior mean point estimate derived in equation (6) is the
least squares fit to the data X and Y , and that the posterior standard deviation from
equation (7) has the sandwich form. The term “sandwich” refers to the algebraic
formation in equation (8), where colloquially the (XtX)−1 terms are the “bread,”
and (Xt
X) is the “meat.”

THEOREM 1. For a discrete covariate space, assume that y conditional on x

has bounded first and second moments. The m-dimensional estimate β̂ defined by
equation (6) takes the asymptotic form

β̂ − (XtX)−1XtY → 0,

and assuming there are at least four samples for each covariate value, the corre-
sponding uncertainty estimate has the asymptotic sandwich form

σ̂β − diag[(XtX)−1(Xt
X)(XtX)−1]1/2 = o(n−1),(8)
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where 
 is the diagonal matrix defined by


ij =
{ (

Yi − Xi(X
tX)−1XtY

)2
, if i = j ,

0, otherwise.
(9)

The results hold conditionally almost surely for infinite sequences of observations.

4. Extensions.

4.1. Continuous covariates. We consider extending our approach to a contin-
uous covariate space. The situation is different from discrete covariates because
we cannot expect there to be multiple realizations of each covariate value in the
sampled set. The problem of estimating φ(·) and σ 2(·) as unconstrained functions
is unidentifiable. However, in applied regression settings it is almost always rea-
sonable to assume that these are sufficiently regular to be approximated, using
semi-parametric smoothing methods. This is a very weak assumption compared
to assuming linearity and/or homoscedasticity. We describe a particular choice of
spline prior that we implement in our examples, and leave the general issue of
choosing optimal smoothing priors for future work.

We restrict to scalar x in a model with an intercept, and approximate φ(·) and
logσ(·) with penalized O’Sullivan splines using a method based on Wand and
Ormerod (2008), extended to allow for heteroscedasticity. We pick Q knots spread
uniformly over the potential range of x and set

φ(v;u) = α0 + α1v +
Q∑

q=1

uqBq(v),

logσ(v;w) = γ0 + γ1v +
Q∑

q=1

wqBq(v),

where the Bq(·) are B-spline basis functions defined by the knot locations, with
independent priors αi ∼ N(0,106), γi ∼ N(0,106). The specification of priors for
u and w involves some transformations and amounts to the following. Define the
matrix Z to incorporate an appropriate penalty term as in Section 4 of Wand and
Ormerod (2008) and let

φ(Xi;a) = α0 + α1Xi +
Q∑

q=1

aqZiq,

logσ(Xi;b) = γ0 + γ1Xi +
Q∑

q=1

bqZiq

with independent priors aq ∼ N(0, σ 2
a ) and bq ∼ N(0,0.1) and hyperparame-

ter distributed as (σ 2
a )−1 ∼ Gamma(0.1,0.1). It is straightforward to simulate
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from the posterior distributions using WinBUGS software [Lunn et al. (2000);
Crainiceanu et al. (2005)]. For a prior on the covariate x we use the limiting case
of a Dirichlet process that gives rise to the same posterior Dirichlet distribution as
we had for discrete covariates [Gasparini (1995)].

An analogous result to Theorem 1 can be expected to hold under mild regularity
conditions on the true mean and standard deviation functions φ(·) and σ 2(·) in the
data-generating mechanism. We do not state such a result here, but we provide
supporting evidence from a simulation study in Section 5.

4.2. Fixed design matrix. Our development up to now explicitly treats X and
Y as being jointly sampled from a random population. The fact that we obtain an
equivalent estimator to the sandwich form suggests that the sandwich estimator
also corresponds to the random X setting. This is easily seen from equation (9)
since the variance estimate 
 in the “meat” involves residuals from a linear model
and is bounded away from zero if the data-generating mechanism is nonlinear,
even if the observations Y are deterministic conditional on X.

A desirable feature of our approach is that it can easily be modified to explicitly
treat the fixed X scenario. To do this, we simply replace the random density for X

in equation (5) with a deterministic density corresponding to the actual sampled
values

λfixed(·) = 1

n

n∑
i=1

δXi
(·),

where δXi
is the Dirac delta function with point mass at Xi . Then we proceed

exactly as in Section 2.2 to define the quantity of interest

βfixed = argmin
α

∫ (
φ(v) − vα

)2
λfixed(v) dv.(10)

The point estimate for fixed X inference is

β̂fixed = Eπ(βfixed|X,Y ),(11)

and the corresponding measure of uncertainty is

σ̂β,fixed = diag(Covπ(βfixed|X,Y )1/2).(12)

Notice that the only difference between the definitions of β and βfixed is that in
equation (5) the density λ(·) is random while in equation (10) the corresponding
density is a deterministic function of the fixed X values.

For the discrete covariate setting we obtain the following result, which is proved
in the Online Supplement [Szpiro, Rice and Lumley (2010)].

THEOREM 2. For a discrete covariate space the m-dimensional estimate
β̂fixed defined by equation (11) takes the form

β̂fixed = (XtX)−1XtY,
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and assuming there are at least four samples for each covariate value, the corre-
sponding uncertainty estimate has the sandwich form

σ̂β,fixed = diag[(XtX)−1(Xt
†X)(XtX)−1]1/2,

where 
† is the diagonal matrix defined by



†
ij =

⎧⎪⎨
⎪⎩

1

nk − 3

∑
l:Xl=ξk

(Yl − ȳk)
2, if i = j and Xi = ξk ,

0, if i �= j

and

ȳk = 1

nk

∑
l:Xl=ξk

Yl.

Since the matrix 
† in the “meat” only includes variation of Y around its mean,
conditional on X, this form of the sandwich estimator appropriately describes sam-
pling variability for fixed X, even if the data-generating mechanism is nonlinear.

5. Simulations. We consider examples with a single continuous covariate
uniformly distributed in the interval [−10,10], and we evaluate performance for
four true distributions of y given x. These are obtained by taking combinations of
the linear response

flin(x) = 2 + 3.5x

and the nonlinear response

fnonlin(x) = 2 + 3.5x
(
1 + | cos(x/2 − 2)|)

as well as the equal variance model σ 2
equal = 5 and unequal variance model

σ 2
unequal = (5 + x2/5). Example scatterplots of data from each of the four data-

generating models, along with the corresponding mean response functions, are
shown in Figure 2.

For each of the four models we generate 1000 random realizations of X and Y

with n = 400,800. Results are given in Table 1 for inference based on random X.
The model-based intervals (i.e., standard Bayesian or frequentist linear regression)
fail to give approximate 95% coverage by being anti-conservative in all situations
except for a linear response with equal variance. Our Bayesian robust intervals give
approximately correct 95% coverage for all cases, just like the sandwich intervals.

We repeat the simulation, treating the observed design matrix X as fixed. The
results are shown in Table 2. As expected, for a linear data-generating mecha-
nism the results are essentially the same as for random X inference. The model-
based intervals are correct only for the equal variance case, while the sandwich and
Bayesian robust intervals give correct coverage for unequal variance as well. If the
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TABLE 1
Frequentist properties of estimates for continuous covariate (random X)

n = 400 n = 800

Bias Width Coverage Bias Width Coverage

Linear Equal Model based 0.001 0.170 0.938 −0.001 0.120 0.956
variance Sandwich 0.001 0.170 0.940 −0.001 0.120 0.955

Bayes robust 0.002 0.177 0.943 0.000 0.123 0.959
Unequal Model based 0.001 0.445 0.859 −0.002 0.314 0.863
variance Sandwich 0.001 0.601 0.948 −0.002 0.426 0.957

Bayes robust 0.002 0.607 0.955 −0.001 0.428 0.956

Nonlinear Equal Model based 0.001 0.262 0.929 −0.001 0.185 0.921
variance Sandwich 0.001 0.298 0.959 −0.001 0.211 0.955

Bayes robust 0.009 0.289 0.950 0.003 0.207 0.950
Unequal Model based 0.002 0.487 0.859 −0.003 0.345 0.865
variance Sandwich 0.002 0.648 0.959 −0.003 0.460 0.952

Bayes robust −0.030 0.657 0.951 −0.019 0.460 0.944

data-generating mechanism is nonlinear and homoscedastic, then the model-based
intervals and sandwich intervals are conservative since they implicitly account for
random sampling of X, while the Bayesian robust intervals give approximately
nominal 95% coverage. If the data-generating mechanism is both nonlinear and
heteroscedastic, the sandwich intervals are still slightly conservative when com-

TABLE 2
Frequentist properties of estimates for continuous covariate (fixed X)

n = 400 n = 800

Bias Width Coverage Bias Width Coverage

Linear Equal Model based 0.001 0.170 0.938 −0.001 0.120 0.956
variance Sandwich 0.001 0.170 0.940 −0.001 0.120 0.955

Bayes robust 0.002 0.173 0.941 0.000 0.121 0.954
Unequal Model based 0.001 0.445 0.859 −0.002 0.314 0.863
variance Sandwich 0.001 0.601 0.948 −0.002 0.426 0.957

Bayes robust 0.002 0.607 0.951 −0.001 0.425 0.953

Nonlinear Equal Model based 0.001 0.262 0.986 −0.001 0.185 0.998
variance Sandwich 0.001 0.298 0.999 −0.001 0.211 1.000

Bayes robust 0.009 0.187 0.959 0.003 0.128 0.963
Unequal Model based 0.001 0.487 0.893 −0.002 0.345 0.888
variance Sandwich 0.001 0.648 0.961 −0.002 0.460 0.968

Bayes robust −0.030 0.629 0.947 −0.018 0.437 0.953
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TABLE 3
Linear regression of average annual outpatient health care cost data from the evaluation

of the Washington State Basic Health Plan

Discrete X Continous X

β̂ σ̂β β̂ σ̂β

Model-based 16.1 1.25 16.1 1.25
Sandwich 16.1 1.67 16.1 1.67
Bayes robust (random X) 16.1 1.72 15.9 1.71
Bayes robust (fixed X) 16.1 1.70 15.9 1.70

pared to the Bayesian robust intervals, but both give approximately nominal 95%
coverage. In this situation the model-based intervals are anti-conservative.

Overall, our Bayesian robust intervals give approximately nominal 95% cover-
age in all situations. The model-based and sandwich-based intervals can fail by
being either conservative or anti-conservative, depending on details of the data-
generating mechanism and the distinction between random and fixed X sampling.

6. Health care cost data. We illustrate our methods using data from the eval-
uation of the Washington State Basic Health Plan, as described earlier in Section 1
and in more detail by Diehr et al. (1993). We use the variable “cost of outpatient
care” as the outcome and assess its “linear relationship” with age. The data are
shown in the top panel of Figure 1, and O’Sullivan spline fits (see Section 4.1) to
the mean and standard deviation as functions of age are shown in the bottom two
panels. The thick red lines are the posterior means of the Bayesian spline fits, and
the thin dashed red lines are example draws from the posterior distributions.

We can regard the age covariate as either discrete or continuous, and to illus-
trate our methodology, we do the analysis both ways. Results are shown in Table 3.
The difference in average annual outpatient health care costs associated with a one
year difference in age is estimated to be 16.1 dollars, with a model-based standard
error of 1.25 dollars. As expected, in light of the heteroscedasticity, the sandwich
form gives a larger standard error estimate of 1.67 dollars. The uncertainty esti-
mates from our Bayesian robust estimators range from 1.70 dollars to 1.72 dollars,
agreeing very closely with the sandwich values. The point estimate is nearly iden-
tical to the least squares fit (15.9 dollars) when we model age as continuous in the
Bayesian robust approach; the slight difference is probably due to approximations
involved in fitting the spline model. The Bayesian robust standard deviations are
nearly identical when we model X as random or fixed, indicating that random vari-
ations in average costs conditional on age contribute more to the uncertainty than
does nonlinearity in the data-generating mechanism.
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7. Discussion. The main contribution of this paper is a model-robust Bayesian
framework for linear regression that gives uncertainty estimates equivalent to the
sandwich form for random covariate sampling and with superior sampling prop-
erties for a fixed design matrix. In both situations, our estimates correctly account
for heteroscedasticity and nonlinearity, in the sense of giving asymptotically valid
frequentist sampling properties. The idea is to describe the data-generating mecha-
nism nonparametrically, and then to define a functional of the true data-generating
mechanism as the quantity of interest for inference. Once this quantity is defined,
we follow common Bayesian practice and derive a point estimate as its posterior
mean and an uncertainty estimate as its posterior standard deviation. In the case
considered here, the quantity of interest is the least-squares linear fit to the (po-
tentially nonlinear) mean of the outcome random variable y conditional on the
covariate random variable x.

Our conceptual framework is powerful because it provides a general definition
of linear regression in a model-agnostic framework. We can move seamlessly be-
tween classical model-based inference and robust sandwich-based inference sim-
ply by using different priors for φ(·) and σ(·). If subjective prior information is
available, this can also be included without any modification to the methodology.
Regardless of what information is encoded in the priors, our target of inference
remains the same and has an explicit interpretation in terms of the trend in the
data-generating mechanism.

Our estimation approach transparently distinguishes between the cases where
the observed covariates are regarded as random and where they are regarded as a
fixed design matrix. We obtain good frequentist coverage properties in both situa-
tions, and our estimates are equivalent to the sandwich form when the covariates
are treated as random. For the fixed design matrix setting, our Bayesian robust in-
tervals can provide notably better sampling properties than the sandwich estimator
in the situation where the true data-generating mechanism has a mean that is non-
linear in the covariates. This is true asymptotically, since the sandwich estimator
overestimates the standard errors in this situation by confusing the part of the resid-
uals that results from nonlinearity in the data-generating mechanism (which does
not vary across samples and should not contribute to standard error estimates) with
the random component in the residuals (which varies across samples and should be
accounted for in estimating standard errors). This result can be seen in our simu-
lation examples in Section 5 and by comparing the expressions for standard errors
in Theorems 1 and 2. Elsewhere, we have derived similar results for a fixed design
matrix by employing a Bayesian decision theoretic formalism [Rice, Lumley and
Szpiro (2008)].

In the continuous covariate case, we use splines to approximate the mean and
variance functions for y conditional on x. This is necessary because the mean
and variance are not separately identifiable from a single sample at each covariate
value. It can be regarded as a weakness in our approach, but it also suggests an
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opportunity to improve on the small-sample performance of the sandwich estima-
tor by incorporating additional prior information. Our use of splines will work in
any situation where the true mean and variance are smooth functions of the covari-
ates. This smoothness is a very reasonable assumption for applied problems. In
fact, the implicit assumption of the sandwich estimator that the variance function
has no structure whatsoever seems overly permissive. By using properly calibrated
splines or other semi-parametric priors, it should be possible to improve upon the
small-sample performance by borrowing information from nearby covariate val-
ues. This approach appears particularly promising in the context of generalized
estimating equations, where there may be many samples but too few clusters to
accurately estimate a completely unstructured covariance matrix.
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SUPPLEMENTARY MATERIAL

Proofs of theorems in “Model robust regression and a Bayesian ‘sandwich’
estimator” (Szpiro, Rice, and Lumley) (DOI: 10.1214/10-AOAS362SUPP;
.pdf). We provide proofs of the theorems stated in the paper “Model robust re-
gression and a Bayesian ‘sandwich’ estimator” by Adam A. Szpiro, Kenneth M.
Rice and Thomas Lumley.
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