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TESTING AFFILIATION IN PRIVATE-VALUES MODELS OF
FIRST-PRICE AUCTIONS USING GRID DISTRIBUTIONS
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Within the private-values paradigm, we construct a tractable empirical
model of equilibrium behavior at first-price auctions when bidders’ valua-
tions are potentially dependent, but not necessarily affiliated. We develop a
test of affiliation and apply our framework to data from low-price, sealed-bid
auctions held by the Department of Transportation in the State of Michigan
to procure road-resurfacing services: we do not reject the hypothesis of affil-
iation in cost signals.

1. Motivation and introduction. During the past half century, economists
have made considerable progress in understanding the theoretical structure of equi-
librium strategic behavior under market mechanisms, such as auctions, when the
number of potential participants is relatively small; see Krishna (2010) for a com-
prehensive presentation and evaluation of progress.

One analytic device, commonly used to describe bidder motivation at single-
object auctions, is a continuous random variable which represents individual-
specific heterogeneity in valuations. The conceptual experiment involves each
potential bidder’s receiving a draw from a distribution of valuations. Conditional
on his draw, a bidder is then assumed to act purposefully, maximizing either the
expected profit or the expected utility of profit from winning the auction. Another
frequently-made assumption is that the valuation draws of bidders are indepen-
dent and that the bidders are ex ante symmetric—their draws being from the same
distribution of valuations. This framework is often referred to as the symmetric in-
dependent private-values paradigm (symmetric IPVP). Under these assumptions,
a researcher can then focus on a representative agent’s decision rule when describ-
ing equilibrium behavior.

At many real-world auctions, the latent valuations of potential bidders are prob-
ably dependent in some way. In auction theory, it has been assumed that depen-
dence satisfies affiliation, a term coined by Milgrom and Weber (1982). Affiliation
is a condition concerning the joint distribution of signals. Often, affiliation is de-
scribed using the intuition presented by Milgrom and Weber: “roughly, this [affil-
iation] means that a high value of one bidder’s estimate makes high values of the
others’ estimates more likely.” Thus described, affiliation seems like a relatively
innocuous condition. In the case of continuous random variables, following the
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path blazed by Karlin (1968), some refer to affiliation as multivariate total positiv-
ity of order two, or MTP, for short. Essentially, under affiliation, with continuous
random variables, the off-diagonal elements of the Hessian of the logarithm of the
joint probability density function of signals are all nonnegative, that is, the joint
probability density function is log-supermodular. Under joint normality of signals,
affiliation requires that al/ the pair-wise covariances be weakly positive.

How is affiliation related to other forms of dependence? Consider two con-
tinuous random variables V| and V>, having joint probability density function
Sfvi.v,(v1, v2) as well as conditional probability density functions fy,|v, (v2|v1)
and fy,|v,(vi|v2) and conditional cumulative distribution functions Fy,y, (v2|v1)
and Fy, |y, (vi|v2). Introduce g(-) and h(-), functions that are nondecreasing in
their arguments. de Castro (2007) has noted that affiliation implies (a) [ Fy,|v, (v2]
v1)/fvs|v, (V2|v1)] is decreasing in vy (and v; in the other case), often referred to
as a decreasing inverse hazard rate, which implies (b) Pr(V, < v7|V] = v1) is non-
increasing in vy (and v, in the other case), also referred to as positive regression
dependence, which implies (c) Pr(V> < v2|V| < vy) is nonincreasing in vy (and vy
in the other case), also referred to as left-tail decreasing in vy (v2), which implies
(d) cov[g(Vy, V), h(V1, V)] is positive, which implies that (e) cov[g(V}), h(V2)]
is positive, which implies (f) cov(V7, V3) is positive. The important point to note is
that affiliation is a much stronger form of dependence than positive covariance. In
addition, de Castro (2007) has demonstrated that, within the set of all signal distri-
butions, the set satisfying affiliation is small, both in the topological sense and in
the measure-theoretic sense.

Affiliation delivers several predictions and results: first, under affiliation, the ex-
istence and uniqueness of a monotone pure-strategy equilibrium (MPSE) is guar-
anteed. Also, four commonly-studied auction formats—the oral, ascending-price
(often referred to by economists as the English) and the second-price, sealed-bid
(often referred to by economists as the Vickrey) as well as two first-price ones—can
be ranked in terms of the revenues they can be expected to generate. Specifically,
the expected revenues at English auctions are weakly greater than those at Vickrey
auctions which are greater than those at first-price auctions—either the sealed-bid
or the oral, descending-price (often referred to by economists as the Dutch) for-
mats. Note, however, that when bidders are asymmetric, their valuation draws be-
ing from different marginal distributions, these rankings no longer apply. In fact,
in general, very little can be said about the revenue-generating properties of the
various auction formats and pricing rules under asymmetries.

Empirically investigating equilibrium behavior at auctions when latent valua-
tions are affiliated has challenged researchers for some time. Laffont and Vuong
(1996) showed that identification has been impossible to establish in many mod-
els when affiliation is present. In fact, Laffont and Vuong demonstrated that any
model within the affiliated-values paradigm (AVP) is observationally equivalent to
a model within the affiliated private-values paradigm (APVP). For this reason, vir-
tually all empirical workers who have considered some form of dependence have
worked within the APVP.
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Only a few researchers have dealt explicitly with models within the APVP. In
particular, Li, Perrigne and Vuong (2000) have demonstrated nonparametric iden-
tification within the conditional IPVP, a special case of the APVP, while Li, Per-
rigne and Vuong (2002) have demonstrated nonparametric identification within the
APVP. One of the problems that Li et al. faced when implementing their approach
is that nonparametric kernel-smoothed estimators are often slow to converge. In
addition, Li et al. do not impose affiliation in their estimation strategy, so the first-
order condition used in their two-step estimation strategy need not constitute an
equilibrium. Hubbard, Li and Paarsch (2009) have sought to address some of these
technical problems using semiparametric methods which sacrifice the full gener-
ality of the nonparametric approach in lieu of additional structure.

To date, except for Brendstrup and Paarsch (2007), no one has attempted to ex-
amine, empirically, models in which the private values are potentially dependent,
but not necessarily affiliated. Incidentally, using data from sequential English auc-
tions of two different objects, Brendstrup and Paarsch found weak evidence against
affiliation in the valuation draws of two objects for the same bidder.

de Castro (2007) has noted that, within the private-values paradigm, affiliation
is unnecessary to guarantee the existence and uniqueness of a MPSE. In fact, he
has demonstrated existence and uniqueness of a MPSE under a weaker form of
dependence, one where the inverse hazard rate is decreasing in the conditioned
argument.

Because affiliation is unnecessary to guarantee existence and uniqueness of bid-
ding strategies in models of first-price auctions with private values, expected rev-
enue predictions based on empirical models in which affiliation is imposed are
potentially biased. Knowing whether valuations are affiliated is central to rank-
ing auction formats in terms of the expected revenues generated. In the absence
of affiliation, the expected-revenue rankings delivered by the linkage principle of
Milgrom and Weber (1982) need not hold: the expected-revenue rankings across
auctions formats remain an empirical question. Thus, investigating the empirical
validity of affiliation appears both an important and a useful exercise.

In next section of this paper we present a brief description of affiliation and
its soldier—total positivity of order two (TP;). Subsequently, following the the-
oretical work of de Castro (2007, 2008), who introduced the notion of the grid
distribution, in Section 3 we construct a tractable empirical model of equilibrium
behavior at first-price auctions when the private valuations of bidders are poten-
tially dependent, but not necessarily affiliated.! In Section 4 we develop a test of
affiliation, which is based on grid distributions, rather than kernel-smoothing meth-
ods, thus avoiding the drawback encountered by Li, Perrigne and Vuong (2000,

IThe grid distributions discussed and used in this paper can also be modeled as contingency tables,
which have been used extensively in applications in the social sciences; see Douglas et al. (1990) for
the connections between contingency tables and positive dependence properties, including affiliation
(TP»), which is the focus of this paper.
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2002), while in Section 5 we apply our methods in an empirical investigation of
low-price, sealed-bid, procurement-contract auctions held by the Department of
Transportation in the State of Michigan, and do not reject the null hypothesis of
affiliation.

This information is potentially useful to a policy maker. The apparent high de-
gree of estimated affiliation also explains why low levels of observed competi-
tion are often sufficient to maintain relatively low profit margins: strong affiliation
is akin to fierce competition. Under strong affiliation, a potential winner knows
that his nearest competitor probably has a valuation (cost) close to his, and this
disciplines his bidding behavior: he becomes more aggressive than under inde-
pendence. We summarize and conclude in Section 6, the final section of the pa-
per. The results of a small-scale Monte Carlo to investigate the numerical as well
as small-sample properties of our proposed test are reported in the supplemental
document—de Castro and Paarsch (2010).

2. Affiliation and TP;. As mentioned above, affiliation is often described
using an example with two random variables that can take on either a low or a
high value. The two random variables are affiliated if high (low) values of each
are more likely to occur than high and low or low and high values. A commonly-
used graph of the four possible outcomes in a two-bidder auction game with two
values is depicted in Figure 1. The (1, 1) and (2, 2) points are more likely than the
(2,1) or (1, 2) points. Letting p;; denote the probability of (7, j), affiliation in this
example then reduces to TP,—viz.,

P11p22 = p12p21-

V2

2 . °
P12 P22
1 ° °
P11 P21
1 2 i

FI1G. 1. Affiliation with two bidders and two values for signals.
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FIG. 2.  Probability set: affiliation and alternative.

Put another way, TP, means that the determinant of the matrix

P— < Pl pi2 >
P21 p22

must be weakly positive. Independence in valuations obviously satisfies the lower
bound on this determinental inequality. Note, too, that affiliation restricts distribu-
tions to a part of the simplex depicted in Figure 2. In that figure, it is the region of
the simplex that appears below a semi-circle rising from the line where p1; + p2»
equals one. In order to draw this figure, we needed to impose symmetry, so pi; and
p21 are equal; thus, the intercept for pp> is one half. Conditions that are weaker
than affiliation, but that also guarantee existence and uniqueness of equilibrium,
are depicted in Figure 2, too. In fact, in this simple example, the entire simplex
satisfies these weaker conditions. In richer examples, however, it is a subset of
the simplex, but one that contains the set of affiliated distributions. Thus, the as-
sumption of affiliation could be important in determining the revenues a seller can
expect from a particular auction format.

Slavkovi¢ and Fienberg (2009) have discussed geometric representations of 2 x
2 distributions, like some of those considered here. Their representations are based
on tetrahedrons, while ours reduce to triangles because of symmetry.

Another important point to note is that affiliation is a global restriction. To see
the importance of this fact, introduce the valuation 3 for each bidder; five addi-
tional points then appear, as is depicted in Figure 3. Affiliation requires that the
probabilities at all collections of four points satisfy TP;; that is, the following ad-
ditional six inequalities must hold:

P12P23 = P13 P22, P22P33 = P23 P32, P21P32 = p22P31,
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P13 P23 P33
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P12 P22 P32
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P11 P21 P31
1 2 3 Vi

F1G. 3. Affiliation with two bidders and three values for signals.

D11P33 = P13DP31, p12p33 = p13p3 and  p21p33z > pa3psi.

Of course, symmetry would imply that p;; equal p;; for all i and j, so the joint
mass function for two bidders and three valuations under symmetric affiliation can
be written as the following matrix:

P11 P12 P13 a d e
P=\|py pn p3|=|d b f],
P31l P32 P33 e [ ¢

where the determinants of all (2 x 2) submatrices must be positive. Note, too, that
all the points must also live on the simplex, so

O0<a,b,c,d,e, f<1 and a+b+c+2d+2e+2f=1.

How many inequalities are relevant? Let us represent the above matrix in the
following tableau:

1 2 3
a d e
d b f
3 e f c

where the row and column numbers will be used later to define TP, inequali-
ties. There are (g) X (;) or nine possible combinations of four cells—that is, nine
inequalities. However, by symmetry, three are simply duplicates of others. The
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following tableau represents all of the inequalities:

(1,2) (1,3) 2,3)
(1,2) ab > d? af >de df > be
(1,3) af >de ac > e* dc>ef
2,3) df > be dc>ef be > f2

2079

where (i, j) x (£,m) means form a matrix with elements from rows i and j
and columns ¢ and m of the first tableau. Observe that when the three in-
equalities highlighted in bold are satisfied, all others will be also satisfied. In
fact, the inequality (1, 3) x (1,2):af > de derives from (1,2) x (1,2):ab > d?
and (2,3) x (1, 2):df > be. Finally, inequality (2, 3) x (1,3):dc > ef derives
from the other two, previously established—viz., (2,3) x (1,2):df > be and
(2,3) x (2,3):bc > f2. All other inequalities can be obtained from the adjacent
ones in this fashion.

Adding values to the type spaces of bidders expands the number of determinen-
tal restrictions required to satisfy TP,, thus restricting the space of distributions
that can be entertained. Likewise, adding bidders to the game, particularly if the
bidders are assumed symmetric, also restricts the space of distributions that can be
entertained. For example, suppose a third bidder is added, one who is symmetric to
the previous two. The probability mass function for triplets of values (vy, v, v3),
where v, = 1,2,3 and n = 1, 2, 3, can be represented as an array whose slices can
then be represented by the following three matrices for bidders 1 and 2, indexed
by the values of bidder 3:

a d e d b f e f c
P1=(d b f), P2=(b h g) and P3=(f g i).
e f ¢ f g i c i

In general, if the number of bidders is N and the number of values is k, then,
without symmetry or affiliation, probability arrays have (k¥ — 1) unique elements.

Also, de Castro (2008) has shown that symmetry reduces this to (k*]ﬁ 1_1) elements,

while affiliation restricts where these (k+kll/ 1_1) probabilities can live on the simplex

via the determinental inequalities required by TP,. It is well known that a function
is MTP;, (affiliated), if and only if, it is TP in all relevant collections of four points.
As an aside, in this three-by-three example, only nine constraints are relevant—
ViZ.,

hi > g,

be > f2, dh > b?,

eg > f2,

If these hold, then the remainder are satisfied, too. Knowing the maximum num-
ber of binding constraints is relevant later in the paper when we discuss our test
statistic.

ab > d?,

bg > fh,

df = be,
gj >i% and fi>cg.
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Consider now the random N-vector V which equals (V, ..., Vy), having joint
density (mass) function fy with realization v equal to (v1, ..., vy). Affiliation can
be formally defined as follows: for all v and v/, the random variables V are said to
be affiliated if

NEOVY) vV AY) > fv(v) fv(Y),

where
(v Vv V) =[max(vi, v}), max(v2, v3), ..., max(vy, viy)]

denotes the component-wise maxima of v and v/, sometimes referred to as the join,
while

(v A V") = [min(vy, v}), min(vy, v}), ..., min(vy, vy)]

denotes the component-wise minima, sometimes referred to as the meet.

3. Theoretical model. We develop our theoretical model within the private-
values paradigm, assuming away any interdependencies. We consider a set N of
bidders {1, 2, ..., N}. Now, bidder n is assumed to draw V,,, his private valuation
of the object for sale, from the closed interval [v, v]. We note that, without loss of
generality, one can reparametrize the valuations from [v, v] to [0, 1]. Below, we do
this. We collect the valuations in the vector v which equals (vy, ..., vy) and denote
this vector without the nth element by v_,. Here, we have used the now-standard
convention that upper-case letters denote random variables, while lower-case ones
denote their corresponding realizations. Note, too, that V lives in [0, V.

We assume that the values are distributed according to the probability den-
sity function fy:[0, 1]V — R, which is symmetric; that is, for the permutation
o:Al,...,N}—={l,..., N}, wehave fy(vi,...,vn)equals fy(vy(1), ..., Vp(n))-
Letting f, (v,) denote the marginal probability density function of V,,, we note that
it equals fol e fol Sv(v_p,v,)dv_,. [Below, we constrain ourselves to the case
where f,(-) is the same for all n, but this is unnecessary and done only because,
when we come to apply the method, we do have not enough information to esti-
mate the case with varying f;,’s.] Our main interest is the case when fy is nof the
product of its marginals—the case where the types are dependent. We denote the
conditional density of V_,, given v, by

SV(V_n, vy)

Su(vp)

Finally, we denote the largest order statistic of V_, given v, by Z, and its prob-
ability density and cumulative distribution functions by f(z,|v,) and F(z,|v,),
respectively.

We assume that bidders are risk neutral and abstract from a reserve price. Given
his value v,,, bidder n tenders a bid s;,, € R. If his tender is the highest, then bidder

fV_,,l\/n (Vonlvp) =
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n wins the object and pays what he bid. A pure strategy is a function o : [0, 1] —
R which specifies the bid o (v,,) for each value v,. The interim pay-off of bidder
n, who bid s, when his opponents follow o : [0, 1] > R, is

o~ ()
M(vy, $p,0) = (v, — sn)/ f@nlvp) dz, = (vy — Sn)F[U_l(sn)|vn]-

We focus on symmetric, increasing pure-strategy equilibria (PSE) which are de-
fined by o :[0, 1] — R such that

vy, 0(Vp), 0 —5] = (v, 5,0 _p) Vs, vy.

As mentioned above, in most theoretical models of auctions that admit depen-
dence in valuation draws, researchers have assumed that fy satisfies affiliation.
We do not restrict ourselves to fy’s that satisfy affiliation. We assume only that fy
belongs to a set of distributions P which guarantees the existence and uniqueness
of a MPSE. This set P was fully characterized by de Castro (2008) in the particular
case of grid distributions, which are considered in our Assumption 4.1, below.

Let C denote the set of continuous density functions fy : [0, 1V - R4 and
let A denote the set of affiliated probability functions. For convenience and con-
sistency with the notation used in later sections, we include in A the set of all
affiliated probability functions, not just the continuous ones. Endow C with the
topology of the uniform convergence—that is, the topology defined by the norm
of the supremum

Ifvll= sup [fv(V)I.

vel0, 11V

Let D be the set of probability functions fy:[0, 11V — R, and assume there is a
measure /4 over it.

We now introduce a transformation T¥ : D — D which is the workhorse of our
method. To define T, let I: [0,1] = {1,2,..., k} denote the function that asso-
ciates to v € [0, 1] the ceiling [kv]—viz., the smallest integer at least as large as
kv. Thus, for each v € [0, 1], we have v € (H(”%, H(k—”)]. Similarly, let S(v) denote
the “square” (hypercube) ]_[,]IVZI(H(U”%, @] where v collects (vi, vp,...,Vy) €
[0, 1]. From this, we define TX : D — D as the transformation that associates to
each fy € D the probability density function T ( fy) given by

T =k [ fr@du.
S(v)
Observe that T#( fv) is constant over each square ]_[,1:]:1 (m”k—_l, mT"], for all com-
binations of m, € {1,..., k}. The term k" above derives from the fact that each
my,—1 my

square ]_[,/l\':l( — > 7] has volume (1/ k™). Note that for all probability density

functions fy € D, T!(fv)(v) equals one for all v € [0, 1]V, that is, T'( fy) is the
uniform distribution on [0, 1]V.
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We now need to introduce a compact notation to represent arrays of dimension
N times

k x k x --- x k. We denote by MY the set of arrays and by [P] an array in that
set. When there are but two bidders, an array is obviously just a matrix. In the
application of this model to field data, which we describe in Section 5, N is three.
The (i1, i2, ..., iny)th element of an array is denoted [P](iy, i2, ..., in), or [P](i)
for short, where i denotes the vector (i1, ia,...,iny). Now, I(v) =iifv e (%, %].
Thus, for k € N, we define the finite-dimensional subspace DFcDas

D ={fy e D:3Ple M*", fy(v) =[PI[I(v)). ....T(wn)1}.

Observe that D is a finite-dimensional set. In fact, when N is two, a probability
density function fy € Dk can be described by a (k x k) matrix P as follows:

31 Pl i " i—1 J—1 ]

GO AL =PI it e (S ] < (D]

for i, j € {1,2,...,k}. The definition of fy at the zero measure set of points
{(v1, 1) = (%, %):i =0 or j = 0} is arbitrary.

Note, too, that the width of the cells can be allowed to vary. For example, one
might be 0.3 wide, while the next one can be 0.2 wide, the third 0.1 wide, the next
0.25, and the last 0.15. In fact, the transformation can be defined in terms of rectan-
gles, instead of squares as above. To illustrate this, consider again the symmetric
case and introduce Figure 4. Let 0 =rg <rj <rp <--- <ryp_1 <ry =1 be an
arbitrary partitioning of the interval [0, 1].2 Now, define I: [0, 1] — {1,2,...,k}

V2

1 [l [l [l [l
| | | |
R l
.85 777777777 [ e e R
| | | |
N E—— s
| | | |
N e e St iy
3p-mmmm--- T
| | | |
Lo !
3 5 6 .85 1 v

FI1G. 4. Symmetric nonequi-spaced grid.

2We implicitly assume here that the r| < - -+ < ry that form B become dense in [0, 1] as k increases.
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by I(v) = j if and only if v € (r;_1, r;]. Define B(v) as the rectangle (box) where

v collects (v, ...,vy) € [0, 11V lies. Thus, B(v) = 1_[2/:1(}’]1(1)”)_1, T(v,) |- Now,
define
fIB(V) f\(f)(“) du
TE(fP V) = ———.
JB(v) du

The following theorem was proven by de Castro (2008):

THEOREM 3.1. Let f\? be a symmetric and continuous probability density
function. f‘(; is affiliated if and only if for all k, Tﬁ( f‘(;) is also affiliated.

In our notation,
fed & Th(fheA VkeN
or

A= TzFANDh.
keN
Why is this important? Well, in many applications, the set of hypercubes defined
by a large k£ will have many empty cells, which causes problems in both estimation
and inference. Thus, one may want to subdivide the space of valuations irregularly,
but symmetrically, as illustrated in Figure 4 when N is two.

4. Test of affiliation. The key result from de Castro (2007) that allows us to
develop our test of symmetric affiliation is the following: if the true probability
density function f\g exhibits affiliation, then ']I‘I’EB( f8), a discretized version of it,
will too. (See Theorem 3.1, above.) To the extent that the grid distribution ’]I"IEB( f‘(})
can be consistently estimated from sample data, one can then test whether the es-
timated grid distribution exhibits affiliation. Of course, sampling error will exist,
but presumably one can evaluate its relative importance using first-order asymp-
totic methods.

Consider a sequence of 7" auctions indexed t =1, ..., T at which N bidders par-
ticipated by submitting the NT bids {{sm}flv: l}zT: |- We note that affiliation is pre-
served under a monotonic transformation, so examining a discretization of g(s)(s),
the true probability density function of bids under the hypothesis of expected-profit
maximizing equilibrium behavior, is the same as examining f‘(} (v). Of course, nei-
ther f‘(,) nor gg is known. One can, however, construct an estimate of ']I‘IIEB (g(s)) on
the interval [0, 1]V by first transforming the observed bids according to

u,,,:sr_”ii, n=1,...,Nandt=1,...,T,
5—s
where s is the smallest observed bid and s is the largest observed bid, and then by
breaking up this hypercube into L(= k") cells and counting the number of times
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that a particular N-tuple falls in that cell.> Now, the random vector Y, which rep-
resents the number of outcomes that fall in each of the cells and equals the vector
(Y1, Y2, ..., Y) ", follows a multinomial distribution having the joint probability
mass function

o
gy(ylm) = ————| | 7;",
yil-eeyl ¢

where 1y equals Pr(Y, = y;), with y, =0, 1, ..., T, while & collects (my, ..., L)
and lives on the simplex—viz., the set

Sp={mlr =0, /7w =1)

with ¢z being an (L x 1) vector of ones. Note, too, that tTy equals T, the number
of observations.

For ¢ =1, ..., L, the unconstrained maximum-likelihood estimates of the 7y’s
are the (y¢/T)’s. To test for affiliation, maximize the following logarithm of the
likelihood function (minus a constant):

L(m) =y log(n)
subject to

(1) the vector & lies in the simplex Sy ;
(2) all of the determinental inequalities required for TP, hold.

Then compare this value of £ with the unconstrained one.

While the determinental constraints required for TP, are convex sets of the para-
meters when the submatrices are symmetric, they are not for general submatrices.
However, by taking logarithms of both sides of any general determinental inequal-

ity

ab > cd,

one can convert this into a linear inequality, which does give rise to convex con-
straint sets, albeit in variables that are logarithms of the original variables. To wit,

loga +logb —logc —logd =0

defines a convex set (in the transformed variables loga, ..., logd). Of course, the
adding-up constraint for the simplex must be finessed—for example, by consider-
ing the following:

exp(loga) + exp(log b) + exp(logc) + exp(logd) + --- < 1,

3We know that the support of gg is strictly positive at o9(@), the true upper bound of support of

bids, and we assume that f8 is strictly positive at v, so g(S) is strictly positive at o9(v), the true lower
bound of support of bids. Consequently, the sample estimators of the lower and upper bounds of
support of S converge at rate 7', which is faster than the rate of convergence of sample averages—
rate /T. Hence, when using sample averages in our estimation, we can ignore this first-stage, pre-
estimation error—at least under first-order asymptotic analysis.
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which gives rise to a convex set. Thus, the problem is almost a linear programme.

For known N and fixed k, the specific steps involved in implementing the test
in this problem are the following. First, form the grid distribution of the joint den-
sity as the unknown array [P]. Letting [E] denote the array of counts for the grid
distribution, the logarithm of the likelihood function for this multinomial process
is

(4.1) Y _[E1@ log{[P](®)}.

Now, the following inequalities must be met:

4.2) log{[PI(} <0 and } exp(log{[PIM}) <1,

while symmetry requires the following linear restrictions:
(4.3) [P1() = [Plle®)]
where ¢(-) is any permutation, and affiliation requires the following determinental

inequalities:

>0

4.4) {[P](i\/i)[P](i/\i)}

[PI(H[P1G)
hold. A test of affiliation, within a symmetric environment, involves comparing the
maximum of equation (4.1), subject to the constraints in (4.2) and (4.3), with the
maximum of equation (4.1), subject to the constraints in (4.2), (4.3) and (4.4).

Our test of symmetric affiliation is based on the difference between the maxi-
mum of the logarithm of the likelihood function E([IA)]) and the maximum of the
logarithm of the likelihood function under symmetric affiliation £([P]). Obviously,
the sampling theory associated with the difference in these two values of the objec-
tive function £ is not straightforward because not all of the inequality constraints
required by MTP, may hold and, from sample to sample, the ones that do hold can
change, but we shall suggest several strategies to deal with this, below.

Experience gleaned from other models with a related structure—for example,
Wolak (1987, 1989a, 1989b, 1991) as well as Bartolucci and Forcina (2000), who
investigated MTP; in binary models—suggests that the likelihood ratio (LR) sta-
tistic
4.5) 2[L([P]) — L(PD]

is not distributed according to a standard x 2 random variable.

Introducing vec[P] as a short-hand notation, for the L-vector created from the
array [P], our constrained-optimization problem can be summarized in a notation
similar to that of Wolak (1989b) as

ma[llg(] yT log(vec[P]) subjectto h(vec[P]) >0y,
vec
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where h: RY — R’ is the function representing all J relevant constraints where
J < L and L is the total number of variables under the alternative hypothesis.
(Here, for notational parsimony, we have ignored the adding-up condition, which
is implicit.)

Consider Nj(vec[PY]), a neighborhood of the true value vec[P"]. Denote by

H(vec[P%]) the matrix of partial derivatives whose (i, j)-element is %ﬁ;{]};h.
Now, let us define the set B = {vec[P]: H(vec[P°])vec[P] > 0, vec[P] € RL}. De-
note by Z (vec[P"]) Fisher’s information matrix which is defined by

8% L (vec[P))
dvec[P] dvec[P]T ]

. 1 .
Tli)moo T & [PO] |:
evaluated at vec[P]. Finally, denote by

1° = H(vec[P°DZ (vec[P°]) ~'H(vec[P°] "

the variance—covariance matrix of h(vec[f’]) and by o (j, J — j, l'IO), the proba-
bility that j constraints bind, that (J — j) constraints are strictly satisfied, that is,
they are nonbinding. We have the following:

THEOREM 4.1. Consider the local hypothesis testing problem

Hy : h(vec[P]) > 0;vec[P] Ng(vec[PO]),

H; : not Hy.
The asymptotic distribution of the likelihood-ratio statistic satisfies the following
property:.

J
sup Prpoy Z(veepo))-1 (D = ) =Prppoy(D = ) = Y Pr(W; > ) (j, J — j, ),
€ j=0

where D is the asymptotic value of the test statistic, while W is an independent
x 2 random variable having j degrees of freedom.

PROOF. It is sufficient and straightforward to verify that the assumptions of
Theorem 4.2 in Wolak (1989a) are satisfied. [

Because this statistic depends on the unknown population grid distribution [P°],
the statistic is not pivotal. Kodde and Palm (1986) have provided lower and upper
bounds for this test statistic for tests of various sizes and different numbers of
maximal constraints.

According to Wolak (1989a), the best way to evaluate the weights is using
Monte Carlo simulation. Wolak also offered lower and upper bounds for the prob-
abilities above [see his equations (19) and (20), page 215]; these bounds are based
on Kodde and Palm (1986). An alternative strategy would be to adapt the bootstrap
methods of Bugni (2008) to get the appropriate p-values of the test statistic. Yet
a third strategy would be to adapt the subsampling methods described in Politis,
Romano and Wolf (1999) as was done by Romano and Shaikh (2008).



TESTING AFFILIATION IN MODELS OF AUCTIONS 2087

4.1. Some comparisons with other nonparametric methods. It should be
noted, too, that our proposed estimation strategy involves nothing more than es-
timating a histogram using a special class of grids. Scott [(1992), page xi] has
argued that the classical histogram “remains the most widely applied and most
intuitive nonparametric estimator.” In other words, the procedure proposed here
is not based on any unfamiliar concepts. Of course, there are more statistically
efficient methods, but they also have limitations, as Scott (1992) has discussed.
Also, although the rate of convergence of histogram estimation is slow, it is still
reasonable; see Scott [(1992), Theorem 3.5, page 82].

Note, too, the similarities between grid-distribution and kernel-smoothed esti-
mators. Kernel-smoothed density estimators are well-behaved and have good rates
of convergence when the probability density functions to be estimated are contin-
uously differentiable C!.# The set C' is dense in the set of all probability density
functions. Similarly, grid distribution estimators are well-behaved for probability
density functions in D™ = |J{2, D*, which is also a dense set in the set of all
probability density functions.”> While C! probability density functions form a fa-
miliar and well-known class probability density functions, the probability density
functions in D are also familiar because they are just (a special class of) sim-
ple functions, which are fundamental, such as in the definition of the Lebesgue
integral. When estimating grid distributions, one has to choose k or, equivalently,
the size of the bin (1/k), which is nothing more than the bandwidth of the grid-
distribution estimator. Similarly, kernel-smoothing requires a choice of bandwidth
parameter, too. In sum, nonparametric estimation using either grid distributions or
smoothed kernels is very similar.

4.2. Consistency and power of the proposed test. Of course, one concern is
that k appears fixed in our analysis, but T is increasing, so our test is potentially
inconsistent. We imagine a sequence of {k7} with values increasing as T increases,
but not as fast as 7. Below, we discuss in detail what we have in mind. Another
worry is that the test statistic will be ill-behaved if k7 tends to infinity. Thus, an
upper bound k must exist. This discussion leads us to introduce the following as-
sumption concerning f‘(; which allows us to side-step these technical problems:

ASSUMPTION 4.1.  The true data-generating process fV0 is a grid distribution,
that is, there exists k € N such that f‘g € Dk,

4Methods exist that require fewer smoothness conditions—for example, the function need just be
continuous CY; others require additional smoothness, C2 or higher. This does not change our claims.

SRecall that DF is the set of grid distributions where the interval is subdivided into k intervals, that
is, DK = TX(D).
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As the discussion above made clear, this assumption is similar to the assump-
tions of smoothness concerning f\g which kernel-smoothing methods require. In
addition to this analogy, we offer two additional justifications for Assumption 4.1.

First, the set of grid distributions is dense in the set of all distributions: even if
the data-generating process (DGP) f8 were not a grid distribution, there is a grid
distribution that is arbitrarily close to it. To wit, no finite amount of data could
reject Assumption 4.1. In this sense, Assumption 4.1 is almost “no assumption.”

Second, the DGP in question is a distribution of values, which are discrete (up
to, say, dollars or cents or Yen or Won or whatever units one wants). When one as-
sumes a smooth probability density function, one is making an approximation, for
computational convenience: such an approximation does not seem, to us at least,
any more appealing than the one we make. On the contrary, it seems more natural
to us to assume simple probability density functions rather than any smoothness
conditions. In general, smoothness is just a tool used to lighten the burden in the
technical analysis of a particular problem. In our case, by assuming that the distri-
bution is simple (i.e., a grid distribution), we can stay closer to reality.

Under Assumption 4.1, our test is consistent, for Assumption 4.1 implies that
a k exists such that f8 € D¥. Therefore, the number of inequalities required for
affiliation remains fixed. We are then in the standard framework considered by
Wolak, which has a fixed set of inequalities. Thus, consistency follows directly
from Wolak’s research. A technically sophisticated reader may feel that our con-
sistency result is trivial, once Assumption 4.1 is made. The point of this paper (and
this subsection, in particular) is not to provide a technical proof of consistency, but
rather to remove any doubts concerning the consistency of our test under a reason-
able assumption.

For any specific implementation, k is assumed fixed in the approximation. In the
asymptotics, we imagine k7 increasing as T increases, until some upper bound K
is reached. In any application, however, if T is quite large, not what we encounter
in our application, then one can vary k, which will potentially yield different esti-
mates.

The power of the proposed test clearly depends on the choice of k. Were k
chosen to be one (i.e., a uniform distribution on the N-dimensional hypercube),
then affiliation would never be rejected. On the other hand, given a finite sample
of T observations, a large k will result in many cells having no elements. While
the choice of k is obviously important and certainly warrants additional theoret-
ical investigation, perhaps along the lines of research in time-series analysis by
Guay, Guerre and Lazarova (2008) concerning optimal adaptive detection of cor-
relation functions, it is beyond the scope of this paper. In fact, in most applications
to auctions, where samples are often quite small, k£ will be dictated by practical
considerations—viz., the relative size of 7.

4.3. Bounding the number of inequalities. For our test statistic to be well-
behaved, it is important to know that an upper bounds exists on the number of
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inequalities. For arbitrary N and k, assuming a symmetric distribution, we can
construct a bound on how many inequalities there are. Because we focus on sym-
metric distributions,

LA1G, B2y -y in) = [AO1G iy o),

where (i1, 15, ..., i)) is a permutation of (i1, i3, ..., iy). Thus, we need only con-
sider sorted indices, indices (i1, i2,...,iy) for which i{ > iy > --- > iy. Con-
sider (i1, i2,...,iy), a sorted index having ¢ different numbers; let rq, ..., r, de-
note the number of repetitions of the different numbers in (i1, ip,...,in). Ob-
viously, r; + --- + r, = N. Using this notation, the number of permutations of
(i1,02,...,in) 1s then % For instance, the index (4, 3, 3, 2, 2, 2) has % or
120 different permutations.

Given the above, we can now focus our attention to sorted indices only. Consider
the lexicographic order of them. In this way, we can attribute an unambiguous
natural number to each sorted index of length N. For example, consider N = 3, in
which case (1, 1, 1) corresponds to 1; (2,1, 1), to 2; (2,2,1),t0 3; (3,1,1) to 5;
(3,2,2),to 7;and (4,1, 1) to 11. It is important to develop an algorithm to convert
a sorted index into a corresponding number, which we describe now.

First, let us define Num(j, N) as the number of all indices that are weakly be-
low (in the lexicographic order) to the index (j, j, ..., j), thatis, the index that has
Jj in all positions and has length N. It is easy to see that Num(1, N) = 1, because
there is just one index weakly below (1,1,1,...,1):(1,1,1,..., 1), itself. Also,
Num(2,2) = 3, because (1, 1), (2, 1) and (2, 2) are the sorted indices weakly be-
low (2, 2). Similarly, Num(2, 3) =4, because (1,1, 1), (2,1, 1), (2,2, 1), (2,2,2)
are the sorted indices weakly below (2, 2, 2). From this argument, it is not diffi-
cult to see that Num(2, N) = N + 1. Observe, too, that Num(j, 1) = j, because
there are only the indexes (1), (2), ..., (j) weakly below (j). de Castro (2008)
has proven the following:

LEMMA 4.1. Num(j, N) = (Nj*_f;l).

Thus, if we fix the number of bidders N and the number of intervals k, then
there are M = Num(k, N) = (N ]jfl_l) different indices. Affiliation will be satis-
fied if the corresponding inequality is satisfied for any pair of indices (i, i’). Since
there are (Az/[ ) or w pair of such indices, it is sufficient to test (M? — M)/2 in-
equalities. Note, however, that this is an upper bound because some inequalities are
implied by others. The above discussion also provides some guidance concerning
how to choose the inequalities; however, in an effort to conserve space, we leave
the discussion of what the minimal set of sufficient inequalities is to another paper.

4.4. Two related papers. Like us, Li and Zhang (2008) have examined some
important economic implications of affiliation. Instead of considering bids, how-
ever, Li and Zhang examined the entry behavior of potential bidders whose signals
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may be affiliated. Theirs is a parametric analysis and they implemented their test
using simulation methods, examining timber sales organized by the Department
of Forestry in the State of Oregon. Li and Zhang found only a small degree of
affiliation, perhaps because the zero/one entry decision is not as informative as bid
data.

Jun, Pinkse and Wan (2009) have developed a consistent nonparametric test de-
signed for continuous data. By avoiding discretization, Jun et al. presumably have
more information than we do. On the other hand, having rejected affiliation with
their test, it is unclear what to do within their framework because an alternative
hypothesis is unspecified. In contrast, our approach augments the theoretical work
of de Castro (2008) where the alternative hypothesis is clearly outlined.

4.5. Policy uses for grid distributions. de Castro (2008) has developed a com-
plete theoretical treatment of grid distributions, even in the absence of affiliation.®
His idea is as follows: first, assume that f‘(} € DK for some k; that is, the DGP
is a grid distribution—Assumption 4.1 holds. Standard estimation methods (his-
tograms) can be used to calculate [P] € D that best approximate fVO.

Under de Castro’s method, one can then test whether [f’] has a symmetric
MPSE. The method developed by de Castro is exact: to wit, modulo sampling er-
ror, [P] has a symmetric MPSE if and only if the method detects it. Errors can occur
only in simple numerical operations such as sums, divisions and square roots. It
turns out that determining the existence of a symmetric MPSE is nontrivial when
affiliation is absent.

A

If [P] has a symmetric MPSE, then it can be used to calculate expected revenues

under the first- and second-price auctions, denoted R[lf)] and R[zf)], respectively. In
this way, one can determine which auction format yields a higher expected revenue
for [P] and, also, the magnitude of the revenue difference (R[ZIA)] —R [113]), to decide

whether it is significant.”

6de Castro’s method is too long to be described in detail here; his paper is more than seventy pages
long. In a nutshell, the method is as follows: first, it is shown that the usual proof of uniqueness of
monotonic pure-strategy equilibrium can be adapted to grid distribution. Thus, if there is a monotonic
pure-strategy equilibrium, then it is unique and characterized by the solution to a differential equa-
tion. Also, since we consider the symmetric case, an explicit solution is available. In the case of
grid distributions, this solution is proven to be a rational function (a quotient of polynomials). It is
then shown that in each square defining a grid distribution, it is sufficient to verify the equilibrium
inequality (optimality of following the bidding function) only with respect to a finite number of pairs
(types, bids). This step is necessary because, in principle, one needs to check an infinite number of
pairs (types, bids). The final number of points to be tested is small (less than six) for each square.
Finally, it is proven that the candidate is an equilibrium if and only if the test is satisfied. de Castro
has also provided expressions for revenues R [lf)] when [P]is a grid distribution.

7As explained above, de Castro has shown that if a monotone, pure-strategy equilibrium exists
in a first-price auction, then it is unique. Moreover, we can obtain the underlying distribution of
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The procedure can then be repeated using [P], which is obtained under the con-
straint that the distribution satisfies affiliation. We know that, under affiliation,
a symmetric MPSE exists and that (R2 — RL ) >0, but the method also al-

[P]
lows one to decide whether the magmtudes of the differences (R [IP] —R [113]) and
(R[ZP] — R[QP]) are economically important. It is quite possible that the expected-

revenue difference between first- and second-price auctions is nonzero, but small
in economic terms, and the method allows one to examine samphng varlablhty by
repeating the above procedures using resampled draws from [P] or [P]. Thus, if
the estimated difference is economically large relative to the sampling error, then
this is important information for a policy maker to know.

Thus, the grid distributions proposed in this paper have many advantages be-
cause a theory exists that can be used for policy analysis. Such theories have not
yet been developed for other methods; if affiliation is rejected under these methods,
then what to do?

5. Empirical application. Above, in Section 3, in the tradition of the the-
oretical literature concerning auctions, we developed our model of bidding in
terms of valuations for an object to be sold at auction under the first-price, sealed-
bid format. Sealed-bid tenders are often used in procurement—that is, low-price,
sealed-bid auctions at which a buyer (often a government agency) seeks to find
the lowest-cost producer of some good or service. In this section we report results
from an empirical investigation of procurement tenders for road resurfacing by a
government agency. Although it is well known that results from auctions can be
translated to procurement, and vice versa, sometimes this translation is tedious.
We direct the interested reader to the work of de Castro and de Frutos (2010) who
have developed a procedure to translate results from auctions to procurement.

We have applied our empirical framework to data from low-price, sealed-bid,
procurement auctions held by the Department of Transportation (DOT) in the State
of Michigan. At these auctions, qualified firms are invited to bid on jobs that in-
volve resurfacing roads in Michigan. We have chosen this type of auction because
the task at hand is quite well understood. In addition, there are reasons to believe
that firm-specific characteristics make the private-cost paradigm a reasonable as-
sumption; for example, the reservation wages of owners/managers, who typically
are paid the residual, can vary considerably across firms. On the other hand, other
features suggest that the cost signals of individual bidders could be dependent, per-
haps even affiliated; for example, these firms hire other factor services in the same

values from the distribution of bids, as is typically done in the econometrics of auctions. Although
second-price auctions may have multiple equilibria, in general, in the literature, researchers typically
consider only the truthful bidding equilibrium. The truth-telling equilibrium does not depend on the
assumption of affiliation: it is an equilibrium for any distribution. Thus, if we have the distribution of
values, we also have the distribution of bids for this equilibrium.
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market and, thus, face the same costs for inputs such as energy as well as paving
inputs. For example, suppose paving at auction ¢ has the following Leontief pro-
duction function for bidder n:

qnt = min(@ ot Zi’)
&n 8y 8. )
where & denotes the managerial labor, while y and z denote other factor inputs
which are priced competitively at W; and X;, respectively, at auction ¢. Assume
that R, bidder n’s marginal value of time, is an independent, private-cost draw
from a common distribution. In addition, assume that the other factor prices W;
and X, are draws from another joint distribution, and that they are independent of
R,,. The marginal cost per mile C,; at auction ¢ can be then written as

Cnt =nRy +5th + 5th,

which is a special case of an affiliated private-cost (APC) model, known as a condi-
tional private-cost model. The costs in this model are affiliated only when the dis-
tribution of R, is log-concave, which is discussed extensively in de Castro (2007).
Li, Perrigne and Vuong (2000) have studied this model extensively. In short, the
affiliated private-cost paradigm (APCP) seems a reasonable null hypothesis.

We did not investigate issues relating to asymmetries across bidders because we
do not know bidder identities, data necessary to implement such a specification.
Because no reserve price exists at these auctions, we treat the number of partici-
pants as if it were the number of potential bidders and focus on auctions at which
three bidders participated. Thus, we are ignoring the potential importance of par-
ticipation costs which others, including Li (2005), have investigated elsewhere.

The data for this part of the paper were provided by the Michigan DOT and were
organized and used by Hubbard, Li and Paarsch (2009); a complete description of
these data is provided in that paper. In Table 1 we present the summary descriptive
statistics concerning our sample of 834 observations—278 auctions that involved
three bidders each. We chose auctions with just three bidders not only to illustrate
the general nature of the method (if we can do three, then we can do N), but also
to reduce the data requirements. When we subdivide the unit hypercube into k¥
cells, the average number of bids in a cell is proportional to (k¥ /T). When N is
very large, the sample size must be on the order of k" in order to expect at least

TABLE 1
Sample descriptive statistics—dollars/mile: N =3; T =278

Variable Mean St. Dev. Median Minimum Maximum

Engineer’s estimate ~ 475,544.54  491,006.52 307,331.26  54,574.41  3,694,272.59
Winning bid 466,468.63  507,025.81 286,102.57 41,760.32  3,882,524.81
All tendered bids 507,332.42  564,842.58 317,814.77 41,760.32  5,693,872.81
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one observation in each cell. This example also illustrates the potential limitations
of our approach; viz., even in relatively large samples, some of the cells will not
be populated, so k will need to be kept small. However, one can circumvent this
problem by varying the width of the subdivisions as we do below. Of course, one
must then adjust the conditions which define the determinental inequalities. We
describe this below, too.

Our bid variable is the price per mile. Notice that both the winning bids as well
as all tendered bids vary considerably, from a low of $41,760.32 per mile to a
high of $5,693,872.81 per mile. What explains this variation? Well, presumably
heterogeneity in the tasks that need to be performed. One way to control for this
heterogeneity would be to retrieve each and every contract and then to construct
covariates from those contracts. Unfortunately, the State of Michigan cannot pro-
vide us with this information, at least not any time soon.

How can we deal with this heterogeneity? Well, in our case, we have an engi-
neer’s estimate p of the price per mile to complete the project.® We assume that
C,:, the cost to bidder n at auction ¢, can be factored as follows:

(5.1) Cout =2°(p)ens,

where A is a known function. One example of this is
Cnt = piéns-
Another is
Cnr = 5019;3' Ent-

Under equation (5.1), the equilibrium bid Bj,; at auction ¢ for bidder n takes the
following form:

By = )\O(pt),B(Snt)’
SO
By
20(p0)
Of course, we do not know A, but we can estimate A° either parametrically, under

an appropriate assumption, or nonparametrically, using the following empirical
specification:

= B(ent)-

log Byr = ¥ (pr) + Upy,s

80f course, besides p, it is possible that other covariates, which are common knowledge to all the
bidders, exist. If these other common-knowledge covariates exist, then we could wrongly conclude
that the signals have a strong form of correlation when, in fact, the correctly-specified model of
signals (conditioned on the common-knowledge information) would have only small correlation.
Unfortunately, we do not have access to any additional information. Were such information available,
then we would condition on it as well.
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FIG. 5. Data as well as NP, LS and LAD regressions: logarithm of bids versus logarithm of engi-
neer’s estimate.

where v (p;) denotes — log[)»o(pt)] and U,; denotes log[B(enr)].

Empirical results from this exercise are presented in Figure 5. In this figure are
presented results for the nonparametric regression (NP), the least-squares regres-
sion (LS) and the least-absolute-deviations (LAD) regression. To get some notion
of the relative fit, note that the R? for the LS regression is around 0.97. The LS
estimates of the constant and slope coefficients are —0.3114 and 1.0268, respec-
tively, while LAD estimates of the constant and slope coefficients are —0.3221 and
1.0276, respectively.

Subsequently, we took the normalized fitted residuals, which (for the LS case)
are depicted in Figure 6, and applied the methods described in Section 4 above
for a k of two. Our test results are as follows: the maximum of the logarithm
of the likelihood function (minus a constant) without symmetry was —442.50,
while the maximum of the logarithm of the likelihood function under symmetry
was —444.88, and under symmetric affiliation it was also —444.88—a total differ-
ence of 2.38.7 At size 0.05, twice the above difference is above the lower bound
provided by Kodde and Palm (1986), but below the upper bound, so the test is
inconclusive.

Because a k of two is unusually small, we introduced a symmetric, but noneq-
uispaced, grid distribution—Ilike the one depicted in Figure 4, but with intervals
[0,0.4), [0.4,0.6) and [0.6, 1.0]. The TP, inequalities can be derived in the usual

9The results for the LAD residuals were identical: the probability array obtained by discretizing
the LAD residuals was exactly the same as in the LS case because none of the fitted residuals was
classified differently. This is not, perhaps, surprising given the similar fits of the two empirical spec-
ifications.
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FIG. 6. Scatterplot of transformed fitted LS residuals.

way, but the adding-up inequality must be rewritten, in this case as
a+2b+8c+8d+16e+8f +4d +2h +4i +4b
+16f+8g+8e+2g+8j+8f+16c+8i <1.

Again, we applied our methods. Our test results are as follows: the maximum of
the logarithm of the likelihood function (minus a constant) under symmetry was
—715.72, while the maximum under symmetric affiliation was —716.49—a differ-
ence of 0.77.'0 At size 0.05, twice the above difference is below the lower bound
provided by Kodde and Palm, so we do not reject the hypothesis of symmetric
affiliation. To put these results into some context, the center of the simplex had a
logarithm of the likelihood function of —916.24; using the marginal distribution
of low, medium and high costs (0.4233, 0.4808, 0.0959), and imposing indepen-
dence yielded a logarithm of the likelihood function of —784.67.

6. Summary and conclusions. We have constructed a tractable empirical
model of equilibrium behavior at first-price auctions when bidders’ private val-
uations are dependent, but not necessarily affiliated. Subsequently, we developed
a test of affiliation and then investigated its small-sample properties. We applied
our framework to data from low-price, sealed-bid auctions used by the Michigan
DOT to procure road-resurfacing: we do not reject the hypothesis of affiliation in
cost signals.

This information is potentially useful to a policy maker. The apparent high de-
gree of estimated affiliation also explains why low levels of observed competition

1OAgain, the results for the LAD residuals were virtually identical: the probability array obtained
by discretizing the LAD residuals was almost the same as in the LS case.
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are often sufficient to maintain relatively low profit margins: strong affiliation is
akin to fierce competition. Under strong affiliation, a potential winner knows that
his nearest competitor probably has a valuation (cost) close to his, and this disci-
plines his bidding behavior: he becomes more aggressive than under independence.

Our research has other policy implications, too. As mentioned above, it is well
known that, under affiliation, the English auction format, on average, generates
more revenue for the seller than the first-price, sealed-bid format. In procurement,
under affiliation, an English or a Vickrey auction would get the job done more
cheaply than the low-price, sealed-bid format. Were the English or Vickrey for-
mats being used and affiliation not rejected, then the procurement agency would
be justified in its choice of mechanism. What remains a bit of a puzzle is why the
low-price, sealed-bid format is used in the presence of such strong affiliation. Per-
haps, other features, such as the ability of the low-price, sealed-bid auction format
to thwart collusion are important, too. Alternatively, perhaps other moments of the
bid distribution, such as the variance, are important to the procurement agency.

On the other hand, had affiliation been rejected, then the procedures described
in Section 4 could be used to determine which auction format would get the job
done most cheaply, on average. Again, it is possible that the English or Vickrey
formats would still be preferred. In any case, the methods described in Section 4
permit a better understanding of the bidding differences, which can aid in choosing
the best auction format.
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SUPPLEMENTARY MATERIAL

Monte Carlo Study (DOI: 10.1214/00-AOAS344SUPP; .pdf). In this supple-
ment, we discribe a small-scale Monte Carlo study used to investigate the numeri-
cal as well as small-sample properties of our testing strategy.
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