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POISSON POINT PROCESS MODELS SOLVE
THE “PSEUDO-ABSENCE PROBLEM” FOR

PRESENCE-ONLY DATA IN ECOLOGY1

BY DAVID I. WARTON AND LEAH C. SHEPHERD

University of New South Wales

Presence-only data, point locations where a species has been recorded
as being present, are often used in modeling the distribution of a species as
a function of a set of explanatory variables—whether to map species occur-
rence, to understand its association with the environment, or to predict its
response to environmental change. Currently, ecologists most commonly an-
alyze presence-only data by adding randomly chosen “pseudo-absences” to
the data such that it can be analyzed using logistic regression, an approach
which has weaknesses in model specification, in interpretation, and in imple-
mentation. To address these issues, we propose Poisson point process model-
ing of the intensity of presences. We also derive a link between the proposed
approach and logistic regression—specifically, we show that as the number of
pseudo-absences increases (in a regular or uniform random arrangement), lo-
gistic regression slope parameters and their standard errors converge to those
of the corresponding Poisson point process model. We discuss the practical
implications of these results. In particular, point process modeling offers a
framework for choice of the number and location of pseudo-absences, both
of which are currently chosen by ad hoc and sometimes ineffective methods
in ecology, a point which we illustrate by example.

1. Background. Pearce and Boyce (2006) define presence-only data as “con-
sisting only of observations of the organism but with no reliable data on where the
species was not found. Sources for these data include atlases, museum and herbar-
ium records, species lists, incidental observation databases and radio-tracking
studies.” Note that such data arise as point locations where the organism is ob-
served, which we denote as y in this article. An example is given in Figure 1(a).
This figure gives all locations where a particular tree species (Angophora costata)
has been reported by park rangers since 1972, within 100 km of the Greater Blue
Mountains World Heritage Area, near Sydney, Australia. Note that this does not
consist of all locations where an Angophora costata tree is found—rather it is the
locations where the species has been reported to be found. We would like to use
these presence points, together with maps of explanatory variables describing the
environment (often referred to in ecology as “environmental variables”), to predict
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FIG. 1. (a) Example presence-only data—atlas records of where the tree species Angophora costata
has been reported to be present, west of Sydney, Australia. The study region is shaded. (b) A map
of minimum temperature (◦C) over the study region. Variables such as this are used to model how
intensity of A. costata presence relates to the environment. (c) A species distribution model, modeling
the association between A. costata and a suite of environmental variables. This is the fitted intensity
function for A. costata records per km2, modeled as a quadratic function of four environmental
variables using a point process model as in Section 4.

the location of A. costata and how it varies as a function of explanatory variables
(Figure 1).

Presence-only data are used extensively in ecology to model species distribu-
tions—while the term “presence-only data” was rarely used before the 1990s, ISI
Web of Science reports that it was used in 343 publications from 2005 to 2008. The
use of presence-only data in modeling is a relatively recent development, presum-
ably aided by the movement toward electronic record keeping and recent advances
in Geographic Information Systems. One reason for the current widespread usage
of presence-only data is that often this is the best available information concern-
ing the distribution of a species, as there is often little or no information on species
distribution being available from systematic surveys [Elith and Leathwick (2007)].

Species distribution models, sometimes referred to as habitat models or habi-
tat classification models [Zarnetske, Edwards and Moisen (2007)], are regression
models for the likelihood that a species is present at a given location, as a function
of explanatory variables that are available over the whole study region. Such mod-
els are used to construct maps predicting the full spatial distribution of a species
[given GIS maps of explanatory variables such as in Figure 1(b)]. When surveys
have recorded the presence and absence of a species in a pre-defined study area
(“presence/absence data”), logistic regression approaches and modern generaliza-
tions [Elith, Leathwick and Hastie (2008)] are typically used for species distribu-
tion modeling. If instead presence-only data are to be used in species distribution
modeling, then a common approach to analysis is to first create “pseudo-absences,”
denoted as y0, usually achieved by randomly choosing point locations in the region
of interest and treating them as absences. Then the presence/pseudo-absence data
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set is analyzed using standard analysis methods for presence/absence data [Pearce
and Boyce (2006); Elith and Leathwick (2007)], which have been used in species
distribution modeling for a long time [Austin (1985)]. Ward et al. (2009) recently
proposed a modification of the pseudo-absence logistic regression approach for
the analysis of presence-only data, when the probability π that a randomly chosen
pseudo-absence point of a presence is known. However, π is not known in practice.

We see three key weaknesses of the “pseudo-absence” approach so widely used
in ecology for analyzing presence-only data, which we describe concisely as prob-
lems of model specification, interpretation, and implementation. A sounder model
specification would involve constructing a model for the observed data y only,
rather than requiring us to generate new data y0 prior to constructing a model. In-
terpretation of results is difficult, because some model parameters of interest (such
as pi of Section 3) are a function of the number of pseudo-absences and their loca-
tion. For example, we explain in Section 3 that as the number of pseudo-absences
approaches infinity, pi → 0, for a given presence-only data set y. Implementation
of the approach is problematic because it is unclear how pseudo-absences should
be chosen [Elith and Leathwick (2007); Guisan et al. (2007); Zarnetske, Edwards
and Moisen (2007); Phillips et al. (2009)], and one can obtain qualitatively differ-
ent results depending on the method of choice of pseudo-absences [Chefaoui and
Lobo (2008)].

In this paper we make two key contributions. First, we propose point process
models (Section 2) as an appropriate tool for species distribution modeling of
presence-only data, given that presence-only data arise as a set of point events—
a set of locations where a species has been reported to have been seen. A point
process model specification addresses each of the three concerns raised above re-
garding pseudo-absence approaches. Our second key contribution is a proof that
the pseudo-absence logistic regression approach, when applied with an increasing
number of regularly spaced or randomly chosen pseudo-absences, yields estimates
of slope parameters that converge to the point process slope estimates (Section 3).
These two key results have important ramifications for species distribution model-
ing in ecology (Section 5), in particular, we provide a solution to the problem of
how to select pseudo-absences. We illustrate our results for the A. costata data of
Figure 1(a) (Section 4).

2. Poisson point process models for presence-only data. Presence-only
data are a set y = {y1, . . . , yn} of point locations in a two-dimensional region A,
where the locations where presences are recorded (the yi ) are out of the control
of the researcher, as is the total number of presence points n. We also observe a
“map” of values over the entire region A for each of k explanatory variables, and
we denote the values of these variables at yi as (xi1, . . . , xik).

We propose analyzing y = {y1, . . . , yn} as a point process, hence, we jointly
model number of presence points n and their location (yi). This has not previously
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been proposed for the analysis of presence-only data, despite the extensive liter-
ature on the analysis of presence-only data. We consider inhomogeneous Poisson
point process models [Cressie (1993); Diggle (2003)], which make the following
two assumptions:

1. The locations of the n point events (y1, . . . , yn) are independent.
2. The intensity at point yi [λ(yi), denoted as λi for convenience], the limiting

expected number of presences per unit area [Cressie (1993)], can be modeled as
a function of the k explanatory variables. We assume a log-linear specification:

log(λi) = β0 +
k∑

j=1

xijβj ,(2.1)

although note that the linearity assumption can be relaxed in the usual way (e.g.,
using quadratic terms or splines). The parameters of the model for the λi are
stored in the vector β = (β0, β1, . . . , βk).

Note that the process being modeled here is locations where an organism has been
reported rather than locations where individuals of the organism occur. Hence, the
independence assumption would only be violated by interactions between records
of sightings rather than by interactions between individual organisms per se. The
atlas data of Figure 1 consist of 721 A. costata records accumulated over a period
of 35 years in a region of 86,000 km2, so independence of records seems a reason-
able assumption in this case, given the rarity of event reporting. Nevertheless, the
methods we review here can be generalized to handle dependence between point
events [Baddeley and Turner (2005)].

Cressie (1993) shows that the log-likelihood for y can be written as

l(β;y) =
n∑

i=1

log(λi) −
∫
y∈A

λ(y) dy − log(n!).(2.2)

Berman and Turner (1992) showed that if the integral is estimated via numeri-
cal quadrature as

∫
y∈A λ(y) dy ≈ ∑m

i=1 wiλi , then the log-likelihood is (approxi-
mately) proportional to a weighted Poisson likelihood:

lppm(β;y,y0,w) =
m∑

i=1

wi

(
zi log(λi) − λi

)
,(2.3)

where zi = I (i∈{1,...,n})
wi

, y0 = {yn+1, . . . , ym} are quadrature points, the vector
w = (w1, . . . ,wm) stores all quadrature weights, and I (·) is the indicator func-
tion. Being able to write l(β;y) as a weighted Poisson likelihood has important
practical significance because it implies that generalized linear modeling (GLM)
techniques can be used for estimation and inference about β . Further, adaptations
of GLM techniques to other settings, such as generalized additive models [Hastie
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and Tibshirani (1990)], can then be readily applied to Poisson point process models
also.

Before implementing this approach, however, we need to make two key
decisions—how to choose quadrature points y0 = {yn+1, . . . , ym} and how to cal-
culate the quadrature weight wi at each point yi .

We propose choosing quadrature points in a regular rectangular grid, and con-
sidering grids of increasing spatial resolution until the estimate of the maximized
log-likelihood lppm(β̂;y,y0,w) has converged. A rectangular grid provides rea-
sonably efficient coverage of the region A, and is an arrangement for which envi-
ronmental data xi1, . . . , xik can be easily obtained via GIS software. We illustrate
this method in Section 4. Note a large data set may be required—in Section 4 con-
vergence was achieved at a spatial scale that required inclusion of approximately
86,000 quadrature points.

Quadrature weights are calculated as the area of the neighborhood Ai around
each point yi , according to some definition of the Ai such that yi ∈ Ai for each i,
Ai ∩ Ai′ = ∅ for each i �= i′, and

⋃
i Ai = A. In Section 4 we calculated quadra-

ture weights using the tiling method implemented in the R package spatstat
[Baddeley and Turner (2005)]. This crude approach breaks the region A into rec-
tangular tiles and calculates the weight of a point as the inverse of the number
of points per unit area in its tile. We fixed tile size at the size of the regular grid
used to sample quadrature points, such that all tiles contained exactly one quadra-
ture point. Dirichlet tessellation [Baddeley and Turner (2005)] offers an alternative
method of estimating weights, but this was not practical for our sample sizes.

3. Asymptotic equivalence of pseudo-absence logistic regression and Pois-
son point process models. Ecologists typically analyze presence-only data
points y = {y1, . . . , yn} by generating a set of “pseudo-absence” points y0 =
{yn+1, . . . , ym}, then using logistic regression to model the “response variable”
I (i ∈ {1, . . . , n}) as a function of explanatory variables [Pearce and Boyce (2006)].
Note that I (i ∈ {1, . . . , n}) is not actually a stochastic quantity, nevertheless, the
use of logistic regression to model this quantity as a Bernoulli response variable
can be motivated via a case-control argument along the lines of Diggle (2003),
Section 9.3.

In this section we will show that the approach to analysis currently used in ecol-
ogy, logistic regression using pseudo-absences, is closely related to the Poisson
point process model introduced in Section 2. Specifically, if the pseudo-absences
are either generated on a regular grid or completely at random over the region

A, then as the number of pseudo-absences increase, all parameter estimators ex-
cept for the intercept in the logistic regression model converge to the maximum
likelihood estimators of the Poisson process model of Section 2. This asymptotic
relationship between logistic regression and Poisson point process models does
not appear to have been recognized previously in the literature.
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First, we will specify a probability model for I (i ∈ {1, . . . , n}) that permits a
logistic regression model, and the study of its properties as m → ∞. This can be
achieved by considering a point chosen at random from {y1, . . . , ym} and defining
U as the event that the randomly chosen point yi is a presence. We are interested in
modeling U conditionally on the explanatory variables observed at the randomly
chosen point, xi = (xi1, . . . , xik). In this setting, U is a Bernoulli variable with
conditional mean pi , and we assume that

log
(

pi

1 − pi

)
= γ0 − log(m − n) +

k∑
j=1

xij γj .(3.1)

The intercept term is written as γ0 − log(m − n) because

pi

1 − pi

= f1(xi |U = 1)

f0(xi |U = 0)
· P(U = 1)

P (U = 0)
= f1(xi |U = 1)

f0(xi |U = 0)

n

m − n
,(3.2)

where f1(·) and f0(·) are the densities of xi conditional on U = 1 and U = 0
respectively. Provided that f0(xi |U = 0) is not a function of m (which is ensured,
e.g., by using an identical process to select all pseudo-absence points), then the
odds of a presence point pi

1−pi
is a function of m only via the multiplier (m−n)−1.

It can be seen from equation (3.2) that if m → ∞ in such a way that f0(xi |U =
0) is not a function of i, then pi → 0 at an asymptotic rate that is proportional to
m−1, and the intercept term in the logistic regression model approaches −∞ at the
rate log(m). This in turn means that the logistic regression log-likelihood, defined
below, will also diverge as m → ∞:

lbin(γ ;y,y0) =
n∑

i=1

log(pi) +
m∑

i=n+1

log(1 − pi).(3.3)

Clearly, as pi → 0, log(pi) → −∞ and, hence, lbin(γ ;y,y0) → −∞. Such di-
vergence is a symptom that the original model has been incorrectly specified. The
use of the more appropriate spatial point process model of Section 2 will not en-
counter such problems. However, it is shown in the following theorems that despite
the problems inherent in the logistic regression model specification, and despite
divergence of the intercept term, the remaining parameters converge to the corre-
sponding parameters from the Poisson process model of equation (2.3). Further,
pseudo-absences play the same role in the logistic regression model that quadra-
ture points played in Section 2.

For notational convenience, we will define Jm to be the single-entry matrix
whose first element is logm:

Jm = (logm,0, . . . ,0).(3.4)

This definition will be used in each of the theorems that follow. The Jm notation
is immediately useful in writing out the parameters of the model for pi in equa-
tion (3.1) as γ − Jm−n where γ = (γ0, γ1, . . . , γk).
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THEOREM 3.1. Consider a fixed set of n observations from a point process
y = {y1, . . . , yn}, and a set of pseudo-absences y0 = {yn+1, . . . , ym} of variable
size that is chosen via some identical process on A for i ∈ {n + 1, . . . ,m}. We
model U , whether or not a randomly chosen point is a presence point, via logistic
regression as in equation (3.1).

As m → ∞, the logistic regression log-likelihood of equation (3.3) approaches
the Poisson point process log-likelihood [equation (2.3)] but with all quadrature
weights set to one:

lbin(γ ;y,y0) = lppm(γ − Jm;y,y0,1) + O(m−1),

where 1 is a m-vector of ones, and Jm is defined in equation (3.4).

The proofs to Theorem 3.1 and all other theorems are given in Appendix A.
Theorem 3.1 has two interesting practical implications.
First, it implies that the pseudo-absence points of presence-only logistic regres-

sion play the same role as quadrature points of a point process model, and so
established guidelines on how to choose quadrature points (such as those of Sec-
tion 2) can inform choice of pseudo-absences. Previously pseudo-absences have
been generated according to ad hoc recommendations [Pearce and Boyce (2006);
Zarnetske, Edwards and Moisen (2007)], given the lack of a theoretical framework
for their selection. In contrast, quadrature points are generated in order to estimate
the log-likelihood to a pre-determined level of accuracy, a criterion which guides
the choice of locations and numbers of quadrature points m − n, as explained
in Section 2 and as illustrated later in Section 4 [Figure 2(a)]. Interestingly, cur-
rent methods of selecting pseudo-absences in ecology [Pearce and Boyce (2006);
Zarnetske, Edwards and Moisen (2007)] do not appear to be consistent with the
best practice in low-dimensional numerical quadrature—points are usually se-
lected at random rather than on a regular grid, and the number of pseudo-absences
(m − n) is more commonly chosen relative to the magnitude of the number of
presences (n) rather than based on some convergence criterion as in Figure 2(a).

Second, Theorem 3.1 implies that despite the apparent ad hoc nature of the
pseudo-absence approach, some form of point process model is being estimated.
However, logistic regression is only equivalent to a Poisson point process when
w = 1, that is, all quadrature weights are ignored. The implications of ignoring
weights is considered in Theorems 3.2 and 3.3 below.

It should also be noted that Theorem 3.1 is closely related to results due to
Owen (2007) and Ward (2007), although Theorem 3.1 differs from these results by
relating pseudo-absence logistic regression specifically to point process modeling.

Owen (2007) also considered the logistic regression setting where the number of
presence points is fixed, and the number of pseudo-absences increases to infinity,
and referred to this as “infinitely unbalanced logistic regression.” Owen (2007) de-
rived conditions under which convergence of model parameters could be achieved
as the number of pseudo-absences increased. The key condition is that the centroid
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FIG. 2. Asymptotic behavior of Poisson point process and pseudo-absence logistic regression mod-
els when the number of quadrature points becomes large (via sampling in a regular grid with increas-
ing spatial resolution). (a) The maximized log-likelihood converges for a Poisson point process, but
not for pseudo-absence logistic regression. (b) The parameters and their standard errors converge for
Poisson point process and logistic regression models, for sufficiently high spatial resolution. Linear
coefficient of “minimum temperature” is given here (corresponding to the second entry in Table 2).

of the points {y1, . . . , yn} in the design space is “surrounded”—see Definition 3 of
Owen (2007) for details.

Along the lines of Ward et al. (2009), Ward (2007) considered a pseudo-absence
logistic regression formulation of the presence-only data problem, and defined the
“population logistic model” as the model across “the full population” of locations
in the region A. The unconstrained log-likelihood of the population logistic model
[Ward (2007), equation (7.6)] has a similar form to the point process log-likelihood
l(β;y) of Section 2. For presence-only logistic regression as in Ward et al. (2009),
Ward (2007) shows that as the number of pseudo-absences approaches infinity, the
log-likelihood converges to that of the population logistic model, a result that is
analogous to Theorem 3.1.

Having shown that pseudo-absence logistic regression is equivalent to a point
process model where weights are ignored, the implications of ignoring weights is
now considered in Theorems 3.2 and 3.3.

THEOREM 3.2. Consider a point process model with quadrature points yn+1,

. . . , ym selected such that for all i wi = |A|
m

, where |A| is the total area of the
region A. Assume also that the design matrix X has full rank.

The maximum likelihood estimators of lppm(γ − Jm;y,y0,1) and lppm(β;y,y0,
|A|
m

1), γ̂ − Jm and β̂ respectively, satisfy

γ̂ = β̂ + J|A|.
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Further, the Fisher information for γ̂ and β̂ is equal.
That is, provided that quadrature points have been selected such that quadrature

weights are equal, ignoring quadrature weights in a Poisson point process model
does not change slope parameters nor their standard errors, although the intercept
term will differ by log(|A|/m).

Theorem 3.2 refers to the special case where all points (including presence
points) are sampled on a regular grid. This arises in the special case where the
region A has been divided into grid cells of equal area, and each grid cell is as-
signed the value 1 only if it contains a presence point. This form of presence-only
analysis is sometimes used in ecology [Phillips, Anderson and Schapire (2006),
e.g.]. In addition, the setting of Theorem 3.2 provides a reasonable approximation
to the approach to quadrature-point selection proposed in Section 2.

Note that together Theorems 3.1–3.2 suggest that when quadrature points (or,
equivalently, pseudo-absences) are sampled in a regular grid at increasing resolu-
tion, the logistic regression parameter estimates and their standard errors will ap-
proach those of the point process model—with the exception of the intercept term,
which diverges slowly to −∞ as all pi → 0 at a rate inversely proportional to m.
This nonconvergence of the intercept was also noticed by Owen (2007). Figure 2
illustrates these results for the A. costata data.

Theorem 3.3 below links the above results with the case where pseudo-absences
are randomly sampled within the region A, which is a more common approach
in ecology than sampling on a regular grid [e.g., Elith and Leathwick (2007);
Hernandez et al. (2008)].

THEOREM 3.3. Consider again the conditions of Theorem 3.2, but now as-
sume that the quadrature points y0 are selected uniformly at random within the
region A. As previously, γ̂ is the maximum likelihood estimator of lppm(γ − Jm;y,

y0,1), but now let β̂ be the maximum likelihood estimator of l(β;y) from equa-
tion (2.2). As m → ∞,

γ̂
P→ β̂ + J|A|.

That is, if quadrature points are randomly selected instead of being sampled on a
regular grid, the result of Theorem 3.2 holds in probability rather than exactly.

Note that the stochastic convergence in Theorem 3.3 is with respect to m not n,
that is, it is conditional on the observed point process.

Note also that one can think of randomly selecting pseudo-absence points as an
implementation of “crude” Monte Carlo integration [Lepage (1978)] for estimating∫
y∈A λ(y) dy in the point process likelihood [equation (2.2)].
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4. Modeling Angophora costata species distribution. As an illustration, we
construct Poisson point process models for the intensity of Angophora costata
records as a function of a set of explanatory variables. We consider modeling the
log of intensity using linear and quadratic functions of the variables minimum
and maximum temperature, mean annual rainfall, number of fires since 1943, and
“wetness,” a coefficient which can be considered as an indicator of local moisture.
These five variables were recommended by local experts as likely to be important
in determining A. costata distribution.

Our full model for intensity of A. costata records at the point yi has the follow-
ing form:

log(λi) = β0 + xT
i β1 + xT

i Bxi ,(4.1)

where β1 is a vector of linear coefficients, B is a matrix of quadratic coefficients,
and xi is a vector containing measurements of the five environmental variables at
point yi . We consider a quadratic model for log(λi) because this enables fitting
a nonlinear function and interaction between different environmental variables,
both considered important in species distribution modeling [Elith, Leathwick and
Hastie (2008)].

All analyses were carried out using purpose-written code on the R program [R
Development Core Team (2009)].

We first considered the spatial resolution at which quadrature points needed to
be sampled in order for the log-likelihood l(β;y) to be suitably well approximated
by lppm(β;y,y0,w). We found [as in Figure 2(a)] that on increasing the number
of quadrature points, the estimate of the maximized log-likelihood converged, and
that there was minimal change in the solution beyond a resolution of one quadra-
ture point every 1 km (the maximized log-likelihood changed by less than one
when the number of quadrature points was increased 4-fold). Hence, the 1 km res-
olution was used in model-fitting, and these results are reported here. This involved
a total of 86,227 quadrature points.

In order to study which environmental variables are associated with A. costata
and how they are associated, we performed model selection where we consid-
ered different forms of models for log-intensity as a function of environmental
variables, and we considered different subsets of the environmental variables via
all-subsets selection. In both cases we used AIC as our model selection criterion,
a simple and widely-used penalty-based model selection criterion [Burnham and
Anderson (1998)].

Comparison of AIC values for linear and quadratic models suggest that a much
better fit is achieved when using a quadratic model with interactions terms for all
coefficients (Table 1). Hence, we have evidence that environmental variables in-
teract in their effect on A. costata. Judging from the model coefficients and their
relative size compared to standard errors, the interactions between maximum tem-
perature, minimum temperature, and annual rainfall appear to be the major con-
tributors.
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TABLE 1
AIC values for linear and quadratic Poisson point process models for log(λ)

of Angophora costata presence. Model fitted at the 1 km by 1 km resolution

Model AIC

Linear terms only 5363.6
Quadratic (additive terms only) 4763.4
Quadratic (interactions included) 4400.6

All-subsets selection considered a total of 32 models, and found that the best-
fitting model included four variables (Figure 3)—all except for “wetness.” Parame-
ter estimates and standard errors for this best-fitting model are given in Table 2(a).

An image of the fitted intensity surface from the best-fitting model is presented
in Figure 1(c). The regions of highest predicted intensity are near the coast and just
north of Sydney, which are indeed where the highest density of presence points
appeared in Figure 1(a). We also compared intensity surfaces fitted at different
spatial resolutions, and note that they appear identical when quadrature points are
selected in a 500 × 500 m, 1 × 1 km, or 2 × 2 km grid, and that irrespective of
spatial resolution, regions of higher intensity had 0.05–0.2 expected A. costata
records per square kilometer, as in Figure 1(c). Note this is in contrast to logistic
regression, where fitted probabilities in any given location are a function of number
of pseudo-absences, and vary by a factor of 16 when moving from a 2 × 2 km to a
500 × 500 m grid.

To assist in interpreting parameters from the best-fitting model, we have con-
structed image plots of the fitted intensity in “environmental space” to elucidate

FIG. 3. Results of all-subsets selection, expressed as AIC of the best-fitting model at each level
of complexity. The respective best-fitting models included minimum temperature, then minimum and
maximum temperature, then annual rainfall was added, then fire count, and finally wetness. The
best-fitting model included four explanatory variables (all variables except wetness).
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TABLE 2
Parameter estimates and their standard errors for (a) the Poisson point process model with a
1 × 1 km regular grid of quadrature points; (b) The logistic regression model with a 1 × 1 km

regular grid of pseudo-absences; (c) The logistic model with 1000 randomly chosen pseudo-absence
points. In each case we fitted a quadratic model of minimum temperature (MNT), maximum

temperature (MXT), annual rainfall (RA), and fire count (FC). Notice that with few exceptions,
terms are equivalent to 2–3 significant figures for the models fitted over a regular grid. But this

is not the case for (c), and, in particular, standard errors are all 30–80% larger

(a) (b) (c)

Term β̂j se(β̂j ) β̂j se(β̂j ) β̂j se(β̂j )

Intercept −2130 169.4 −2119 171 −1999 227
MNT −16.3 3.0 −16.2 3.0 −9.91 4.2
MNT2 −0.21 0.027 −0.205 0.028 −0.185 0.050
MXT 128.7 10.1 128.1 10.1 120.2 13
MNT ∗ MXT 0.539 0.090 0.535 0.091 0.377 0.13
MXT2 −1.98 0.15 −1.97 0.15 −1.84 0.20
RA 0.759 0.065 0.755 0.066 0.714 0.089
MNT ∗ RA 0.00345 0.00065 0.00339 0.00065 0.00147 0.00096
MXT ∗ RA −0.0218 0.0019 −0.0216 0.0019 −0.0203 0.0025
RA2/1000 −0.0819 0.0072 −0.0815 0.0072 −0.0749 0.010
FC 6.24 3.37 5.98 3.42 4.08 4.9
MNT ∗ FC −0.101 0.040 −0.101 0.041 −0.207 0.070
MXT ∗ FC −0.123 0.10 −0.115 0.010 −0.0601 0.15
RA ∗ FC −0.00174 0.00066 −0.00171 0.00067 −0.000952 0.00095
FC2 −0.127 0.024 −0.123 0.024 −0.107 0.041

the nature of the effect of each environmental variable on intensity of A. costata
records (Figure 4). It can be seen in Figure 4 that there is a strong and negatively
correlated response to maximum temperature and annual rainfall. Of the four en-
vironmental variables, the response to number of fires appears to be the weakest,
with little apparent change in predicted intensity as number of fires increased, and
no observable interaction with the three climatic variables.

For the purpose of comparison, parameter estimates and their standard errors are
reported not just for the point-process model fit, but also for the analogous logistic
regression model in Table 2(b), for a model fitted with quadrature points sampled
in a 1 × 1 km regular grid. Note that most parameter estimates and standard errors
differ by less than 1% between the logistic regression and point process models,
as expected given Theorems 3.1–3.2.

We also report results when logistic regression is applied to m − n = 1000
pseudo-absences at randomly selected locations [Table 2(c)]. This is at the lower
end of the range typically used [Pearce and Boyce (2006); Elith and Leathwick
(2007); Hernandez et al. (2008)] for pseudo-absence selection in ecology. Note
that the standard errors are substantially larger in this case, and no parameter esti-
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FIG. 4. Image plots of the joint effects of environmental variables on predicted log (intensity) of
A. costata records. Darker areas of the image correspond to higher predicted values of log(λi). Note
the strong and highly correlated response of intensity to maximum temperature and annual rainfall,
and the relatively weak response to # fires.

mates are correct past the first significant figure. This result exemplifies how cur-
rent practice in ecology regarding the number of pseudo-absences (m − n) can
lead to poor results. Instead, it is advisable to consider the sensitivity of results to
different choices of m − n, along the lines of Figure 2.

To explore the goodness of fit of the best-fitting model, an inhomogeneous
K-function [Baddeley, Moller and Waagepetersen (2000)] was plotted using the
kinhom function from the spatstat package on R [Baddeley and Turner
(2005)], and simulation envelopes around the fitted model were constructed. See
Diggle (2003) for details concerning the use of K-functions to explore goodness of
fit of point process models. The inhomogeneous K-function, as its name suggests,
is a generalization of the K-function to the nonstationary case. It is defined over
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FIG. 5. Goodness of fit plot of the quadratic Poisson process model—inhomogeneous K-function
(solid line) with simulation envelope (broken lines). The envelope gives 95% confidence bands as
estimated from 500 simulated data sets. Note that the K-function falls within those bounds over most
of its range, although with a possible departure for r < 6 km.

the region A as

Kinhom(r) = 1

|A|E
{∑

yi∈y

∑
yj∈y\{yi }

I (‖yi − yj‖ < r)

λiλj

}
.

Kinhom reduces to the usual K function for a stationary process, and like the usual
K-function, can be used to diagnose whether there are interactions in the point
pattern y [Baddeley, Moller and Waagepetersen (2000)]. Results (Figure 5) sug-
gest a reasonable fit of this model to the data, although with some lack of fit at
small spatial scales (r < 6 km) suggestive of possible clustering in the data. One
possible method of modeling this clustering is to fit an area-interaction process
[Baddeley and van Lieshout (1995)], using the spatstat package. We have re-
peated analyses using such a model and found results to be generally consistent
with those presented here, except of course that the equivalence with logistic re-
gression no longer holds.

5. Discussion. In this paper we have proposed the use of Poisson point
process models for the analysis of presence-only data in ecology, an important and
widely-studied problem to which this methodology is well suited. We have also
shown that this method is approximately equivalent to logistic regression, when a
suitable number of regularly or randomly spaced pseudo-absences are used, hence,
we provide a link between the proposed method and the approach most commonly
used in ecology at the moment. But this raises the question: why use point process
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models, if the method currently being used is (asymptotically) equivalent to logis-
tic regression anyway? Several reasons are listed below.

Recall that in Section 1 we argued that the pseudo-absence approach has prob-
lems with model specification, interpretation, and implementation. We argue that
each of these difficulties is resolved by using a point process modeling framework.
Model specification—we believe that a point process model as in Section 2 is a
plausible model for the data generation mechanism for presence-only data. In con-
trast, the logistic regression approach involves generating new data in order to fit
a model originally designed for a different problem (analysis of binary data not
analysis of point-events). Hence, the pseudo-absence approach as it is usually ap-
plied appears to involve coercing the data to fit the model rather than choosing
a model that fits the original data. Interpretation—in the logistic regression ap-
proach we model pi , the probability that a given point event is a presence not a
pseudo-absence. This quantity has no physical meaning and clearly its interpreta-
tion is sensitive to our method of choice of pseudo-absences (and typically each
pi → 0 as m → ∞). In contrast, the intensity at a point λi has a natural interpre-
tation as the (limiting) expected number of presences per unit area, and will not
be sensitive to choice of quadrature points, provided that the number of quadrature
points is sufficiently large. Implementation—in Section 2 we explain that point
process models offer a framework for choosing quadrature points. Specifically,
equation (2.3) is used to estimate the point process log-likelihood, and progres-
sively more quadrature points are added until convergence of lppm(β̂;y,y0,w) is
achieved as in Figure 2(a). No such framework for choice of pseudo-absences is
offered by logistic regression, and instead choice of the location and number of
pseudo-absences is ad hoc, with potentially poor results [Table 2(c)]. Ecologists
are concerned about the issues of how many pseudo-absences to choose [Pearce
and Boyce (2006)], where to put them [Elith and Leathwick (2007); Zarnetske, Ed-
wards and Moisen (2007); Phillips et al. (2009)], and what spatial resolution to use
in model-fitting [Guisan et al. (2007); Elith and Leathwick (2009)], all issues that
have natural solutions given a point process model specification of the problem, as
in Section 2.

It should be emphasized that we have demonstrated equivalence of point
process modeling and pseudo-absence logistic regression only for large numbers
of pseudo-absences and only for pseudo-absences that are either regularly spaced
or located uniformly at random over A. Current practice concerning selection of
pseudo-absences in the ecology literature does not always involve sampling at ran-
dom over A [e.g., Hernandez et al. (2008)] and does not involve sampling suffi-
ciently many pseudo-absences for model convergence. Instead, choice of the num-
ber of pseudo-absences is ad hoc, and a total of 1000–10,000 pseudo-absences
is usually used [Elith and Leathwick (2007); Hernandez et al. (2008)], although
sometimes even fewer [Zarnetske, Edwards and Moisen (2007)]. On Figure 2,
1000–10,000 corresponds to a resolution of about 4–8 km, for which model con-
vergence has not been achieved. When fitting a model using just 1000 pseudo ab-
sences, some parameter estimates are not equivalent to the high-resolution fits to
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even one significant figure, and all standard error estimates were larger by 30–80%
(Table 2).

While only Poisson point processes were considered in this paper, the method-
ology implemented in Section 4 can be generalized to incorporate interactions be-
tween points in a straightforward fashion [Baddeley and Turner (2005)]. However,
the links between point process models and logistic regression identified in Sec-
tion 3 may be lost in this more general setting.

One issue not touched on in this paper is the problem of observer bias—that the
likelihood of a species being reported is a function of additional variables related
to properties of the observer and not of the target species, such as variation in
the level of accessibility of different parts of the region A. For example, the high
number of A. costata records just north of Sydney may be due in part to proximity
to a large city, rather than simply being due to environmental conditions being
suitable for A. costata. This issue will be addressed in a related article.

APPENDIX A: PROOF OF THEOREMS

A.1. Proof of Theorem 3.1. The proof involves two steps. The first step in-
volves showing that lbin(·), as a function of pi , is asymptotically equivalent to
lppm(·) when written as a function of λi . The second step involves showing that
given the definitions of pi and λi in equations (2.1) and (3.1), we can replace one
with the other without affecting the order of approximation.

Specifically, the log-likelihood function for U can be written as

lbin(γ ;y,y0) =
n∑

i=1

log(pi) +
m∑

i=n+1

log(1 − pi)

and a Taylor expansion of log(1 − pi) yields

=
n∑

i=1

log(pi) +
m∑

i=n+1

{pi + O(p2
i )},

but it can be seen from equation (3.2) that pi = O(m−1) and, hence,
∑n

i=1 pi =
O(m−1) for fixed n, so

lbin(γ ;y,y0) =
n∑

i=1

log(pi) +
m∑

i=n+1

pi + O(m−1)

=
n∑

i=1

log(pi) +
m∑

i=1

pi + O(m−1)(A.1)

=
m∑

i=1

{I (i ∈ {1, . . . , n}) log(pi) − pi} + O(m−1).
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Note that equation (A.1) has the form of the Poisson point process log-likelihood,
but with all weights set to one and pi being used in place of λi . We will now derive
a relation between pi and λi which motivates the replacement of pi by λi .

First note that the Taylor expansion of log(1−x) implies both that log(1−pi) =
O(m−1), and that log(m − n) = log(m) + log(1 − n/m) = log(m) + O(m−1). So
from equation (3.1),

logpi = γ0 − log(m − n) +
k∑

j=1

xij γj − log(1 − pi)

= γ0 − log(m) +
k∑

j=1

xij γj + O(m−1).

This has the form of equation (2.1), where β = γ − Jm. So when β = γ − Jm,
logpi = logλi + O(m−1), and

∑m
i=1 pi = ∑m

i=1 λi{1 + O(m−1} = ∑m
i=1 λi +

O(m−1). Now plugging these results into equation (A.1) yields lppm(γ −Jm;y,y0,

1) + O(m−1), completing the proof. �

A.2. Proof of Theorem 3.2. The proof follows by inspection of the score
equations. Specifically, let sj (β;w) = ∂

∂βj
lppm(β;y,y0,w). From equation (2.3),

for j ∈ {1, . . . , k},

sj (β;w) =
m∑

i=1

xijλiwi

(
zi − λi

λi

)
=

m∑
i=1

xijwi(zi − λi),(A.2)

where zi = I (i∈1,...,n)
wi

. If j = 0, equation (A.2) holds but with xij = 1 for each i.

Now β̂ satisfies sj (β̂; |A|
m

1) = 0 for each j , that is,

0 =
m∑

i=1

xij

(
I (i ∈ 1, . . . , n) − λ̂i

|A|
m

)
,(A.3)

where from equation (2.1), log(λ̂i) = β̂0 + ∑k
j=1 xij β̂1.

γ̂ satisfies sj (γ̂ − Jm;1) = 0, for each j ,

0 =
m∑

i=1

xij

(
I (i ∈ 1, . . . , n) − λ̃i

)
,(A.4)

where λ̃i is the maximum likelihood estimator of λi for lppm(γ − Jm;y,y0,1),
which satisfies log(λ̃i) = γ̂0 − logm + ∑k

j=1 xij γ̂1.

The solutions to equations (A.3) and (A.4) are related by the identity λ̃i = λ̂i
|A|
m

for each i, and if we take the logarithm of both sides,

γ̂0 − logm +
k∑

j=1

xij γ̂j = β̂0 +
k∑

j=1

xij β̂j + log |A| − logm.
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Provided that the design matrix X has full rank, γ̂ = β̂ + J|A|.
Also, note that the (j, j ′)th element of the Fisher information matrix of

lppm(β;y,y0,w) is

Ijj ′(β;w) = −E

(
∂2

∂βjβj ′
lppm(β;y,y0,w)

)
=

m∑
i=1

xijwixij ′λi(A.5)

and so Ijj ′(β̂; |A|
m

1) = ∑m
i=1 xij xij ′ |A|

m
λ̂i = ∑m

i=1 xij xij ′ λ̃i = Ijj ′(γ̂ − Jm;1) for
each (j, j ′). This completes the proof. �

A.3. Proof of Theorem 3.3. Let δ = γ̂ − β̂ −J|A|. We will prove the theorem
by using a Taylor expansion of the score equations for lppm(β;y,y0,1) to show

that for fixed n and m → ∞, δ
P→ 0.

Let S(β;1) be the vector of score equations whose j th element is sj (β;1) =
∂

∂βj
lppm(β;y,y0,1) and let I(β;1) be the corresponding Fisher information matrix.

A Taylor expansion of S(γ̂ − Jm;1) about S(β̂ + J|A|/m;1) yields

S(γ̂ − Jm;1) = S
(
β̂ + J|A|/m;1

) − I
(
β̂ + J|A|/m;1

)
δ + Op(‖δ‖2).(A.6)

The left-hand side is zero, because it is evaluated at the maximizer of lppm(β;y,y0,

1). Also, evaluating λi at β̂ + J|A|/m gives λ̂i
|A|
m

, and substituting this into equa-
tion (A.2) at w = 1,

sj
(
β̂ + J|A|/m;1

) =
n∑

i=1

xij −
m∑

i=1

xij λ̂i

|A|
m

P→
∫
y∈A

xj (y)λ̂(y) dy

from the weak law of large numbers. But this is the derivative of l(β;y) from
equation (2.2), evaluated at the maximum likelihood estimate β̂ , and so it equals

zero for each j and, hence, S(β̂ + J|A|/m;1)
P→ 0. Similarly, for each (j, j ′),

Ijj ′(β̂ + J|A|/m;1)
P→ Ijj ′(β̂), the (j, j ′)th element of the Fisher information ma-

trix for β̂ from l(β;y). So returning to equation (A.6),

δ = I
(
β̂ + J|A|/m;1

)−1S
(
β̂ + J|A|/m;1

) + Op(‖δ‖2)
P→ 0,

completing the proof. �
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