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In this paper we adapt online estimation strategies to perform model-
based clustering on large networks. Our work focuses on two algorithms, the
first based on the SAEM algorithm, and the second on variational methods.
These two strategies are compared with existing approaches on simulated
and real data. We use the method to decipher the connexion structure of the
political websphere during the US political campaign in 2008. We show that
our online EM-based algorithms offer a good trade-off between precision and
speed, when estimating parameters for mixture distributions in the context of
random graphs.

1. Introduction. Analyzing networks has become an essential part of a num-
ber of scientific fields. Examples include such widely differing phenomena as
power grids, protein-protein interaction networks and friendship. In this work we
focus on particular networks which are made of political Weblogs. With the im-
pact of new social network websites like Myspace and Facebook, the web has an
increasing influence on the political debate. As an example, Adamic and Glance
(2005) showed that blogging played an important role in the political debate of
the 2004 US Presidential Election. Although only a small minority of Americans
actually used these Weblogs, their influence extended far beyond their readership,
as a result of their interactions with national mainstream media. In this article we
propose to uncover the connexion structure of the political websphere during the
US political campaign in 2008. This data set consists of a one-day snapshot of over
130,520 links and 1870 manually classified websites (676 liberal, 1026 conserva-
tive and 168 independent) where nodes are connected if there exists a citation from
one to another.

Many strategies have been developed to study networks structure and topology.
A distinction can be made between model-free [Newman (2006); Ng, Jordan and
Weiss (2002)] and model-based methods, with connexions between parametric and
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nonparametric models [Bickel and Chen (2009)]. Among model-based methods,
model-based clustering has provided an efficient way to summarize complex net-
works structures. The basic idea of these strategies is to model the distribution of
connections in the network, considering that nodes are spread among an unknown
number of connectivity classes which are themselves unknown. This generalizes
model-based clustering to network data, and various modeling strategies have been
considered. Nowicki and Snijders (2001) propose a mixture model on dyads that
belong to some relational alphabet, Daudin, Picard and Robin (2008) propose a
mixture on edges, Handcock, Raftery and Tantrum (2007) consider continuous
hidden variables and Airoldi et al. (2005, 2007, 2008) consider both mixed mem-
bership and stochastic block structure.

In this article our concern is not to assess nor to compare the appropriateness
of these different models, but we focus on a computational issue that is shared
by most of them. Indeed, even if the modeling strategies are diverse, EM like
algorithms constitute a common core of the estimation strategy [Dempster, Laird
and Rubin (1977); Snijders and Nowicki (1997)], and this algorithm is known to
be slow to convergence and to be very sensitive to the size of the data set. This
issue should be put into perspective with a new challenge that is inherent to the
analysis of network data sets which is the development of optimization strategies
with a reasonable speed of execution, and which can deal with networks composed
of tens of thousands of nodes, if not more. To this extent, Bayesian strategies are
limited, as they may not handle networks with more than a few hundred [Snijders
and Nowicki (1997); Nowicki and Snijders (2001)] or a few thousand [Airoldi
et al. (2008)], and heuristic-based algorithms may not be satisfactory from the
statistical point of view [Newman and Leicht (2007)]. Variational strategies have
been proposed as well [Airoldi et al. (2005); Daudin, Picard and Robin (2008)],
but they are concerned by the same limitations as EM. Thus, the new question
we assess in this work is “how to perform efficient model-based clustering from a
computational point of view on very large networks or on networks that grow over
time?”

Online algorithms constitute an efficient alternative to classical batch algorithms
when the data set grows over time. The application of such strategies to mix-
ture models has been studied by many authors [Titterington (1984); Wang and
Zhao (2006)]. Typical clustering algorithms include the online k-means algorithm
[MacQueen (1967)]. More recently, Liu et al. (2006) modeled Internet traffic using
a recursive EM algorithm for the estimation of Poisson mixture models. However,
an additional difficulty of mixture models for random graphs is that the computa-
tion of Pr{Z|X}, the distribution of the hidden label variables Z conditionally on
the observation X, cannot be factorized due to conditional dependency [Daudin,
Picard and Robin (2008)]. In this work we consider two alternative strategies
to deal with this issue. The first one is based on the Monte Carlo simulation of
Pr{Z|X}, leading to a Stochastic version of the EM algorithm (Stochastic Approx-
imation EM, SAEM) [Delyon, Lavielle and Moulines (1999)]. The second one
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is the variational method proposed by Daudin, Picard and Robin (2008) which
consists in a mean-field approximation of Pr{Z|X}. This strategy has also been
proposed by Latouche, Birmele and Ambroise (2008) and by Airoldi et al. (2008)
in the Bayesian framework.

In this article we begin by describing the blog database from the 2008 US presi-
dential campaign. Then we present the MixNet model proposed by Daudin, Picard
and Robin (2008), and we compare the model with its principal competitors in
terms of modeling strategies. We use the Sampson (1968) data set for illustration.
We derive the online framework to estimate the parameters of this mixture using
SAEM or variational methods. Simulations are used to show that online methods
are very effective in terms of computation time, parameter estimation and clus-
tering efficiency. These simulations integrate both fixed-size and increasing size
networks for which online methods have been designed. Finally, we uncover the
connectivity structure of the 2008 US Presidential websphere using the proposed
variational online algorithm of the MixNet model.

2. Data presentation. In this community extraction experiment, we used a
data set obtained on November 7, 2007 by the French company RTGI (Informa-
tion Networks, Territories and Geography) using a specific methodology similar
to Fouetillou (2007). This data set consists of a one-day snapshot of over two
thousand websites, one thousand of which featured in two online directories:
http://wonkosphere.com and http://www.politicaltrends.info. The first site pro-
vides a manual classification, and the second an automatic classification based on
text analysis. From this seed of a thousand sites, a web crawler [Drugeon (2005)]
collected a maximum of 100 pages per hostname which is in general the sitename.
External links were examined to check the connectivity with visited and unvisited
websites. If websites were still unvisited, and if there existed a minimal path of
distance less than two between a hostname which belongs to the seed and these
websites, then the web crawler collected them.

Using this seed-extension method, 200,000 websites were collected, and a net-
work of websites was created where nodes represent hostnames (a hostname con-
tains a set of pages) and edges represent hyperlinks between different hostnames.
Multiple links between two different hostnames were collapsed into a single link.
Intra-domain links were taken into account if hostnames were not similar. For this
web network, we computed an authority score [Kleinberg (1999)] and a keyword
score TF/IDF [Salton, Wong and Yang (1975)] on focused words (political entities)
in order to identify respectively nodes with high-quality websites (high authority
scores) and centered on those topics (on a political corpus). 870 new websites
emerged out of these two criteria. They were checked by experts and the valid-
ity of the seed confirmed. The final tally was 130,520 links and 1870 sites: 676
liberal, 1026 conservative and 168 independent. The data can be downloaded at
http://stat.genopole.cnrs.fr/sg/Members/hzanghi.
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3. A mixture model for networks.

3.1. Model and notation. We model the observed network of websites by a
random graph G, where V denotes the set of n fixed vertices which represent
hyperlinks between blogs. These random edges are modeled by X = {X;;, (i, j) €
1?2}, a set of random variables coding for the nature of connection between blogs i
and j. The nature of the links can be discrete or continuous, and we consider a
model with distributions belonging to the exponential family. In the MixNet model
we suppose that nodes are spread among Q hidden classes and we denote by Z;,
the indicator variable such that {Z;;, = 1} if blog i belongs to class g. We denote
by Z = (Z,, ..., Z,) the vector of random independent label variables such that

Z;~ M, ={aj,...,ap}),

with a the vector of proportions for classes. In the following, formulas are valid for
the case of directed and undirected networks. Self-loops have not been introduced
for simplicity of notation, and have been implemented in the MixNet software.

Conditional distribution. MixNet is defined using the conditional distribution
of edges given the label of the nodes. X;;’s are supposed to be conditionally inde-
pendent:

Pr{X|Z; ) = [ [ [PriXij|Zig Zj1 = 1 ngr} %1,
ij g,
and Pr{X;;|Z;;Z j; = 1; g} is supposed to belong to the regular exponential fam-
ily, with natural parameter 1,;:

logPr{X;j|ZiyZji = 1;nq} = Ufﬂh(Xij) —a(ng) + b(X;j),

where h(X;;) is the vector of sufficient statistics, a a normalizing constant and b a
given function. Consequently, the conditional distribution of the graph is also from
the exponential family:

logPriX|Z; n} = ZigZjingih(Xij) — > ZigZjia(ng) + > b(Xij).
ij.ql ij.ql ij

Examples of such distributions are provided in the Appendix.

Models comparison. Many strategies have been considered to construct mod-
els for clustering in networks. Variations mainly concern the nature of the link be-
tween nodes and the definition of nodes’ memberships. For instance, the stochastic
blockstructure model [Snijders and Nowicki (1997); Nowicki and Snijders (2001)]
considers links that are dyads (X;;, X ;), whereas MixNet considers a model on
edges only. Consequently, MixNet implicitly assumes the independence of X;;
and X j; conditionally on the latent structure. As for the definition of the label



ONLINE METHODS FOR MODEL-BASED CLUSTERING ON NETWORKS 691

variables, the Mixed Membership Stochastic Blockmodel (MMSB) has been pro-
posed to describe the interactions between objects playing multiple roles [Airoldi
et al. (2008)]. Consequently, the hidden variables of their model can stand for more
than one group for one node, whereas MixNet only considers one label per node.
Airoldi et al. (2008) also model the sparsity of the network. This could be done
in the context of MixNet by introducing a Dirac mass on zero for the conditional
distribution of edges. Differences among approaches also concern the statistical
framework that defines subsequent optimization strategies. The Bayesian setting
has been a framework chosen by many authors, as it allows the integration of prior
information and hierarchical structures [Airoldi et al. (2008)]. On the contrary, our
approach does not necessarily rely on stochastic strategies, meaning that each run
provides the same set of parameters. However, the likelihood of mixture models
in general is multimodal, which is a problem for both approaches. In MCMC pro-
cedures it leads to potential label switching issues, and the variational EM may
converge to local maxima.

As the model and the statistical frameworks are different, clustering results are
likely to be very different as well. In order to illustrate our point, we deviate from
the political blog data and we use the small data set of Sampson (1968) which is
used in Airoldi et al. (2008). This data set describes relational data between monks
in a monastery (whom do you like data). Figure 1 shows 3 possible partitionings
of this graph, the first one corresponds to Sampson’s observations, the second one
is the result of the MMSB model as presented in Airoldi et al. (2008), and the third
one is provided by MixNet. Individual labels are provided in Table 1. As already
noted by the authors, the MMSB classes overlap with the relational categories
provided by Sampson. This is not the case for MixNet, which uncovers classes
of connectivity that show strong inter-connections but very few intra-connections
(7). Since one link exists when a monk likes another, MixNet clusters are made
of monks that like the same sets of other monks. For instance, the blue cluster is
made of two monks that like each other and that like all monks assigned to the
green cluster. The monks in the green cluster do not seem to like each other, but
prefer the monks assigned to the red and purple clusters. As a consequence, both
approaches provide different information and are very complementary with more
modeling possibilities in the MMSB framework, due to the mixed membership and
the prior information integration possibilities. The relevance of MixNet results has
been published elsewhere [Picard et al. (2009)], and our aim in this article is not
to compete the models. Our point is rather computational: we aim at providing an
efficient method to perform model-based clustering on large networks. We use the
MixNet model as a basis for development, but the online framework we develop
could be applied to the MMSB model as well.

Joint distribution. Since MixNet is defined by its conditional distribution, we
first check that the joint distribution also belongs to the exponential family. Using



Sampson Labels

Yellow | Young Turks
Blue Waverers
Green OutCasts
Pink Loyal Opp.

FIG. 1. Monk data set Xvith different labels: Original categories obtained by Sampson (1968), Labels obtained by Airoldi et al. (2008), MixNet labels.
Estimated block model (B) for MMSB, and estimated connectivity matrix (&) for MixNet.

Airoldi Labels

Purple | 90 40 O
Gray 0 90 O
Orange | 0 30 50

MixNet Labels

Blue 50 100 25 O
Green | 0 0 20 16
Red 33 14 0 33
Purple | 0 0 33 0

69

ASIOYIINY ANV A THIN ‘AdVIId THONVZ



ONLINE METHODS FOR MODEL-BASED CLUSTERING ON NETWORKS 693

TABLE 1
Clustering results on the Monk data set. LO—Loyal opponents; YT—young turks; O—Qutcasts;
W—waverers

Monk Sampson label MMSB label MixNet label
Ambrose LO Gray Green
Boniface YT Violet Green
Mark YT Violet Purple
Winfrid YT Violet Green
Elias (0] Orange Red
Basil (0] Orange Green
Simplicius (0] Orange Green
Berthold LO Gray Purple
John YT Violet Purple
Victor w Gray Red
Bonaventure LO Gray Blue
Amand w Orange Green
Louis LO Gray Red
Albert YT Violet Red
Ramuald w Gray Blue
Peter LO Gray Red
Gregory YT Violet Red
Hugh YT Violet Purple
notation

Ng(Z) =) Zig,

1

Hy(X,Z) =" ZigZjih(X;)),
ij
Gu(Z) =) ZiyZji=Ny(Z)N/(Z),
ij
ag = exp(wg)/ ) exp(er)
[

and

TX,Z)=({Ny(@D)}, {Hu X, L)}, {Gq(D)}),
B = ({wg}, {ng1}. {—a(mg)}),

AB)=n logZexpa)[,

1
BX) =) _b(Xi)),
ij

we have the factorization logPr{X, Z; B} = B'T(X,Z) — A(B) + B(X), which
proves the claim. The sufficient statistics 7 (X, Z) of the complete-data model are
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the number of nodes in the classes N, (Z), the characteristics of the between-group
links (Hy; through function / that can stand for the number of between group links
or for the intensity of the connections in the case of edges with Poisson or Gaussian
distributions), and the product of frequencies between classes G ;. In the following
we aim at estimating .

3.2. Sufficient statistics and online recursion. Online algorithms are incre-
mental algorithms which recursively update parameters, using current parame-
ters and new observations. We introduce the following notation. Let us denote
by X"l = (X; it j=1 the adjacency matrix of the data, when n nodes are present,

and by Z[" the associated labels. A convenient notation in this context is X; o =
{Xij, j € V}, which denotes all the edges related to node i. Note that the addition
of one node leads to the addition of n + 1 potential connections.
The use of online methods is based on the additivity of the sufficient statistics

regarding the addition of a new node. We can show that

Ny (Z[n+1]) =Ny (Z[n]) +Znt1g,

qu(X[n—H]’ Z[n+1]) - qu(X[n]’ Z[n]) "‘chrfﬂ]’

1
qu(Z[”‘H]) — qu(Z["]) + ;{5111—1- ]’

with

n n
1
§£7+ = Zn+1,q E Zith(Xn41,j) + Zny1, E Zigh(Xint1),
j=1 i=1

(N = Z1 g NI+ Zyst a NI + Z,1 g THg = 1),

Then if we define T (X4 1.0, ZV 1) = (Z11.4, {gq[’;“]}, {1, we get

3.1) T (XU zH ) — (Xt Z0) 47 (X 4., Z0Y),

Those equations will be used for parameter updates in the online algorithms.

3.3. Likelihoods and online inference. EXisting estimation strategies are based
on maximum likelihood, and algorithms related to EM are used for optimization
purposes. The aim is to maximize the conditional expectation of the complete-data
log-likelihood

Q(BIB" =) _Pr{Z|X; B'}logPr{X, Z; B,
Z
and the main difficulty is that Pr{Z|X; B’} cannot be factorized and needs to be

approximated [Daudin, Picard and Robin (2008)]. A first strategy to simplify the
problem is to consider a classification EM-based strategy [Celeux and Govaert
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(1992)]. In this setting label variables are considered as nonrandom and are re-
placed by their prediction (0/1). This is a generalization of the k-means algorithm
for which the problem of computing Pr{Z|X} is left apart. This strategy has been
the subject of a previous work [Zanghi, Ambroise and Miele (2008)]. It is known
to give biased estimates, but is very efficient from a computational time point of
view.

To this strategy, we propose two different alternatives based on the Stochas-
tic Approximation EM approach [Delyon, Lavielle and Moulines (1999)] which
approximates Pr{Z|X} using Monte Carlo simulations, and on the so-called vari-
ational approach, which consists of approximating Pr{Z|X} by a more tractable
distribution on the hidden variables. In their online versions, these algorithms op-
timize Q(B|B’) sequentially, while nodes are added. To this extent, we introduce
notation

Qn+l(ﬂ|ﬁ[n]) = Z Pr{Z[”H‘l]lX[”‘f‘l]’ ﬂ[ﬂ]}logpr{x[n+l], Z[n+1], ﬂ},
ZIn+1]

with [n 4 1] being either the number of nodes or the increment of the algorithm,
which are identical in the online context.

4. Stochastic approximation EM for network mixture.

4.1. A short presentation of SAEM. An original way of estimating the para-
meters of the MixNet model is to approximate the expectation of the complete data
log-likelihood using Monte Carlo simulations corresponding to the Stochastic Ap-
proximation EM algorithm [Delyon, Lavielle and Moulines (1999)]. In situations
where maximizing Q(8|8) is not in a simple closed form, the SAEM algorithm
maximizes an approximation Q(,B |B’) computed using standard stochastic approx-
imation theory such that

4.1) QBIBHYM = OBIBH* 1 + pr(Q(BIB) — O(BIBHN),

where k is an iteration index, {pox}r>1 a sequence of positive step size and where
Q(ﬂ |B) is obtained by Monte Carlo integration. This is a simulation of the expec-
tation of the complete log-likelihood using the posterior Pr{Z|X}. Each iteration k
of the algorithm is broken down into three steps:

Simulation of the missing data. This can be achieved using Gibbs Sampling of
the posterior Pr{Z|X}. The result at iteration number k is m (k) realizations of
the latent class data Z: (Z(1), ..., Z(m(k))).

Stochastic approximation of Q(B|B’) using equation (4.1), with

m (k)

1
(4.2) QBIB) = o 2 Z log Pr(X, Z(s); B).

Maximization of O(B|8")! according to B.
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As regards the online version of the algorithm, the number of iterations k usually
coincides with n 4 1, the number of nodes of the network. Although it is possible
to go further in the iterative process to improve the estimates, it is rarely necessary
since the results obtained with n 4 1 iterations are usually reliable. This can be
explained by the fact that the MixNet model is robust to sampling. The information
in the network is indeed highly redundant and a reliable estimation of the network
parameters can be obtained with a small sample (a few dozen) of the nodes using
a classical batch algorithm. When » is large, using an online algorithm with all
the nodes is similar to performing many iterations of a batch algorithm on a small
sample.

4.2. Simulation of Pr{Z|X} in the online context. We use Gibbs sampling
which is applicable when the joint distribution is not known explicitly, but the
conditional distribution of each variable is known. Here we generate a sequence
of Z approaching Pr{Z|X} using Pr{Z;, = 1|X, Z\; }, where Z; stands for the class
of all nodes except node i. The sequence of samples is a Markov chain, and the
stationary distribution of this Markov chain corresponds precisely to the joint dis-
tribution we wish to obtain. In the online context, we consider only one simulation
to simulate the class of the last incoming node using

Pr{Zy41,4 = X" ZI)
_ Pr{Zy gy =12 XM
Y2 Pr{Zygr e = 1,200, X+
 exp{B' T Xnq1.0. 2", Z111))
2 explB T K10, ZM, Zyy1.0)}
Y n Y
o< exp (wq +> nge Y Zjeh(Xng1,)) + Y Ne (Z['”)a(nqe)).

(=1 j=1 =1

4.3. Computing @(,Bl B) in the online context. As regards the online version
of the SAEM algorithm, the difference between the old and the new complete-data
log-likelihood may be expressed as

log Pr(XI"+1, ZI"+11 g) —jog Pr(XI"] Z!I", B)

=logag+ Y. ZilogPr{Xui1ilZns1.qZit},
lLi<n+1

where the added simulated vertex label is equal to g (Z;, 41,4 = 1).
Recall that in the online framework, the label of the new node has been sampled
from the Gibbs sampler described in Section 4.2. Consequently, only one possible
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label is considered in this equation. Then a natural way to adapt equation (4.1) to
the online context is to approximate

Qu1(BI1B™) — Q. (B1B™)
by
logPr(X[”“], Z[IH-I]’ ﬂ) _ logPr(X[”], Z[ﬂ], ﬂ)

Indeed, this quantity corresponds to the difference between the log-likelihood of
the original network and log-likelihood of the new network including the addi-
tional node. Notice that the larger the network, the larger its associated complete
expected log-likelikelihood. Thus, log Pr(X"*+1 Z"+1 g) becomes smaller and
smaller compared to Q(B|B’) as n increases. The decreasing step pj, is thus set to
one in this online context. We propose the following update equation for stochastic
online EM computation of the MixNet conditional expectation:

@n+1(ﬂ|ﬂ["])=@n(ﬂlﬂ["])Jrlogothr Z ZijlogPr{X,11,ilZny1,4Zit},
li<n+1

where Z, is drawn from the Gibbs sampler.

4.4. Maximizing @(,8 |B"), and parameters update. The principle of online al-
gorithms is to modify the current parameter estimation using the information added
by a new available [n 4 1] node and its corresponding connections X, 11+ to the
already existing network. Maximizing Q,,+ 1(B1B"y according to B is straightfor-
ward and produces the maximum likelihood estimates for iteration [n + 1]. Here
we have proposed a simple version of the algorithm by setting the number of sim-
ulations to one (m (k) = 1). In this context, the difference between Qn (B ﬂ[”]) and

@n+1 (B1B"™) implies only the terms of the complete log-likelihood which are a
da(ng1)
a77ql

function of node n + 1. Using notation vy = , we get

ac[]n+1] — Nq (Z[ﬂ-l—l])/(n + 1)’
1
‘/ILEIIH_ 1_ qu (X[n—i-l]’ Z[”'H])/qu (Z[”'H]),

where (§,;, ¢41) were defined in the previous section. Notice that updating the func-
tion ¥4 of the parameter of interest is often more convenient in an online context
than directly considering this parameter of interest. An example of parameter up-
date is given for the Bernoulli and Poisson cases in the Appendix.

Once all the nodes in the network have been visited (or are known), the parame-
ters can be further improved and the complete log-likelihood better approximated
by continuing with the SAEM algorithm described above.
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5. Application of online algorithm to variational methods. Variational
methods constitute an alternative to SAEM. Their principle is to approximate the
untractable distribution Pr{Z|X; 8} by a newly introduced distribution on Z de-
noted by R. Then this new distribution is used to optimize J (X, R(Z); B), an
approximation (lower bound) of the incomplete-data log-likelihood log Pr{X; §},
defined such that

J X, R(Z); B) =logPr{X; B} — KL(R(Z), Pr{Z|X; B}),

with KL(e|e) being the Kullback—Leibler divergence between probability dis-
tributions [Jordan et al. (1999)]. Then one must choose the form of R, and
the product of Multinomial distributions is natural in the case of MixNet, with
log R(Z) = 3_; >y ZiqglogTig, and the constraint }_, 7y = 1. In this case, the
form of 7 (X, R(Z); B) is

JX, R(Z); B) =) R(Z; T)logPr(X, Z; B} — Y R(Z; 7) log R(Z; 7)
V4 Z

= Q(7, B) + H(R(Z; 7)),

with Q(t, §) an approximation of the conditional expectation of the complete-data
log-likelihood, and H(R(Z; t)) the entropy of the approximate posterior distrib-
ution of Z.

The implementation of variational methods in online algorithms relies on the
additivity property of J (X, R(Z); B) when nodes are added. This property is
straightforward: Q(t, ) is additive thanks to equation (3.1) [because R(Z) is
factorized], and H(R(Z; t)) is also additive, since the hidden variables are sup-
posed independent under R and the entropy of independent variables is additive.
The variational algorithm is very similar to an EM algorithm, with the E-step being
replaced by a variational step which aims at updating variational parameters. Then
a standard M-step follows. In the following, we give the details of these two steps
in the case of a variational online algorithm.

5.1. Online variational step. When a new node is added, it is necessary to
compute its associated variational parameters {7,41,4}q. If we consider all the
other ;4 for i <n + 1 as known, the {7,414}, are obtained by differentiating
the criterion

n+1
j( n+1] R Z[n+1] + ZA (Z Tig — )’
i=1 g=1

where the A; are the Lagrangian parameters. Since function 7 is additive accord-
ing to the nodes, the calculation of its derivative according to 7, 11,4 gives

[n] + Z Z Tji 77ql h(X’H'] ) +a(nql )) —logtyt1,qg+ 1+ Apt1 =0.
=1 j=1
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This leads to

O n
Taylg X exp{z DT 7l nql]h(XnH s a(’?g}]))}

=1 j=I
(5.1)
Vgefl,...,0}.

5.2. Maximization/update step. 'To maximize the approximated expectation of
the complete log-likelihood according to B8, we solve

01T, B _ (a log Pr{XI"*+1], Zln+1]; ﬂ}) _o
0B b 0B e
Differentiating equation (5.2) with respect to parameters {w,} gives the following
update equation:

(5.2)

1 n
[n+1] _ [n]
o = — E T, 47T .
q n+1 <i=1 iq ”“"1)

The other update equation is obtained by considering parameters {1y}, and using
notation ¥4, which gives
1'0,14_1 _ ER[H](qu(X[n+1], Z[n+1]))
! Erin(Gqi (21" 1))
Thanks to equation (3.1), which gives the relationships between sufficient statistics

at two successive iterations, parameters can be computed recursively using the
update of the expectation of the sufficient statistics, such that

Ein (Ng (Z" 1)) = Eguan (Ng (ZM™)) + Bt (Zag1.4).
E i (Hor (X, Z071)) = B (Hgr (XM, Z)) + B (811).

Erin (Gt (2" ™)) = Eun (Ggr (ZM)) + Eun (gl 1).

An example of parameters update is given in the Appendix for both the Bernoulli
and the Poisson distributions. Note the similarity of the formula compared with
the SAEM strategy. Hidden variables Z are either simulated or replaced by their
approximated conditional expectation (variational parameters).

6. Experiments.

Motivations. Experiments are carried out to assess the trade-off established
by online algorithms in terms of quality of estimation and speed of execution. We
propose a two-online-step simulation study. We first report simulation experiments
using synthetic data generated according to the assumed random graph model.
In this first experiment we use a simple affiliation model to check precisely the
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quality of the estimations given by the online algorithms. Results are compared to
the batch variational EM proposed by Daudin, Picard and Robin (2008) to assess
the effect of the online framework on the estimation quality and on the speed of
execution. In a second step, we use a real data set from the web as a starting point to
simulate growing networks with complex structure, and to assess the performance
of online methods on this type of network. An ANSI C++ implementation of
the algorithms is available at http://stat.genopole.cnrs.fr/software/mixnet/, as well
as an R package named MixeR (http://cran.r-project.org/web/packages/mixer/),
along with public data sets. This software is currently used by the Constellations
online application (http://constellations.labs.exalead.com/), which instantaneously
extracts, visually explores and takes advantages of the MixNet algorithm to reveal
the connectivity information induced by hyperlinks between the first hits of a given
search request.

6.1. Comparison of algorithms.

Simulations set-up. We simulate affiliation models with A and ¢ being the
within and between group probability of connection respectively. Five models are
considered (Table 2). We set A = 1 — ¢ to reduce the number of free parameters,
with parameter A controlling the complexity of the model. Differences between
models lie in their modular structure which varies from no structure (almost the
Erd6s—Rényi model) to strong modular structure (low inter-module connectivity
and strong intra-module connectivity, or strong inter-module connectivity and low
intra-module connectivity). Figure 2 illustrates three kinds of connectivity which
allows to represent graphically model 1, 4 and 5. For each affiliation model we gen-
erate graphs with Q € {2, 5, 20} groups mixed in the same proportions 1/Q. The
number of nodes n varies in {100, 250, 500, 750, 1000, 2000} to explore different
sizes of graphs. We generate a total of 45 graph models, each being simulated 30
times.

Criteria of comparison. The comparison between algorithms is done using the
bias E(¢ —€)/e and the mean square error V() to reflect estimators variability.

TABLE 2
Parameters of the five affiliation models considered in the experimental setting

Model e A
1 0.3 0.7
2 0.35 0.65
3 0.4 0.6
4 0.5 0.5
5 0.9 0.1
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FI1G. 2. Top left: low inter-module connectivity and strong intra-module connectivity (model 1). Top
right: strong inter-module connectivity and low intra-module connectivity (model 5). Bottom center:
Erdds—Rényi model (model 4).

We also use the adjusted Rand Index [Hubert and Arabie (1985)] to evaluate the
agreement between the estimated and the actual partitions. Computing this index
is based on a ratio between the number of node pairs belonging to the same and to
different classes when considering the actual partition and the estimated partition.
It lies between 0 and 1, two identical partitions having an adjusted Rand Index
equal to 1.

Algorithms set-up. In a first step we compete algorithms that are based on
maximum likelihood estimation (MLE). The online SAEM and online variational
method we propose are compared with the variational method proposed in Daudin,
Picard and Robin (2008) (batch MixNet in the sequel). We also add an online clas-
sification version (online CEM) in the comparison since this strategy has been
shown to reduce the computational cost as well [Zanghi, Ambroise and Miele
(2008)]. To avoid initialization issues, each algorithm is started with the same strat-
egy: multiple initialization points are proposed and the best result is selected based
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TABLE 3
Bias (in percent) and Root Mean Square Errors (X103) for the parameters estimators in the five
affiliation models. The Q modules are mixed in the same proportion. Each model considers n = 500
nodes and Q =5 groups

Online-SAEM Online-variational Online-CEM Batch-MixNet
Model Bg(8) Bg(R) Bg® Bg() Bg® Bgd) Bg@  BgQ)

1 —0.14 0.04 —0.13 0.04 —0.13 0.04 —0.13 0.04
2 0.23 ~1.01 0.04 —0.11  —0.03 0.0l  —0.03 0.00
3 947  —26.38 8.83  —24.32 6.44  —2246 —0.01  —0.11
4 1.11 —4.29 0.16 —0.35 3.00 —4.32 0.05  —0.01
5 —0.01 —0.02  —0.01 —0.02  —0.01 —0.02 —0.01  —0.02
RMSE(Z) RMSE(X) RMSE() RMSE(X) RMSE() RMSE(.) RMSE() RMSE(%L)
1 1.45 2.25 1.42 2.25 1.45 2.25 1.45 2.25
2 1.89 4.04 1.65 2.90 1.63 2.90 1.63 2.90
3 5.19 14.75 6.95 2232 13.89 25.96 2.14 6.74
4 3.75 10.42 1.33 1.67 8.21 15.71 1.25 1.62
5 0.92 1.73 0.92 1.73 0.93 1.73 0.92 1.73

on its likelihood. The number of clusters is chosen using the Integrated Classifi-
cation Likelihood criterion, as proposed in Daudin, Picard and Robin (2008). The
algorithms are stopped when the parameters are stable between two consecutive
iterations. In a second step, we compare the MLE-based algorithms with other
competitors like spectral clustering [Ng, Jordan and Weiss (2002)] and a k-means
like algorithm [Newman (2006)].

Estimators bias and MSE (Table 3). A first result is that every algorithm pro-
vides estimators with negligible bias (lower than 1%) and variance for highly struc-
tured models (models 1, 2, 5, Table 3). The online framework shows its limitations
when the structure of the network is less pronounced (model 3), as every online
method shows a significant bias and low precision, whereas the batch MixNet be-
haves well. This limitation was expected, as the gain in computational burden has
an impact on the complexity of structures that can be identified. Finally, among
online versions of the algorithm, the online variational method provides the best
results on average in terms of bias and precision.

Quality of partitions (Table 4). We also focus on the Rand Index for each al-
gorithm. Indeed, even if poor estimation of A reveals a small Rand Index (Table 4),
good estimates do not always lead to correctly estimated partitions. An illustra-
tion is given with model 3 for which algorithms produce good estimates with poor
Rand Index, due to the nonmodular structure of the network. As expected, the
performance increases with the number of nodes (Table 5).
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TABLE 4
Means and standard deviations of the Rand Index for all models with q and n fixed

Online-SAEM Online-variational Online-CEM Batch-MixNet
Model rand Orand rand Orand rand Orand rand Orand
1 0.98 0.02 0.98 0.02 0.98 0.02 0.99 0.02
2 0.96 0.07 0.97 0.07 0.97 0.07 0.98 0.01
3 0.13 0.13 0.10 0.15 0.25 0.16 0.85 0.14
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 1 0.00 1 0.01 1 0.01 1 0.01

Computational efficiency (Table 5). Since the aim of online methods is to
provide computationally efficient algorithms, the performance mentioned above
should be put in perspective with the speed of execution of each algorithm. Indeed,
Table 5 shows the strong gain of speed provided by online methods compared with
the batch algorithm. The speed of execution is divided by 100 on networks with
2000 nodes, for instance. Table 5 also shows that there is no significant differ-
ence in the speed of execution among online methods. Since the online variational
method provides the best results in terms of estimation precision, with no signif-
icant difference with other methods on partition quality or speed, this will be the
algorithm chosen for the following.

TABLE 5
Means and standard deviations of the Rand Index with speed of the algorithms. g =5, model 2

Online-SAEM Online-variational Online-CEM Batch-MixNet
n rand Orand rand Orand rand Orand rand Orand
100 0.15 0.04 0.15 0.07 0.15 0.05 0.19 0.09
250 0.50 0.09 0.55 0.11 0.51 0.01 0.95 0.07
500 0.62 0.09 0.62 0.11 0.65 0.14 1 0.00
750 0.84 0.03 0.85 0.03 0.84 0.04 1 0.00
1000 0.94 0.01 0.95 0.01 0.92 9.37 1 0.00
2000 0.98 0.00 0.98 0.01 0.98 0.01 1 0.00
time Otime time Otime time Otime time Otime
100 0.09 0.00 0.09 0.00 0.09 0.00 0.10 0.00
250 1.31 0.01 1.32 0.01 1.31 0.00 3.18 0.01
500 1.41 0.01 1.46 0.01 1.41 0.01 49.46 0.13
750 3.45 0.02 3.57 0.02 3.44 0.02 251.32 0.75
1000 9.46 0.41 9.61 0.43 9.37 0.40 805.92 0.49

2000 157.31 1.28 158.21 1.41 157.12 2.08 13051.10 73.75
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TABLE 6
Means and standard deviation of the Rand Index for the five models computed over 30 different runs
for graph clustering competitors and variational algorithms

Community detection Spectral clustering Online-variational
Model rand Orand rand Orand rand Orand
1 1.00 0.00 0.97 0.14 1.00 0.00
2 0.99 0.01 0.98 0.00 1.00 0.00
3 0.97 0.02 0.97 0.00 1.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.92 0.19 1.00 0.00

Comparison with other algorithms (lable 6). The above results show that a
strong case may be made for the online variational algorithm when choosing be-
tween alternative clustering methods. Consequently, we shall now compare it with
two suitable “rivals” for large networks: a basic spectral clustering algorithm [Ng,
Jordan and Weiss (2002)], and one of the popular community detection algorithms
[Newman (2006)]. The spectral clustering algorithm searches for a partition in
the space spanned by the eigenvectors of the normalized Laplacian, whereas the
community detection algorithm looks for modules which are defined by high intra-
connectivity and low inter-connectivity.

For our five models with arbitrary fixed parameters n = 1000, Q = 3, we ran
these algorithms and computed the Rand Index for each of them. From Table 6
we see that our online variational algorithm always produces the best clustering of
nodes.

We generated networks using the MixNet data generating process. Thus, these
results correspond to what may be expected on networks that display a blockmodel
structure: the online variational algorithm always yields the best node classifica-
tion. Apart from model 4, it will also be remarked that the spectral algorithm is
fairly efficient with a slight bias, and so the spectral clustering algorithm is consis-
tently more accurate than the community algorithm, the latter failing completely
when applied to model 5. Although the community algorithm appears less well
adapted to these experiments, we shall see in the next section that this algorithm
is particularly suitable when partitioning data sets whose nodes are densely inter-
connected.

6.2. Realistic networks growing over time. In this section we use a real net-
work as a template to simulate a realistic complex structure. For this purpose, we
use a French Political Blogosphere network data set that consists of a sample of
196 political blogs from a single day snapshot. This network was automatically
extracted October 14, 2006 and manually classified by the “Observatoire Presi-
dentielle” project. This project is the result of a collaboration between RTGI SAS
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and Exalead and aims at analyzing the French presidential campaign on the web.
In this data set, nodes represent hostnames (a hostname contains a set of pages)
and edges represent hyperlinks between different hostnames. If several links exist
between two different hostnames, we collapse them into a single one. Note that
intra-domain links can be considered if hostnames are not identical. Finally, in
this experimentation we consider that edges are not oriented, which is not real-
istic but which does not affect the interpretation of the groups. Six known com-
munities compose this network: Gauche (French Democrat), Divers Centre (Mod-
erate party), Droite (French Republican), Ecologiste (Green), Liberal (supporters
of economic-liberalism) and, finally, Analysts. The data is provided within the
MixeR package. This network presents an interesting organization due to the ex-
istence of several political parties and commentators. This complex connectivity
pattern is enhanced by MixNet parameters given in Figure 3.

As the algorithm is motivated by large data sets, we use the parameters given
by MixNet to generate networks that grow over time. We use this French Blog
to generate a realistic network structure as a start point. We simulate 200 nodes
networks from this model, then we iterate by simulating the growth over time of
these networks according to the same model and we use the online algorithm to
update parameters sequentially. The result is striking: even on very large networks
with ~13,000 nodes and ~13,000,000 edges, the online algorithm allows us to es-
timate mixture parameters with negligible classification error in ~6 minutes (Ta-
ble 7). This is the only algorithmic framework that allows to perform model based
clustering on networks of that size.

7. Application to the 2008 US Presidential WebSphere. Since its creation
and enhanced by its recent social aspect (Web 2.0), the World Wide Web is the
space where individuals use Internet technologies to talk, discuss and debate. Such
space can be seen as a directed graph where the pages and hyperlinks are respec-
tively represented by nodes and edges. From this graph, many studies, like Broder
et al. (2000), have been published and introduced the key properties of the Web
structure. However, this section rather focuses on local studies by considering that
the Web is formed by territories and communities with their own conversation
leaders and participants [Ghitalla et al. (2003)]. Here, we define a territory as a
group of websites concerned by the same topic and a community as a group of
websites in the same territory which may share the same opinion or the same link
connectivity. One usually assumes that the existence of a hyperlink between two
pages implies that they are content-related [Kleinberg (1999); Davison (2000)].
By exploring the link page exchanges, one can actually draw the borders of web
territories/communities.

Comparison with a community detection algorithm. A first step consists in
comparing the results of MixNet with the community detection algorithm pro-
posed by Newman (2006). If the political classification is used as a reference, the
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FIG. 3. MixNet results display on the French political Blogosphere represented with the organic
layout of Cytoscape (Shannon et al. 2003). The table corresponds to the probabilities (x100) of
connection between the 11 selected clusters [using a penalized likelihood criterion described in
Daudin, Picard and Robin (2008)]. Dots in the table correspond to connections lower than 1%.

community algorithm produces better agreement with a randIndex = 0.59, com-
pared with a randIndex = 0.25 for MixNet (see Table 8). However, it appears that
this comparison favors Newman, whereas the methods have different objective.
Indeed, the community algorithm aims at finding modules which are defined by
high intra-connectivity and low inter-connectivity. Given that websites tend to link
to one another in line with political affinities, the link topology corresponding to
the manual classification naturally favors the community module definition. The
objective function can also help to explain the community algorithm’s suitability
for this data set, since the quality of a partition in terms of Newman’s modules can
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TABLE 7
Quality of the clustering procedure in terms of Rand Index when the network grows over time. Each
configuration has been simulated 100 times

# nodes (previous + new) Ave. # edges Ave. rand Ave. cpu time (s)
200 3131.72 0.94 0.9
200 + 200 50,316.32 0.998 0.4
400 + 400 12,486.24 0.999 1.4
800 + 800 201,009.5 1 5.7
1600 + 1600 803,179.6 1 22.8
3200 + 3200 3,202,196 1 91.9
6400 + 6400 12,804,008 1 371.1

be expressed in terms of the modularity, which is maximized. The value of this
modularity is a scalar between —1 and 1 and measures the density of links inside
communities as compared to links between communities [Newman (2006)]. When
applying both algorithms on our political network with Q = 3, the online vari-
ational algorithm yields a modularity = 0.20, whereas the community algorithm
yields a modularity = 0.30, which is close to the manual partition modularity of
0.28. As MixNet classes do not necessarily take the form of modules, one might
expect our approach to yield a modularity index that is not “optimal.” Neverthe-
less, the two class definitions are complementary, and both are needed in order to
give a global overview of a network: the community partition to detect dense node
connectivity, and the MixNet partition to analyze nodes with similar connectivity
profiles. However, as mentioned by Adamic and Glance (2005), the division be-
tween liberal and conservative blogs is “unmistakable,” this is why it may be more
interesting to uncover the structure of the two communities rather than detecting
them.

Interpreting MixNet results. MixNet first confirms what was already men-
tioned by Adamic and Glance (2005): the political websphere is partioned accord-
ing to political orientations. In addition, MixNet highlights the role of main US
online portals as the core of this websphere (Figure 4, C17). Political communi-
ties do not directly cite their opponents but communicate through nytimes.com,

TABLE 8
Contingency table comparing the political partition and MixNet partition

Conservative  Independent Liberal

Cluster 1 734 135 238
Cluster 2 290 26 8
Cluster 3 2 7 430
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B Conservative
O Independent
B Liberal

FIG. 4. Network summary of US political websites. Each vertex represents a cluster. Each pie chart
gives the proportions of liberal, conservative and independent tagged websites in the cluster. The
outer ring color of the vertices is proportional to the intensity of the intra-connectivity: the darker,
the weaker. Edges are represented when the inter-connectivity is among the 20% of the largest among
all connectivity values.

washingtonpost.com, cnn.com or msn.com, for instance (in C17). This central
structure has two main significations: it confirms the political cyberbalkanization
trend that was already observed in 2004, and it emphasizes the role of mass media
websites as political referees. Plus, the connectivity pattern estimated by the model
shows a particular affinity between the mass-media cluster with the liberal thought,
as connections are stronger toward the liberal part of the weblogs (Table 9).

Then the question is to determine what are the structural characteristics of the
liberal and conservative territories (note that independent sites do not seem to be
structured on their own). MixNet reveals a hierarchical organization of political
sub-spheres with weblogs having a determinant role in the structuration of the lib-
eral community, reachm.com, mahablog.com, juancole.com (C20), which are well
known to be at the core of the liberal debate on the web. This results in a set of
clusters (C7, C8, C12, C13 and C20) that show very strong intra and inter group
connectivities which nearly forms a clique (Table 9). The balkanization is also ob-
served within territories, as radical positions, like in the feministe.us website (C6),
are only spread through core websites (7729,6 = 99%, for instance). A last level of
hierarchy is made by liberal blogs that show intermediate connections within the
same liberal territory.

Interestingly, this subdivision is also present in the conservative part of the net-
work, with very famous websites like foxnews.com (C14) being at the center of
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TABLE 9
Estimated v (in percentage) and number of nodes in each cluster for the US political websphere.
d represents the estimated mean degree of each group. Clusters with probabilities of connection
lower than 1% are not represented (clusters 3, 5, 15)

Conservative Liberal

ID 17 1 2 10 9 14 16 18 19 1 4 6 7 § 12 13 20

17 - 54 - . 64 - 52 66 - 62 - - 67 67 62 43 100
1 54 - . . . 54

9 64 - - - . 56 61 - 40

4 - 54 . . 56 . 55 72 40

6 52 - - . 61 55 73 60 56

18 66 - - 47 - 72 60 58 -

19 - - . . 40 40 56 - 57

11 62 . . . . . . . . . . . . 47 . . 40
4 . . . . . . . . . .65 - . . .42 40
6 - . . . . . . . . . . . . . . 8 99
7 67 - . . . . . . . . . . 47 76 49 . 76
8 67 - . . . . . . . 4 . . 76 90 74 81 98
12 62 - - . . . . . . . . . 49 74 45 92 98
13 43 - . . . . . . . . 4 8 - 81 92 95 99
20 100 - - - . . . . . 40 42 99 76 98 98 99 100

Ng 4 214 407 66 56 1 24 19 36 26 58 207 51 20 37 23 3
d 649 86 28 149 69 455 335 167 172 192 64 66 66 310 154 170 324

the debate. Indeed, clusters C3, C14, C16, C18 and C19 constitute the core of the
conservative websphere, and clusters C1 and C2 are very lightly connected with
other conservative blogs. The difference lies in the intensity of connection, which
is lower for the conservatives.

Compared with available methods that can analyze networks of such size (like
community detection), MixNet shows structures of the political websphere that are
more complex than the expected liberal/conservative split. The model highlights
the structural similarities that exist between spheres of political opponents. Both
communities are characterized by a small set of sites which use the internet in a
very professional and efficient way, with a lot of cross-linking. This results in a
core structure to which other sites are linked, these other sites being less efficient
in the citations to other websites. This could be explained either by a tendency
to ignore other elements in the debate or by a use of the internet which is less
efficient. Interestingly, this structure is very similar between conservatives and lib-
erals, with the liberal core being more tight. For the liberal blogs, this observation
can result from a better understanding of their Web Ecosystem. This interpretation
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FIG. 5. Boxplot of MixNet classes betweenness (in log).

is reinforced by the different betweenness centralities of MixNet classes. Between-
ness is based on the number of shortest geodesic paths that pass through a vertex.
Figure 5 shows that MixNet betweenness is higher for MixNet core classes on av-
erage in both political structures, whereas the betweenness patterns of the liberals
and conservatives look very similar.

8. Conclusion. In this paper we propose an online version of estimation al-
gorithms for random graphs which are based on a mixture of distributions. These
strategies allow the estimation of model parameters within a reasonable compu-
tation time for data sets which can be made up of thousands of nodes. These
methods constitute a trade-off between the potential amount of data to process
and the quality of the estimations: even if online methods are not as precise as
batch methods for estimation, they may represent a solution when the size of the
network is too large for any existing estimation strategy. Furthermore, our simu-
lation study shows that the quality of the remaining partition is good when using
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online methods. In the network of 2008 US political websites, we could uncover
the structure that makes the political websphere. This structure is very different
from classical modules or “communities,” which highlights the need for efficient
computational strategies to perform model-based clustering on large graphs. The
online framework is very flexible, and could be applied to other models such as
the block model and the mixed membership model, as the online framework can
be adapted to Bayesian algorithms [Opper (1999)].

APPENDIX

A.1. Examples of distributions for the exponential family. We provide
some examples of common distributions that can be used in the context of net-
works. For example, when the only available information is the presence or the
absence of an edge, then X;; is assumed to follow a Bernoulli distribution:

Ttgl

Ngl = log

’

l—nql

Xij|ZigZji =1~ B(ry) { H(Xij) = Xij,
a(ng) =log(l — my),
b(Xij) =0.

If additional information is available to describe the connections between vertices,
it may be integrated into the model. For example, the Poisson distribution might
describe the intensity of the traffic between nodes. A typical example in web ac-
cess log mining is the number of users going from a page i to a page j. Another
example is provided by co-authorship networks, for which valuation may describe
the number of articles commonly published by the authors of the network. In those
cases, we have

qu1=10g)~ql,

h(Xij) = Xij,

XijlZigZji=1~PRq) a(nllj)__)i]l
ql) = ~Aql>

b(Xij):X,'j!

A.2. Parameters update in the Bernoulli and Poisson cases for the online
SAEM. The estimator becomes

[ g[n-l—l]
=y (=
L1
where
1] Ny (ZI") Ny (Z!™)

O Ny (ZI"YN{(ZIM) + Zyyy1,g NI(ZM) + Zyy 11 N (ZIM)
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A.3. Parameters update in the Bernoulli and the Poisson cases for the on-

line variational algorithm. We get the following update equation:

[n+1]
[n—H] [n+1]1_[n] 1 — [n+1] ER["](Sq )
Tg =Yg Tq +( Yqi ) [n+1]
ER[n]({q )

where

Yot = Egun (Ng (Z1M)) Egrnr (N (Z1))
/ERin (Ng (Z") Erin (N1 (ZM)) + 41,4 Erin (N1 (Z))
+ Tut 1 B (Ng (ZIM)),

n n
[n+1] [n] 1]
Erw (éqz ) = Tn+lyq Z Tl Xnt1,j + Tut1 ZT,-q Xintt,
j=1 i=1

I[":R[n] (f[ +1]) = Tn—i—l,qER[n] (NI(Z[n])) + Tn+l,lER[n] (Nq(Z[n])) + Tn—f—l,q]l{q = l}
with

]ER[n] ( Z[n Z T[n] .
i=1
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