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Mass spectrometry-based proteomics has become the tool of choice for
identifying and quantifying the proteome of an organism. Though recent
years have seen a tremendous improvement in instrument performance and
the computational tools used, significant challenges remain, and there are
many opportunities for statisticians to make important contributions. In the
most widely used “bottom-up” approach to proteomics, complex mixtures of
proteins are first subjected to enzymatic cleavage, the resulting peptide prod-
ucts are separated based on chemical or physical properties and analyzed us-
ing a mass spectrometer. The two fundamental challenges in the analysis of
bottom-up MS-based proteomics are as follows: (1) Identifying the proteins
that are present in a sample, and (2) Quantifying the abundance levels of the
identified proteins. Both of these challenges require knowledge of the biolog-
ical and technological context that gives rise to observed data, as well as the
application of sound statistical principles for estimation and inference. We
present an overview of bottom-up proteomics and outline the key statistical
issues that arise in protein identification and quantification.

1. Introduction. The 1990s marked the emergence of genome sequencing
and deoxyribonucleic acid (DNA) microarray technologies, giving rise to the
“-omics” era of research. Proteomics is the logical continuation of the widely-used
transcriptional profiling methodology [Wilkins et al. (1996)]. Proteomics involves
the study of multiprotein systems in an organism, the complete protein comple-
ment of its genome, with the aim of understanding distinct proteins and their roles
as a part of a larger networked system. This is a vital component of modern systems
biology approaches, where the goal is to characterize the system behavior rather
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than the behavior of a single component. Measuring messenger ribonucleic acid
(mRNA) levels as in DNA microarrays alone does not necessarily tell us much
about the levels of corresponding proteins in a cell and their regulatory behav-
ior, since proteins are subjected to many post-translational modifications and other
modifications by environmental agents. Proteins are responsible for the structure,
energy production, communications, movements and division of all cells, and are
thus extremely important to a comprehensive understanding of systems biology.

While genome-wide microarrays are ubiquitous, proteins do not share the same
hybridization properties of nucleic acids. In particular, interrogating many proteins
at the same time is difficult due to the need for having an antibody developed for
each protein, as well as the different binding conditions optimal for the proteins
to bind to their corresponding antibodies. Protein microarrays are thus not widely
used for whole proteome screening. Two-dimensional gel electrophoresis (2-DE)
can be used in differential expression studies by comparing staining patterns of
different gels. Quantitation of proteins using 2-DE has been limited due to the lack
of robust and reproducible methods for detecting, matching and quantifying spots
as well as some physical properties of the gels [Ong and Mann (2005)]. Although
efforts have been made to provide methods for spot detection and quantification
[Morris, Clark and Gutstein (2008)], 2-DE is not currently the most widely-used
technology for protein quantitation in complex mixtures. Meanwhile, mass spec-
trometry (MS) has proven effective for the characterization of proteins and for the
analysis of complex protein samples [Nesvizhskii, Vitek and Aebersold (2007)].
Several MS methods for interrogating the proteome have been developed: Sur-
face Enhanced Laser Desorption Ionization (SELDI) [Tang, Tornatore and Wein-
berger (2004)], Matrix Assisted Laser Desorption Ionization (MALDI) [Karas
et al. (1987)] coupled with time-of-flight (TOF) or other instruments, and gas chro-
matography MS (GC-MS) or liquid chromatography MS (LC-MS). SELDI and
MALDI do not incorporate online separation during MS analysis, thus, separation
of complex mixtures needs to be performed beforehand. MALDI is widely used in
tissue imaging [Caprioli, Farmer and Gile (1997); Cornett et al. (2007); Stoeckli
et al. (2001)]. GS-MS or LC-MS allow for online separation of complex samples
and thus are much more widely used in high-throughput quantitative proteomics.
Here we focus on the most widely-used “bottom-up” approach to MS-based pro-
teomics, LC-MS.

In LC-MS-based proteomics, complex mixtures of proteins are first subjected
to enzymatic cleavage, then the resulting peptide products are analyzed using a
mass spectrometer; this is in contrast to “top-down” proteomics, which deals with
intact proteins and is limited to simple protein mixtures [Han, Aslanian and Yates
(2008)]. A standard bottom-up experiment has the following key steps (Figures
1–3): (a) extraction of proteins from a sample, (b) fractionation to remove con-
taminants and proteins that are not of interest, especially high abundance house-
keeping proteins that are not usually indicative of the disease being studied, (c) di-
gestion of proteins into peptides, (d) post-digestion separations to obtain a more
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FIG. 1. Overview of LC-MS-based proteomics. Proteins are extracted from biological samples,
then digested and ionized prior to introduction to the mass spectrometer. Each MS scan results in
a mass spectrum, measuring m/z values and peak intensities. Based on observed spectral informa-
tion, database searching is typically employed to identify the peptides most likely responsible for
high-abundance peaks. Finally, peptide information is rolled up to the protein level, and protein
abundance is quantified using either peak intensities or spectral counts.

FIG. 2. Sample preparation. Complex biological samples are first processed to extract proteins.
Proteins are typically fractionated to eliminate high-abundance proteins or other proteins that are
not of interest. The remaining proteins are then digested into peptides, which are commonly intro-
duced to a liquid chromatography column for separation. Upon eluting from the LC column, peptides
are ionized.
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FIG. 3. Mass spectrometry. The mass spectrometer consists of an ion source, responsible for ioniz-
ing peptides, the mass analyzer and the detector, responsible for recording m/z values and intensities,
respectively, for each ion species. Each MS scan results in a mass spectrum, and a single sample may
be subjected to thousands of scans.

homogeneous mixture of peptides, and (e) analysis by MS. The two fundamental
challenges in the analysis of MS-based proteomics data are then the identification
of the proteins present in a sample, and the quantification of the abundance levels
of those proteins. There are a host of informatics tasks associated with each of
these challenges (Figures 4–6).

The first step in protein identification is the identification of the constituent
peptides. This is carried out by comparing observed features to entries in a data-
base of theoretical or previously identified peptides (Figure 5). In tandem mass
spectrometry (denoted by MS/MS), a parent ion possibly corresponding to a pep-
tide is selected in MS1 for further fragmentation in MS2. Resulting fragmentation
spectra are compared to fragmentation spectra in a database, using software like
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FIG. 4. Data acquisition: (a) Scan numbers and m/z values for an example raw LC-MS data set.
Each individual scan contains a single mass spectrum. (b) The mass spectrum for scan 5338. (c) A
zoomed-in look at the scans 5275–5400 in m/z range 753–755.5. The cluster of dots is indicative
of a single LC-MS “feature.” (d) The isotopic distribution for this feature in scan 5280. Peaks are
separated by approximately 1/3, indicating a charge state of +3. The monoisotopic mass is thus
753.36 × 3 = 2260.08 Da. (e) The elution profile at m/z 753.36.

SEQUEST [Eng, McCormack and Yates (1994)], Mascot [Perkins et al. (1999)]
or X!Tandem Alternatively, high-resolution MS instruments can be used to ob-
tain extremely accurate mass measurements, and these can be compared to mass
measurements in a database of peptides previously identified with high confidence
via MS/MS [Pasa-Tolic et al. (2004)] using the same software tools above. In ei-
ther case, a statistical assessment of the peptide identification confidence level is
desired. Protein identification can be carried out by rolling up peptide-level iden-
tification confidence levels to the protein level, a process that is associated with a
host of issues and complexities [Nesvizhskii et al. (2003)]. The goal of the iden-
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FIG. 5. Protein identification. Peptide and protein identification is most commonly accomplished by
matching observed spectral measurements to theoretical or previously-observed measurements in a
database. In LC-MS/MS, measurements consist of fragmentation spectra, whereas mass and elution
time alone are used in high-resolution LC-MS. Once a best match is found, one of the following
methods for assessing confidence in the match is employed: decoy databases, empirical Bayes, or
“expectation values.”

tification process is generally to identify as many proteins as possible, while con-
trolling the number of false identifications at a tolerable level. There are a myriad
of options for the exact identification method used, including (i) the choice of a
statistic for scoring the similarity between an observed spectral pattern and a data-
base entry [Craig and Beavis (2004); Perkins et al. (1999)], and (ii) the choice of
how to model the null distribution of the similarity metric [Elias and Gygi (2007);
Keller et al. (2002)]. Two other methods of protein identification exist: de novo
and hybrids of de novo and database matching. This is further explained in Sec-
tion 5.

In quantitation experiments, protein abundances are inferred from the identified
peptides. One of the most common and simplest methods is to count the number
of times a peptide has been seen and accumulate those counts for all the peptides
seen for a given protein. This gives a value that is proportional to the abundance
of the protein, that is, a more abundant protein would be expected to have peptides
that are observed more often [Liu, Sadygov and Yates (2004); Zhang et al. (2009)].
A more accurate method for quantifying the abundance of a peptide is to calculate
the peak volume (or area) across its elution profile using its extracted ion chro-
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FIG. 6. Protein quantitation. The left panel shows the proportion of missing values in an example
data set as a function of the mean of the observed intensities for each peptide. There is a strong inverse
relationship between these, suggesting that many missing intensities have been censored. The right
panel shows an example protein found to be differentially expressed in a two-class human study. The
protein had 6 peptides that were identified, although two were filtered out due to too many missing
values (peptides 1 and 2, as indicated by the vertical shaded lines). Estimated protein abundances
and confidence intervals are constructed from the peptide-level intensities by a censored likelihood
model [Karpievitch et al. (2009a)].

matogram. Protein abundances are inferred from the corresponding peptide abun-
dances (Figure 6). Peak capacity is a function of the number of ions detected for a
particular peptide, and is related to peptide abundance [Old et al. (2005)]. Peptide
abundances can be computed with or without the use of stable isotope labels [Gygi
et al. (1999); Wang et al. (2003)]. In the case of isotopic labeled experiments, usu-
ally a ratio of the peak capacities of the two isotopically labeled components is re-
ported. Regardless of the specific technology used to quantify peptide abundances,
statistical models are required to roll peptide-level abundance estimates up to the
protein level. Issues include widespread missing data due to low-abundance pep-
tides, misidentified peptides, undersampling of peaks for fragmentation in MS/MS,
and degenerate peptides that map to multiple proteins, among others. This is fur-
ther explained in Section 6.

The purpose of this paper is to provide an accessible overview of LC-MS-based
proteomics. Our template for this paper was a 2002 Biometrics paper of similar
focus in the DNA microarray setting [Nguyen et al. (2002)]. It is our hope that
this, like the 2002 paper for DNA microarrays, will serve as an entry-point for
more statisticians to join the exciting research that is ongoing in the field of LC-
MS-based proteomics.

2. Basic biological principles underlying proteomics. Proteins are the ma-
jor structural and functional units of any cell. Proteins consist of amino acids
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arranged in a linear sequence, which is then folded to make a functional protein.
The sequence of amino acids in proteins is encoded by genes stored in a DNA
molecule. The transfer of information from genetic sequence to protein in eu-
karyotes proceeds by transcription and translation. In transcription, single-stranded
mRNA representations of a gene are constructed. The mRNA leaves the nucleus
and is processed into protein by the ribosome in the translation step. This infor-
mation transfer, from DNA to mRNA to protein, is essential for cell viability and
function. In genomic studies, microarray experiments measure gene expression
levels by measuring the transcribed mRNA abundance. Such measurements can
show the absence, under- or over-expression of genes under different conditions.
However, protein levels do not always correspond to the mRNA levels due to a
variety of factors such as alternative splicing or post translational modifications
(PTMs). Thus, proteomics serves an important role in a systems-level understand-
ing of biological systems.

A three-nucleotide sequence (codon) of mRNA encodes for one amino acid in
a protein. The genetic code is said to be degenerate, as more than one codon can
specify the same amino acid. In theory, mRNA could be read in three different
reading frames producing distinct proteins. In practice, however, most mRNAs are
read in one reading frame due to start and stop codon positions in the sequence. The
raw polypeptide chain (a chain of amino acids constituting a protein) that emerges
from the ribosome is not yet a functional protein, as it will need to fold into its
3-dimensional structure. In most organisms, proper protein folding is assisted by
proteins called chaperones that stabilize the unfolded or partially folded proteins,
preventing incorrect folding, as well as chaperonins that directly facilitate fold-
ing. Misfolded proteins are detected and either refolded or degraded. Proteins also
undergo a variety of PTMs, such as phosphorilation, ubiquitination, methylation,
acetylation, glycosylation, etc., which are additions/removals of specific chemi-
cal groups. PTMs can alter the function and activity level of a protein and play
important roles in cellular regulation and response to disease or cellular damage.

A key challenge of proteomics is the high complexity of the proteome due to
the one-to-many relationship between genes and proteins and the wide variety of
PTMs. Furthermore, MS-based proteomics does not have the benefit of probe-
directed assays like those used in microarrays. Although protein arrays are avail-
able, they (a) are challenging to design and implement and (b) are not well suited
for protein discovery, and are thus not as widely used as MS-based technologies
[Nesvizhskii, Vitek and Aebersold (2007)]. Several steps are involved in prepar-
ing samples for MS, such as protein extraction, fractionation, digestion, separa-
tion and ionization, and each contributes to the overall variation observed in pro-
teomics data. In addition, technical factors like day-to-day and run-to-run variation
in the complex experimental equipment can create systematic biases in the data-
acquisition stage.
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3. Experimental procedure. A LC-MS-based proteomic experiment re-
quires several steps of sample preparation (Figure 2), including cell lysis to break
cells apart, protein separation to spread out the collection of proteins into more
homogenous groups, and protein digestion to break intact proteins into more man-
ageable peptide components. Once this is complete, peptides are further separated,
then ionized and introduced into the mass spectrometer.

3.1. Sample preparation. Analysis of the complete cell proteome usually in-
volves collecting intact cells, washing them and adding a lysate buffer, containing
a combination of chemicals that break the cell membrane and protease inhibitors
that prevent protein degradation. Cells are homogenized and incubated with the
buffer, after which centrifugation is used to separate the cellular debris and mem-
brane from the supernatant, or cell lysate. The cell lysis step is unnecessary when
analyzing bodily fluids such as blood serum. Blood samples are centrifuged, after
which red blood cells pellet at the bottom of the tube, and plasma is collected at
the top. Fibrinogen and other clotting factors are removed to obtain serum. High
abundance proteins are also removed, as usually they do not play a role in dis-
ease. If some of the high abundance proteins are not removed, they may dominate
spectral features and obscure less abundant proteins of interest. In LC-MS/MS,
for example, the most abundant peptides are selected in the first MS step for fur-
ther fragmentation in the following MS step, and only peptides selected for further
fragmentation have a chance to be identified; see Section 3.2 for more details.

Because of the complexity of the proteome, separation steps are employed to
spread out the proteins according to different chemical or physical characteristics,
making it easier to observe a greater number of proteins in more detail. At the
protein level, two-dimensional gel electrophoresis (2-DE) is often used to separate
on the basis of both isoelectric point and mass [Berth et al. (2007); Gorg, Weiss
and Dunn (2004)]. Proteins in the gel can be stained and extracted. Analyzing each
stained region of the gel separately, for example, would allow for more detailed
assessment of the total collection of proteins in the sample than if all proteins
were analyzed at once. One of the main sources of error in the gel analysis is
unequal precipitation of the proteins between gels. Thus, horizontal or vertical
shifts and even diagonal stretching effects can be seen in two-dimensional (2-D)
gels, necessitating alignment of all the gels to a reference gel. After gel alignment,
spot detection is performed which may introduce further errors; see Section 7.2 for
more details.

To facilitate protein identification, proteins are usually cleaved/digested chem-
ically or enzymatically into fragments. Digestion overcomes many of the chal-
lenges associated with the complex structural characteristics of proteins, as the
resulting peptide fragments are more tractable chemically, and their reduced size,
compared to proteins, makes them more amenable to MS analysis. As examples of
digestion agents, the trypsin enzyme cleaves at the carboxyl side of lysine and argi-
nine residues, except when either is followed by proline, while chemical cyanogen
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bromide (CNBr) cleaves at the carboxyl site of methionine residues; trypsin is the
most commonly used digestive enzyme. Specificity of the trypsin enzyme allows
for the prediction of peptide fragments expected to be produced by the enzyme and
create theoretical databases. Enzymatic digestion of proteins could be achieved in
solution or gel, although digestion in solution is usually preferred, as gel is harder
to separate from the sample after digestion. Missed cleavages can cause misiden-
tified or missed peptides when searched against the database. Database searches
can be adjusted to include one or more missed cleavages, but such searches take
longer to complete.

Multiple distinct peptides can have very similar or identical molecular masses
and thus produce a single intense peak in the initial MS (MS1) spectrum, making it
difficult to identify the overlapping peptides. The use of separation techniques not
only increases the overall dynamic range of measurements (i.e., the range of rel-
ative peptide abundances) but also greatly reduces the cases of coincident peptide
masses simultaneously introduced into the mass spectrometer. We will describe
one of the most commonly used separation techniques, high-performance liquid
chromatography (HPLC), which is generally practiced in a capillary column for-
mat for proteomics. Other separation techniques exist and are similar in that they
separate based on some molecular properties.

A HPLC system consists of a column packed with nonpolar (hydrophobic)
beads, referred to as the stationary phase, a pump that creates pressure and moves
the polar mobile phase through the column and a detector that captures the reten-
tion time. The sample is diluted in the aqueous solution and added to the mobile
phase. As the peptides are pushed through the column, they bind to the beads pro-
portionally to their hydrophobic segments. Thus, hydrophilic peptides will elute
faster than hydrophobic peptides. HPLC separation allows for the introduction of
only a small subset of peptides eluting from the LC column at a particular time into
the mass spectrometer. Peptides of similar molecular mass but different hydropho-
bicity elute from the LC column and enter the mass spectrometer at different times,
no longer overlapping in the initial MS analysis. The additional time required for
the LC separation is well worth the effort, as the reduction in the overlap of the
peptides of the same mass in MS1 phase dramatically increases peak resolution
(and hence, peak capacity). Note that LC columns must be regularly replaced, and
it is common to observe systematic differences in the elution times of similar sam-
ples on difference columns. Thus, replacing a column during an experiment may
contribute to technical variation in the resulting observed abundances between two
columns.

Further separation techniques include sample fractionation prior to HPLC, and
complementary techniques such as Ion Mobility Separation (IMS) after HPLC.
Multidimensional LC has been successfully used to better separate peptides.
Strong cation exchange (SCX) chromatography is usually used as a first separation
step and reversed-phase chromatography (RPLC) as a secondary separation step
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because of its ability to remove salts and its compatibility with MS through elec-
trospray ionization (ESI, described below) [Lee et al. (2006); Link et al. (1999);
Peng et al. (2003); Sandra et al. (2009); Sandra et al. (2008)]. Combination of
SCX with RPLC forms the basis of the Multidimensional Protein Identification
Technology (MudPIT) approach [Washburn, Wolters and Yates (2001); Wolters,
Washburn and Yates (2001)]. While multidimensional LC is capable of achiev-
ing greater separation, it requires larger sample quantities and more analysis time.
In HPLC coupled with IMS, peptides eluting from the HPLC system are ionized
using ESI, and the ions are injected into a drift tube containing neutral gas at con-
trolled pressure. An electric field is applied, and the ions separate by colliding
with the gas molecules. Larger ions experience more collisions with the gas and
take longer to travel through the drift tube than smaller ions. IMS is very fast as
compared with HPLC and, when used in conjunction with HPLC, achieves better
separation than HPLC alone. IMS is not entirely orthogonal to HPLC, but it has
been shown to increase the peak capacity (number of detected peaks) by an order of
magnitude [Belov et al. (2007)]. While not currently in wide use, IMS technolo-
gies are rapidly evolving, and MS-based proteomics will likely involve multiple
dimensions of separation based on both IMS and HPLC in the near future. New
algorithms will need to be developed and existing ones modified to incorporate the
extra separation dimensions.

3.2. Mass spectrometry. A mass spectrometer measures the mass-to-charge
ratio (m/z) of ionized molecules. Recent years have seen a tremendous improve-
ment in MS technology, and there are about 20 different mass spectrometers com-
mercially available for proteomics. All mass spectrometers are designed to carry
out the distinct functions of ionization and mass analysis. The key components of
a mass spectrometer are the ion source, mass analyzer and ion detector (Figure 3).
The ion source is responsible for assigning charge to each peptide. Mass analyzers
take many different forms but ultimately measure the mass-to-charge (m/z) ratio
of each ion. The detector captures the ions and measures the intensity of each ion
species. In terms of a mass spectrum, the mass analyzer is responsible for the m/z
information on the x-axis, and the detector is responsible for the peak intensity
information on the y-axis.

Ionization methods include electron impact, chemical ionization, fast atom
bombardment, field desorption, electrospray ionization (ESI) and laser desorption,
and they usually operate by the addition of protons to the peptides. ESI and matrix
assisted laser desorption/ionization (MALDI) are the most widely used methods
in proteomics. In the ESI method, the sample is prepared in liquid form at at-
mospheric pressure and flows into a very fine needle that is subjected to a high
voltage. Due to the electrostatic repulsion, the solvent drops leaving the needle tip
dissociate to form a fine spray of highly charged droplets. As the solvent evapo-
rates, the droplets disappear, leaving highly charged molecules. ESI is the most
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effective interface for LC-MS, as it naturally accommodates peptides in liquid so-
lution. ESI is a soft ionization method, in that it achieves ionization without break-
ing chemical bonds and further fragmenting the peptides. In MALDI analysis, the
biological molecules are dispersed in a crystalline matrix. A UV laser pulse is then
directed at the matrix, which causes the ionized molecules to eject so that they can
be extracted into a mass spectrometer.

The mass analyzer is key to the sensitivity, resolution and mass accuracy of an
instrument. Sensitivity describes an instrument’s ability to detect low-abundance
peptides, resolution to its ability to distinguish ions of very similar m/z values, and
mass accuracy to its ability to obtain mass measurements that are very close to
the truth. There are several basic mass analyzer types: quadrupole (Q), ion-trap
(IT), time-of-flight (TOF), Fourier transform ion cyclotron resonance (FTICR),
and the orbitrap. Different analyzers are commonly combined to achieve the best
utilization as a single mass spectrometer (e.g., Q-TOF, triple-Q). We do not go
into the details of the different mass analyzer types; interested readers are pointed
elsewhere [Domon and Aebersold (2006); Siuzdak (2003)].

In tandem MS (referred to as MS/MS or MSn), multiple rounds of MS are car-
ried out on the same sample. This results in detailed signatures for detected fea-
tures, which can be used for identification. Most MS/MS instruments can auto-
matically select several of the most intense (high abundance) peaks from a parent
MS (MS1) scan and subjects the corresponding ions (precursor or parent ions)
for each to further fragmentation, followed by further scans. This process is re-
peated until all candidate peaks of a parent scan are exhausted [Domon and Ae-
bersold (2006); Zhang et al. (2005)]. This results in a fragmentation pattern for
each selected peptide, providing detailed information on the chemical makeup of
the peptide. While the resulting fragmentation patterns are the basis for identifi-
cation, MS/MS suffers from undersampling, in that relatively few (and generally
only higher intensity) precursor ions are selected for fragmentation [Domon and
Aebersold (2006); Garza and Moini (2006); Zhang et al. (2005)]. The issue of un-
dersampling is not serious enough to steer away from using MSn for protein iden-
tification and quantitation, but researchers should remember that not all peptides
will have equal chances of being selected for fragmentation and thus may not be
observed in the subsequent MS scans. Furthermore, MS/MS is time-intensive and
thus not always ideal for high-throughput analysis [Masselon et al. (2008)]. Nev-
ertheless, MS/MS is widely used for quantitative MS-based proteomics and forms
the basis for most peptide and protein identification procedures (Section 5). Typ-
ically, MS/MS is preceded by LC separation and can more accurately be denoted
by LC-MS/MS.

High-resolution LC-MS instruments (e.g., FTICR) are very fast and can achieve
mass measurements that are sufficiently accurate for identification purposes. Fur-
thermore, since fragmentation and repeated scans are not required, the undersam-
pling issues due to peptide selection for MS/MS are avoided. Still, fragmentation
patterns are valuable for identification, and so hybrid platforms involving both
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LC-MS/MS and high-resolution LC-MS are increasingly being used. One such
example is the Accurate Mass and Time (AMT) tag approach [Pasa-Tolic et al.
(2004); Tolmachev et al. (2008); Yanofsky et al. (2008)]. In the AMT tag approach,
MS/MS analysis is used to create an AMT database of peptide theoretical mass and
predicted elution time, based on high-confidence identifications from fragmenta-
tion patterns, followed by a single MS run on FTICR to obtain highly accurate
mass measurements, as well as liquid chromatography elution times; peptide iden-
tification is then made by comparing the observed mass measurements and elution
times to the AMT database entries. We note that an AMT database is typically con-
structed using many LC-MS/MS runs, resulting in a nearly complete database of
proteotypic peptides [Mallick et al. (2007)]. Because in the AMT-based approach
LC-MS spectra are matched to the database built from previous multiple MS/MS
scans, the undersampling associated with LC-MS/MS on individual samples is
avoided.

4. Data acquisition. In LC-MS, each sample may give rise to thousands of
scans, each containing a mass spectrum [Figure 4(a)]. The mass spectrum for a
single MS scan can be summarized by a plot of m/z values versus peak intensities
[Figure 4(b)]. Buried in these data are signals that are specific to individual pep-
tides. As a first step toward identifying and quantifying those peptides, features
need to be identified in the data and, for example, distinguished from background
noise. The first step in this is MS peak detection. Many approaches to peak detec-
tion have been proposed, as this is an old problem in the field of signal processing.
Our lab employs a simple filter on the signal-to-noise ratio of a peak relative to its
local background [Jaitly et al. (2009)]. Each peptide gives an envelope of peaks due
to a peptide’s constituent amino acids. The presence of a peptide can be charac-
terized by the m/z value corresponding to the peak arising from the most common
isotope, referred to as the monoisotopic mass. While there are several isotopes of
the elements that make up amino acids, 13C is the most abundant, constituting
about 1.11% of all carbon species. Since the mass difference between 13C and 12C
is approximately 1 Da, the monoisotopic peak for a peptide will be separated from
an isotope with a single 13C by approximately 1/z, where z is the charge state of
that peptide. Similarly, isotopes with additional copies of 13C will be separated in
units of approximately 1/z. [Figure 4(d)].

The process of deisotoping a spectrum is often used to simplify the data by re-
moving the redundant information from isotopic peaks and involves (i) locating
isotopic distributions in a MS scan, (ii) computing the charge state of each peptide
based on the distance between the peaks in its isotopic distribution, and (iii) ex-
tracting each peptide’s monoisotopic mass. Note that this step is only possible
if sufficiently high-resolution mass measurements have been obtained, as other-
wise isotopic peaks can not be resolved. For (i), detected peaks are considered
as possible members of an isotopic distribution, and theoretical isotopic distribu-
tions, derived from a database of peptide sequences, are overlaid with the observed
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spectra. A measure of fit is computed, and the peaks are called an isotopic distri-
bution if the fit is good enough. One of the challenges encountered in deisotoping
is the presence of overlapping isotopic distributions from different peptides. There
are many algorithms available for peak detection and deisotoping, including com-
mercial software from vendors such as Agilent, Rosetta Biosoftware and Thermo
Fisher. Our lab uses Decon2LS [Jaitly et al. (2009)], open-source software that im-
plements a variation of the THRASH algorithm [Horn, Zubarev and McLafferty
(2000)]; the Decon2LS publication contains an extensive discussion of the above
issues, as well as many helpful references for the interested reader.

A peptide will likely elute from the HPLC over multiple scans, creating an elu-
tion profile [Figure 4(e)]. Elution profiles for peptides are typically relatively short
in duration, and serve to define a feature in LC-MS data sets. However, there are of-
ten contaminants present in an LC-MS sample with very long elution profiles, and
these are filtered out in preprocessing steps. Various approaches to summarizing
an elution profile are available. Our lab computes a normalized elution time (NET)
[Petritis et al. (2006)]. At this stage, an LC-MS sample has been resolved into a list
of LC-MS features, each with an assigned monoisotopic mass and an elution time.
However, due to mass measurement errors and the random nature of elution times,
(mass, elution time) assigned pairs will vary between LC-MS samples. Alignment
is often performed to line up the LC-MS features in different samples. There are
several algorithms for LC-MS alignment; examples include Crawdad [Finney et al.
(2008)] and LCMSWarp [Jaitly et al. (2006)].

As with all high-throughput -omics technologies, MS-based proteomic data
is typically subjected to substantial preprocessing and normalization. Systematic
biases are often seen in mass measurements, elution times and peak intensities
[Callister et al. (2006); Petyuk et al. (2008)]. Filtering of poor-quality proteins
and peptides is also common [Karpievitch et al. (2009a)]. In normalization, care
must be taken to separate biological signal from technical bias [Dabney and Storey
(2006)]. Widely-used normalization techniques in high-throughput genomic or
proteomic studies involve some variation of global scaling, scatterplot smooth-
ing or ANOVA [Quackenbush (2002)]. Global scaling generally involves shifting
all the measurements for a single sample by a constant amount, so that the means,
medians or total ion currents (TICs) of all samples are equivalent. Since common
technical biases are more complex than simple shifts between samples, global
scaling is unable to capture complex bias features. Scatterplot smoothing, TIC
and ANOVA normalization methods are sample-specific and hence more flexible.
However, more complex preprocessing steps can result in overfitting, causing er-
rors in downstream inference. For example, fitting a complex preprocessing model
may use up substantial degrees of freedom, and analyzing the processed data, as-
suming that no degrees of freedom have been used, may result in overly opti-
mistic accuracy levels and overestimated statistical significance; specific examples
can be seen in Karpievitch et al. (2009b). Ideally, preprocessing would be carried
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out simultaneously with inference, or the downstream inferential steps would in-
corporate knowledge of what preprocessing was done [Leek and Storey (2007)].
A recently proposed method, called EigenMS, removes bias of arbitrary complex-
ity by the use of the singular value decomposition to capture and remove biases
from LC-MS peak intensity measurements [Karpievitch et al. (2009b)]. EigenMS
removes biases of arbitrary complexity and adjusts the normalized intensities to
correct the p-values after normalization (ensuring that null p-values are uniformly
distributed).

Mass spectrometer manufacturers have developed a variety of proprietary bi-
nary data formats to store instrument output. Examples include .baf (Bruker), .Raw
(Thermo) and .PKM (Applied Biosystems). Handling data in different proprietary
formats typically requires corresponding proprietary software, making it difficult
to share datasets. Several open-source, XML-based vendor-independent data for-
mats have recently been developed to address this limitation: mzXML [Lin et al.
(2005); Pedrioli et al. (2004)], mzData [Orchard et al. (2007)] and mzML [Deutsch
(2008); Orchard et al. (2009)]. mzML 1.0 was released in June 2009 and is con-
sidered a merge of the best of mzData and mzXML. The format can store spec-
tral information, instrument information, instrument settings and data processing
details. mzML also has extensions such as chromatograms and multiple reaction
monitoring (MRM) profile capture, and it now replaces both mzData and mzXML.

5. Protein identification. In bottom-up proteomics protein identification is
usually accomplished by first comparing observed MS features to a database of
predicted or previously identified features (e.g., by MS/MS or on the basis of pre-
vious analysis of a well characterized sample, Figure 5). The most widely-used
approach is tandem MS with database searching [Nesvizhskii, Vitek and Aeber-
sold (2007)], in which peptide fragmentation patterns are compared to theoretical
patterns in a database using software like Sequest [Eng, McCormack and Yates
(1994)], X!Tandem [Craig and Beavis (2004)] and Mascot [Perkins et al. (1999)].
With high-resolution LC-MS instruments, identifications can be made on the ba-
sis of mass and elution time alone, or in conjunction with MS/MS fragmentation
patterns [Pasa-Tolic et al. (2004)]. Alternatives to database-searching include (i)
de novo peptide sequencing [Dancik et al. (1999); Johnson et al. (2005); Lu and
Chen (2003); Standing (2003)] and (ii) hybrids of the de novo and database search-
ing approaches [Frank and Pevzner (2005); Sunyaev et al. (2003); Tabb, Saraf and
Yates (2003); Tanner et al. (2005)]. For detailed reviews of the database searching
algorithms see Kapp and Schutz (2007), Nesvizhskii (2007), Nesvizhskii, Vitek
and Aebersold (2007), Sadygov, Cociorva and Yates (2004) and Yates (1998).

In tandem MS, precursor ions for the most abundant peaks in a scan are frag-
mented and scanned again. In collision-induced dissociation (CID), precursor
ions are fragmented by collision with a neutral gas [Laskin and Futrell (2003);
Pittenauer and Allmaier (2009); Sleno and Volmer (2004); Wells and McLuckey
(2005)]. Subsequent MS analysis measures the m/z and intensity of the fragment
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ions (product or daughter ions), creating a fragmentation pattern (Figure 5). CID
usually leads to b- and y-ions through breakage of the amide bond along the peptide
backbone. b-ions are formed when the charge is retained by the amino-terminal
fragment, and y-ions are formed when charge is retained by the carboxy-terminal
fragment. Breaks near the amino acids glutamic acid (E), aspartic acid (D) and
proline (P) are more common, as well as breaking of the side-chains [Sobott et al.
(2009)]. Other fragmentation patterns are possible, such as a-, c-, x- and z-types.
Electron capture dissociation (ECD) produces c- and z-ions and leaves side-chains
intact. The fragmentation pattern is like a fingerprint for a peptide. It is a function
of amino acid sequence and can therefore be predicted. The observed fragmenta-
tion pattern should match well with its theoretical pattern, assuming that its peptide
sequence is included in the search database.

A search database is created by specifying a list of proteins expected to con-
tain any proteins present in a sample. In human studies, for example, the complete
known proteome can be specified with a FASTA file, which can then be used to
create peptide fragment sequences by simulating digestion with trypsin. For each
resulting peptide, a theoretical fragmentation pattern is then created. For details
on protein digestion and fragmentation see Siuzdak (2003). Several software pro-
grams are available for database matching (e.g., SEQUEST, X!Tandem and Mas-
cot). Each has its own algorithm for assessing the fit between observed and theo-
retical spectra, and there can be surprisingly little overlap in their results [Searle,
Turner and Nesvizhskii (2008)]. Note that a correct match can only be made if the
correct sequence is in the database in the first place. If an organism’s genome is
incomplete or has errors, this will not be the case. Furthermore, because of under-
sampling issues in MS/MS, only a small percentage of peptides present in a sample
will even be considered for identification. This is due to the fact that only a small
portion of higher abundance peaks (for example, the 10 most abundant peaks) are
selected from the spectra in the first MS step for fragmentation in the second MS
analysis. Thus, lower abundance proteins are obscured by the presence of the high
abundance ones.

High-resolution LC-MS instruments can be used to identify peptides on the
basis of extremely accurate mass measurements and LC elution times. A data-
base is again required, containing theoretical or previously-observed mass and
elution time measurements. In hybrid approaches, like the AMT tag approach
[Pasa-Tolic et al. (2004)], identifications from MS/MS are used to create a data-
base of putative mass and time tags for comparison with high-resolution LC-MS
data. Since MS/MS is sample- and time-intensive, hybrid approaches allow for
higher-throughput analysis, subjecting only a subset of the sample to MS/MS and
the rest to rapid LC-MS. Alternatively, previously-observed MS/MS fragmenta-
tion patterns can be used to create a mass and time tag database. By using many
LC-MS/MS datasets in the creation of the database, the undersampling issues as-
sociated with LC-MS/MS are avoided.
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In each of the above approaches, there is a statistical problem of assessing confi-
dence in database matches. This is typically dealt with in one of two ways. The first
involves modeling a collection of database match scores as a mixture of a correct-
match distribution and an incorrect-match distribution. The confidence of each
match is assessed by its estimated posterior probability of having come from the
correct-match distribution, conditional on its observed score [Käll et al. (2008b)];
PeptideProphet is a widely-used example [Keller et al. (2002)]. Improvements
have been made to PeptideProphet to avoid fixed coefficients in computation of dis-
criminant search score and utilization of only one top scoring peptide assignment
per spectrum [Ding, Choi and Nesvizhskii (2008)]. Decoy databases are an alterna-
tive approach, in which the search database is scrambled so that any matches to the
decoy database can be assumed to be false [Choi, Ghosh and Nesvizhskii (2008);
Käll et al. (2008a)]. The distribution of decoy matches is then used as the null dis-
tribution for the observed scores for matches to the search database, and p-values
are computed as simple proportions of decoy matches as strong or stronger than
the observed matches from the search database. A hybrid approach that combines
mixture models with decoy database search can also be used [Choi and Nesvizh-
skii (2008b)]. Whether working from posterior probabilities or p-values, lists of
high-confidence peptide identifications can be selected in terms of false discovery
rates [Choi and Nesvizhskii (2008a); Storey and Tibshirani (2003)]. Both decoy
database matching and empirical Bayes approaches are global, in that they model
the distribution of database match scores for all spectra at the same time. An “ex-
pectation value” is an alternative significance value, which models the distribution
of scores for a single experimental spectrum with all peptide match scores from
the theoretical database [Fenyö and Beavis (2003)].

An alternative to database search approaches is de novo sequencing [Dancik
et al. (1999); Frank and Pevzner (2005); Johnson et al. (2005); Lu and Chen
(2003); Standing (2003); Tabb, Saraf and Yates (2003)]. De novo sequencing in-
volves assembling the amino acid sequences of peptides based on direct inspection
of spectral patterns. For a given amino acid sequence, the possible fragmentation
ions and masses can be enumerated, as well as the expected frequency with which
each type of fragment ion would be formed. De novo sequencing therefore tries to
find the sequence for which an observed spectral pattern is most likely. The key
distinction from database-search approaches is that there is no need for a priori
sequence knowledge. Suppose, for example, that we are studying human samples.
With database-search, we would load a human proteome FASTA file and only have
access to amino acid sequences generated therein. With de novo sequencing, any
amino acid sequence could be considered. This can be important when studying
organisms with incomplete or imperfect genome information [Ram et al. (2005)].
Drawbacks include increased computational expense as well as the need for rela-
tively large sample quantities.

Combinations of de novo sequence tag generation and database searching (hy-
brid methods) are widely used in PTM identification [Mann and Wilm (1994)].
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The de novo approach infers a peptide sequence tag (not the full-length peptide)
from the spectrum without searching the protein database. These sequence tags can
then be used to filter the database to reduce its size, which in turn speeds up the
calculation of the spectrum matches with all possible PTMs. InsPect is a widely
used tool for identification of PTMs [Tanner et al. (2005)]. Lui et al. proposed a
similar sequence tag-based approach with a deterministic finite automaton model
for searching a peptide sequence database [Liu et al. (2006)].

While bottom-up MS-based proteomics deals with peptides, the real goal is to
identify proteins present in a sample. In most cases, a peptide amino acid sequence
can be used to identify the protein from which it was derived. Software like Pro-
teinProphet can translate peptide-level identifications to the protein level and as-
sign each resulting protein identification a confidence measure [Nesvizhskii et al.
(2003)]. A key challenge in translating peptide identifications to the protein level is
degeneracy. A degenerate peptide is one that could have come from multiple pro-
teins; this is most common for peptides with short amino acid sequences or ones
that come from homologous proteins (where homology refers to a similarity in
amino acid sequences). Based on the information present in an individual degen-
erate peptide, it is not necessarily clear how to decide between multiple proteins.
However, by taking the information present in uniquely identified and degenerate
peptides that were identified as belonging to multiple proteins into account, sen-
sible model-based decisions can be achieved [Shen et al. (2008)]. PeptideProphet
shares degenerate peptides among their corresponding proteins and produces a
minimal protein list that accounts for such peptides. Another challenge is due to
the fact that correctly identified peptides usually belong to a small set of proteins,
but incorrectly identified peptides match randomly to a large variety of proteins.
Thus, a small number of incorrectly identified peptides (with high scores) can
make it difficult to determine the correct parent protein, especially in a single-
peptide identification, and may result in a much higher error rate at the protein
level [Nesvizhskii and Aebersold (2004)].

6. Protein quantitation. Quantitative proteomics is concerned with quantify-
ing and comparing protein abundances in different conditions (Figure 6). There are
two main approaches: stable isotope labeling and label free. In all cases, as in the
identification setting, there is the challenge of rolling peptide-level information up
to the protein level. This can be viewed as an analogous problem to the probe-set
summarization step required with many DNA microarrays [Li and Wong (2001)].

In label-based quantitative LC-MS, chemical, metabolic or enzymatic stable
isotope labels are incorporated into control and experimental samples, the sam-
ples are mixed together and then analyzed with LC-MS [Goshe and Smith (2003);
Guerrera and Kleiner (2005); Gygi et al. (1999)]. In chemical labeling, such as
isotope-coded affinity tag (ICAT), Cystine (Cys) residues are labeled [Gygi et al.
(1999)]. In metabolic labeling, cells from two different conditions are grown in
media with either normal amino acids (1H/12C/14N) or stable isotope amino acids



MASS SPECTROMETRY-BASED PROTEOMICS 1815

(2H/13C/15N) [Oda et al. (1999); Ong et al. (2002)]. This approach is not applica-
ble to human or most mammalian protein profiling. In enzymatic labeling, proteins
from two groups are digested in the presence of normal water (H2

16O) or isotopi-
cally labeled water (H2

18O) [Schnolzer, Jedrzejewski and Lehmann (1996); Ye
et al. (2009)]. In all of the above methods, differences in label weight create a shift
in m/z values for the same peptide under the two conditions. After tandem mass
analysis (LC-MS/MS), spectra are matched against a database, and ratios of pep-
tide abundances in the two conditions are determined by integrating the areas under
the peaks of each labeled ion that was detected. Strong linear agreement has been
shown between true concentrations and those estimated by label-based approaches
[Old et al. (2005)]. Of the two quantitation methods considered here, label-based
methods are able to achieve the most precise estimates of relative abundance. Limi-
tations include the following: (i) its restriction to two comparison groups, (ii) asso-
ciated difficulties with incorporating future samples into an existing data set, and
(iii) expense. A newer method that allows for the comparison of four treatment
samples at a time and avoids the cystine-selective affinity of ICAT is iTRAQ [Ross
et al. (2004); Thompson et al. (2003); Wiese et al. (2007)]. iTRAQ uses isobaric
labels at N-terminus which have two components: reporter and balance moieties.
Combined reporter and balance moieties always have masses of 145 Da. For ex-
ample, if for treatment group one we use reporter of mass 114 and balance of mass
31, then for another treatment group we can use reporter of mass 116 and balance
of mass 29. Precursor ions from all treatment groups appear as a single peak of
the same weight in MS1. After further fragmentation, peptides break down into
smaller pieces and separate balance and reporter ions. Reporter ions thus appear
as distinct masses, and peptide abundances are determined from those. iTRAQ is
limited to four or eight group comparisons, but limitations (ii) and (iii) above still
apply.

Label-free quantitative analysis measures relative protein abundances without
the use of stable isotopic labels. In contrast to label-based methods, samples from
different comparison groups are analyzed separately, allowing for more complex
experiments as well as the addition of subsequent samples to an analysis; label-free
methods are also faster than label-based methods. Label-free quantification can be
grouped into two categories: spectral feature analysis and spectral counting. In
spectral feature analysis, peak areas of identified peptides are used for abundance
estimates. The peak areas are sometimes normalized to the peak area of an inter-
nal standard protein spiked into the sample at a known concentration level. Good
linear correlation between estimated and true relative abundances has been shown
for this method of peptide quantification [Bondarenko, Chelius and Shaler (2002);
Chelius and Bondarenko (2002); Old et al. (2005); Wang et al. (2003)]. In spectral
counting, peptide abundances for one sample are estimated by the count of MS/MS
fragmentation spectra that were observed for each identified peptide [Choi, Fermin
and Nesvizhskii (2008)]. Repeated identifications of the same peptide in the same
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sample are due to its presence in several proximal scans constituting its elution pro-
file. Good linear correlation between true and estimated relative abundance from
spectral counting have been shown [Ghaemmaghami et al. (2003); Liu, Sadygov
and Yates (2004)]. Spectral counts are easy to collect and do not require peak area
integration like spectral peak analysis or label-based methods.

Missing peptides are common in MS-based proteomic data. In fact, it is com-
mon to have 20–40% of all attempted intensity measures missing. Abundance mea-
surements are missed if, for example, a peptide was identified in some samples but
not in others. This can happen in several ways: (i) the peptide is present in low
abundances, and in some samples the peak intensities are not high enough to be
detected or for the corresponding ions to be selected for MS/MS fragmentation,
(ii) competition for charge in the ionization process, by which some ion species
are liable to be dominated by others, and (iii) peptides whose chemical or physical
structure cause them to get trapped in the LC column, among others. Mechanism
(i) is essentially a censoring mechanism and appears to be responsible for the vast
majority of missing values [Figure 6(a)]. This complicates intensity-based quan-
titation, as simple solutions will tend to be biased. For example, analysis of only
the observed intensities will tend to overestimate abundances and underestimate
variances. Simple imputation routines like row-means or k-nearest-neighbors suf-
fer from similar limitations. Statistical models are needed to address these issues,
as well as to handle the peptide-to-protein rollup [Karpievitch et al. (2009a); Wang
et al. (2006); also, see Figure 6(b)]. Note that a further benefit of spectral counting
is that it is less sensitive to missing values.

We note that protein identification and quantitation are complementary exer-
cises. Unidentified proteins cannot be quantified, and the confidence with which a
protein was identified should perhaps be incorporated into that protein’s abundance
estimate. Degenerate peptides, for example, present problems for both identifica-
tion and quantitation, but evidence for the presence of sibling peptides from one
protein in high abundance can be useful in deciding between multiple possible
protein identities.

7. Other technologies.

7.1. MALDI and mass fingerprinting. MALDI (matrix assisted lazed desorp-
tion ionization) is mostly used for single MS, typically using a TOF mass ana-
lyzer. MALDI refers to the method of ionization, in which a laser is pulsed at a
crystalline matrix containing the sample (analyte) [Guerrera and Kleiner (2005);
Karas et al. (1987)]. The analyte is mixed with the matrix solution, spotted in a
well on a MALDI plate and allowed to crystallize. The matrix consists of small
organic molecules that absorb light at the wavelength of the laser radiation. Upon
absorption, the matrix molecules transfer energy to the sample molecules to per-
mit ionization and desorption of even large molecules as intact gas-phase ions; the
matrix also serves to protect the analyte from being destroyed by the laser pulse.
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MALDI is considered a soft ionization technique, resulting in very little analyte
fragmentation. Crystallized samples can be stored for some time before analysis
or for repeated analysis.

While MALDI MS/MS instruments exist, MALDI is most commonly used for
mass fingerprinting, where spectral patterns are identified for discriminating sam-
ples from different conditions (e.g., cancer vs. normal). Machine learning tech-
niques, such as linear discriminant analysis, Random Forest and Support Vector
Machine, among others, are typically used to build classifiers in hopes of finding
tools for the early detection of a disease. Disease biomarkers (specific m/z values)
can be identified from the set of the differentially expressed features. However, to
date, the success rate for identification of true biomarkers is low, in part due to
the poor reproducibility of the experiments in time and between labs [Baggerly,
Morris and Coombes (2004); Petricoin et al. (2002)].

7.2. 2-D gels. 2-D gel electrophoresis (2-DE) is an alternative technique for
protein separation [Gorg, Weiss and Dunn (2004); Klose and Kobalz (1995); Weiss
and Gorg (2009)], first introduced in 1975 [Klose (1975); O’Farrell (1975)]. Here,
two orthogonal separations are used: proteins are first separated based on their iso-
electric point (pI), then based on their size (mass). The first dimension utilizes the
fact that the net charge of the protein is pH-dependent. Proteins are loaded into
the pH gradient (variable pH) and subjected to high voltage. Each protein migrates
to the pH location in the gradient where its charge is zero and becomes immo-
bilized there. The second dimension gel contains SDS, detergent molecules with
hydrophobic tails and negatively charged heads. SDS denatures (unfolds) the pro-
teins and adds negative charge in proportion to the size of the protein. An electric
field is applied to move negatively charged proteins toward the positively charged
electrode, smaller proteins migrating through the gel faster than larger ones. Mul-
tiple copies of the proteins will generally move at the same speed and will end up
fixated in bulk at a certain spot on the gel.

Protein detection is performed with staining (most common) or radio-labeling.
Proteins can then be quantified based on their spot intensity. The staining inten-
sity is approximately a linear function of the amount of protein present. Images of
the 2-D gels can be compared between different comparison groups to study pro-
tein variations between the groups and identify biomarkers. The following steps
are generally required before quantitative and comparative analysis can be done,
not necessarily in this order: (a) denoising, (b) background correction, (c) spot
detection, (d) spot matching/gel alignment, (e) spot quantification. Although all
steps are needed, spot matching is the most important, as proteins can shift along
the axis from image to image (gel to gel) as well as exhibit a pattern of stretch-
ing along the diagonals. Examples of programs designed to perform the above
steps are Progenesis (Nonlinear Dynamics Ltd., Newcastle-upon-Tyne, UK) and
PDQuest Version 8.0 (Bio-Rad Laboratories, Hercules, CA, USA), both of which
are proprietary. Pinnacle is an open source program that performs spot detection
and quantification in the aligned gels [Morris, Clark and Gutstein (2008)].
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8. Discussion. While the field of LC-MS-based proteomics has seen rapid
advancements in recent years, there are still significant challenges in proteomic
analysis. The complexity of the proteome and the myriad of computational tasks
that must be carried out to translate samples into data can lead to poor repro-
ducibility. Advancements in mass spectrometry and separation technologies will
surely help, but there will continue to be a crucial role for statisticians in the de-
sign of experiments and methods specific to this setting. Careful assessments of the
capabilities of current LC-MS-based proteomics to achieve certain levels of sen-
sitivity and specificity, based on instrument configuration, experimental protocol,
experimental design, sample size, etc., would be extremely valuable for assisting
in the establishment of best-practices, as well as for gauging the capabilities of the
technology; the National Cancer Institute’s Clinical Proteomic Technologies for
Cancer program is an example. It is likely the case that very large studies will be
required for true breakthrough findings (e.g., biomarkers) in systems biology using
proteomics.

Specific methodological areas that can use additional input from statisticians
include the development of statistical models for rolling up from peptides to pro-
teins; determination of protein networks; construction of confidence levels with
which we identify peptides and subsequently proteins; alignment of LC-MS runs
and assurance of quality of those alignments, that is, assigning a p-value to a set of
aligned LC-MS runs to assess “correctness” of alignment. Furthermore, as addi-
tional dimensions of separation (as in IMS-LC-MS) are introduced, more flexible
and generalizable preprocessing, estimation and inferential methods will be re-
quired. In general, statisticians can play a pivotal role in LC-MS-based proteomics
(as well as other -omics technologies) by participating in interdisciplinary research
teams and assisting with the application of classical statistical concepts [Oberg and
Vitek (2009)]. In particular, the statistician can contribute by ensuring that well-
planned experimental designs are employed, assumptions required for reliable in-
ference are met, and proper interpretation of statistical estimates and inferences
are used [Dougherty (2009); Hand (2006)]. These contributions are arguably more
valuable than the development of additional algorithms and computational meth-
ods. Due to the great complexity of high-throughput -omics technologies and the
data that result, careful statistical reasoning is imperative.
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