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ON APPROXIMATIVE SOLUTIONS OF
MULTISTOPPING PROBLEMS

BY ANDREAS FALLER AND LUDGER RÜSCHENDORF

University of Freiburg

In this paper, we consider multistopping problems for finite discrete time
sequences X1, . . . ,Xn. m-stops are allowed and the aim is to maximize the
expected value of the best of these m stops. The random variables are neither
assumed to be independent not to be identically distributed. The basic as-
sumption is convergence of a related imbedded point process to a continuous
time Poisson process in the plane, which serves as a limiting model for the
stopping problem. The optimal m-stopping curves for this limiting model are
determined by differential equations of first order. A general approximation
result is established which ensures convergence of the finite discrete time m-
stopping problem to that in the limit model. This allows the construction of
approximative solutions of the discrete time m-stopping problem. In detail,
the case of i.i.d. sequences with discount and observation costs is discussed
and explicit results are obtained.

1. Introduction. In this paper, we consider multistopping problems for dis-
crete time sequences X1, . . . ,Xn. In comparison to the usual stopping problem,
there are m stops 1 ≤ T1 < · · · < Tm ≤ n allowed. The aim is to determine these
stopping times in such a way that

E
[

max
1≤i≤m

XTi

]
= E[XT1 ∨ · · · ∨ XTm] = sup.(1.1)

Thus, the gain of a stopping sequence (Ti)i≤m is the expected maximal value of the
m choices XTi

. In the case m = 1, this stopping problem reduces to the classical
Moser problem [Moser (1956)]. We will see that optimal m-stopping times exist
and are determined by a recursive description.

Our aim is to obtain explicit approximative solutions of the m-stopping problem
in (1.1) under general distributional conditions. In particular, we do not assume that
the random variables Xi are independent or identically distributed or are even of
specific i.i.d. form with Xi ∼ U(0,1) as assumed in several papers in the literature.
Our basic assumption is convergence of the imbedded planar point process (1.2)
of rescaled observations to some Poisson point process N in the plane,

Nn =
n∑

i=1

δ(i/n,Xn
i )

d→ N.(1.2)
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Here Xn
i = Xi−bn

an
is a nomalization of the Xi induced typically from the cen-

tral limit theorem for maxima respectively related point process convergence re-
sults. Our aim is to prove that under some regularity conditions the optimal m-
stopping problem of X1, . . . ,Xn can be approximated by a suitable formulated
m-stopping problem for the continuous time Poisson process N which serves as a
limiting model for the discrete time model. Furthermore, we want to show that the
stopping problem in the limit model can be solved in explicit form. The solution is
described by an increasing sequence of stopping curves with their related threshold
stopping times. These curves solve usual one-stopping problems for transformed
Poisson processes and are characterized by differential equations of first order,
which can be solved either in exact form or numerically. The solution for the limit
model also allows us to construct approximative optimal stopping times for the dis-
crete time model. We apply this approach in detail to the m-stopping of sequences
Xi = ciZi + di with discount and observation costs and i.i.d. sequences Zi .

It has been observed in several papers in the literature that optimal stopping
may have an easier solution in a related form for a Poisson number of points or for
imbedded homogeneous Poisson processes as for instance in the classical house
selling problem or in best choice problems. For m = 1 [see, e.g., Chow, Robbins
and Siegmund (1971), Sakaguchi (1976), Bruss and Rogers (1991), Gnedin and
Sakaguchi (1992), Gnedin (1996), Baryshnikov and Gnedin (2000)]. For general
reference, we refer to Ferguson (2007), Chapter 2. For m ≥ 1, multistopping prob-
lems were introduced in Haggstrom (1967) who derived some structural results
corresponding roughly to Theorem 2.3; compare also some extensions in Nikolaev
(1999). The two stopping problem has been considered in the case of Poissonian
streams in Saario and Sakaguchi (1992). In this paper, differential equations were
derived corresponding to those for the one-stopping problems in Karlin (1962),
Siegmund (1967) and Sakaguchi (1976). Multiple buying—selling problems were
studied in Bruss and Ferguson (1997) based on a vector valued formulation with
pay-off given by the sum of the m-choices instead of the max as in (1.1); see
also the extension in Bruss (2010). In Kühne and Rüschendorf (2002) the case
of 2-stopping problems for i.i.d. sequences was treated based on the approxima-
tive approach in Kühne and Rüschendorf (2000a). The results in this paper were
rederived in Assaf, Goldstein and Samuel-Cahn (2004, 2006) and in Goldstein
and Samuel-Cahn (2006). In case m = 1 based on this approximation for sev-
eral classes of independent and dependent sequences optimal solutions have been
found in explicit form [see Kühne and Rüschendorf (2000b, 2004) and Faller and
Rüschendorf (2009)]. The present paper establishes an extension of the approxi-
mative approach as described above to m-stopping problems as in (1.1). It is based
on the dissertation of Faller (2009) to which we refer for some technical details in
the proofs.

The program to establish this approximation approach in general is based on
the following steps. In Section 2, we formulate the necessing recursive charac-
terization of the optimal solutions of the m-stopping problem corresponding to
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Bellman’s optimality equation. Section 3 is devoted to solve the m-stopping prob-
lem for the limit model of an inhomogeneous Poisson process. A particular diffi-
culty arises from the fact that in the limit model the intensity function is typically
infinite along a lower boundary curve, In consequence, known stationary Marko-
vian techniques as for homogenous Poisson processes do not apply. The main re-
sult, Theorem 3.3, shows that the optimal m-stopping problem can be reduced to
m 1-stopping problems for transformed Poission processes. The optimal stopping
curves are characterized by a sequence of differential equations of first order.

In Section 4, we are able to derive explicit solutions for some classes of dif-
ferential equations, as appearing in the description of the optimal stopping curves.
This part is based on developments in Faller and Rüschendorf (2009) for the case
m = 1. Section 5 gives the basic approximation theorem (Theorem 5.2) allow-
ing to approximate the finite discrete problems by m-stopping in the limit model.
The proof of this result needs to develop a new technique. It also uses essentially
the extension of the convergence of multiple stopping times in Proposition 5.1 in
Faller and Rüschendorf (2009) for m = 1 to m ≥ 1. We restrict our presentation
to the essential new part of this proof. Finally in Section 6 we obtain as appli-
cation solutions in explicit form for optimal m-stopping problems for sequences
Xi = ciZi + di with Zi i.i.d. and with discount and observation costs ci , di . It is
remarkable that we get detailed results including the asymptotic constants as well
as approximative optimal stopping sequences in explicit form. Our aim is to ex-
tend these results in subsequent papers to further classes of stopping problems as
to selection problems, to the sum cost case as well as to some classes of depen-
dent sequences. It seems also possible as done in the case m = 1, to extend this
approach to the case where cluster processes arise in the limit.

2. m-stopping problems for finite sequences. In this section, we give a for-
mulation of the optimality principle for the m-stopping of discrete recursive se-
quences. Given a discrete time sequence (Xi, Fi)1≤i≤n in a probability space
(�, A,P ) with filtration F = (Fi)0≤i≤n the m-stopping problem (1 ≤ m ≤ n) is
to find stopping times 1 ≤ T1 < T2 < · · · < Tm ≤ n w.r.t. the filtration (Fi )1≤i≤n

such that

E
[

max
1≤i≤m

XTi

]
= E[XT1 ∨ · · · ∨ XTm] = sup.(2.1)

In case m = 1, (2.1) is identical to the usual (one-)stopping problem. A well-
known recursive solution of this problem [see Chow, Robbins and Siegmund
(1971), Theorem 3.2] is based on the threshold curves Wi = WF (Xi+1, . . . ,Xn)

of the optimal stopping time defined by

Wn := −∞,
(2.2)

Wi := E[Xi+1 ∨ Wi+1|Fi] for i = n − 1, . . . ,0.

We need a version of this classical result for stopping times larger than a given
stopping time S.
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PROPOSITION 2.1 (Recursive solution of one-stopping problems).
(a) For any time point 0 ≤ k ≤ n − 1, the F -stopping time

T (k) := min{k < i ≤ n :Xi > Wi}
is optimal in the sense that for any F -stopping time T > k we have

E
[
XT (k)|Fk

] = Wk ≥ E[XT |Fk] P -a.s.(2.3)

(b) For any F -stopping time S, the F -stopping time

T (S) = min{S < i ≤ n :Xi > Wi}
is optimal in the sense that for any F -stopping time T with S < T on {S < n} and
S = T on {S = n} we have

E
[
XT (S)|FS

] = WS ≥ E[XT |FS] P -a.s.(2.4)

REMARK 2.2. For m stopping problems, the following variant of Proposi-
tion 2.1 will also be needed [for details of the proof, see Faller (2009)].

Let Y1, . . . , Yn : (�, A,P ) → E be random variables taking values in a measur-
able space E and F := (Fi )0≤i≤n a filtration in A such that σ(Yi) ⊂ Fi for all
1 ≤ i ≤ n. Let S be an F -stopping time, let Z : (�, A,P ) → R be FS -measurable
and h :E × R → R be measurable with Eh(Yi,Z)+ < ∞. Also define recursively
for z ∈ R

Wn(z) := h(Yn, z),
(2.5)

Wi(z) := E[h(Yi+1, z) ∨ Wi+1(z)|Fi] for i = n − 1, . . . ,0.

Then the F stopping time

T (S,Z) := min{S < i ≤ n :h(Yi,Z) > Wi(Zi)},(2.6)

where Zi := Z1{S≤i} is optimal in the sense that for any further F -stopping time
T with S < T on {S < n} and S = T on {S = n} we have

E
[
h
(
YT (S,Z),Z

)|FS

] = WS(ZS) ≥ E[h(YT ,Z)|FS] P -a.s.(2.7)

Similar as for the one-stopping problems the idea of solving (2.1) is simple.
The �th stopping time T� should be i if the (m − �)-stopping value past i with
guarantee value Xi is in expectation larger than the (m−�+1)-stopping value past
i and with guarantee value reached before time i. This idea leads to the following
construction. Define W 0

i (x) := x for x ∈ R and inductively for 1 ≤ m ≤ n, x ∈ R

define thresholds Wm
k (x) by

Wm
n−m+1(x) := x,

(2.8)
Wm

i (x) := E[Wm−1
i+1 (Xi+1) ∨ Wm

i+1(x)|Fi] for i = n − m, . . . ,0.
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The related threshold stopping times are defined recursively for k ≤ n − m by

T m
1 (k, x) := min{k < i ≤ n − m + 1 :Wm−1

i (Xi) > Wm
i (x)},

T m
� (k, x) := min{T m

�−1(k, x) < i ≤ n − m + � :(2.9)

Wm−l
i (Xi) > Wm−l+1

i (x ∨ M�−1,i)}
for 2 ≤ � ≤ m and Mj,i := XT m

j (k,x)1{T m
j (k,x)≤i}.

Equation (2.9) corresponds to a sequence of m one-stopping problems for (more
complicated) transformed sequences of random variables. The following result ex-
tends the classical recursive characterization of optimal stopping times for one-
stopping problems in Proposition 2.1 to the case m ≥ 1. Related structural re-
sults can be found in the papers of Haggstrom (1967), Saario and Sakaguchi
(1992), Bruss and Ferguson (1997), Nikolaev (1999), Bruss and Delbaen (2001)
and Kühne and Rüschendorf (2002).

THEOREM 2.3 (Recursive characterization of m-stopping problems). The F -
stopping times (T m

� (k, x))1≤�≤m are optimal in the sense that for all F -stopping
times (T�)1≤�≤m with k < T1 < · · · < Tm ≤ n we have

E
[
x ∨ XT m

1 (k,x) ∨ · · · ∨ XT m
m (k,x)|Fk

]
= E

[
Wm−1

T m
1 (k,x)

(
x ∨ XT m

1 (k,x)

)|Fk

] = Wm
k (x)

≥ E[x ∨ XT1 ∨ · · · ∨ XTm |Fk] P -a.s.

The proof of Theorem 2.3 follows by induction in m based on Proposition 2.1
and Remark 2.2 similarly as in the case m = 1. For details, see Faller (2009),
Satz 2.1 or Kühne and Rüschendorf (2002), Proposition 2.1. In general, the recur-
sive characterization of optimal m-stopping times and values is difficult to evalu-
ate. Our aim is to prove that one can construct optimal m-stopping times and values
approximatively by considering related limiting m-stopping problems for Poisson
processes in continuous time.

3. m-stopping of Poisson processes. In this section, we deal with the optimal
m-stopping problem for the limit model given by a Poisson point process N . We
consider a Poisson process N = ∑

k δ(τk,Yk) in the plane restricted to some set

Mf = {(t, x) ∈ [0,1] × R;x > f (t)},
where f : [0,1] → R ∪ {−∞} is a continuous lower boundary function of N . The
intensity of N may be (and in typical cases is) infinite along the lower bound-
ary f . As in Kühne and Rüschendorf (2000a), respectively, Faller and Rüschen-
dorf (2009) who consider the case m = 1, we assume that the intensity measure μ

of N is a Radon measure on Mf with the topology on Mf induced by the usual
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topology on [0,1] × R. Thus any compact set A ⊂ Mf has only finitely many

points. By convergence in distribution “Nn
d→ N on Mf ,” we mean convergence

in distribution of the restricted point processes. This is the basic assumption made
in this paper.

We generally assume the boundedness condition

E
[(

sup
k

Yk

)+]
< ∞.(B)

Let At = σ(N(· ∩ [0, t] × R ∩ Mf )), t ∈ [0,1], denote the relevant filtration
of the point process N . A stopping time for N or N -stopping time is a mapping
T :� → [0,1] with {T ≤ t} ∈ At for each t ∈ [0,1]. Denote by

YT := sup{Yk : 1 ≤ k ≤ N(Mf ),T = τk}, sup ∅ := −∞,

the reward w.r.t. stopping time T .
Let v :Mf → R be a continuous transformation of the points of N such that

v(t, x) ≤ ax+ + b ∀(t, x) ∈ Mf , with real constants a, b ≥ 0,

v(t, ·) is for each t a monotonically nondecreasing function,
v(·, x) is for each x a monotonically nonincreasing function.

⎫⎬
⎭(3.1)

Define c := f (1) and for any guarantee value x ∈ [c,∞) and t ∈ [0,1) the
optimal stopping curve û of the transformed Poisson process by

û(t, x) := sup{E[v(T ,Y T ∨ x)] :T > t is an N -stopping time},
(3.2)

û(1, x) := v(1, x).

It will be shown in the following proposition that the treshold stopping time
corresponding to û is an optimal stopping time for the Poisson process. For the
basic notions of stopping of point processes; see Kühne and Rüschendorf (2000a),
respectively, Faller and Rüschendorf (2009). The following proposition is the ana-
logue of Proposition 2.1 for continuous time Poisson processes. It is essential for
the solution of the m-stopping problem of N .

PROPOSITION 3.1 (Optimal stopping times larger than S). Let N satisfy the
boundedness condition (B), let v satisfy condition (3.1) and assume the following
separation condition for the optimal stopping boundary û:

û(t, c) > f̂ (t) := v(t, f (t)) ∀t ∈ [0,1).(Ŝ)

Then:

(a) û is continuous on [0,1] × [c,∞] and for all (t, x) ∈ [0,1] × [c,∞] holds

û(t, x) = E
[
v
(
T (t, x), Y T (t,x) ∨ x

)]
(3.3)

= E
[
v
(
T (t, x), Y T (t,x) ∨ c

) ∨ v(1, x)
]
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with the optimal stopping time

T (t, x) := inf{τk > t :v(τk, Yk) > û(τk, x)}, inf ∅ := 1.

û(·, x) is for x ∈ [c,∞] the optimal stopping curve of the transformed Poisson
process N̂ := ∑

k δ(τk,v(τk,Yk)) in M
f̂

for the guarantee value v(1, x).

(b) Let S be an N -stopping time, let Z ≥ c be real AS -measurable with EZ+ <

∞ and T (S) the set of all N -stopping times T with T > S on {S < 1} and T = 1
on {S = 1}. Then T (S,Z) ∈ T (S) is optimal in the sense that

E
[
v
(
T (S,Z),Y T (S,Z) ∨ Z

)|AS

] = û(S,Z)
(3.4)

≥ E[v(T ,Y T ∨ Z)|AS] P -a.s.

for all T ∈ T (S).

PROOF. (a) The statement in (a) is proved by discretization. Since f̂ is con-
tinuous and û(·, c) is right continuous there exists a monotonically nonincreasing,
continuous function f̂2 : [0,1] → [ĉ,∞), ĉ := f̂ (1) = v(1, c) such that f̂ < f̂2 <

û(·, c) on [0,1). Thus, for t < 1, the sets [0, t] × R ∩ M
f̂2

are compact in M
f̂

.
For x ∈ [c,∞), n ∈ N and 1 ≤ i ≤ 2 define

Mn
i/2n(x) := sup

τk∈((i−1)/2,i/2]
v(τk, Yk ∨ x).

Consider the filtration An = (Ai/2n)1≤i≤2n . Then Mn
i/2n(x) is Ai/2n measurable

and Ai/2n , σ(Mn
(i+1)/2n(x)) are independent. We define wn : [0,1] × [c,∞) → R

by

wn(t, x) := sup{E[Mn
T (x)] :T > t an An-stopping time} for t ∈ [0,1),

(3.5)
wn(1, x) := v(1, x).

Then for t ∈ [0,1) by Proposition 2.1, we have

wn(t, x) = E
[
Mn

Tn(t,x)(x)
] = V n
2nt�(x)

with the optimal An-stopping time

Tn(t, x) := min
{
t <

i

2n
≤ 1 :Mn

i/2n(x) > wn

(
i

2n
, x

)}
, min ∅ := 1,

and

V n
2n(x) := v(1, x),

(3.6)
V n

i (x) := E
[
Mn

(i+1)/2n(x) ∨ V n
i+1(x)

]
, i = 2n − 1, . . . ,0.
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The function wn(·, x) is monotonically nonincreasing and constant on the intervals
[0, 1

2n ), [ 1
2n , 2

2n ), . . . , [2n−1
2n ,1). We also have

(1) wn(t, x) ≥ û(t, x) ∀t ∈ [0,1],
(2) wn(t, x) ≥ wn+1(t, x) ∀t ∈ [0,1].

For the proof of (1) note that for any stopping time T > t , Tn := �T 2n�
2n is an

An-stopping time with Tn > t and Tn − 1
2n < T ≤ Tn. Therefore,

Mn
Tn

(x) = sup
τk∈(Tn−1/2n,Tn]

v(τk, Yk ∨ x) ≥ v(T ,Y T ∨ x).(3.7)

This implies wn(t, x) ≥ sup{E[v(T ,Y T ∨ x)] :T > t N-stopping time} = û(t, x).
The proof of (2) is similar. If T > t is an An+1-stopping time, then T ′ := �T 2n�

2n

is an An-stopping time with T ′ > t and T ′ − 1
2n < T ≤ T ′. Thus, as above, we

obtain wn(t, x) ≥ wn+1(t, x).
Relations (1) and (2) imply the existence of a monotonically nonincreasing

function w(·, x) : [0,1] → R ∪ {−∞} with w(·, x) ≥ û(·, x) and wn(·, x) ↓ w(·, x)

pointwise. It can be shown by our assumptions on v and N that w is continuous
[see Faller (2009)].

For ω ∈ � with N̂(ω,K) < ∞ for all compact K ⊂ Mf and for (t, x) ∈ [0,1]×
[c,∞] and tn ↓ t , we have the convergence

Mn
Tn(tn,x)(x) → v

(
T (t, x), Y T (t,x) ∨ x

)
(3.8)

with the stopping time

T (t, x) := inf{τk > t :v(τk, Yk ∨ x) > w(τk, x)}
(3.9)

(∗)= inf{τk > t :v(τk, Yk) > w(τk, x)}, inf ∅ := 1.

For the proof, note that monotone convergence of wn(·, x) and continuity of the
limit ω implies uniform convergence from above. Thus, for x ∈ [c,∞) points of N

on the graph of w(·, x) are ignored by all stopping times Tn(t, x) and T (t, x). The
second equality (∗) holds since w(t, x) ≥ û(t, x) ≥ v(t, x) and since by assump-
tion v(t, ·) is strictly monotonically increasing. This implies by Fatou’s lemma the
following sequence of inequalities:

û(t, x) ≤ w(t, x) = lim
n→∞wn(t, x) = lim

n→∞E
[
Mn

Tn(t,x)(x)
]

≤ E
[
v
(
T (t, x), Y T (t,x) ∨ x

)] ≤ û(t, x).

Thus, û(·, x) = w(·, x) is continuous and û(t, x) = E[v(T (t, x), Y T (t,x) ∨ x)].
As w(t, x) ≥ v(t, x) implies that YT (t,x) > x for T (t, x) < 1, we have û(t, x) =
E[v(T (t, x), Y T (t,x) ∨ c) ∨ v(1, x)], which means that û(·, x) is the optimal stop-
ping curve of the Poisson process N̂ with guarantee value v(1, x).
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(b) To prove optimality of the stopping time T (S,Z), set Sn := �S2n�
2n . Then Sn

is an An-stopping time and by (3.8) holds

Mn
Tn(Sn,Z)(Z) → v

(
T (S,Z),Y T (S,Z) ∨ Z

)
P -a.s.(3.10)

Let T (Sn) be the set of all An-stopping times Tn with Tn > Sn on {Sn < 1}
and Tn = Sn on {Sn = 1}. Let T ∈ T (S). By discretization T > S in general
does not imply �T 2n�

2n >
�S2n�

2n . Thus, we modify the discretization and define

Tn := �T 2n�
2n χ{�T 2n�/2n>Sn} + 1χ{�T 2n�/2n=Sn} ∈ T (Sn). Then analogously to (3.7)

v(T ,Y T ∨ Z) ≤ Mn
Tn

(Z)χ{�T 2n�/2n>Sn} + v(T ,Y T ∨ Z)χ{�T 2n�/2n=Sn}.

This implies the inequalitites

E[v(T ,Y T ∨ Z)|ASn]
≤ E[Mn

Tn
(Z)|ASn]χ{�T 2n�/2n>Sn}

+ E[v(T ,Y T ∨ Z)|ASn]χ{�T 2n�/2n=Sn}
(∗)≤ E

[
Mn

Tn(Sn,Z)(Z)|ASn

]
︸ ︷︷ ︸

=wn(Sn,Z)

χ{�T 2n�/2n>Sn}

+ E[v(T ,Y T ∨ Z)|ASn]χ{�T 2n�/2n=Sn}.

(∗) holds by Remark 2.2. Since we have Mn
i/2n(Z) = h(Yi,Z), where Yi := N(· ∩

( i−1
2n , i

2n ] × R ∩ Mf ) and with h : NR(Mf ) × [c,∞) → R, h(
∑

k δ(tk,yk), x) :=
supk v(tk, yk ∨ x).

As AS ⊂ ASn we conclude

E[v(T ,Y T ∨ Z)|AS]
≤ E

[
Mn

Tn(Sn,Z)(Z)χ{�T 2n�/2n>Sn}|AS

]
+ E

[
v(T ,Y T ∨ Z)χ{�T 2n�/2n=Sn}|AS

]
= wn(Sn,Z)E

[
χ{�T 2n�/2n>Sn}|AS

] + E
[
v(T ,Y T ∨ Z)χ{�T 2n�/2n=Sn}|AS

]
,

and by the Lemma of Fatou we have by (3.10)

E[v(T ,Y T ∨ Z)|AS] ≤ E
[
v
(
T (S,Z),Y T (S,Z) ∨ Z

)|AS

] = û(S,Z).

As T > S was chosen arbitrary this implies (b). �

In the sequel, we need the following differentiability condition to be fulfilled.
(D) Assume that there is a version of the density g of μ on Mf such that the

intensity function

G(t, y) =
∫ ∞
y

g(t, z) dz
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is continuous on Mf ∩ [0,1] × R. Furthermore, we assume that limy→∞ yG(t,

y) = 0 for all t ∈ [0,1].
The following proposition determines the intensity function of transformed

Poisson processes.

PROPOSITION 3.2 (Intensity function of transformed Poisson processes). Let
N = ∑

δ(τk,Yk) be a Poisson process with intensity function G satisfying the bound-
edness condition (B). Let v :Mf → R, v = v(t, x) be a C1-function monotoni-
cally nonincreasing in t and monotonically nondecreasing in x with v(t,∞) = ∞
for all t ∈ [0,1]. Define R(t, x) := (t, v(t, x)) and fv(t) := v(t, f (t)). Then
R(Mf ) = Mfv , R−1(t, y) = (t, ξ(t, y)) with a C1-function ξ :Mfv → R.

N̂ := ∑
k δ(τk,v(τk,Yk)) is a Poisson process on Mfv with intensity measure μ̂ =

μ ◦ R−1 and intensity fuction Ĝ(t, y) := G(t, ξ(t, y)), (t, y) ∈ Mfv .

PROOF. By Resnick [(1987), Proposition 3.7], N̂ is a Poisson process with in-
tensity measure μ̂ = μ ◦ R−1. The transformation formula implies that the density
ĝ of μ̂ is given by

ĝ(t, y) = g(R−1(t, y))|detJ (R−1)(t, y)|
= g(t, ξ(t, y))

∂

∂y
ξ(t, y) = − ∂

∂y
G(t, ξ(t, y)). �

After this preparation, we now consider the m-stopping problem for Poisson
processes. The aim is to solve

E[YT1 ∨ · · · ∨ YTm] = sup,(3.11)

where the supremum is over all N -stopping times1 0 ≤ T1 < · · · < Tm ≤ 1.
This problem has been considered for Poisson processes on [0,1] × (c,∞) al-

ready in Saario and Sakaguchi (1992) in the special case of intensity functions of
the form

G(t, y) = λ
(
1 − F(y)

)
(3.12)

with λ > 0 and F a continuous distribution function with F(c) = 0. Equation
(3.12) models the case of i.i.d. random variables arriving at Poisson distributed
arrival times. Sakaguchi and Saario (1995) derive for this case differential equa-
tions for the optimal stopping curves. Explicit solutions are however not given in
any case. In the following, we extend these results to the case of general inten-
sities. We subsequently also identify classes of examples of intensity functions
which allow essentially explicit solutions.

In order to guarantee the existence of optimal m-stopping times, we restrict
ourselves in the following to the case where the lower boundary is constant, f ≡ c.

1T1 < · · · < Tm ≤ 1 signifies that Ti−1 < Ti for each i on {Ti−1 < 1} and Ti = 1 on {Ti−1 = 1}.
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Define optimal m-stopping curves for guarantee value x ∈ [c,∞), m ∈ N, and
t ∈ [0,1) by2

um(t, x) := sup{E[YT1 ∨ · · · ∨ YTm ∨ x] : t < T1 < · · · < Tm ≤ 1

N-stopping times},(3.13)

um(1, x) := x.

Further let u0(t, x) := x for (t, x) ∈ [0,1] × [c,∞] and um(t) := um(t, c) for t ∈
[0,1].

um(·, x) is called optimal m-stopping curve of N for guarantee value x. Define
the inverse function ξm :Mum → R by

ξm(t, um(t, x)) = x for (t, x) ∈ [0,1] × [c,∞].(3.14)

Further define γ m : [0,1] × [c,∞] → R by

γ m(t, x) := ξm−1(t, um(t, x))(3.15)

as well as

γ m(t) := γ m(t, c) = ξm−1(t, um(t)).(3.16)

Then γ m(t, x) > x iff um(t, x) > um−1(t, x) and further

y > γ m(t, x) ⇔ um−1(t, y) > um(t, x).

The optimal m-stopping for Poisson processes can be reduced by the previous
structural results to m 1-stopping problem for transformed Poisson processes. The
transformations are given by the optimal stopping curves um or equivalently by the
inverses γ m—both sequences of curves are defined recursively. Thus, we consider
the transformed Poisson processes

Nm := ∑
k

δ(τk,u
m−1(τk,Yk))

on Mum−1 .(3.17)

Define the (optimal) stopping times T m
� (t, k) with guarantee value x by

T m
1 (t, x) := inf{τk > t :Yk > γ m(τk, x)},

(3.18)
T m

� (t, x) := inf
{
τk > T m

�−1(t, x) :Yk > γ m−�+1(
τk, Y T m

�−1(t,x) ∨ x
)}

.

The following theorem characterizes the optimal stopping time as threshold stop-
ping time based on the optimal stopping curves. These are given by a system of m

differential equations of first order.

THEOREM 3.3 (Optimal m-stopping of Poisson processes). Let f ≡ c and N

satisfy the boundedness condition (B) and the separation condition (S), that is,
u1(t) > c for t ∈ [0,1). Let t0(x) := inf{t ∈ [0,1] :μ((t,1] × (x,∞]) = 0}.
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(a) Then for m ∈ N, (t, x) ∈ [0,1) × [c,∞) holds

um(t, x) = E
[
YT m

1 (t,x) ∨ · · · ∨ YT m
m (t,x) ∨ x

]
= E

[
um−1(

T m
1 (t, x), Y T m

1 (t,x) ∨ x
)]

with optimal stopping times (T m
� (t, x))1≤�≤m defined in (3.18).

(b) For (t, x) ∈ A := {(t, x) ∈ (0,1] × [c,∞) : t < t0(x)} holds um(t, x) >

um−1(t, x) while um(t, x) = um−1(t, x) = x else. In particular, um(t) > um−1(t)

for t ∈ [0,1) and um(·, x) is the optimal stopping curve of the transformed Poisson
process Nm.

(c) Under the differentiability condition, (D) um(·, x) solves the differential
equation

∂

∂t
um(t, x) = −

∫ ∞
um(t,x)

G(t, ξm−1(t, y)) dy, t ∈ [0,1),

(3.19)
um(1, x) = x.

(d) For x > −∞, (3.19) has a unique solution. If c = −∞ and if

lim inf
s↑1

u(s)

b(s)
< ∞,(3.20)

where b(s) := E[supτk>s Yk], then also in this case um = um(·,−∞) for m ≥ 2 is
uniquely determined by (3.19).

PROOF. The proof is by induction in m. Our induction hypothesis is that the
statement of Theorem 3.3 holds and moreover that for any n-stopping time S and
any AS -measurable Z ≥ c with EZ+ < ∞ we have P -a.s.

E
[
Z ∨ YT m

1 (S,Z) ∨ · · · ∨ YT m
m (S,Z)|AS

] = um(S,Z) ≥ E[Z ∨ YT1 ∨ · · · ∨ YTm |AS]
for all N -stopping times S < T1 < · · · < Tm ≤ 1. Further,

A = {(t, x) ∈ [0,1] × [c,∞) :um(t, x) > um−1(t, x)}.(3.21)

For the one-stopping problem m = 1 the statement of Theorem 3.3 is contained
in Faller and Rüschendorf (2009). Proposition 3.1 with v(t, x) := x implies the
first part of the induction hypothesis while the second part follows from Faller and
Rüschendorf (2009), Lemma 2.1(c).

For the induction step m → m + 1, we obtain for all stopping times S < T1 <

T2 < · · · < Tm+1 ≤ 1 and Z ≥ c AS-measurable by the induction hypothesis (note
that AS ⊂ AT1 ):

E[(Z ∨ YT1) ∨ YT2 ∨ · · · ∨ YTm+1 |AS]
≤ E

[
(Z ∨ YT1) ∨ YT m

1 (T1,Z∨YT1 ) ∨ · · · ∨ YT m
m (T1,Z∨YT1 )|AS

]
(3.22)

= E[um(T1,Z ∨ YT1)|AS].
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This expression is maximized by Proposition 3.1 by T1 = T m+1
1 (S,Z) where

T m+1
1 (t, x) := inf{τk > t :um(τk, Yk) > û(τk, x)}, inf ∅ := 1.

The maximizing value is given by û(S,Z).
For the proof, we need to show that û(t, c) > um(t) for t ∈ [0,1). We next

establish this and at the same time show (3.21) for m + 1.
Note that for x ∈ [c,∞)

û(t, x) = sup{E[um(T ,Y T ∨ x)] :T > t N-stopping time}
≥ E

[
um(

T m
1 (t, x), Y T m

1 (t,x) ∨ x
)]

(∗)≥ E
[
um−1(

T m
1 (t, x), Y T m

1 (t,x) ∨ x
)]

= um(t, x) by induction hypothesis.

By (3.21), we have strict inequality in (∗) if and only if P((T m
1 (t, x), Y T m

1 (t,x)) ∈
A) > 0. Using Lemma 2.4 in Faller and Rüschendorf (2009), we see that this is
equivalent to μ(A ∩ Mγ m(·,x) ∩ (t,1] × R) > 0. This in turn is equivalent to

A ∩ Mγ m(·,x) ∩ (t,1] × R �= ∅(3.23)

[since γ m(·, x) is monotonically nonincreasing and by definition of A]. We are
going to show that this is fulfilled for all points (t, x) ∈ A.

So let (t, x) ∈ A and thus by induction hypothesis um(t, x) > um−1(t, x) or
equivalently γ m(t, x) > x. Under the assumption that Mγ m(·,x) ∩ (t,1] × R ⊂ Ac,
we obtain that also (t, γ m(t, x)) ∈ Ac since Ac is closed. This implies that

um(t, γ m(t, x)) = um−1(t, γ m(t, x)) = um(t, x).

Since um(t, ·) is strictly increasing, it follows that γ m(t, x) = x, which is a contra-
diction. Thus, (3.23) holds true.

With the choice S := t , Z := x further, we obtain

û(t, x) = E
[
um(

T m+1
1 (t, x), Y

T m+1
1 (t,x)

∨ x
)] = um+1(t, x).

Finally, in (3.22) holds

T m
l

(
T m+1

1 (S,Z),Z ∨ Y
T m+1

1 (S,Z)

) = T m+1
l+1 (S,Z).

By Proposition 3.1 um+1(·, x) is the optimal stopping curve of the Poisson process
Nm+1 = ∑

k δ(τk,u
m(τk,Yk)) on Mum at the guarantee value x. We already proved

that the separation condition is fulfilled for the stopping of Nm+1 and by Propo-
sition 3.2 Nm+1 has the intensity function Gm+1(t, y) := G(t, ξm(t, y)). The ex-
istence and uniqueness results for the differential equation (3.19) therefore fol-
low with our assumption from the corresponding result in Faller and Rüschendorf
(2009) for the case m = 1. �
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4. Explicit calculation of optimal m-stopping curves. For the case of one-
stopping problems, some classes of intensity functions G(t, y) have been intro-
duced in Faller and Rüschendorf (2009) which allow to determine optimal stopping
curves in explicit form. Solving the optimality equations in (3.19) for the sequence
of optimal stopping curves for the m-stopping problem is in general much more
demanding. However, for some of the classes considered in Faller and Rüschen-
dorf (2009) explicit solutions can be given also in the m-stopping case.

We consider intensity functions G(t, y) of the form

G(t, y) = H

(
y

v(t)

) |v′(t)|
v(t)

(4.1)

or

G(t, y) = H
(
y − v(t)

)|v′(t)|(4.2)

as in Faller and Rüschendorf (2009) with v(1) = 0 or v(1) = ∞ in case (4.1) and
v(1) = −∞ in case (4.2). For the general motivation of these classes and these
conditions, we refer to Faller and Rüschendorf (2009). In particular, we will see
that the main application considered in this paper to m-stopping of i.i.d. sequences
with discount and observation costs is covered by these classes.

We first state the results in the three cases mentioned and then give the proof.
Case 1: G satisfies (4.1) with v monotonically nonincreasing, v(1) = 0.

Here c = 0. H : (0,∞] → [0,∞) is monotonically nonincreasing continuous,∫ ∞
0 H(x)dx > 0 and we assume that v : [0,1] → [0,∞) is a C1-function with

v > 0 on [0,1).
We define

R1(x) := x −
∫ ∞
x

H(y) dy, x ∈ (0,∞),(4.3)

and assume that there exists some r > 0 with R1(r) = 0. Define r0 := 0,

0(x) := x. Then for m ≥ 1 by induction holds:

The function Rm : (rm−1,∞) → R given by

Rm(x) := x −
∫ ∞
x

H(
m−1(y)) dy(4.4)

has exactly one zero rm ∈ (rm−1,∞) and the optimal m-stopping curves are given
for (t, x) ∈ [0,1) × [0,∞] by

um(t, x) = φm

(
x

v(t)

)
v(t),(4.5)

where φm : [0,∞] → [rm,∞] is the inverse function of 
m : [rm,∞] → [0,∞],


m(x) := x exp
(
−

∫ ∞
x

(
1

Rm(y)
− 1

y

)
dy

)
.
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The system of functions (Rm,
m), respectively, (um,φm) is by (4.5) recursively
defined. In particular, it holds that

um(t) = rmv(t)(4.6)

and thus determination of the optimal stopping curves is reduced to finding a zero
point of R

m.
Case 2: G satisfies (4.1) with v monotonically nondecreasing, v(1) = ∞. Here

c = −∞. H : (−∞,∞] → [0,∞) is monotonically nonincreasing continuous,∫ 0
−∞ H(x)dx > 0,

∫ ∞
0 H(x)dx = 0 and

∫ 0
y

H(x)
−x

dx < ∞ for y < 0. Further, we

assume that v : [0,1] → [0,∞] is a C1-function with v < ∞ on [0,1).
We define

R1(x) := x +
∫ ∞
x

H(y) dy, x ∈ (−∞,∞),

and assume that there exists some r < 0 with R1(r) = 0. Define r0 := −∞,

0(x) := x. Then for m ≥ 1 by induction holds:

The function Rm : (rm−1,0) → R defined by

Rm(x) := x +
∫ 0

x
H(
m−1(y)) dy

has exactly one zero rm ∈ (rm−1,0) and the optimal m-stopping curves are given
for (t, x) ∈ [0,1) × R by

um(t, x) =
⎧⎨
⎩

x, if x ≥ 0,

φm

(
x

v(t)

)
v(t), if x < 0,(4.7)

where φm : [−∞,0] → [rm,0] is the inverse of 
m : [rm,0] → [−∞,0],

m(x) := x exp

(∫ 0

x

(
1

y
− 1

Rm(y)

)
dy

)
.

In particular, um(t) = rmv(t).
Case 3: G satisfies (4.2) with v monotonically nonincreasing v(1) = −∞. Then

c = −∞. H : (−∞,∞] → [0,∞) is monotonically nonincreasing continuous,∫ ∞
−∞ H(x)dx > 0 and

∫ ∞
z

∫ ∞
y H(x) dx dy < ∞ for z ∈ R. Further, we assume

that v : [0,1] → [−∞,∞) is a C1-function with v > −∞ on [0,1).
We define

R1(x) := 1 −
∫ ∞
x

H(y) dy, x ∈ R,

and assume that there exists some r ∈ R such that R1(r) = 0. Define r0 := −∞,

0(x) := x. Then for m ≥ 1 by induction holds:

The function Rm : (rm−1,∞) → R defined by

Rm(x) := 1 −
∫ ∞
x

H(
m−1(y)) dy
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has exactly one zero rm ∈ (rm−1,∞). The optimal m-stopping curves are given for
(t, x) ∈ [0,1) × R by

um(t, x) = φm(
x − v(t)

) + v(t),(4.8)

where φm : R → [rm,∞] is the inverse of 
m : [rm,∞] → R,


m(x) := x −
∫ ∞
x

(
1

Rm(y)
− 1

)
dy.

We have um(t) = rm + v(t).

PROOF. We only give the proof of Case 2. The proof of both other cases is
similar. The proof is by induction in m where we additionally include that Rm ≥
Rm−1 and thus 
m ≥ 
m−1.

In the case m = 1, the statement has been shown in Faller and Rüschendorf
(2009) [with r0 := −∞, 
0(x) := x, R0(x) := x].

Induction step m → m + 1 :um+1(·, x) is the optimal stopping curve of Nm+1

at the guarantee value x. Nm+1 has the intensity function

Gm+1(t, y) = H

(

m

(
y

v(t)

))
v′(t)
v(t)

for (t, y) ∈ Mum.

Thus, Gm+1 again is of type (4.1) and we have to check the conditions of Case 2
in Faller and Rüschendorf (2009), who deal with optimal one-stopping w.r.t. this
type of intensity functions. First, we note that Rm+1 has a zero in (rm,0) since

m(x) ≥ 
m−1(x) and thus Rm+1 ≥ Rm. Further by substitution, we have∫ 0

y

H(
m(x))

−x
dx

Subst.=
∫ 0


m(y)

H(z)

−z

−z

φm(z)
(φm)′(z) dz < ∞,

as limz→0
−z

φm(z)
= 1 and limz→0(φ

m)′(z) = 1. Thus, the conditions hold true and
the result follows. �

For intensity functions G not of the form as in (4.1), (4.2) the optimality dif-
ferential equations in Theorem 3.3 typically can only be solved numerically. In
some cases, however, one can derive bounds for the optimal stopping curves
um(t, x) which can be used to derive necessary uniform integrability and separa-
tion conditions [see Faller (2009), pages 60–62] for the following approximation
result.

5. Approximation of m-stopping problems. In this section, an extension of
the approximation results in Kühne and Rüschendorf [(2004, Theorem 2.1] and
Faller and Rüschendorf [(2009), Theorem 4.1], for optimal one-stopping problems
for dependent sequences is given to the class of m-stopping problems. For the
special case of i.i.d. sequences with distribution function F in the domain of the
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Gumbel extreme value distribution � a corresponding approximation result was
given in the case m = 2 in Kühne and Rüschendorf (2002). The following result
concerns the dependent case and needs a new technique of proof which is based
on discretization. The main result of this section states that under some conditions
convergence of the finite imbedded point processes Nn to a Poisson process N

implies approximation of the stopping behavior.
We use the same general assumptions as in Section 4 of Faller and Rüschendorf

(2009) as well as the notation in Section 2 for the Poisson process N . In particular,
γ 1, . . . , γ m are the functions defined in (3.15). Further, the lower boundary curve
f of N is given by f ≡ c, N is a Poisson process on [0,1] × (R \ {c}) and F n are
the canonical filtrations induced by the imbedded point process Nn and we assume

the convergence condition Nn
d→ N on Mf as throughout this paper [see (1.2) and

the introduction of Section 3].
The first result is an extension of Proposition 2.4 in Kühne and Rüschendorf

(2000a) on the convergence of threshold stopping times to the case m ≥ 1. For the
technically involved proof, we refer to Faller (2009), Lemma 2.6.

PROPOSITION 5.1 (Convergence of multiple threshold stopping times). Let
(t, x) ∈ [0,1] × [c,∞) be fixed and let vm

n : [0,1] → R be functions such that
vm
n → γ m(·, x) uniformly on any interval [0, s] with s < 1. Define the correspond-

ing threshold stopping times

T̂
n,m

1 (t, x) := min
{
tn < i ≤ n − m + 1 :Xn

i > vm
n

(
i

n

)}
,

T̂
n,m
� (t, x) := min

{
T̂

n,m
�−1 (t, x) < i ≤ n − m + � :

Xn
i > γ m−�+1

(
i

n
,Xn

T̂
n,m
�−1 (t,x)

∨ x

)}

for 2 ≤ � ≤ m. If Nn
d→ N on Mc, we obtain convergence

(
T̂

n,m
� (t, x)

n
,Xn

T̂
n,m
� (t,x)

∨ x

)
1≤�≤m

d−→ (
T m

� (t, x), Y T m
� (t,x) ∨ x

)
1≤�≤m.(5.1)

Let now W
n,m
k (x) be the stopping thresholds for the m stopping of Xn

1 , . . . ,Xn
n

and the filtration F n (see Section 2). The optimal m-stopping curves w.r.t. F n are
defined as follows. For t ∈ [0, n−m+1

n
) and x ∈ R let

um
n (t, x) := W

n,m

tn�(x)

and um
n (t, x) := W

n,m
n−m+1(x) for t ∈ [n−m+1

n
,1].
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More explicitly, we have for t ∈ [0, n−m+1
n

) (see Theorem 2.3)

um
n (t, x) = ess sup

{
E

[
Xn

T1
∨ · · · ∨ Xn

Tm
∨ x|F n
tn�

]
: tn < T1 < · · · < Tm ≤ n

F n-stopping times
}

(5.2)

= E
[
Xn

T
n,m
1 (t,x)

∨ · · · ∨ Xn
T

n,m
m (t,x)

∨ x|F n
tn�
]

P -a.s.

The corresponding optimal m-stopping times are given by

T
n,m
1 (t, x) := min

{
tn < i ≤ n − m + 1 :um−1

n

(
i

n
,Xn

i

)
> um

n

(
i

n
, x

)}
,

T
n,m
� (t, x) := min

{
T

n,m
�−1 (t, x) < i ≤ n − m + � :(5.3)

um−�
n

(
i

n
,Xn

i

)
> um−�+1

n

(
i

n
,M

n,m
�−1,i ∨ x

)}

for 2 ≤ � ≤ m, where M
n,m
j,i := Xn

T
n,m
j (t,x)

χ{T n,m
j (t,x)≤i}.

um
n (·, x) is right continuous and a piecewise constant curve in the space of ran-

dom variables. We have the iterative representation (see Theorem 2.3)

um
n (t, x) = E

[
um−1

n

(
T

n,m
1 (t, x)

n
,Xn

T
n,m
1 (t,x)

∨ x

)∣∣∣F n
tn�
]

P -a.s.

Further, um
n are monotone in the sense that for 0 ≤ s ≤ t ≤ 1

um
n (s, x) ≥ E

[
um

n (t, x)|F n
sn�
]

P -a.s.

In the opposite direction, we obtain for 0 ≤ s ≤ t ≤ 1

um
n (s, x) ≤ E

[
max

s<i/n≤t
um−1

n

(
i

n
,Xn

i

)
∨ um

n (t, x)|F n
sn�
]

P -a.s.(5.4)

This follows inductively from the recursive definition of the thresholds Wm
� (x).

We also need the following further conditions [for motivation, see Faller and
Rüschendorf (2009)]:

(A) Asymptotic independence condition. For 0 ≤ s < t ≤ 1

P
(

max
s<i/n≤t

Xn
i ≤ x|F n
sn�

)
P−→ P

(
sup

s<τk≤t
Yk ≤ x

)
∀x ∈ (c,∞).

(U) Uniform integrability condition. M+
n , with Mn := max1≤i≤n Xn

i , is uni-
formly integrable and E[lim supn→∞ M+

n ] < ∞.

(L) Uniform integrability from below. For some sequence (vn)n∈N of monoton-
ically nonincreasing functions vn : [0,1] → R ∪ {−∞} with vn → u pointwise, for
all t ∈ [0,1) and the corresponding threshold stopping times

T̂n(t) := min
{
tn < i ≤ n :Xn

i > vn

(
i

n

)}
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holds

lim
s↑1

lim sup
n→∞

E
[
Xn

T̂n(t)
χ{T̂n(t)>sn}

] = 0.(5.5)

A modified version of (L) is the condition (Lm):

(Lm) For m ∈ N, there exists some sequence of monotonically nonincreasing
functions vm

n : [0,1] → R such that vm
n → γ m(·,−∞) pointwise and further the

corresponding threshold stopping times

T̂
n,m
1 (t) := min

{
tn < i ≤ n − m + 1 :Xn

i > vm
n

(
i

n

)}
satisfy

lim
s↑1

lim sup
n→∞

E
[
Xn

T̂
n,m
1 (t)

χ{T̂ n,m
1 (t)>sn}

] = 0.

Condition (Lm) in combination with (U) implies uniform integrability of
(Xn

T̂
n,m
1 (t)

)n∈N. Denote

T
n,m
� := T

n,m
� (0, c) and T m

� := T m
� (0, c).

THEOREM 5.2 (Approximation of m-stopping problems). Assume that Nn
d→

N on [0,1] × (R \ {c}) and also assume conditions (A) and (U). In case c = −∞
also assume the modified uniform integrability condition (Lm).

(a) For all (t, x) ∈ [0,1] × [c,∞) holds

um
n (t, x)

P−→ um(t, x).

If c ∈ R assume Xn
n

L1→ c. Then we have in particluar

E[Xn
T

n,m
1

∨ · · · ∨ Xn
T

n,m
m

] → um(0).(5.6)

(b) In case (Xn
i )1≤i≤n are independent random variables and if for c ∈ R we

assume that μ(Mγ m) = ∞ or Xn
n−i

P−→ c for i = 0, . . . ,m − 1, then we obtain(
T

n,m
�

n
,Xn

T
n,m
�

)
1≤�≤m

d→ (T m
� ,Y T m

�
∨ c)1≤�≤m.

(c) If c ∈ R and Xn
n

L1→ c, then

T̂
n,m
1 := min

{
1 ≤ i ≤ n − m + 1 :Xn

i > γ m

(
i

n
, c

)}
,

T̂
n,m
� := min

{
T̂

n,m
�−1 < i ≤ n − m + � :Xn

i > γ m−�+1
(

i

n
,Xn

T̂
n,m
�−1

∨ c

)}
,

2 ≤ � ≤ m,
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defines an asymptotically optimal sequence of m-stopping times, that is, conver-
gence as in (5.6) holds for these stopping times. In case c = −∞,

T̂
n,m

1 := min
{

1 ≤ i ≤ n − m + 1 :Xn
i > vm

n

(
i

n

)}
,

T̂
n,m
� := min

{
T̂

n,m
�−1 < i ≤ n − m + � :Xn

i > γ m−�+1
(

i

n
,Xn

T̂
n,m
�−1

)}
,

2 ≤ � ≤ m,

are asymptotically optimal stopping times, where vm
n are the threshold functions

from condition (Lm).

PROOF. Since we use point process convergence on [0,1] × (R \ {c}) and
canonical filtrations, we can apply the Skorohod theorem and hence we assume
w.l.o.g. P -a.s. convergence of the point processes.

(a) Consider at first the case c ∈ R. Let t ∈ [0,1) be a fixed element. We intro-
duce at first discrete majorizing stopping problems. For m ≥ 1 and k > m, define
the discrete time points

ak
i :=

(
1 − i

k

)
t + i

k
1, 0 ≤ i ≤ k,

and discrete time random variables

X
n,k
i := max

j/n∈(ak
i−1,a

k
i ]

Xn
j ∨ c for 1 ≤ i ≤ k,

and consider the filtration F n,k := (F n,k
i )0≤i≤k with F n,k

i := F n


ak
i n�. The corre-

sponding m-stopping curves are given inductively for m ≥ 1 by backward induc-
tion for i = k, . . . ,0 by

mW
n,k
k−m+1(x) := x,

mW
n,k
i (x) := E[m−1W

n,k
i+1(X

n,k
i+1) ∨ mW

n,k
i+1(x)|F n,k

i ]
for i = k − m, . . . ,0.

These stopping problems majorize the original m-stopping problem,

mW
n,k
0 (x) = ess sup{E[Xn,k

T ′
1

∨ · · · ∨ X
n,k
T ′

m
∨ x : F n,k

0 ] :

0 < T ′
1 < · · · < T ′

m ≤ k F n,k-stopping times}
(∗)= ess sup{E[Xn,k

T ′
1

∨ · · · ∨ X
n,k
T ′

m
∨ x : F n,k

0 ] :

0 < T ′
1 ≤ · · · ≤ T ′

m ≤ k F n,k-stopping times}
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≥ ess sup
{
E

[
Xn

T1
∨ · · · ∨ Xn

Tm
∨ x|F n
tn�

]
:

tn < T1 < · · · < Tm ≤ n F n-stopping times
}

= um
n (t, x) P -a.s.,

since for all F n-stopping times tn < T1 < · · · < Tm ≤ n it holds that T ′
i :=

� 1
1−t

( Ti

n
− t)k� > 0 are F n,k-stopping times with ak

T ′
i −1 < Ti

n
≤ ak

T ′
i
, thus X

n,k

T ′
i

≥
Xn

Ti
. For the proof of (∗) define for F n,k-stopping times 0 < T ′

1 ≤ · · · ≤ T ′
m ≤ k

the F n,k-stopping times 0 < T ∗
1 < · · · < T ∗

m ≤ k by

T ∗
1 := T ′

1 ∧ (k − m + 1),

T ∗
� := (

(T ′
� + 1)χ{T ∗

�−1=T ′
�} + T ′

�χ{T ∗
�−1<T ′

�}
) ∧ (k − m + �), � = 2, . . . ,m.

We will prove convergence as n → ∞ to the stopping problem of

Y k
i := sup

τl∈(ak
i−1,a

k
i ]

Yl ∨ c for 1 ≤ i ≤ k,

with filtrations Ak := (Ak
i )1≤i≤k , Ak

i := Aak
i

and optimal thresholds

muk
k−m+1(x) := x,

muk
i (x) := E[m−1uk

i+1(Y
k
i+1) ∨ muk

i+1(x)] for i = k − m, . . . ,0.

By definition for i ≤ k − m holds
muk

i (x) = V
(m−1uk

i+1(Y
k
i+1) ∨ x, . . . , m−1uk

k−m+1(Y
k
k−m+1) ∨ x

)
= sup{E[m−1uk

T (Y k
T ) ∨ x] : i < T ≤ k − m + 1 Ak-stopping times}

= muk(ak
i , x),

where muk(·, x) are the optimal stopping curves of the processes

mNk :=
k−m+1∑

i=1

δ(ak
i ,m−1uk

i (Y
k
i )) =

k−m+1∑
i=1

δ(ak
i ,m−1uk(ak

i ,Y k
i ))

at guarantee value x.
At first we establish that for any i the random variable Y k

i+1 is independent of
the σ -algebra F k

i := σ(
⋃

n∈N F n,k
i ).

For the proof, note that by condition (A)

P(X
n,k
i+1 ∈ ·|F n,k

i )
P−→ P(Y k

i+1 ∈ ·).
Thus, we obtain by the continuous mapping theorem that for any continuous
f : R → [0,1] we have

P
(
f (X

n,k
i+1) ∈ ·|F n,k

i

) P−→ P
(
f (Y k

i+1) ∈ ·).
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This implies using uniform integrability that

E[f (X
n,k
i+1)|F n,k

i ] L1−→ E[f (Y k
i+1)].

On the other hand, by point process convergence it holds that X
n,k
i+1 → Y k

i+1P -a.s.

and thus also f (X
n,k
i+1)

L1−→ f (Y k
i+1). This implies L1-convergence of conditional

expectations:

E[f (X
n,k
i+1)|F n,k

i ] L1−→ E[f (Y k
i+1)|F k

i ].
In consequence, we obtain E[f (Y k

i+1)] = E[f (Y k
i+1)|F k

i ] P -a.s. for all continuous
functions f : R → [0,1], and thus independence of F k

i and σ(Y k
i+1).

The next point to establish is proved by induction in m. The induction hypothe-
sis is:

(1) For all k > m, x ∈ [c,∞) and i = k − m + 1, . . . ,0

mW
n,k
i (x)

P−→ muk
i (x), n → ∞.

(2) For all s ∈ [t,1] and all x ∈ [c,∞), we further have

muk(s, x) → um(s, x), k → ∞.

We do the induction step for m− 1 → m: Assertion (1) we shall prove by back-
ward induction on i: For i = k − m + 1 the assertion is trivial. We now consider
the induction step from i + 1 to i: From the induction hypothesis, we know that

m−1W
n,k
i+1(x)

P−→ m−1uk
i+1(x), n → ∞,

for all x ∈ [c,∞). From this, the monotonicity of m−1W
n,k
i+1(x) in x and the conti-

nuity of m−1uk
i+1(x) in x we can conclude that

m−1W
n,k
i+1(X

n,k
i+1)

P−→ m−1uk
i+1(Y

k
i+1), n → ∞.

For details, see Faller (2009). By the induction hypothesis for i, we also know that

mW
n,k
i+1(x)

P−→ muk
i+1(x), n → ∞,

for x ∈ [c,∞), implying

m−1W
n,k
i+1(X

n,k
i+1) ∨ mW

n,k
i+1(x)

L1−→ m−1uk
i+1(Y

k
i+1) ∨ muk

i+1(x), n → ∞.

From this, we get

E[m−1W
n,k
i+1(X

n,k
i+1) ∨ mW

n,k
i+1(x)|F n,k

i ]
L1−→ E[m−1uk

i+1(Y
k
i+1) ∨ muk

i+1(x)|F k
i ]
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as n → ∞. The expression on the left-hand side equals mW
n,k
i (x), and since

σ(Y k
i+1) and F k

i are independent as shown above, the right-hand side equals
muk

i (x). This completes the induction on i and the proof of assertion (1).
For the proof of assertion (2), observe that the process

∑k
i=1 δ(ak

i ,Y k
i ) converges

on [t,1] × (c,∞] to N = ∑
j δ(τj ,Yj ). Further, by induction hypothesis we have

uniform convergence of m−1uk(s, x) to um−1(s, x) as k → ∞. From this, we ob-
tain convergence of the transformed point processes

mNk =
k∑

i=1

δ(ak
i ,m−1uk(ak

i ,Y k
i ))

d−→ Nm = ∑
j

δ(τj ,um−1(τj ,Yj )), k → ∞,

on Mum−1 ∩[t,1]×R and thus convergence of the optimal stopping curves of these
processes, which proves (2).

Based on (1) and (2), we obtain the estimate

P
(
um

n (t, x) ≥ um(t, x) + ε
)

≤ P

(
mW

n,k
0 (x) ≥ muk(t, x)︸ ︷︷ ︸

muk
0(x)

+ε

2

)
+ P

(
um(t, x) ≤ muk(t, x) − ε

2

)
.

The right-hand side converges for n → ∞ and k → ∞ to 0. Thus, we have shown

lim
n→∞P

(
um

n (t, x) ≥ um(t, x) + ε
) = 0.

To obtain convergence in probability, we next establish that lim infn→∞ Eum
n (t,

x) ≥ um(t, x). This however is implied by the inequality

Eum
n (t, x) ≥ E[Xn

T1
∨ · · · ∨ Xn

Tm
∨ x]

holding true for all F n-stopping times tn < T1 < · · · < Tm ≤ n, and in particular
for

T̂
n,m
1 (t, x) := min

{
tn < i ≤ n − m + 1 :Xn

i > γ m

(
i

n
, x

)}
,

T̂
n,m
� (t, x) := min

{
T̂

n,m
�−1 (t, x) < i ≤ n − m + � :

Xn
i > γ m−�+1

(
i

n
,Xn

T̂
n,m
�−1 (t,x)

∨ x

)}

for 2 ≤ � ≤ m. Proposition 5.1 then implies the above statement.

For c = −∞, we obtain similarly the convergence um
n (t, x)

P−→ um(t, x) for

x > −∞. Then the convergence of um
n (t,−∞)

P−→ um(t) results as follows:

um
n (t,−∞) ≤ um

n (t, x)
P−→ um(t, x) ↓ um(t) as x ↓ −∞.
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This implies that limn→∞ P(um
n (t,−∞) ≥ um(t) + ε) = 0 for all ε > 0. Let

T̂
n,m
1 (t) be the stopping times from condition (Lm) and let

T̂
n,m
� (t) := min

{
T̂

n,m
�−1 (t) < i ≤ n − m + � :Xn

i > γ m−�+1
(

i

n
,Xn

T̂
n,m
�−1 (t)

)}
for 2 ≤ � ≤ m. Then we obtain by Proposition 5.1 and uniform integrability of
(Xn

T̂
n,m
1 (t)

)n∈N that

Eum
n (t,−∞) ≥ E

[
Xn

T̂
n,m
1 (t)

∨ · · · ∨ Xn

T̂
n,m
m (t)

]
n→∞−→ E

[
YT m

1 (t,−∞) ∨ · · · ∨ YT m
m (t,−∞)

] = um(t).

Thus, lim infn→∞ Eum
n (t,−∞) ≥ um(t). As consequence, we obtain um

n (t,

−∞)
P−→ um(t) which was to be shown.

(b) For the proof of (b), see Faller (2009).
(c) For c = −∞, we obtain the statement using uniform integrability and Propo-

sition 5.1. For c ∈ R holds

E[Xn

T̂
n,m
1

∨ · · · ∨ Xn

T̂
n,m
m

]
= E[Xn

T̂
n,m
1

∨ · · · ∨ Xn

T̂
n,m
m

∨ c]

−
∫
{Xn

T̂
n,m
1

∨···∨Xn

T̂
n,m
m

<c}
(c − Xn

T̂
n,m
1

∨ · · · ∨ Xn

T̂
n,m
m

) dP .

The first term converges by Proposition 5.1 to the stated limit. The modulus of the
second term can be estimated from above by∫

{Xn

T̂
n,m
m

<c}
(c − Xn

T̂
n,m
m

) dP ≤
∫
{Xn

n<c}
(c − Xn

n)dP ≤ E|Xn
n − c| → 0.

�

REMARK 5.3. The reason for restricting in (b) to independent sequences is
the necessity to give estimates of un(t, x) from above [cf. the case m = 1 in Faller
(2009)]. In the dependent case, this amounts to (5.4). For m ≥ 2 in contrast to
the case m = 1 one has to consider terms of the form maxs<i/n≤t u

m−1
n ( i

n
,Xn

i ).
It seems however difficult to establish the necessary point process convergence of∑n

i=1 δ
(i/n,um−1

n (i/n,Xi))
in the general dependent case.

6. Optimal m-stopping of i.i.d. sequences with discount and observation
costs. As application, we study in this section the optimal m-stopping of i.i.d.
sequences with discount and observation costs. In the case m = 1, this prob-
lem has been considered in various degree of generality in Kennedy and Kertz
(1990), Kennedy and Kertz (1991), Kühne and Rüschendorf (2000b) and Faller
and Rüschendorf (2009).
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Let (Zi)i∈N be an i.i.d. sequence with d.f. F in the domain of attraction of an
extreme value distribution G, thus for some constants an > 0, bn ∈ R

n
(
1 − F(anx + bn)

) → − logG(x), x ∈ R.(6.1)

Consider Xi = ciZi + di the sequence with discount and observation factors,
ci > 0, di ∈ R and both sequences monotonically nondecreasing or nonincreasing.
For convergence of the corresponding imbedded point processes

N̂n =
n∑

i=1

δ
(i/n,(Xi−b̂n)/ân)

(6.2)

the following choices of ân, b̂n turn out to be appropriate:

ân := cnan, b̂n := 0 for F ∈ D(
α) or F ∈ D(�α),
(6.3)

ân := cnan, b̂n := cnbn + dn for F ∈ D(�),

where 
α , �α , � are the Fréchet, Weibull, and Gumbel distributions and an, bn

are the corresponding normalizations in (6.1). We give further conditions on ci ,
di to establish point process convergence in (6.2). Related conditions are given
in de Haan and Verkade (1987) in the treatment of i.i.d. sequences with trends,
respectively, in Kühne and Rüschendorf (2000b).

Unlike before, c denotes here a general constant and not the guarantee value.
The guarantee value of N is in case 
α given by 0 and in cases �α , � given
generally by −∞. This application shows in particular the importance of treating
the case with lower boundary −∞ as in Sections 2 and 3 of this paper, respectively,
in Faller and Rüschendorf (2009). We state the optimality results for all three cases.
It turns out that in all of the following examples the intensity functions of the
transformed Poisson processes are of the form studied in Section 4. Hence, we
obtain an explicit form of the solutions and optimal stopping curves.

We first consider the case of Fréchet limits.

THEOREM 6.1. Let F ∈ D(
α) with α > 1 and F(0) = 0 (i.e., Zi > 0
P -a.s.). We assume that bn = 0 and also convergence

dn

cnan

→ d,
c
tn�
cn

→ tc ∀t ∈ [0,1]

with constants c, d ∈ R, as well that cn does not converge to 0. Assume that c > − 1
α

and that the function R : (d,∞) → R,

R(x) := x + α

α − 1

1

1 + cα
(x − d)−α+1, x ∈ (d,∞),(6.4)

has no zero point. Then it holds:
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(a)

E[XT
n,m
1

∨ · · · ∨ XT
n,m
m

]
ân

→ um(0) > 0,(6.5)

where um(t) is the m-stopping curve of the Poisson process N̂ with intensity func-
tion

Ĝ(t, y) = tcα(y − dtc+1/α)−α = H

(
y

v(t)

)
v′(t)
v(t)

on M
f̂
.

Here v(t) := tc+1/α , H(x) := α
αc+1(x − d)−α and f̂ (t) := dtc+1/α .

(b) Let γ 1, . . . , γ m be the functions defined in (3.15) for N̂ . Then

T̂
n,m

1 := min
{

1 ≤ i ≤ n − m + 1 :Xi > ânγ
m

(
i

n
, d

)}
,

T̂
n,m
� := min

{
T̂

n,m
�−1 < i ≤ n − m + � :Xi > ânγ

m−�+1
(

i

n
,

(
1

ân

X
T̂

n,m
�−1

)
∨ d

)}

for 2 ≤ � ≤ m are asmptotically optimal sequences of m-stopping times, that is,
the limit in (6.5) is attained also for these sequences.

The next result concerns the Weibull limit case.

THEOREM 6.2. Let F ∈ D(�α) with α > 0 and F(0) = 1 (i.e., Zi ≤ 0 P -a.s.).
Further let an ↓ 0 and bn = 0, and

dn

cnan

→ d,
c
tn�
cn

→ tc ∀t ∈ [0,1]

for constants c, d ∈ R. If dn > 0, then assume that either (dn)n∈N is monotonically
nondecreasing or cnan does not converge to 0.

(a) If c < 1
α

and d ≤ 0, then it holds

E[XT
n,m
1

∨ · · · ∨ XT
n,m
m

]
ân

→ um
c,d(0) < 0.(6.6)

(b) If c > 1
α

and the function R : R → R,

R(x) :=
⎧⎨
⎩

x, if x ≥ d,

x − α

α + 1

1

1 − cα
(−x + d)α+1, if x < d,(6.7)

has no zero point then (6.6) holds with um
c,d(0) > 0. Here um

c,d(t) is the m-stopping

curve of the Poisson process N̂ = N̂c,d . γ m
c,d are the corresponding inverse func-

tions defined in (3.15) and (3.16).
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(c) Let (wn) be an increasing sequence wn < 0 such that n(1−F(wn)) → α+1
α

[e.g., wn = −(α+1
α

)1/αan]. Define functions vm
n by

vm
n (t) := γ m

c,0(t)

u0,0(t)

w
(1−t)n�
an

+ γ m
c,d(t) − γ m

c,0(t),

where γ m
c,0(t) = −
m−1(rm)uc,0(t). Then the m-stopping times defined by

T̂
n,m
1 := min

{
1 ≤ i ≤ n − m + 1 :Xi > ânv

m
n

(
i

n

)}
,

T̂
n,m
� := min

{
T̂

n,m
�−1 < i ≤ n − m + � :Xi > ânγ

m−�+1
c,d

(
i

n
,

1

ân

X
T̂

n,m
�−1

)}
for 2 ≤ � ≤ m, are asymptotically optimal, that is, convergence as in (6.6) does
also hold for them.

The final result concerns the Gumbel case.

THEOREM 6.3. Let F ∈ D(�) and assume
bn

an

(
1 − c
tn�

cn

)
→ c log(t),

dn − d
tn�
cnan

→ d log(t) ∀t ∈ [0,1]
for some constants c, d ∈ R. Assume also that (cn)n∈N and (dn)n∈N monotonically
nondecreasing.

(a) If c + d < 1, then

E[XT
n,m
1

∨ · · · ∨ XT
n,m
m

] − b̂n

ân

→ um(0),(6.8)

where um(t) is the m-stopping curve of the Poisson process N̂ with intensity func-
tion

Ĝ(t, y) = e−yt−(c+d) on [0,1] × R.

(b) Let γ 1, . . . , γ m be the inverse functions defined in (3.15) and (3.16), let
(wn)n∈N be an increasing sequence with limn→∞ n(1 − F(wn)) = 1 (e.g., wn :=
bn). Let vm

n be defined as

vm
n (t) := w
(1−t)n� − bn

an

+ γ m(t) − log(1 − t).

Then

T̂
n,m

1 := min
{

1 ≤ i ≤ n − m + 1 :Xi > ânv
m
n

(
i

n

)
+ b̂n

}
,

T̂
n,m
� := min

{
T̂

n,m
�−1 < i ≤ n − m + � :

Xi > ânγ
m−�+1

(
i

n
,
X

T̂
n,m
�−1

− b̂n

ân

)
+ b̂n

}
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define an asymptotic optimal sequence of m-stopping times, that is, convergence
as in (6.8) holds for them.

For details of the proof, we refer readers to Faller (2009), pages 75–77.

REFERENCES

ASSAF, D., GOLDSTEIN, L. and SAMUEL-CAHN, E. (2004). Two-choice optimal stopping. Adv. in
Appl. Probab. 36 1116–1147. MR2119857

ASSAF, D., GOLDSTEIN, L. and SAMUEL-CAHN, E. (2006). Maximizing expected value with two
stage stopping rules. In Random Walk, Sequential Analysis and Related Topics 3–27. World Sci.
Publ., Hackensack, NJ. MR2367696

BARYSHNIKOV, Y. M. and GNEDIN, A. V. (2000). Sequential selection of an increasing sequence
from a multidimensional random sample. Ann. Appl. Probab. 10 258–267. MR1765211

BRUSS, F. T. (2010). On a class of optimal stopping problems with mixed constraints. Discrete Math.
Theor. Comput. Sci. 12 363–380. MR2676679

BRUSS, F. T. and DELBAEN, F. (2001). Optimal rules for the sequential selection of monotone
subsequences of maximum expected length. Stochastic Process. Appl. 96 313–342. MR1865761

BRUSS, F. T. and FERGUSON, T. S. (1997). Multiple buying or selling with vector offers. J. Appl.
Probab. 34 959–973. MR1484028

BRUSS, F. T. and ROGERS, L. C. G. (1991). Embedding optimal selection problems in a Poisson
process. Stochastic Process. Appl. 38 267–278. MR1119984

CHOW, Y. S., ROBBINS, H. and SIEGMUND, D. (1971). Great Expectations: The Theory of Optimal
Stopping. Houghton Mifflin, Boston, MA. MR0331675

DE HAAN, L. and VERKADE, E. (1987). On extreme-value theory in the presence of a trend. J. Appl.
Probab. 24 62–76. MR0876169

FALLER, A. (2009). Approximative Lösungen von Mehrfachstoppproblemen. Dissertation, Univ.
Freiburg.

FALLER, A. and RÜSCHENDORF, L. (2009). On approximative solutions of optimal stopping prob-
lems. Preprint, Univ. Freiburg.

FERGUSON, T. S. (2007). Optimal stopping and applications. Electronic texts on homepage. Avail-
able at http://www.math.ucla.edu/~tom/Stopping/Contents.html.

GNEDIN, A. V. (1996). On the full information best-choice problem. J. Appl. Probab. 33 678–687.
MR1401465

GNEDIN, A. V. and SAKAGUCHI, M. (1992). On a best choice problem related to the Poisson
process. In Strategies for Sequential Search and Selection in Real Time (Amherst, MA, 1990).
Contemp. Math. 125 59–64. Amer. Math. Soc., Providence, RI. MR1160609

GOLDSTEIN, L. and SAMUEL-CAHN, E. (2006). Optimal two-choice stopping on an exponential
sequence. Sequential Anal. 25 351–363. MR2271920

HAGGSTROM, G. W. (1967). Optimal sequential procedures when more than one stop is required.
Ann. Math. Statist. 38 1618–1626. MR0217946

KARLIN, S. (1962). Stochastic models and optimal policy for selling an asset. In Studies in Applied
Probability and Management Science 148–158. Stanford Univ. Press, Stanford, CA. MR0137594

KENNEDY, D. P. and KERTZ, R. P. (1990). Limit theorems for threshold-stopped random variables
with applications to optimal stopping. Adv. in Appl. Probab. 22 396–411. MR1053237

KENNEDY, D. P. and KERTZ, R. P. (1991). The asymptotic behavior of the reward sequence in the
optimal stopping of i.i.d. random variables. Ann. Probab. 19 329–341. MR1085339

KÜHNE, R. and RÜSCHENDORF, L. (2000a). Approximation of optimal stopping problems. Stochas-
tic Process. Appl. 90 301–325. MR1794541

http://www.ams.org/mathscinet-getitem?mr=2119857
http://www.ams.org/mathscinet-getitem?mr=2367696
http://www.ams.org/mathscinet-getitem?mr=1765211
http://www.ams.org/mathscinet-getitem?mr=2676679
http://www.ams.org/mathscinet-getitem?mr=1865761
http://www.ams.org/mathscinet-getitem?mr=1484028
http://www.ams.org/mathscinet-getitem?mr=1119984
http://www.ams.org/mathscinet-getitem?mr=0331675
http://www.ams.org/mathscinet-getitem?mr=0876169
http://www.math.ucla.edu/~tom/Stopping/Contents.html
http://www.ams.org/mathscinet-getitem?mr=1401465
http://www.ams.org/mathscinet-getitem?mr=1160609
http://www.ams.org/mathscinet-getitem?mr=2271920
http://www.ams.org/mathscinet-getitem?mr=0217946
http://www.ams.org/mathscinet-getitem?mr=0137594
http://www.ams.org/mathscinet-getitem?mr=1053237
http://www.ams.org/mathscinet-getitem?mr=1085339
http://www.ams.org/mathscinet-getitem?mr=1794541


ON APPROXIMATIVE SOLUTIONS OF MULTISTOPPING PROBLEMS 1993

KÜHNE, R. and RÜSCHENDORF, L. (2000b). Optimal stopping with discount and observation costs.
J. Appl. Probab. 37 64–72. MR1761661

KÜHNE, R. and RÜSCHENDORF, L. (2002). On optimal two-stopping problems. In Limit Theorems
in Probability and Statistics, Vol. II (Balatonlelle, 1999) 261–271. János Bolyai Math. Soc., Bu-
dapest. MR1979997

KÜHNE, R. and RÜSCHENDORF, L. (2004). Approximate optimal stopping of dependent sequences.
Theory Probab. Appl. 48 465–480.

MOSER, L. (1956). On a problem of Cayley. Scripta Mathematica 22 289–292.
NIKOLAEV, M. L. (1999). On optimal multiple stopping of Markov sequences. Theory Probab. Appl.

43 298–306.
RESNICK, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Applied Probability.

A Series of the Applied Probability Trust 4. Springer, New York. MR0900810
SAARIO, V. and SAKAGUCHI, M. (1992). Multistop best choice games related to the Poisson pro-

cess. Math. Japon. 37 41–51. MR1148515
SAKAGUCHI, M. (1976). Optimal stopping problems for randomly arriving offers. Math. Japon. 21

201–217. MR0426860
SAKAGUCHI, M. and SAARIO, V. (1995). A class of best-choice problems with full information.

Math. Japon. 41 389–398. MR1326972
SIEGMUND, D. O. (1967). Some problems in the theory of optimal stopping rules. Ann. Math. Statist.

38 1627–1640. MR0221666

DEPARTMENT OF MATHEMATICAL STOCHASTICS

UNIVERSITY OF FREIBURG

ECKERSTR. 1
79104 FREIBURG

GERMANY

E-MAIL: afaller@hotmail.com
ruschen@stochastik.uni-freiburg.de

URL: http://www.stochastik.uni-freiburg.de

http://www.ams.org/mathscinet-getitem?mr=1761661
http://www.ams.org/mathscinet-getitem?mr=1979997
http://www.ams.org/mathscinet-getitem?mr=0900810
http://www.ams.org/mathscinet-getitem?mr=1148515
http://www.ams.org/mathscinet-getitem?mr=0426860
http://www.ams.org/mathscinet-getitem?mr=1326972
http://www.ams.org/mathscinet-getitem?mr=0221666
mailto:afaller@hotmail.com
mailto:ruschen@stochastik.uni-freiburg.de
http://www.stochastik.uni-freiburg.de

	Introduction
	m-stopping problems for finite sequences
	m-stopping of Poisson processes
	Explicit calculation of optimal  m-stopping curves
	Approximation of  m-stopping problems
	Optimal m-stopping of i.i.d. sequences with discount and observation costs
	References
	Author's Addresses

