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SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS
FOR BINARY DATA
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and University of Texas M. D. Anderson Cancer Center

We develop a new principal components analysis (PCA) type dimension
reduction method for binary data. Different from the standard PCA which
is defined on the observed data, the proposed PCA is defined on the logit
transform of the success probabilities of the binary observations. Sparsity is
introduced to the principal component (PC) loading vectors for enhanced in-
terpretability and more stable extraction of the principal components. Our
sparse PCA is formulated as solving an optimization problem with a criterion
function motivated from a penalized Bernoulli likelihood. A Majorization–
Minimization algorithm is developed to efficiently solve the optimization
problem. The effectiveness of the proposed sparse logistic PCA method is
illustrated by application to a single nucleotide polymorphism data set and a
simulation study.

1. Introduction. Principal components analysis (PCA) is a widely used
method for dimensionality reduction, feature extraction and visualization of mul-
tivariate data. Several sparse PCA methods have recently been introduced to im-
prove the standard PCA [e.g., Jolliffe, Trendafilov and Uddine (2003); Zou, Hastie
and Tibshirani (2006); Shen and Huang (2008)]. By requiring the principal com-
ponent loading vectors to be sparse, sparse PCA methods yield PCs that are more
easily interpretable. Sparsity also regularizes the extraction of PCs and thus makes
the extraction more stable. Such stability is much desired when the dimension
is high, especially in the so-called high-dimension low-sample-size settings. As
extensions of the standard PCA, however, these sparse PCA methods are mostly
suitable to variables of a continuous type, they are not generally appropriate for
other data types such as binary data or counts. Although the basic objective of
PCA, or its sparse version, can be achieved regardless of the nature of the original
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variable, it is true that variances and covariances have especial relevance for mul-
tivariate Gaussian variables, and that linear functions of binary variables are less
readily interpretable than linear functions of continuous variables [Jolliffe (2002)].
The goal of this paper is to develop a sparse PCA method for binary data.

There are two commonly used definitions of PCA that give rise to the same
result. PCA can be defined by finding the orthogonal projection of the data onto
a low dimensional linear subspace such that the variance of the projected data is
maximized [Hotelling (1933)]. Alternatively, PCA can also be defined by find-
ing the linear projection that minimizes the mean squared distance between the
data points and their projections [Pearson (1901)]. Shen and Huang (2008) de-
veloped their sparse PCA method following the viewpoint of Pearson. Suppose
y1, . . . ,yn ∈ R

d are the n data points and consider a k-dimensional (k < d) lin-
ear manifold spanned by a bases b̃1, . . . , b̃k with a shift vector μ. According to
Pearson, the PCA minimizes the following reconstruction error,

n∑
i=1

‖yi − (μ + ai1b̃1 + · · · + aikb̃k)‖2 :(1.1)

subject to the constraint that A = (aij ) has orthonormal columns. Usually the vari-
ables presented in yi are scaled so that they have the same order of magnitude.
Note that (1.1) is a least squares regression if aik’s were known. In light of this
connection to regression and borrowing the idea from LASSO [Tibshirani (1996)],
Shen and Huang (2008) proposed to add an L1 penalty ‖b̃1‖1 + · · · + ‖b̃k‖1 to the
reconstruction error (1.1) to obtain sparse loading vectors b̃1, . . . , b̃k . Since the
reconstruction error (1.1) can be viewed as the negative log likelihood up to a con-
stant for the Gaussian distributions with mean vectors θ i = μ+ai1b̃1 +· · ·+aikb̃k

for i = 1, . . . , n and identity covariance, the method of Shen and Huang can be in-
terpreted as a penalized likelihood approach for the sparse PCA. The key idea of
the current paper is to replace the Gaussian likelihood by the Bernoulli likelihood
where θ i will be the logit transform of the success probabilities. We refer to the
proposed PCA method as sparse logistic PCA. The relationship of the proposed
sparse logistic PCA to the sparse PCA of Shen and Huang is analogous to the
relationship between logistic and linear LASSO regression.

We develop an iterative weighted least squares algorithm to perform the pro-
posed sparse logistic PCA. Since the log Bernoulli likelihood is not quadratic and
the L1 penalty function is nondifferentiable, the optimization problem defining the
sparse logistic PCA is not straightforward to solve. Our algorithm applies the gen-
eral idea of optimization transfer or Majorization–Minimization (MM) algorithm
[Lange, Hunter and Yang (2000); Hunter and Lange (2004)]. By iteratively re-
placing the complex objective function with suitably defined quadratic surrogates,
each step of our algorithm solves a weighted least squares problem and has closed
form. The algorithm is easy to implement and guaranteed at each iteration to im-
prove the penalized PCA log-likelihood. We show that the same MM algorithm
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is applicable when there are missing data. We also develop a method for choos-
ing the penalty parameters and for choosing the number of important principal
components. PCA of binary data using Bernoulli likelihood has previously been
studied by Collins, Dasgupta and Schapire (2002), Schein, Saul and Ungar (2003)
and de Leeuw (2006), but none of these works considered sparse loading vectors.
As we demonstrate using simulation and real data, sparsity can enhance interpre-
tation of results and improve the stability and accuracy of the extracted principal
components.

Other approaches of sparse PCA are not as easily extendible to binary data.
Jolliffe, Trendafilov and Uddine (2003) modified the defining maximum variance
problem of the standard PCA by applying an L1-norm constraint on the PC load-
ing vectors to obtain PCA with sparse loadings. Its use of sample variance makes
it unappealing for binary data. Zou, Hastie and Tibshirani (2006) rewrote PCA as
a regression-type optimization problem and then applied the LASSO penalty [Tib-
shirani (1996)] to obtain sparse loadings. However, since the data appear both as
regressors and responses in their regression-type problem, the connection of their
approach to the penalized likelihood is not as natural as Shen and Huang (2008).

The rest of this article is organized as follows. In Section 2 we introduce the
optimization problem that yields the sparse logistic PCA and provides methods
for tuning parameter selection. Section 3 applies the sparse logistic PCA to a sin-
gle nucleotide polymorphism data set and compares it with the nonsparse version
of logistic PCA. Section 4 presents a Majorization–Minimization algorithm for
efficient computation of the sparse logistic PCA and Section 5 discusses how to
handle missing data. Results of a simulation study are given in Section 6. Sec-
tion 7 concludes the paper with some discussion. The Appendix contains proofs of
theorems.

2. Sparse logistic PCA with penalized likelihood.

2.1. Penalized Bernoulli likelihood. Consider the n × d binary data matrix
Y = (yij ), each row of which represents a vector of observations from binary
variables. We assume that entries of Y are realizations of mutually independent
random variables and that yij follows the Bernoulli distribution with success prob-
ability πij . Let θij = log{πij /(1 − πij )} be the logit transformation of πij . Define
the inverse logit transformation π(θ) = {1 + exp(−θ)}−1. Then the success prob-
abilities can be represented using the canonical parameters as πij = π(θij ). The
individual data generating probability becomes

Pr(Yij = yij ) = π(θij )
yij {1 − π(θij )}1−yij = π(qij θij ),

with qij = 2yij − 1 since π(−θ) = 1 − π(θ). This representation leads to the
compact form of the log likelihood as

� =
n∑

i=1

d∑
j=1

logπ(qij θij ).(2.1)
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Note that the Bernoulli distributions are in the exponential family and θij are the
corresponding canonical parameters.

To build a probabilistic model for principal components analysis of binary
data, the d-dimensional canonical parameter vectors θ i = (θi1, . . . , θid)T are con-
strained to reside in a low dimensional manifold of R

d with the dimensional-
ity k. (The choice of k will be discussed later in Section 2.3.) Specifically, we
assume that, for some vectors μ, b̃1, . . . , b̃k ∈ R

d , the vector of canonical para-
meters satisfies θ i = μ + ai1b̃1 + · · · + aikb̃k for i = 1, . . . , n. We call b̃1, . . . , b̃k

the principal component loading vectors and the coefficients ai = (ai1, . . . , aik)
T

the principal component scores (PC scores) for the ith observation. Geometrically,
the vectors of canonical parameters θ i are projected onto the k-dimensional man-
ifold which is the affine subspace spanned by k PC loading vectors and trans-
lated by the intercept vector μ. In matrix form, the canonical parameter matrix
� = (θij ) = (θ1, . . . , θn)

T is represented as

� = 1n ⊗ μT + ABT ,(2.2)

where A = (a1, . . . ,an)
T is the n × k principal component score matrix and B =

(b̃1, . . . , b̃k) is the p × k principal component loading matrix. For identifiability
purpose, we require that A has orthonormal columns.

We target a method that can produce a sparse loading matrix, a loading ma-
trix with many zero elements. A sparse loading matrix implies variable selection
in principal components analysis, since each principal component only involves
those variables corresponding to the nonzero elements of the loading vector. We
propose to perform variable selection using the penalized likelihood with a spar-
sity inducing penalty. Let bT

j denote the j th row of B. Then (2.2) implies that

θij = μj + aT
i bj where μj is the j th element of μ. The log likelihood can be

written as

�(μ,A,B) =
d∑

j=1

n∑
i=1

logπ{qij (μj + aT
i bj )}.(2.3)

If ai were observable, (2.3) is the log likelihood for d logistic regressions

logitP(Yij = 1) = μj + aT
i bj .

This connection with logistic regression suggests use of the L1 penalty to get a
sparse loading matrix, as in the LASSO regression [Tibshirani (1996)].

Specifically, consider the penalty

Pλ(B) =
k∑

l=1

λl‖b̃l‖1 = λ1

d∑
j=1

|bj1| + · · · + λk

d∑
j=1

|bjk|,(2.4)

where λl are regularization parameters whose selection will be discussed later. We
obtain sparse principal components by maximizing the following penalized log
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likelihood:

f (μ,A,B) = �(μ,A,B) − nPλ(B),(2.5)

subject to the constraint that A has orthonormal columns. Note that B enters the
likelihood together with A through ABT and so B can be arbitrarily small by just
increasing the magnitude of A and not changing the likelihood. The orthonormal
constraint on A prevents elements of A becoming arbitrarily large and thus vali-
dates our use of the L1 penalty on B.

The sparse principal components can be equivalently formulated as minimizing
the following criterion function:

S(μ,A,B) = −�(μ,A,B) + nPλ(B),(2.6)

subject to the constraint that A has orthonormal columns. In (2.6) the negative log
likelihood can be interpreted as a loss function and the L1 penalties increase the
loss for nonzero elements of B according to their magnitude. This penalized loss
interpretation is also appealing in the sense that the independent Bernoulli trials as-
sumption for obtaining the likelihood (2.3) need not be a realistic representation of
the actual data generating process but rather a device for generating a suitable loss
function. Since the L1 penalties regularize the loss minimization, the sparse logis-
tic PCA is sometimes also referred to as the regularized logistic PCA. We shall
focus on the minimization problem (2.6) for the rest of the paper. A computational
algorithm for solving the minimization problem is presented in Section 4.

The effectiveness of the proposed sparse logistic PCA is illustrated in Figure 1
using a rank-one model (i.e., k = 1). While the sparse logistic PCA can recover
the original loading vector well, the nonregularized logistic PCA gives more noisy
results. A systematic simulation study is reported in Section 6.

2.2. Choosing the penalty parameters. Although different penalty parameters
can be used for different PC loading vectors for maximal flexibility of the method-
ology, we consider using only a single penalty parameter λ for all PC loadings.
This simplification substantially reduces the computation time, especially when k

is large. Note that a larger value of λ will lead to a smaller number of nonzeros in
the loading matrix B and reduced model complexity, but the reduced model com-
plexity is usually associated with less good fit of the model. To compromise the
goodness of fit and model complexity, for fixed k, we choose λ by minimizing the
following BIC criterion:

BIC(λ) = −2�(μ,A,B) + logn × m(λ),(2.7)

where m(λ) is a measure of the degrees of freedom. Note that Zou, Hastie and
Tibshirani (2007) showed that the number of nonzero coefficients is an unbiased
estimate of the degrees of freedom for the LASSO regression. The degrees of free-
dom m(λ) used in (2.7) is defined as m(λ) = d +nk+|B(λ)|, where d is the length
of the vector μ, nk is the total number of elements of A, and |B(λ)| is the cardinal-
ity of the index set B(λ) of the nonzero loadings in B when the penalty parameter
is λ. We use a grid search to find the optimal λ that minimizes the BIC.
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FIG. 1. A simulated data set with n = 100, d = 200 and k = 1. Top, middle and bottom panels
show respectively the true loadings, loadings from the nonregularized logistic PCA and from the
regularized logistic PCA. The penalty parameter is selected using the BIC.

2.3. Determining the dimensionality of the subspace. The BIC criterion de-
fined in (2.7) can also be used to select a suitable “k.” A two-dimensional grid
search can be used to find the minimizer of the BIC with respect to both k and λ.
To expedite computation, we implement the following strategy: First fix k at a rea-
sonable large value and select a good λ, then using this λ we refine the choice
of k and, finally, we refine λ with the refined k. When optimizing with respect
to λ, a coarse grid can be used in the first step and a finer grid in the second step.
Our simulation study showed that this strategy works reasonably well (see Sec-
tion 6.3).

REMARK 1. In classical multivariate analysis, the percentage of total variance
explained by the principal components provides an intuitive measure that can be
used for subjectively choosing the appropriate number of principal components.
Zou, Hastie and Tibshirani (2006) and Shen and Huang (2008) extended it to sparse
PCA by modifying the definition of variance explained by the PCs. Since there is
no clear definition of total variance for the binary data, extension of the notion of
“percentage of variance explained” to logistic PCA is an interesting but unsolved
problem.
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3. Application to single nucleotide polymorphism data. Association stud-
ies based on high-throughput single nucleotide polymorphism (SNP) data
[Brookes (1999); Kwok et al. (1996)] have become a popular way to detect ge-
nomic regions associated with human complex diseases. A SNP is a single base
pair position in genomic DNA at which the sequence (alleles) variation occurs
between members of a species, wherein the least frequent allele has an abundance
of 1% or greater. A crucial issue in association studies is population stratifica-
tion detection [Hao et al. (2004)], which is to determine whether a population is
homogeneous or has hidden structures within it. With the presence of population
stratification, the naive case-control approach not accounting for this factor would
yield biased results [Ewens and Spielman (1995)] and, therefore, draw inaccurate
scientific conclusions. See Liang and Kelemen (2008) for an extensive discussion
of statistical methods and difficulties for SNP data analysis.

The proposed sparse logistic PCA method can be used for population strat-
ification detection. For the purpose of demonstration, we use the SNP data set
available in the International HapMap project [The International HapMap Consor-
tium (2005)]. It consists of 3 different ethnic populations of 90 Caucasians (Utah
residents with ancestry from northern and western Europe; CEO), 90 Africans
(Yoruba in Ibadan, Nigeria; YRI) and 90 Asians (45 Han Chinese in Beijing,
China; CHB and 45 Japanese in Tokyo, Japan; JPT). Our task is to detect this
three-subpopulation structure using the SNP data on the 270 subjects. At many
SNP locations, heterozygosity distribution and allele frequency are known to be
different among populations and could confound the effect of the risk of disease.
To account for this factor, Serre et al. (2008) selected 1536 SNPs with similar het-
erozygosity distribution and allele frequency. The locations of these SNPs cover
all the chromosomes except for the sex-determining chromosome. Among these
1536 SNPs, 1392 are shared by three ethnic groups, which are used in our analy-
sis. We coded 0 for the most prevalent homogeneous base pair (wild-type) and 1
for others (mutant), resulting in a 270 × 1392 binary matrix. This data matrix
has 2.37% missing entries.

We applied the sparse logistic PCA to this SNP data set to explore variabil-
ity among high dimensional SNP variables, using the computation algorithm
given in Sections 4 and 5 below. The method described in Section 2.3 was
used for model selection. Specifically, we initially fixed the reduced dimen-
sion to k = 30 and chose the penalty parameter λ among the rough grid of
0,1.5−18,1.5−17, . . . ,1.5−10 using the BIC criterion defined in Section 2.3. Given
the selected λ = 1.5−16, the dimension k was refined by minimizing the BIC,
giving k = 10. Finally, with k = 10, we refined λ by searching over the grid
0,0.0005,0.0010,0.0015, . . . ,0.0100, resulting in λ = 0.0015. As a comparison,
we also applied the nonregularized logistic PCA to the data, which corresponds to
λ = 0 in our general formulation of regularized logistic PCA.

To examine which principal components represent the variability associated
with three racial groups, we used a F -test where scores for each fixed PC is
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FIG. 2. The scatterplots of the first two PC scores from the nonregularized (left) and regularized
logistic PCA. Circle, rectangle and triangle represent Caucasian, African and Asian population re-
spectively.

regressed on the group dummy variables. For the sparse logistic PCA, only the
first two PCs were highly significant with both p-values less than 0.0001 and
the remaining eight PCs were not significant with large p-values (0.7681, 0.9109,
0.4764, 0.5523, 0.3376, 0.5415, 0.4480, 0.6441 for the third to the tenth PCs re-
spectively). This result suggests that the sparse logistic PCA can effectively com-
press the racial group information into two leading PCs. Similar compression was
not achieved by the nonregularized logistic PCA; the F -test was significant for
all the first ten PCs with p-values <0.0001, <0.0001, 0.0002, 0.0001, <0.0001,
<0.0001, <0.0001, 0.0028, <0.0001 and 0.0299 respectively.

Pairwise scatterplots were used to check clustering of subjects using the PC
scores. Figure 2 shows the scatterplots of first 2 PC scores with and without reg-
ularization. The three ethnic groups are clearly separated by the regularized PCA
but not by the nonregularized PCA. To verify that the group separation obtained
is not because of luck, we permuted observations for each SNP and applied the
sparse logistic PCA to the permuted data set; no clear clustering showed up in the
PC scores.

The proposed sparse PCA method allows directly identifying the SNPs that
contribute to the group separation. The selected model has 790 and 658 nonzero
loadings (representing the SNPs) respectively for the first 2 PCs, among which
509 SNPs are shared. Therefore, 939 SNPs involved in the first 2 PC directions are
claimed to be associated with the ethnic group effect. Our result suggests that the
population stratification factor should be taken into consideration at these 939 SNP
locations in the subsequent study of the association between SNPs and the disease
phenotype to avoid biased conclusion. Although in light of our simulation results,
some selected SNPs could be false positives, we believe that a large proportion
of the selected SNPs are relevant in differentiation among the three racial groups,
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because the studied SNPs were delicately selected to represent the most genetic
diversity of the whole genome [Serre et al. (2008)] and the genetic differentia-
tion is the greatest when defined on a continental basis, which is the case for our
comparison between Caucasian, Asian and African [Risch et al. (2002)].

We further compared the regularized and nonregularized logistic PCA by as-
sessing the variability of the probability estimates using the parametric bootstrap.
For each method, we generated 100 bootstrapped data sets of binary matrices; each
binary matrix has entries that are independently drawn from the Bernoulli distrib-
ution with success probability π̂ij for the (i, j)th entry, where π̂ij is the estimated
probability. We then applied the method to these bootstrapped data sets to obtain
100 bootstrapped probabilities for each (i, j) combination and to construct a 90%
variability interval using the 5% and 95% quantiles of the bootstrapped probabil-
ities. These 90% variability intervals were plotted against the ordered π̂ij to form
a variability envelop. The variability envelop for the regularized PCA is narrower
than that for the nonregularized PCA, indicating that regularization indeed reduces
the variability of the probability estimates (Figure 3).

Our working model for the logistic PCA specified by (2.1) and (2.2) assumes
that, conditional on the principal component scores, the observations are indepen-
dent. Since there exists spatial dependency among SNPs, one may have concerns
about the validity of our analysis results if the dependence is strong. In our data
set, the 1536 SNPs were selected from the whole genome to capture most of the
genetic diversity in population considering factors of physical distances, allele fre-
quencies and linkage disequilibrium patterns. The selected SNPs are sufficiently
well separated within each chromosome so that they can be representative of the
whole genome [Serre et al. (2008)]. Therefore, we expect that the spatial depen-
dency in this data set should not be too serious to invalidate our results. To address

FIG. 3. The SNP data: 90% bootstrap variability envelope (showed as lines) of the probability
estimates, using 100 randomly selected SNPs. Circles are the estimated probabilities π̂ij from the
SNP data. Results are based on 100 bootstrap samples.
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FIG. 4. Histograms of pairwise correlations of Pearson’s residuals from nonregularized (left) and
regularized (right) logistic PCA.

this issue empirically, we first computed Pearson’s residuals after fitting the mod-
els for the nonregularized and regularized logistic PCA, then calculated pairwise
correlations of these Pearson’s residuals for all SNP pairs for each chromosome.
Figure 4 shows the histogram of the pairwise correlations for each model. For both
models most pairwise correlations are close to zero, indicating that the SNPs are
weakly correlated. We noticed that there exists a very small proportion of SNP
pairs that are highly correlated. Examination of the physical locations revealed
that those highly correlated SNP pairs consist of SNPs in close vicinity, indicating
the imperfection of the initial SNP selection process.

4. Computational algorithm. We develop a Majorization–Minimiza-
tion (MM) algorithm for minimizing (2.6), which iteratively minimizes a suitably
defined quadratic upper bound of (2.6). Instead of directly dealing with the non-
quadratic log likelihood and the nondifferentiable sparsity inducing L1 penalty,
the MM algorithm sequentially optimizes a quadratic surrogate objective function.
A function g(x|y) is said to majorize a function f (x) at y if

g(x|y) ≥ f (x) for all x and g(y|y) = f (y).

In the geometrical view the function surface g(x|y) lies above the function f (x)

and is tangent to it at the point y so g(x|y) becomes an upper bound of f (x).
To minimize f (x), the MM algorithm starts from an initial guess x(0) of x, and
iteratively minimizes g(x|x(m)) until convergence, where x(m) is the estimate of x

at the mth iteration. The MM algorithm decreases the objective function in each
step and is guaranteed to converge to a local minimum of f (x). When applying the
MM algorithm, the majorizing function g(x|y) is chosen such that it is easier to
minimize than the original objective function f (x). See Hunter and Lange (2004)
for an introductory description of the MM algorithm.
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To find a suitable majorizing function of (2.6), we treat the log likelihood term
and the penalty term separately. For the log likelihood term, note that, for a given
point y,

− logπ(x) ≤ − logπ(y) − {1 − π(y)}(x − y) + 2π(y) − 1

4y
(x − y)2(4.1)

≤ − logπ(y) − {1 − π(y)}(x − y) + 1

8
(x − y)2,(4.2)

and the equalities hold when x = y [Jaakkola and Jordan (2000); de Leeuw
(2006)]. These inequalities provide quadratic upper bounds for the negative log
inverse logit function at the tangent point y. We refer to the former bound as the
tight bound, and the latter bound as the uniform bound since its curvature does
not change with y. We pursue here the MM algorithm by using the uniform bound
and leave the discussion of using the tight bound to the supplemental article [Lee,
Huang and Hu (2010)]. Use of the tight bound usually leads to a smaller number of
iterations of the algorithm but longer computation time because of the complexity
involved in computing the bound. For the penalty term, the inequality

|x| ≤ x2 + y2

2|y| , y �= 0,(4.3)

gives an upper bound for |x| and the equality holds when x = y [Hunter and Li
(2005)]. Application of (4.2) and (4.3) yields a suitable majorizing function of (2.6)
and thus an MM algorithm.

Now we present details of the MM algorithm via the uniform bound. Let �(m)

be the estimate of � obtained in the mth step of the algorithm, with the entries
θ

(m)
ij = μ

(m)
j + a(m)T

i b(m)
j . By completing the square, the uniform bound (4.2) can

be rewritten as

− logπ(x) ≤ − logπ(y) + 1
8 [x − y − 4{1 − π(y)}]2.(4.4)

Substituting x and y with qij θij and qij θ
(m)
ij respectively in (4.4) and noticing that

qij = ±1, we obtain

− logπ(qij θij ) ≤ − logπ
(
qij θ

(m)
ij

) + w
(m)
ij

(
θij − x

(m)
ij

)2
,(4.5)

where w
(m)
ij = 1/8 and

x
(m)
ij = θ

(m)
ij + 4qij

{
1 − π

(
qij θ

(m)
ij

)}
.(4.6)

The superscript m of w
(m)
ij and x

(m)
ij indicates the dependence on �(m). Summing

over all i, j of (4.5) and ignoring a constant term that does not depend on unknown
parameters, we obtain the following quadratic upper bound of the negative log-
likelihood:

n∑
i=1

d∑
j=1

w
(m)
ij

(
θij − x

(m)
ij

)2 =
n∑

i=1

d∑
j=1

w
(m)
ij

{
x

(m)
ij − (μj + aT

i bj )
}2

.(4.7)
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On the other hand, (4.3) implies that the penalty Pλ(B) has the following quadratic
upper bound:

Pλ(B) ≤ λ1

d∑
j=1

b2
j1 + b

(m)2
j1

2|b(m)
j1 | + · · · + λk

d∑
j=1

b2
jk + b

(m)2
jk

2|b(m)
jk | .(4.8)

Combining (4.7) and (4.8) yields the following quadratic upper bound (up to a
constant) of the criterion function S(μ,A,B) defined in (2.6):

g
(
μ,A,B|μ(m),A(m),B(m))

(4.9)

=
n∑

i=1

d∑
j=1

[
w

(m)
ij

{
x

(m)
ij − (μj + aT

i bj )
}2 + bT

j D(m)
λ,j bj

]
,

where D(m)
λ,j is a diagonal matrix with diagonal elements λl/{2|b(m)

jl |} for l =
1, . . . , k.

THEOREM 4.1. (i) Up to a constant that depends on μ(m), A(m) and B(m)

but not on μ, A and B, the function g(μ,A,B|μ(m),A(m),B(m)) defined in (4.9)
majorizes S(μ,A,B) at (μ(m),A(m),B(m)).

(ii) Let (μ(m),A(m),B(m)), m = 1,2, . . . , be a sequence obtained by iteratively
minimizing the majorizing function. Then S(μ(m),A(m),B(m)) decreases as m gets
larger and it converges to a local minimum of S(μ,A,B) as m goes to infinity.

The majorizing function given in (4.9) is quadratic in each of μ, A and B when
the other two are fixed and, thus, alternating minimization of (4.9) with respect
to μ, A and B has closed-form solutions, which are given below. We now drop
the superscript in x

(m)
ij for notational convenience. Recall that w

(m)
ij = 1/8 is a

constant. For fixed A and B, set x
†
ij = xij − aT

i bj , the optimal μ̂j is given by

μ̂j = arg min
μj

n∑
i=1

(x
†
ij − μj)

2 = 1

n

n∑
i=1

x
†
ij , j = 1, . . . , d.(4.10)

This leads to a simple matrix formula μ̂ = 1
n

X†T 1n, which is obtained by taking

the column means of X† = (x
†
ij ).

To update A and B for fixed μ, set x∗
ij = xij − μj or in matrix form, X∗ =

(x∗
ij ) = X − 1n ⊗ μT . Denote the ith row vector of X∗ as x∗T

i . For fixed μ and B,
the ith row of A is updated by minimizing with respect to ai the sum of squares∑d

j=1(x
∗
ij − aT

i bj )
2 = (x∗

i − Bai )
T (x∗

i − Bai ), which has a closed form solution

âi = (BT B)−1BT x∗
i , i = 1, . . . , n,(4.11)

or Â = X∗B(BT B)−1 in matrix form. The columns of updated A can be made or-
thonormal by using the QR decomposition. Denote the j th column vector of X∗
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as x̃∗
j . For fixed μ and A, the j th row of B is updated by solving the ridge regres-

sion problem that minimizes with respect to bj the penalized sum of squares

1

8

n∑
i=1

(x∗
ij − aT

i bj )
2 + n

k∑
l=1

λl

b2
j l

2|b(m)
jl |

= 1

8
(x̃∗

j − Abj )
T (x̃∗

j − Abj ) + nbT
j Dλ,j bj ,

which has a closed form solution

b̂j = (AT A + 8nDλ,j )
−1AT x̃∗

j , j = 1, . . . , d.(4.12)

Since, during the iteration, A is made orthonormal, AT A becomes the identity
matrix of size k. Therefore, since the matrices to be inverted are diagonal matrices,
b̂j can be obtained by component-wise shrinkage

b̂j l = |b(m)
jl |

|b(m)
jl | + 4nλl

ãT
l x̃∗

j , l = 1, . . . , k, j = 1, . . . , d,

where ãl is the lth column of A.
The MM algorithm will alternate between (4.10), (4.11) and (4.12) until conver-

gence. The details are summarized in Algorithm 1. In this algorithm, k, the number
of columns of A and B, should be specified in advance. Different from the sequen-
tial extraction approach of Shen and Huang (2008), the matrices A and B obtained
after applying Algorithm 1 depend on the value of k, but the results are reasonably
stable when k is large enough. See Section 2.3 for discussion on choice of k. We
use random initial values for μ, A and B. As with any nonlinear optimization al-
gorithms, our algorithm is not guaranteed to converge to a global minimum. We
can follow the common practice to random start the algorithm several times and
find the best solution. Our experience is that the algorithm with different initial
values usually converges to the same solution (within the precision specified by
the convergence criterion).

ALGORITHM 1 (Sparse logistic PCA algorithm I).

1. Initialize with μ(1) = (μ
(1)
1 , . . . ,μ

(1)
d )T , A(1) = (a(1)

1 , . . . ,a(1)
n )T and B(1) =

(b(1)
1 , . . . ,b(1)

d )T . Set m = 1.

2. Compute x
(m)
ij using (4.6) and set X(m) = (x

(m)
ij ).

3. Set X(m)† = (x
(m)†
ij ) with x

(m)†
ij = x

(m)
ij − a(m)T

i b(m)
j . Update μ using μ(m+1) =

1
n

X(m)†T 1n.
4. Set X(m+1)∗ = X(m) − 1n ⊗ μ(m+1)T .
5. Update A by A(m+1) = X(m+1)∗B(m)(B(m)T B(m))−1. Compute the QR decom-

position A(m+1) = QR and then replace A(m+1) by Q.
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6. Set C(m+1) = (c
(m+1)
j l ) = X(m+1)∗T A(m+1). Update B by B(m+1) = (b

(m+1)
j l )

where

b
(m+1)
j l = |b(m)

jl |
|b(m)

jl | + 4nλl

c
(m+1)
j l , l = 1, . . . , k, j = 1, . . . , d.

7. Repeat steps 2 through 6 with m replaced by m + 1 until convergence.

REMARK 2. The orthogonalization in step 5 of Algorithm 1 does not
change the descent property of the MM algorithm. Let A(m+1) be the opti-
mizer before orthogonalization. Then S(A(m+1),B(m)) ≤ S(A(m),B(m)), where,
for simplicity, μ is omitted from the objective function S. Let A(m+1) =
Ã(m+1)R be the QR decomposition of A(m+1) and let B̃(m) = B(m)RT . Then
Ã(m+1)B̃(m)T = A(m+1)B(m)T and so S(Ã(m+1), B̃(m)) = S(A(m+1),B(m)). Con-
sequently, S(Ã(m+1), B̃(m)) ≤ S(A(m),B(m)).

5. Handling missing data. Missing data are commonly encountered in real
applications. In this section we extend our sparse logistic PCA method to cases
when missing data are present.

Let N = {(i, j)|yij is not observed} denote the index set for missing values. The
sparse logistic PCA minimizes the following criterion function:

T (μ,A,B) = −�obs(μ,A,B) + nPλ(B),(5.1)

where

�obs(μ,A,B) = ∑∑
(i,j)/∈N

logπ{qij (μj + aT
i bj )}(5.2)

can be interpreted as the observed data log likelihood for model (2.2). Similar
to the nonmissing data case, direct minimization of (5.1) is not straightforward
because the log likelihood term is not quadratic and the penalty term is nondif-
ferentiable. Direct minimization of (5.1) is also complicated by the fact that the
summation in the definition of the observed data log likelihood is not over a rec-
tangular region. Again, we develop an iterative MM algorithm to solve the opti-
mization problem. The strategy is to fill in the missing data with the fitted values
based on the current parameter estimates, then proceed with the algorithm that
assumes complete data, and iterate until convergence.

Define the working variables

z
(m)
ij =

⎧⎨
⎩

x
(m)
ij , (i, j) /∈ N ,

θ
(m)
ij = μ

(m)
j + a(m)T

i b(m)
j , (i, j) ∈ N ,

(5.3)
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where x
(m)
ij is defined in (4.6). Let

h
(
μ,A,B|μ(m),A(m),B(m))

(5.4)

=
n∑

i=1

d∑
j=1

[
w

(m)
ij

{
z
(m)
ij − (μj + aT

i bj )
}2 + bT

j D(m)
λ,j bj

]
,

where D(m)
λ,j are diagonal matrices with diagonal elements λl/{2|b(m)

jl |} for l =
1, . . . , k. The following result extends Theorem 4.1 to the missing data case. The
proof is given in the Appendix.

THEOREM 5.1. (i) Up to a constant that depends on μ(m), A(m) and B(m)

but not on μ, A and B, the function h(μ,A,B|μ(m),A(m),B(m)) defined in (5.4)
majorizes T (μ,A,B) at (μ(m),A(m),B(m)).

(ii) Let (μ(m),A(m),B(m)), m = 1,2, . . . , be a sequence obtained by iteratively
minimizing the majorizing function. Then T (μ(m),A(m),B(m)) decreases as m gets
larger and it converges to a local minimum of T (μ,A,B) as m goes to infinity.

Note that the majorizing functions given in (5.4) have the same form as those
given in (4.9) except that x

(m)
ij in (4.9) is changed to z

(m)
ij in (5.4). Thus, the com-

putation algorithm developed in Section 4 is readily applicable in the missing data
case with a simple replacement of x

(m)
ij by z

(m)
ij . The working variable z

(m)
ij in (5.4)

is easily understood: It is the same as the nonmissing data case if yij is observable;
otherwise, it is an imputed θij value based on the reduced rank model (2.2) and the
current guess of μ, A and B.

6. Simulation study. In this section we demonstrate our sparse logistic PCA
method using a simulation study. The method worked well in various settings that
we tested, but here we only report results in a challenging case that the number of
variables d is bigger than the sample size n.

6.1. The signal-to-noise ratio. To facilitate setting up simulation studies, we
introduce a notion of signal-to-noise ratio for logistic PCA. In our logistic PCA
model, the entries of the n × d data matrix are independent Bernoulli random
variables with success probability πij = {1 + exp(−θij )}−1 for the (i, j)th cell.
The matrix of canonical parameters � = (θij ) has a reduced rank representation
� = 1 ⊗ μT + ABT , where A is a n × k matrix of PC scores and B is a sparse
d × k PC loading matrix. In our simulation study, elements of the lth column of A
are independent draws from a zero-mean Gaussian distribution with variance σ 2

al ,
1 ≤ l ≤ k. The variance σ 2

al measures the signal level of the lth PC. We set up the
PC variances relative to a suitably defined baseline noise level.

We define a baseline noise level for fixed n, d and k as follows. First we cre-
ate a binary data matrix by generating n × d independent binary variables from
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Bernoulli distribution with the success probability 1/2. These binary variables are
understood to come from the pure noise since they are generated without having
any structure on the success probabilities. Then, we conduct a k-component logis-
tic PCA without regularization and compute the average of the sample variances
of the obtained k PC scores, which is denoted as σ 2

b . We repeat the above process
of generating “pure noise” binary data matrices a large number of times (e.g., 100)
and take the mean of σ 2

b computed from these matrices as the baseline noise level.
With the notion of baseline noise level, we define the signal-to-noise ratio (SNR)

for a PC as

SNR = variance of PC scores

baseline noise level
.(6.1)

In our simulation study we first compute the baseline noise level for a given com-
bination of n, d and k, then use the above formula to specify the variances of PC
scores based on the fixed values of SNR.

6.2. Simulation setup. We set the intrinsic dimension to be k = 2 and the num-
ber of rows of the data matrix to be n = 100. We varied the number of variables d

and the signal-to-noise ratio SNR. We considered three choices of d: d = 200,
d = 500 and d = 1000. The scores of the lth PC were randomly drawn from the
N(0, σ 2

al) distribution with σ 2
al = SNRl · (baseline noise level), where SNRl is the

SNR for the lth PC. We considered two settings of SNR: (3,2) and (5,3). For ex-
ample, when the SNR is (3,2), the variance of the first PC is 3 times the baseline
noise level and the variance of the second PC is 2 times the baseline noise level.
We construct two sparse PC loading vectors as follows: Let bj1 and bj2 denote
correspondingly the components of the first and the second PC loading vectors.
We let bj1 = 1 for j = 1, . . . ,20, bj2 = 1 for j = 21, . . . ,40 and the rest of bjl are
all taken to be 0. The mean vector μ was set to be a vector of zeros.

6.3. Simulation results. Logistic PCA with and without sparsity inducing reg-
ularization was conducted on 100 simulated data sets for each setting. When ap-
plying the sparse logistic PCA algorithm, three choice of k were considered: k is
fixed at the true value (k = 2), at a moderately large value (k = 30), and selected
using the BIC. The penalty parameter was selected using the method described in
Section 2.2.

To measure the closeness of the estimated PC loading matrix B̂ and the true
loading matrix B, we use the principal angle between spaces spanned by B̂ and B.
The principal angle measures the maximum angle between any two vectors on
the spaces generated by the columns of B̂ and B. More precisely, it is defined
by cos−1(ρ) × 180/π , where ρ is the minimum eigenvalue of the matrix QT

B̂
QB,

where QB̂ and QB are orthogonal basis matrices obtained by the QR decomposi-
tion of matrices B̂ and B, respectively [Golub and van Loan (1996)].
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TABLE 1
The results of logistic PCA with and without sparsity inducing regularization, based on 100

simulated data sets for each setting. The reported values are the mean (standard error) of the
principal angle (◦) between the estimated and the true PC loading matrices

d SNR k = 2 k = 30 Selected k

200 SNR = (3,2)

Nonregularized 12.532 (0.115) 35.725 (0.177) –
Regularized 5.860 (0.123) 10.125 (0.324) 5.816 (0.125)

SNR = (5,3)

Nonregularized 11.913 (0.122) 36.350 (0.189) –
Regularized 5.803 (0.128) 9.843 (0.321) 5.769 (0.127)

500 SNR = (3,2)

Nonregularized 10.890 (0.095) 31.884 (0.188) –
Regularized 4.731 (0.115) 9.413 (0.282) 4.690 (0.101)

SNR = (5,3)

Nonregularized 10.166 (0.095) 31.941 (0.193) –
Regularized 4.729 (0.121) 9.242 (0.252) 4.544 (0.119)

1000 SNR = (3,2)

Nonregularized 12.018 (0.167) 36.040 (0.181) –
Regularized 7.015 (0.486) 11.807 (0.433) 4.534 (0.141)

SNR = (5,3)

Nonregularized 11.370 (0.156) 36.144 (0.180) –
Regularized 6.767 (0.474) 10.825 (0.475) 4.196 (0.127)

The mean and standard deviation of principal angles for logistic PCA with and
without regularization are presented in Table 1. Since smaller principal angles indi-
cate better estimates of the PC loading matrix, the sparsity inducing regularization
has a clear benefit—it can substantially reduce the principal angles. The benefit
is even more profound when the number of PCs used in the program (k = 30) is
larger than the true number that was used to generate the data (k = 2). The perfor-
mance of sparse logistic PCA with selected k is similar to that when k is fixed at
the true value. Frequencies of the selected k from 100 simulation data sets in each
settings of Table 1 are shown in Table 2. When d = 200, the BIC finds well the
true k = 2 but, as d gets larger, there is a trend that a slightly larger k is selected.
The performance of using BIC to select k is considered as quite good, given that
the sample size is only 100.

A useful feature of the sparse logistic PCA is its ability to select relevant vari-
ables when estimating the PC loading vectors. A zero loading of a variable on a
PC means that the corresponding variable is not used when forming that PC, and
a nonzero loading indicates a useful variable. Our experience with simulated data
shows that nonzero loadings can almost always be identified by the method, but
some identified nonzero loadings may correspond to irrelevant variables, cases of
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TABLE 2
Frequencies of the selected k using the BIC

Selected k

d SNR 1 2 3 4 5 6 7

200 (3,2) 0 95 5 0 0 0 0
(5,3) 0 96 4 0 0 0 0

500 (3,2) 1 58 37 4 0 0 0
(5,3) 0 60 36 3 1 0 0

1000 (3,2) 3 34 36 15 10 1 1
(5,3) 2 31 47 15 4 1 0

false positives. Table 3 presents the percentages of false positives for various set-
tings reported in Table 1. When d is 500 or 1000, the percentages of false positives
are low, all below 20%. But when d is 200, the percentages of false positives are
between 40% and 50%, suggesting big room for improvement in variable selec-
tion.

7. Discussion and extension. In this paper we propose a sparse PCA method
for analyzing binary data by maximizing a penalized Bernoulli likelihood. The
sparsity inducing L1 penalty is used to acquire simple principal components for the
sake of easy interpretation and stable estimation. The MM algorithm developed for
implementation of our method provides a unified solution for dealing with (i) the
nonquadratic likelihood, (ii) the nondifferentiable penalty function, and (iii) pres-
ence of missing data. Although the theoretical derivation is not straightforward,
the steps of the algorithm are very simple—they are (weighted) penalized least
squares with closed-form expressions.

TABLE 3
The results of logistic PCA with sparsity inducing regularization, based on 100 simulated data sets
for each setting in Table 1. The reported values are the mean (standard error) of the percentages of

false positives. The description of results is in the text

d SNR k = 2 k = 30 Selected k

200 (3,2) 45.05(1.54) 41.51 (1.39) 44.94 (1.51)

(5,3) 48.16 (1.63) 40.53 (1.36) 48.26 (1.63)

500 (3,2) 14.83 (0.74) 18.91 (0.51) 16.70 (0.72)

(5,3) 16.06 (0.68) 18.78 (0.42) 16.93 (0.68)

1000 (3,2) 10.87 (0.75) 12.80 (0.73) 10.13 (0.60)

(5,3) 10.89 (0.70) 12.86 (0.73) 9.26 (0.50)
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We have focused on the logit link so far, but other link functions can also be
used. In particular, a slight modification of the proposed method can handle the
probit link, where the success probabilities θij = �−1(πij ) with �(·) being the
c.d.f. of the standard Gaussian distribution. The log likelihood function (2.3) of
the reduced rank model is changed to

�(μ,A,B) =
d∑

j=1

n∑
i=1

log�{qij (μj + aT
i bj )}.(7.1)

Instead of using the majorization in (4.2), we apply the following upper bound to
majorize the negative log likelihood:

− log�(x) ≤ − log�(y) − φ(y)

�(y)
(x − y) + 1

2
(x − y)2,(7.2)

where φ(·) is the Gaussian density [Böhning (1999); de Leeuw (2006)]. Algo-
rithm 1 still applies with appropriate changes to the definitions of the weights w

(m)
ij

and the working variables x
(m)
ij .

Our method can also be extended in a straightforward way to handle compos-
ite data which consists of both binary and continuous variables. While the binary
variables are modeled with Bernoulli distributions, the continuous variables can
be modeled with Gaussian distributions. Including some continuous variables cor-
responds to adding some negative Gaussian log likelihood terms to the log like-
lihood expression (2.3). Since the Gaussian log likelihood is quadratic, it blends
in easily with the quadratic majorization used for the logistic PCA. Specifically,
if the j th variable is of a continuous type, we assume yij ∼ N(θij , σ

2) with θij

satisfying (2.2), and simply let x
(m)
ij = yij and w

(m)
ij = 1/σ 2 when forming the ma-

jorizing function (4.9). The residual variance σ 2 of fitting the continuous variables
can be estimated using the residual sum of squares. Taking into account the fact
that different weighting schemes are used for the binary variables and the con-
tinuous variables in the majorizing function, a slight modification of Algorithm 2
presented in the supplemental article [Lee, Huang and Hu (2010)] can be used for
computation.

APPENDIX

A.1. Proof of Theorem 4.1. We prove the results for both the tight and the
uniform bound case. Applications of (4.1) and (4.2) yield the following majorizing
functions of the negative log likelihood −�(μ,A,B):

n∑
i=1

d∑
j=1

[
− logπ

(
qij θ

(m)
ij

) − qij

{
1 − π

(
qij θ

(m)
ij

)}(
θ − θ

(m)
ij

)

+ 2π(qij θ
(m)
ij ) − 1

4qij θ
(m)
ij

(
θ − θ

(m)
ij

)2
]
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for the tight bound, and

n∑
i=1

d∑
j=1

[
− logπ

(
qij θ

(m)
ij

) − qij

{
1 − π

(
qij θ

(m)
ij

)}(
θ − θ

(m)
ij

) + 1

8

(
θ − θ

(m)
ij

)2
]

for the uniform bound. Note that{
2π

(
qij θ

(m)
ij

) − 1
}
/
{
4qij θ

(m)
ij

} = {
2π

(
θ

(m)
ij

) − 1
}
/
{
4θ

(m)
ij

}
for qij = ±1. By completing the squares and using the definitions of x

(m)
ij

and w
(m)
ij , these majorizing functions can be rewritten as

−�̃
(
μ,A,B|μ(m),A(m),B(m))
= −�

(
�(m)) − 2

n∑
i=1

d∑
j=1

{
1 − π

(
qij θ

(m)
ij

)}2 +
n∑

i=1

d∑
j=1

w
(m)
ij

(
θij − x

(m)
ij

)2
.

On the other hand, application of (4.3) yields the following majorizing function of
Pλ(B):

P̃λ
(
B|B(m)) = λ1

d∑
j=1

b2
j1 + b

(m)2
j1

2|b(m)
j1 | + · · · + λk

d∑
j=1

b2
jk + b

(m)2
jk

2|b(m)
jk |

=
d∑

j=1

b(m)T
j D(m)

λ,j b(m)
j +

d∑
j=1

bT
j D(m)

λ,j bj .

Since the majorization relation between functions is closed under the formation of
sums, −�̃+nP̃λ(B|B(m)) majorizes S(μ,A,B) at (μ(m),A(m),B(m)). Noticing that
−�̃ + nP̃λ(B|B(m)) equals g(μ,A,B|μ(m),A(m),B(m)) up to a constant indepen-
dent of (μ,A,B), we complete the proof of part (i). Part (ii) of the theorem follows
from the general property of the MM algorithm [Hunter and Lange (2004)]. �

A.2. Proof of Theorem 5.1. Note that the objective function to be minimized
is the summation of two terms—the log likelihood term and the penalty term.
Because the majorization property is closed under function summation, we deal
with the two terms separately. We can find a majorization function of the penalty
term as in Theorem 4.1. To find a majorization function of the log likelihood term,
we apply the argument in the standard EM algorithm for handling missing data
[Dempster, Laird and Rubin (1977)]. The complete data log likelihood is

�com(μ,A,B) = ∑∑
(i,j)/∈N

logπ(qij θij ) + ∑∑
(i,j)∈N

logπ(qij θij ).
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Its conditional expectation given the observed data and the current guess of the
parameter values is

Q
(
μ,A,B|μ(m),A(m),B(m))

= ∑∑
(i,j)/∈N

logπ(qij θij )(A.1)

+ ∑∑
(i,j)∈N

E
[
logπ(qij θij )|Yo,μ

(m),A(m),B(m)],
where Yo denotes the observed data. By the standard EM theory,

−�̃obs(μ,A,B) � −Q
(
μ,A,B|μ(m),A(m),B(m)) − �obs

(
μ(m),A(m),B(m))

(A.2)
+ Q

(
μ(m),A(m),B(m)|μ(m),A(m),B(m))

majorizes −�obs(μ,A,B) at (μ(m),A(m),B(m)), that is, −�̃obs(μ,A,B) ≥
−�obs(μ,A,B), and the equality holds when (μ,A,B) = (μ(m),A(m),B(m)).

Now we find a quadratic majorizing function of −�̃obs(μ,A,B), which in turn
majorizes −�obs(μ,A,B) because of the transitivity of the majorization relation.
We need only to find a quadratic majorization function of −Q(μ,A,B|μ(m),A(m),

B(m)), since it is the only term in the definition (A.2) of −�̃obs(μ,A,B) that de-
pends on the unknown parameters. According to (A.1), −Q(μ,A,B|μ(m),A(m),

B(m)) can be decomposed into two terms, one corresponding to observed data,
the other corresponding to the missing data. The former term can been treated
as in the proof of Theorem 4.1. When (i, j) /∈ N , − logπ(qij θij ) is majorized

by w
(m)
ij (θij − x

(m)
ij )2, up to a constant. To treat the latter term, note that, when

(i, j) ∈ N ,

E
[
logπ(qij θij )|Yo,μ

(m),A(m),B(m)]
= π

(
θ

(m)
ij

)
logπ(θij ) + {

1 − π
(
θ

(m)
ij

)}
log{1 − π(θij )}

= ∑
qij=±1

π
(
qij θ

(m)
ij

)
logπ(qij θij ),

using the fact that the missing data are independent of the observed data, and that
1 − π(θ) = π(−θ). Then, by applying inequalities (4.1) and (4.2) and using the
definition of w

(m)
ij , we obtain that

−E
[
logπ(qij θij )|Yo,μ

(m),A(m),B(m)]
≤ ∑

qij=±1

π
(
qij θ

(m)
ij

)[− logπ
(
θ

(m)
ij

) − {
1 − π

(
qij θ

(m)
ij

)}{
qij

(
θij − θ

(m)
ij

)}

+ w
(m)
ij

{(
θij − θ

(m)
ij

)}2]
≤ Cm + w

(m)
ij

{(
θij − θ

(m)
ij

)}2
,
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where Cm is a constant independent of μ, A and B. Combining the above re-
sults, we see that −Q(μ,A,B|μ(m),A(m),B(m)) is up to a constant majorized
by

∑
ij w

(m)
ij {(θij − z

(m)
ij )}2, where z

(m)
ij equals x

(m)
ij if (i, j) /∈ N , and θ

(m)
ij if

(i, j) ∈ N . The proof of part (i) is thus complete. Part (ii) of the theorem follows
from the general result of the MM algorithm. �
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SUPPLEMENTARY MATERIAL

The MM algorithm for sparse logistic PCA using the tight bound (DOI:
10.1214/10-AOAS327SUPP; .pdf). We develop the MM algorithm for sparse lo-
gistic PCA using the tight majorizing bound. Comparison of the developed algo-
rithm with the MM algorithm using the uniform bound in terms of computing time
is also presented.
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