
The Annals of Applied Probability
2011, Vol. 21, No. 4, 1537–1567
DOI: 10.1214/10-AAP739
© Institute of Mathematical Statistics, 2011

SCALING LIMITS FOR CONTINUOUS OPINION
DYNAMICS SYSTEMS

BY GIACOMO COMO AND FABIO FAGNANI

Massachusetts Institute of Technology and Politecnico di Torino

Scaling limits are analyzed for stochastic continuous opinion dynamics
systems, also known as gossip models. In such models, agents update their
vector-valued opinion to a convex combination (possibly agent- and opinion-
dependent) of their current value and that of another observed agent. It is
shown that, in the limit of large agent population size, the empirical opin-
ion density concentrates, at an exponential probability rate, around the solu-
tion of a probability-measure-valued ordinary differential equation describing
the system’s mean-field dynamics. Properties of the associated initial value
problem are studied. The asymptotic behavior of the solution is analyzed for
bounded-confidence opinion dynamics, and in the presence of an heteroge-
neous influential environment.

1. Introduction. In this paper, we undertake a rigorous mathematical analysis
of a family of stochastic dynamical systems proposed as opinion dynamics mod-
els in the recent literature: see, for example, [11], Section III, [24], and references
therein. Here, we shall focus on the so-called “gossip” models, where the informa-
tion propagation, as the name suggests, takes place through pairwise interactions.
These models have been proposed in other scientific areas, for instance, as aggre-
gation and estimation algorithms in sensor and robotic networks (see, e.g., [9, 28]),
or as models for aggregation and clustering in biological systems (see, e.g., [16]).

One of the simplest gossip model can be described as follows. Each agent a

of a population A of finite size n := |A| possesses an initial belief/opinion mod-
eled as a vector Xa

0 ∈ R
d . Agents are activated according to independent Poisson

processes in continuous time.1 If agent a is activated at time t , her opinion jumps
from its current value Xa

t− to a new value Xa
t = ω̄Xa

t− + ωXb
t− where b is another

agent sampled from A, and ω = 1 − ω̄ ∈ [0,1] is a parameter modeling how much
agent a trusts the opinion of agent b. In general, the conditional distribution of
b over the agent population may depend on the activated agent a (the support of
such distribution representing the out-neighborhood of a in an underlying “social
network” structure), while the parameter ω may depend on the interacting agents,
a and b, as well as on their current opinions, Xa

t− and Xb
t− .
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Fundamental theoretical issues concern the behavior of such models for large t

and large n. Rather then in the single opinions’ behavior, one is interested in the
emerging collective behavior of the population. Typical questions include whether
a consensus is eventually achieved or rather disagreement persists, and, more in
general, whether an asymptotic distribution of opinions exists, what it looks like,
and how long it takes the system to approach it.

The simplest case is when the Poisson processes are all of unitary rate, the
conditional distribution of the observed agent is uniform over A whichever agent
is activated, and the parameter ω is fixed and the same for all agents, independently
of their current opinions. In this case, the model is linear and can be studied in full
detail: it corresponds to the asymmetric gossip model in [18]. The basic fact is
that (if ω ∈]0,1[), almost surely, all Xa

t converge, as t → +∞ (and for any fixed
n), to a consensus random value ξ which has expected value E(ξ) = n−1 ∑

a Xa
0 .

Convergence is exponentially fast [17]:

E

[
n−1

∑
a

|Xa
t − ξ |2

]
≤ 2n−1

∑
a

|Xa
0 |2 exp(−Ct),

where C = −n ln(1 − 2n−1ωω̄ − 2n−2ω2). The variance of ξ can be estimated as

Var[ξ ] ≤ ω

ω + ω̄n
n−1

∑
a

|Xa
0 |2.

Moreover, using the techniques in [18], one can easily prove a concentration result
of type

P
(|Xa

t − E(Xa
t )| ≥ ε

) ≤ exp(−Kε2n/t).

Essentially, this shows that, as n grows large, and t/n tends to 0, each agent’s
opinion Xa

t concentrates around a deterministic dynamics converging to E(ξ) as
exp(−2ωω̄t). It is this type of results which we would like to extend to more
general models.

A particularly interesting setting is the homogeneous-population, state-depend-
ent model, that is, when the parameter ω is independent of the identity of the
interacting agents, but does depend on their current opinions. The case

ω = ω(Xa
t−,Xb

t−) =
{

ω0, if |Xa
t− − Xb

t−| ≤ R,
0, if |Xa

t− − Xb
t−| > R,

(1)

where R > 0, and ω0 ∈]0,1[, is known as the Deffuant–Weisbuch model [14, 22,
23] of bounded confidence opinion dynamics: agents with opinions too far apart
do not trust each other, hence they do not interact. Another case is the so-called
Gaussian interaction kernel

ω = ω(Xa
t−,Xb

t−) = ω0 exp(−|Xa
t− − Xb

t−|2/σ 2),(2)

a similar form of which was considered in [15]. Observe that, in these models, the
dynamics of the network and of the opinions become intertwined. In fact, these
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models are nonlinear and, to the best of the authors’ knowledge, the only theoreti-
cal result [23] is that, if ω ∈ {0} ∪ [ω0,1] for some ω0 > 0, each Xa

t converges, as
t grows large, to a limit random value ξa . Numerical simulations show the asymp-
totic emergence of opinion clusters whose number and structure depends on the
initial condition but seems to be stable for large n. However, there is no theoretical
result regarding concentration and scaling limits for any state-dependent model.

On the other hand, for the case when the parameter ω depends on the agents, as
well as on their opinions, no theoretical result is available in the literature. Some of
these heterogenous models have been considered in [19, 25, 26, 31] where, though,
only numerical simulations have been presented. Such heterogeneous population
models are going to play a very important role in opinion dynamics because they
are the natural model to represent more realistic populations with agents having
different attitude to change opinion, and interacting only with agents in their social
neighborhood.

In this paper, we study general state-dependent gossip models for large n. We
shall consider both the case of a homogeneous population, and of a heterogeneous
one consisting of two classes of agents: “standard” agents, which keep on updating
their opinions as a result of interactions with the whole population, and “stubborn”
agents whose opinions are never updated [1]. The latter case can be modeled as a
homogeneous population model with an exogenous input describing the influence
of the stubborn agents’ opinions on the standard agents’ ones, and interpreted as a,
typically heterogeneous, “influential environment.” We believe that many more
general heterogeneous models can be studied with our approach. This will be done
in a forthcoming paper where also models with interactions of nongossip type will
be considered.

In our analysis, we shall adopt an Eulerian viewpoint: instead of studying the
evolution of the single agents’ opinions, we shall neglect the agents’ identities,
and study the dynamics of the corresponding empirical opinion densities. We shall
argue that the deterministic mean-field dynamics obtained in the limit of large n is
governed by an ordinary differential equation (ODE) on the space of probability
measures over the opinion set, presented in Section 2.2. As proved in Section 3, the
initial value problem associated to the mean-field dynamics always admits a unique
global solution. Moreover, at any finite time, its solution is absolutely continuous
with respect to Lebesgue’s measure, provided that so does the initial condition,
and that some mild technical conditions are satisfied by the interaction kernel.

The asymptotic behavior in time of the mean-field dynamics is analyzed in Sec-
tion 4 for the state-independent heterogeneous case, and for the generally state-
dependent homogeneous case. In both cases, we prove weak convergence to an
equilibrium distribution, which typically does not consist of a single Dirac’s delta.
For the state-independent heterogeneous model, we show that the equilibrium
opinion distribution is independent of the initial condition, and is uniquely char-
acterized by its moments, which can be computed by recursively solving a lower-
triangular infinite linear system. On the other hand, we prove that the equilibrium
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opinion distribution in the bounded-confidence model is a convex combination of
Dirac’s deltas. Such deltas represent opinion clusters, and their number and po-
sition depend on the initial condition.2 Our results provide fundamental insight
into two basic mechanisms which have been proposed by social scientists in order
to explain persistent disagreement in the society [4], namely heterogeneity of the
social environment, and homophily leading to global fragmentation.

Finally, in Section 5, we prove that the finite-population stochastic system
concentrates around the deterministic mean-field dynamics, as the population
size grows, at an exponential probability rate. We apply here a martingale argu-
ment (see, e.g., [32] for the finite-dimensional case) and obtain a result in the
Kantorovich–Wasserstein metric [3, 30]. The technical assumption in our results
is that the, possibly stochastic, dependence of the weight ω on the opinions is
Lipschitz-continuous. Hence, the case (1) is not covered by our theory. This is not
a relevant drawback since one can consider suitable Lipschitz approximations of
(1); on the other hand, we believe that this is just a technical question and that the
result should remain valid for a larger class of functions.

We conclude this section with a brief overview of some related work. A spe-
cial instance of the measure-valued ODE analyzed in the present paper has already
been proposed in [5] for probability densities (in this case it becomes an integro-
differential equation), but with no proof of either well-posedness or concentration
of the stochastic finite system. In [6, 7, 10], deterministic, bounded-confidence,
opinion dynamics models with possibly a continuum of agents have been studied
both in discrete and continuous time. In particular, the continuous-time opinion
dynamics studied in [10] is governed by a partial differential equation in the space
of probability measures, while the work [6] deals with the equivalent dynamics, in
dimension one, of the cumulative distribution functions. In both works, the agents’
opinions have continuous trajectories, and the corresponding generator of the opin-
ion density dynamics is local. In contrast, in the model analyzed in the present
paper, the opinion trajectories are discontinuous (in fact, piece-wise constant), and
the induced mean-field dynamics is driven by a nonlocal operator. As shown in
Section 4.1, the bounded-confidence mean-field dynamics studied here has a qual-
itatively similar behavior to the solution of the partial differential equation of [6,
10]. It is also worth mentioning the work [21], where mean-field limits have been
analyzed for the flocking dynamics of Cucker and Smale [12, 13]. Finally, only at
the end of their work the authors have become aware that an approach very similar
to the one in this paper has been undertaken in [27], based on results in [20].

2. Problem setting and main results. In this section, we formally state the
model and present our main results.

2Proofs of similar results showing convergence of various variants of the bounded confidence
opinion dynamics to opinion clusters have appeared in [6, 7, 10, 23, 25].
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Before proceeding, let us establish some notation to be followed throughout
the paper. For x, y ∈ R

d , for some d ∈ N, |x − y| and x · y will denote their
Euclidean distance, and scalar product, respectively. The indicator function of
a set A will be denoted by 1A, that is, 1A(x) = 1 if x ∈ A, and 1A(x) = 0 if
x /∈ A. Given an open subset X ⊆ R

d , we denote by B(X ) its Borel σ -algebra,
and by M(X ) the space of finite signed Borel measures on X , equipped with
the topology of weak-∗ convergence, while M+(X ) ⊆ M(X ) denotes the closed
convex cone of Borel nonnegative measures, and P(X ) ⊆ M+(X ) the simplex
of probability measures over X . The space of real-valued continuous bounded
(resp., compact-supported, vanishing at infinity) functions on X , equipped with
the supremum norm ‖ϕ‖∞ := sup{|ϕ(x)| :x ∈ X }, will be denoted by Cb(X )

[resp., Cc(X ), C0(X )]. The Dirac delta measure centered in x ∈ X will be de-
noted by δx . For μ ∈ M(X ) and ϕ ∈ Cb(X ), we shall write 〈μ,ϕ〉 for the in-
tegral

∫
ϕ(x)dμ(x), with the convention that, whenever not explicitly indicated,

the domain of integration is assumed to be the entire space X . The total variation
of μ ∈ M(X ) will be denoted by ‖μ‖. The symbol λ will denote Lebesgue’s
measure on X , μ 
 λ will stand for absolute continuity, and dμ/dλ for the
Radon–Nikodym derivative, of μ with respect to λ. Finally, we shall denote by

P1(X ) := {μ ∈ P(X) :
∫ |x|dμ(x) < +∞} the metric space of probability mea-

sures with finite first moment, equipped with the order-1 Kantorovich–Wasserstein
distance. The latter is defined by W1(μ, ν) := inf{∫∫ |x − y|dξ(x, y)}, where the
infimization (which is in fact a minimization [3, 30]) runs over all couplings of μ

and ν, that is, joint probability measures ξ ∈ P(X × X ) having marginals given
by μ, and ν, respectively.

2.1. Stochastic models of continuous opinion dynamics. The present paper is
concerned with continuous opinion dynamics systems. Agents belong to a finite
population A of cardinality |A| = n. At time t ∈ R

+ each agent a ∈ A maintains
an opinion Xa

t ∈ X , where X ⊆ R
d is an open set. The vector of the opinions will

be denoted by Xt := {Xa
t :a ∈ A} ∈ X A.

We shall assume the initial opinions X0 to be a collection of independent
and identically distributed random variables, the law of each Xa

0 given by some
μ0 ∈ P(Rd). The trajectories of the opinion profile vector {Xt : t ∈ R

+} are right-
continuous and evolve according to the following jump Markov process: Agents
have clocks which tick at the times of independent rate-1 Poisson processes. If
her clock ticks at time t , agent a updates her opinion Xa

t− to a new value Xa
t

which depends on the observation of the current opinion of some other agent and
of her own one. In particular, she observes the opinion of some other agent b

sampled uniformly from A, and then updates her opinion to a random value Xa
t ,

which has conditional probability law κ(·|Xa
t−,Xb

t−). Here κ(·|·, ·) is a stochas-
tic kernel, that is, for all x, y ∈ X , κ(·|x, y) is a probability measure on X , and
(x, y) �→ κ(B|x, y) is a measurable map from X × X to [0,1], for all measur-
able sets B ⊆ X . We shall refer to κ as the interaction kernel of the model. We



1542 G. COMO AND F. FAGNANI

shall assume that the above stochastic process is defined on some filtrated proba-
bility space (�, {Ft }t∈R+,P), and denote by 0 = T0 < T1 < T2 < · · · , the times at
which some opinion update occurs (strict inequalities holding almost surely). Ob-
serve that {Tk+1 − Tk :k ∈ Z

+} is a family of independent rate-n Poisson random
variables.

In most of the models considered in the literature, the interaction kernel is a
convex combination of type: κ(·|x, y) = ακi(·|x, y)+ ᾱκe(·|x) where α = 1− ᾱ ∈
[0,1] and where κi(·|x, y) is a probability measure concentrated on the interval
connecting x and y while κe(·|x) is a probability measure concentrated on the
segment connecting x to some random point z. More specifically, X ⊆ R

d is a
convex open set containing the support of the initial condition, and there exists
two scalar stochastic kernels θi(·|·, ·) and θe(·|·, ·) from X × X to [0,1] such that

κi(ω̄x + ωy|x, y) = θi(ω|x, y), κe(ῡx + υz|x) =
∫

θe(ω|x, z) dψ(z),

where ω̄ = 1−ω, ῡ = 1−υ and ψ ∈ P(X ). This models a situation in which, with
probability α, the activated agent updates her opinion towards a convex combina-
tion of her current opinion x and the opinion y of an observed agent. The weight ω

in such a convex combination measures the confidence that the activated agent has
on the observed opinion of another agent, and is assumed to depend, through the
stochastic kernel θi(·|·, ·), on both the activated and the observed agent’s opinions,
x and y. On the other hand, with probability ᾱ, the activated agent observes an
external signal z, sampled from a probability distribution ψ , playing the role of
an exogenous source of influence, or influential environment, and she updates her
opinion toward a convex combination of her current opinion x and the observed
signal z. The dependence of the weight υ of such convex combination is captured
by the stochastic kernel θe(·|·, ·). A useful equivalent way to characterize the inter-
action kernel k described above is through its action on continuous test functions:

〈κ(·|x, y),ϕ〉 = α

∫
ϕ(ω̄x + ωy)dθi(ω|x, y)

(3)
+ ᾱ

∫ ∫
ϕ(ῡx + υz)dθe(υ|x, z) dψ(z)

for all ϕ ∈ C0(X ).

EXAMPLE 1 (Gossip model with heterogeneous influential environment). As-
sume that the stochastic kernel κ(·|·, ·) has the form (3), with constant weights:

θi(·|x, y) = δω(·), θe(·|x, y) = δυ(·)
for some fixed confidence weights ω,υ ∈ [0,1]. This models a homogeneous pop-
ulation whose opinion dynamics alternates internal gossip updates to interactions
with a static, external influential environment. Internal gossip steps occur with
probability α, and involve a uniformly sampled agent a updating her opinion to
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a convex combination, with trust parameter ω, of her current value and the one
of another uniformly sampled agent b. Interactions with the external environment
occur with probability ᾱ, and involve a uniformly sampled agent a updating her
opinion to a convex combination, with trust parameter ω, of her current value and
an external signal z sampled from a static distribution ψ(dz). This model has been
analyzed in [1] for finite, possibly inhomogeneous populations. The mean-field
limit of this model, with homogeneous population, will be analyzed in detail in
Section 4.1.

EXAMPLE 2 (Bounded confidence opinion dynamics). Consider the case
when κ(·|·, ·) is in the form (3) with α = 1, and trust parameter distribution
θi(·|x, y) supported on [0,ω0] for some ω0 ∈ [0,1[. The case when θ i(·|x, y) =
δω(x,y), where ω(x, y) is a nonincreasing function of the distance |x − y| can
be consider to model a homophily mechanism whereby agents are more likely
to interact with others which have similar opinions. In particular, the case when
ω(x, y) = 0 for all |x − y| > R, for some finite R > 0, is usually referred to as
bounded confidence opinion dynamics [14, 23], and the minimum such R as the
confidence threshold. The special case ω(x, y) = ω01[0,R](|x − y|) corresponds
to the Deffuant–Weisbuch model [5, 14, 24]. The mean-field limit of the bounded
confidence opinion dynamics model will be analyzed in detail in Section 4.2.

While for most of the results of our paper we shall not need the interaction
kernel κ to have the specific form (3), we shall focus on kernels of this form in
Section 4 when proving asymptotic properties of the solution of the corresponding
measure-valued ODE.

REMARK 1. The models considered in the cited literature often assume the
interaction to be symmetric: when agent a is activated and interacts with agent b,
both agents update their opinions. This symmetric model may be more suitable in
certain applicative contexts, the asymmetric one in some others. However, while
for finite population sizes some of the properties of the two models differ (e.g.,
in the symmetric model the average of the opinions is preserved, while this is not
necessarily the case for the asymmetric model [18]), all the results and proofs of
this paper hold, with minor changes, for the symmetric model too.

2.2. The Eulerian viewpoint and main results. As the main interest is in the
global behavior of the opinion dynamics system, rather than on that of the single
agents’ opinions, it proves convenient to adopt an Eulerian viewpoint, studying
the evolution of the empirical densities of the agents’ opinions. Formally, this is
accomplished by considering the random flow of probability measures

μn
t := 1

n

∑
a∈A

δXa
t
∈ P(X ), t ∈ R

+.
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This is a P(X )-valued process whose trajectories are piecewise constant and right
continuous. In particular, one has

μn
t = Mk ∀t ∈ [Tk, Tk+1[, k ∈ Z

+,

where {Mk :k ∈ Z
+} is a P(X )-valued Markov chain.

In order to describe the dynamics of the Mk’s it is useful to consider the operator
F : M+(X ) → M+(X ), defined by

F(μ)(B) :=
∫ ∫

κ(B|x, y) dμ(x)dμ(y) ∀B ∈ B(X ).

Equivalently, one can write

〈F(μ),ϕ〉 :=
∫ ∫ ∫

ϕ(z) dκ(z|x, y) dμ(x)dμ(y)(4)

for all ϕ ∈ C0(X ). When μ is a probability measure, then F(μ) may be inter-
preted as the conditional distribution of the new opinion formed as a result of the
first interaction occurring, given that the current empirical opinion density is μ.
In fact, the opinions x and y of two agents a and b, randomly sampled, indepen-
dently and uniformly, from the agent population, have conditional joint distribution
dμ(x) dμ(y), and hence the new opinion z formed as a result of their interaction
has conditional distribution dκ(z|x, y) dμ(x)dμ(y).

It is immediate to verify that

E[〈Mk+1, ϕ〉|Mk] = (1 − n−1)〈Mk,ϕ〉 + n−1〈F(Mk),ϕ〉
for all ϕ ∈ C0(X ) and k ∈ Z+. One may rewrite this in the form

〈Mk+1, ϕ〉 − 〈Mk,ϕ〉 = n−1〈F(Mk) − Mk,ϕ〉 + n−1〈�k+1, ϕ〉,(5)

where the random signed measure �k+1 satisfies

E[�k+1|FTk
] = 0, ‖�k+1‖ ≤ n‖Mk+1 − Mk‖ + ‖F(Mk) − Mk‖ ≤ 4.(6)

Equation (6) implies that {〈�k,ϕ〉 :k ∈ N} is a sequence of bounded martingale
differences, which can be thought as “noise.” This suggests to think of the stochas-
tic process {Mk :k ∈ Z

+} as of a noisy discretization, or Euler approximation in
the numerical analysis language, of the probability-measure-valued ODE

d

dt
μt = F(μt) − μt(7)

with stepsize 1/n. We shall refer to a solution of (7) as the mean-field dynamics of
the system.

More precisely, we shall define a solution of (7) to be a family of probabil-
ity measures {μt : t ∈ [0,+∞)} such that, for every function ϕ ∈ C0(X ), the real-
valued map t �→ 〈μt,ϕ〉 is differentiable on R

+, and satisfies

d

dt
〈μt,ϕ〉 = 〈F(μt), ϕ〉 − 〈μt,ϕ〉(8)
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for every t > 0. The main result of this paper, stated below, guarantees that (7)
admits a unique solution {μt }, and that the stochastic process {μn

t } concentrates
around {μt } exponentially fast in n.

THEOREM 1. Let μ ∈ P(X ) be arbitrary. Then:

(a) There exists a unique solution {μt : t ∈ R
+} of (7) with initial condition

μ0 = μ;
(b) If X ⊆ R

d is bounded, and the stochastic kernel κ is globally Lipschitz
continuous as a map from X × X to P1(X ), then, for every τ ∈ (0,+∞), for
sufficiently small ε > 0 and sufficiently large n ∈ N, it holds

P
(
sup{W1(μ

n
t ,μt ) : t ∈ [0, τ ]} ≥ ε

) ≤ exp(−Kε3n),

where K is a positive constant depending on X , κ and τ only.

Points (a) of Theorem 1 will be proved in Section 3.1, while point (b) will be
proved in Section 5. Additional properties of the solution of the initial value prob-
lem associated to (7) will be studied in Section 3.2, while Section 4 will present an
analysis of the behavior of the mean-field dynamics for the model with heteroge-
neous influential environment, and for the bounded-confidence opinion dynamics.

3. Well-posedness of the measure-valued ODE. In this section, we shall
first prove point (a) of Theorem 1, that is, that the initial value problem associated
to the ODE (7) admits a unique solution. Then, under further technical assump-
tions, we shall show that, if the initial measure μ0 admits a density, so does the
solution μt at any finite time t .

3.1. Weak solutions. To start with, we extend the ODE to the space of signed
measures M+(X ). In order to do this, we need to extend the operator F and in-
troduce another operator G in the following way. For μ ∈ M(X ), put

F(μ) := F(μ+), G(μ) := μ+(X )μ,(9)

where μ = μ+ − μ− denotes the Hahn–Jordan decomposition of μ ∈ M(X ). It is
not hard to check that both F and G are locally Lipschitz continuous with respect
to the total variation norm, that is, for every bounded set � ⊆ M(X ), there exist
nonnegative constants KF ,KG such that

‖F(μ1) − F(μ2)‖ ≤ KF ‖μ1 − μ2‖,
(10)

‖G(μ1) − G(μ2)‖ ≤ KG‖μ1 − μ2‖
for all μ1,μ2 ∈ �. Moreover,

F(μ)(X ) = G(μ)(X ) = μ(X )2 ∀μ ∈ M+(X ).(11)
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In the following, we want to study the well-posedness of initial value problems
associated to the measure-valued ODE

d

dt
μt = F(μt) − G(μt),(12)

where (12) means that, for every ϕ ∈ C0(X ), the real-valued map t �→ 〈μt,ϕ〉 is
differentiable on R

+, and satisfies d
dt

〈μt,ϕ〉 = 〈F(μt), ϕ〉− 〈G(μt), ϕ〉, for every
t > 0. We shall refer to such a {μt : t ≥ 0} as a weak solution of (12).

PROPOSITION 1. Suppose that F,G : M(X ) → M+(X ) satisfy properties
(10), and (11). Then, for every μ ∈ M+(X ), there exists a unique solution {μt : t ∈
R

+} ⊆ M+(X ) to (12) such that μ0 = μ. Moreover, μt(X ) = μ(X ) for every
t ≥ 0.

PROOF. For τ ∈ (0,+∞), let C([0, τ ], M(X )) be the space of continuous
curves in M(X ) equipped with the sup norm ‖{μt }‖τ := sup{‖μt‖ : t ∈ [0, τ ]}.
Given a curve {μs} ∈ C([0, τ ], M(X )), and a bounded measurable function ϕ ∈
C0(X ), define

〈�({μs})t , ϕ〉 := 〈μ,ϕ〉 +
∫ t

0
〈F(μs), ϕ〉ds −

∫ t

0
〈G(μs), ϕ〉ds

(13)
∀t ∈ [0, τ ].

Observe that (12) with the initial condition μ0 = μ is equivalent to

〈μt,ϕ〉 = 〈�({μs})t , ϕ〉 ∀ϕ ∈ C0(X ), t ≥ 0.(14)

Notice that, for every t ∈ [0, τ ], �({μs})t can be seen as the difference of two
bounded linear positive functionals on C0(X ), so that �({μs})t ∈ M(X ). More-
over, the map t �→ �({μs})t is continuous over [0, τ ], since

‖�({μs})t+ε − �({μs})t‖ =
∫ t+ε

t
‖G(μs)‖ds +

∫ t+ε

t
‖F(μs)‖ds

(15)
≤ ε[‖{G(μs)}‖τ + ‖{F(μs)}‖τ ].

Therefore, the operator � takes values in C([0, τ ], M(X )). Now, let us consider
� := {ν ∈ M(X ) :‖ν‖ ≤ 2‖μ‖}, let KF ,KG be the Lipschitz constants relative to
� of F , and G, respectively. For every ν ∈ �, (11) and (10), imply that

‖F(ν)‖ ≤ ‖F(ν) − F(μ)‖ + ‖F(μ)‖ ≤ 4KF ‖μ‖.(16)

Similarly,

‖G(ν)‖ ≤ 4KG‖μ‖.(17)

Define now the set S := {{μt } ∈ C([0, τ ], M(X )) :μ0 = μ,μt ∈ �, ∀t ∈ [0, τ ]}.
For all {μt } ∈ S, using (16) and (17), and arguing like in (15), we obtain

‖�({μt })‖τ ≤ (1 + 4τK)‖μ‖,(18)
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where K := KF + KG. Moreover, if both {μt } and {νt } belong to S , then,

‖�({μt }) − �({νt })‖τ = sup
0≤t≤τ

∫ t

0

(‖F(μs) − F(νs)‖ + ‖G(νs) − G(μs)‖)
ds

(19)
≤ τK‖{μt } − {νt }‖τ .

We now assume to have chosen τ ∈]0, 1
4K

]. Then, by (18), �(S) ⊆ S and, by
(19), � is a contraction of S . Hence, by Banach’s fixed point theorem there exists
a unique fixed point of � in S . As observed, such a fixed point corresponds to
a solution {μt } of the ODE (12) for t ∈ [0, τ ], with the initial condition μ0 = μ.
We now show that indeed μt ∈ M+(X ) for t ∈ [0, τ ]. By contradiction, assume
that there exists B ∈ B(X ) such that μt(B) < 0 for some t ∈ [0, τ ], and let t∗ :=
sup{s ∈ [0, t] :μs(B) ≥ 0}. By continuity, μt∗(B) = 0 while μs(B) < 0 for all
s ∈]t∗, t]. This implies that

F(μs)(B) − G(μs)(B) ≥ −μ+
s (X )μs(B) ≥ 0 ∀s ∈]t∗, t].

But then

μt(B) =
∫ t

t∗
(
F(μs)(B) − G(μs)(B)

)
ds ≥ 0,

which is a contradiction. Hence, μt ∈ M+(X ) for t ∈ [0, τ ]. Notice moreover that,
because of property (11), μt(X ) = μ(X ) for all t ∈ [0, τ ]. Finally, a standard in-
duction argument allows one to extend the existence and uniqueness of the solution
to the whole interval [0,+∞). �

Notice that, when considering an initial condition μ0 ∈ P(X ), the solution of
(12) satisfies μt ∈ P(X ) for all t , thus proving point (a) of Theorem 1.

3.2. Probability density solutions. We shall now investigate on the existence
of density solutions when the initial condition μ0 is absolutely continuous with
respect to Lebesgue’s measure.

Given the interaction kernel κ(·|·, ·), and a nonnegative measure μ in M+(X ),
we put

κ1(μ)(B|y) :=
∫

κ(B|x, y) dμ(x),

(20)
κ2(μ)(B|x) :=

∫
κ(B|x, y) dμ(y)

for all B ∈ B(X ), x, y ∈ X . The following result characterizes regularity properties
of the solution of the initial value problem associated to the ODE (12).

PROPOSITION 2. Assume that μ0 
 λ, and that

μ 
 λ �⇒ κ1(μ)(·|y), κ2(μ)(·|x) 
 λ ∀x ∈ X , ∀y ∈ X .(21)
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Then, μt 
 λ, for all t ∈ [0,+∞). Moreover, if there exists C ∈ (0,+∞) such
that, for all μ 
 λ,∥∥∥∥dκ2(μ)(·|x)

dλ

∥∥∥∥∞
≤ C

∥∥∥∥dμ

dλ

∥∥∥∥∞
∀x ∈ X ,(22)

then, the density ft = dμt/dλ satisfies the estimation

‖ft‖∞ ≤ ‖f0‖∞eCt ∀t ∈ [0,+∞).(23)

PROOF. For every finite time t ∈ [0,+∞), consider Lebesgue’s decomposi-
tion μt = μa

t + μs
t , where μa

t 
 λ, and μs
t and λ are singular. It follows from (21)

that, κ2(μ
a
t )(·|x) 
 λ for all x ∈ X . Then, for any B ∈ B(X ) such that λ(B) = 0,

one has ∫ ∫
κ(B|x, y) dμa

t (x) dμt(y) =
∫

dκ2(μ
a
t )(B|x)dμt(x) = 0.

Similarly, one can show that
∫∫

κ(B|x, y) dμs
t (x) dμa

t (y) = 0. Hence,

F(μt)(B) =
∫ ∫

κ(B|x, y) dμt(x) dμt(y)

=
∫ ∫

κ(B|x, y) dμa
t (x) dμt(y) +

∫ ∫
κ(B|x, y) dμs

t (x) dμa
t (y)

+
∫ ∫

κ(B|x, y) dμs
t (x) dμs

t (y)

=
∫ ∫

κ(B|x, y) dμs
t (x) dμs

t (y)

= F(μs
t )(B)

for all B ∈ B(X ) such that λ(B) = 0. This readily implies that μs
t satisfies

d

dt
μs

t = F(μs
t ) − μs

t .

Since μs
0 = 0 by assumption, it follows that μs

t = 0 for all t ≥ 0.
Assume now that (22) holds true. For any ϕ ∈ Cc(X ), Hölder’s inequality, and

(22) imply that

〈F(μt), ϕ〉 =
∫ ∫ ∫

ϕ(z) dκ(z|x, y) dμt(x) dμt(y)

=
∫ ∫

ϕ(z)
dκ2(μt )(z|x)

dλ
dλ(z) dμt(x)

≤
∫ ∥∥∥∥dκ2(μt )(z|x)

dλ

∥∥∥∥∞
‖ϕ‖1 dμt(x)

≤ C‖ft‖∞‖ϕ‖1.
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It follows that, for all nonnegative-valued ϕ ∈ Cc(X ),∫
ϕ(x)ft (x) dλ(x) =

∫
ϕ(x)f0(x) dλ(x) +

∫ t

0

(〈F(μs), ϕ〉 − 〈μs,ϕ〉)ds

≤ ‖f0‖∞‖ϕ‖1 +
∫ t

0
〈F(μs), ϕ〉ds

≤ ‖ϕ‖1

(
‖f0‖∞ + C

∫ t

0
‖fs‖∞ ds

)
.

Then, by the isometry of L∞(X ) with the dual of L1(X ), the fact that ft is non-
negative valued, and the density of Cc(X ) in L1(X ), one gets that

‖ft‖∞ = sup
{∫

ϕ(x)ft (x) dx :ϕ ∈ L1(X ), ‖ϕ‖1 ≤ 1
}

= sup
{∫

ϕ(x)ft (x) dx :ϕ ∈ Cc(X ), ϕ ≥ 0,‖ϕ‖1 ≤ 1
}

≤ ‖f0(x)‖∞ + C

∫ t

0
‖fs‖∞ ds.

By Gronwall’s lemma, this readily implies (23). �

The technical condition on the stochastic kernel κ is actually verified in many
important cases encompassing the bounded confidence dynamics (1) as well as the
Gaussian interaction model (2).

COROLLARY 1. Assume that the interaction kernel κ is the form (3) with
θi(·|x, y) = δω(|x−y|) and θe(·|x, z) = δυ(|x−z|) where ω : R+ → [0,ω0], ω0 ∈
[0,1[, and υ : R+ → [0, υ0], υ0 ∈ [0,1[, are both nonincreasing and piecewise
C 1. If μ0 
 λ, then μt 
 λ, for all t ∈ [0,+∞) and the relative densities satisfy
condition (23).

PROOF. We shall show that the conditions of Proposition 2 are satisfied in this
case. Fix y ∈ X and consider the function x �→ ω̄(|x − y|)x + ω(|x − y|)y. The
assumption on ω ensures that it is an invertible transformation in x and a simple
geometric consideration shows that the inverse has the form

x = g(w,y) = y + α(|w − y|)(w − y),

where α : R+ → R
+ is such that α(ω̄(t)t)ω̄(t) = 1 for all t ≥ 0. The function

η(t) = ω̄(t)t is strictly increasing, hence invertible and we can thus write α(s) =
[ω̄(η−1(s))]−1. α is thus also a piecewise C1 function as well as g(·, y) whose
Jacobian can easily be shown to be

Dwg(w,y) = α(|w − y|)I + ∇α(|w − y|)(w − y)t .
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Straightforward computation show that Dwg is bounded in the pair (w,y). Sim-
ilarly, the function x �→ ῡ(|x − z|)x + ω(|x − z|)z admits an inverse in x, x =
h(w, z) whose Jacobian Dwh is bounded in the pair (w, z).

Then, if μ is absolutely continuous with density f , one has for all nonnegative
real-valued ϕ ∈ L1(X ), and y ∈ X ,

〈κ1(μ)(·|y),ϕ〉 = α

∫
ϕ

(
ω̄(|x − y|)x + ω(|x − y|)y)

f (x) dλ(x)

+ ᾱ

∫ ∫
ϕ

(
ῡ(|x − z|)x + υ(|x − z|)z)f (x) dλ(x) dψ(z)

= α

∫
ϕ(w)f (g(w,y))|Dwg(w,y)|dλ(w)

+ ᾱ

∫ ∫
ϕ(w)f (h(w, z))|Dwh(w, z)|dλ(w)dψ(z)

≤ C1‖f ‖∞‖ϕ‖1,

where C1 := α‖Dwg(w,y)‖∞ + ᾱ‖Dwh(w, z)‖∞. Similarly, one shows that there
exists some constant C2 > 0 such that 〈κ2(μ)(·|x),ϕ〉 ≤ C2‖f ‖∞‖ϕ‖1, for all
nonnegative valued ϕ ∈ L1(X ) and x ∈ X . As a consequence, νi(·|y) 
 λ, for
all y ∈ X and i = 1,2, and (22) holds. Therefore, the claim follows from Proposi-
tion 2. �

4. Behavior of the mean-field dynamics. This section is devoted to a deeper
analysis of the ODE (12) for the state-independent gossip model with heteroge-
neous influential environment, and the bounded-confidence opinion dynamics, re-
spectively. In particular, we shall investigate the limit behavior as t grows large,
showing that, in both models, μt converges weakly to an asymptotic opinion mea-
sure. The behavior of the two models, and their analysis, however, differ sub-
stantially. For the state-independent gossip model with heterogeneous influential
environment, the ODE governing the mean-field dynamics is linear, and can be
analyzed by iteratively solving the lower-triangular linear system of ODEs gov-
erning the various moments behavior. In this case, the asymptotic opinion measure
is independent of the initial value, it is characterized by its moments, and is ab-
solutely continuous if so is the influential environment. In fact, one could show
that the corresponding finite population Markov process is ergodic. In contrast,
the ODE governing the mean-field dynamics of the bounded confidence model is
nonlinear, and convergence is shown by a Lyapunov argument. The asymptotic
opinion measure is given by a convex combination of deltas, whose number and
position typically depends on the initial condition. Indeed, the corresponding finite
population Markov process is typically not ergodic, in this case.

4.1. Gossip model with heterogeneous influential environment. We start by
analyzing the case when the stochastic kernel κ(·|·, ·) has the form (3), with con-
stant weights: θi(·|x, y) = δω(·), θe(·|x, y) = δυ(·), for some fixed ω,υ ∈ [0,1].
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Throughout this section, we shall assume an exponential bound on the moments
of both μ0 and ψ , that is,

sup
k∈N

(∫
|x|k dμ0(x)

)1/k

< +∞, sup
k∈N

(∫
|x|k dψ(x)

)1/k

< +∞.(24)

Clearly, (24) is automatically satisfied when X is bounded. Let us fix some z ∈ R
d ,

and consider the z-weighted moments of μt and ψ , respectively,

m
(k)
t :=

∫
(x · z)k dμt(x), n

(k)
t :=

∫
(x · y)k dψ(y), k ∈ Z

+.

The following result characterizes their evolution in time.

PROPOSITION 3. The z-weighted moments satisfy

d

dt
m

(1)
t = ᾱυ

(
n(1) − m

(1)
t

)
,(25)

d

dt
m

(k)
t = −γkm

(k)
t + fk

(
m

(1)
t , . . . ,m

(k−1)
t

) + ᾱυkn(k), k ≥ 2,(26)

where

γk := 1 − α(ω̄k + ωk) − ᾱῡk,

fk

(
m

(1)
t , . . . ,m

(k−1)
t

) :=
k−1∑
j=1

(
k

j

)(
αω̄jωk−jm

(j)
t m

(k−j)
t + ᾱῡj υk−jm

(j)
t n(k−j)).

PROOF. For the first moment, one has
d

dt
m

(1)
t = α

∫ ∫ (
(ω̄x + ωy) · z)dμt(x) dμt(y)

+ ᾱ

∫ ∫ (
(ῡx + υy) · z)dμt(x) dψ(y) − m

(1)
t

= ᾱυn(1) − ᾱυm
(1)
t ,

which proves (25). For k ≥ 2, one has∫
(ω̄x · z + ωy · z)k dμt(x) dμt(y)

= (ω̄k + ωk)

∫
(x · z)k dμt(x)

+
k−1∑
j=1

(
k

j

)
ω̄jωk−j

∫
(x · z)j dμt(x)

∫
(y · z)k−j dμt(y)

= (ω̄k + ωk)m
(k)
t +

k−1∑
j=1

(
k

j

)
ω̄jωk−jm

(j)
t m

(k−j)
t ,
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and, similarly,∫ ∫ (
(ῡx + υy) · z)k dμt(x) dψ(y)

= ῡkm
(k)
t +

k−1∑
j=1

(
k

j

)
ῡj υk−jm

(j)
t n(k−j) + υkn(k).

From the two identities above, it follows that

d

dt
m

(k)
t = α

∫ ∫ (
(ω̄x + ωy) · z)k dμt(x) dμt(y)

+ ᾱ

∫ ∫ (
(ῡx + υy) · z)k dμt(x) dψ(y) − m

(k)
t

= −γkm
(k)
t + fk

(
m

(1)
t , . . . ,m

(k−1)
t

) + ᾱυkn(k),

which proves (26). �

EXAMPLE 3. In the special case when α = 1, namely when there is no influ-
ential environment, we obtain from (25) that d

dt

∫
x dμt(x) = 0, so that the first

moment is constant. On the other hand, the variance

vt :=
∫ ∣∣∣∣x −

∫
y dμ0(y)

∣∣∣∣
2

dμt(x)

satisfies d
dt

vt = −2ωω̄vt . Hence,

vt = v0e
−ωω̄t ,

that is, μt converges to a delta centered in the average initial opinion exponentially
fast in t .

We now focus on the limit as t → +∞ for the general case. An inductive argu-
ment proves the following result.

LEMMA 1. Assume α < 1. Then, for every z ∈ R
d , the z-weighted moments of

μt satisfy

lim
t→∞m

(k)
t = m(k)∞ , k ∈ Z

+,(27)

where m
(k)∞ can be recursively evaluated by

m(1)∞ := n(1), m(k+1)∞ = γ −1
k+1

[
fk+1

(
m(1)∞ , . . . ,m(k)∞

) + ᾱυkn(k+1)].(28)

PROOF. For k = 1, the solution of the ODE (25) is easily found to be

m
(1)
t = e−ᾱυtm

(1)
0 + (1 − e−ᾱυt )n(1),(29)
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so that equation (27) clearly holds. Moreover, assume that equation (27) holds for
every k ∈ {1, . . . , j − 1}, and define χ

(j)
t := fj (m

(1)
t , . . . ,m

(j−1)
t ) for t ∈ [0,+∞].

Then, the continuity of fj implies that limt→∞ χ
(j)
t = χ

(j)∞ . Solving the ODE (26)
gives

m
(j)
t =

∫ t

0
e−γj (t−s)(χ(j)

t + ᾱυjn(j))ds + e−γj tm
(j)
0 .(30)

Clearly, the second addend of the right-hand side of (30) converges to zero for
t → ∞. On the other hand, the convergence of χ

(j)
t implies that

lim
t→∞

∫ t

0
e−γj (t−s)(χ(j)

t + ᾱυjn(j))ds = (
χ(j)∞ + ᾱυjn(j)) lim

t→∞

∫ t

0
e−γj (t−s) ds

= γ −1
j

(
χ(j)∞ + ᾱυjn(j)).

The foregoing, together with (30), implies the claim. �

We are now in a position to prove the following result for the convergence of μt .

PROPOSITION 4. Assume that (24) holds. Then

lim
t→∞μt = μ∞,

weakly, where μ∞ ∈ P(X ) is uniquely characterized by its moments m
(k)∞ .

PROOF. It follows from (24) that there exists some finite M ∈ R
+ such that∣∣m(k)

0

∣∣ ≤ |z|kMk,
∣∣n(k)

∣∣ ≤ |z|kMk(31)

for all z ∈ R
d and k ∈ N. Now, an inductive argument shows that∣∣m(k)

t

∣∣ ≤ |z|kMk ∀t ∈ [0,+∞], z ∈ R
d(32)

for all k ∈ N. In fact, (29) and (31) immediately imply that (32) holds for k = 1.
Moreover, if (32) holds for all k ∈ {1, . . . , j − 1}, then (30) and (32) give

∣∣m(j)
t

∣∣ ≤
∫ t

0
e−γj (t−s)(∣∣fj

(
m

(1)
t , . . . ,m

(j−1)
t

)∣∣ + ᾱυj
∣∣n(j)

∣∣)ds + e−γj t
∣∣m(j)

0

∣∣
≤

∫ t

0
e−γj (t−s)Mj |z|j γj ds + e−γj tMj |z|j

= Mj |z|j .
Let us consider the characteristic functions φt (z) := ∫

exp(iz · x)dμt(x) and,
for k ∈ Z

+, define at (k) := ikm
(k)
t /k!, b(k) := Mk|z|k/k!, and observe that∑

k∈Z+ b(k) = exp(M|z|). One has that

φt(z) =
∫ ∑

k∈Z+

(iz · x)k

k! dμt(x) = ∑
k∈Z+

ik

k!
∫

(x · z)k dμt(x) = ∑
k∈Z+

at (k),
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where the exchange between the series and the integral is justified by Lebesgue’s
dominated convergence theorem, since∣∣∣∣ ∑

0≤k≤n

ik

k! (x · z)k
∣∣∣∣ ≤ ∑

0≤k≤n

b(k) ≤ exp(M|z|).

Moreover, observe that, since |at (k)| ≤ b(k), another application of Lebesgue’s
dominated convergence theorem gives

lim
t→∞φt(z) = lim

t→∞
∑

k∈Z+
at (k) = ∑

k∈Z+
a∞(k) =: φ∞(z).

Hence, φt(z) converges pointwise to φ∞(z), which in turn can be easily verified to
be continuous at 0. Then, the claim follows from Lévy’s continuity theorem ([8],
Theorem 2.5.1). �

Observe that, for all α ∈ (0,1), the limit measure μ∞ is independent of the
initial condition μ0, and depends only on the influential environment ψ , as well
as on the parameters α, ω and υ . Notice that the first moment satisfies m

(1)∞ =
n(1). In contrast, if ψ �= δx0 , it easily seen that m

(k)∞ �= n(k) for k ≥ 2, so that in
particular μ∞ �= ψ . On the other hand, it follows from (28) that, if ψ �= δx0 , then
the variance of μ∞ is positive, so that μ∞ �= δx0 . This result may be interpreted
as showing that the presence of an heterogeneous influential environment prevents
the population from achieving an asymptotic opinion agreement. In fact, as shown
in the following proposition, the asymptotic opinion distribution μ∞ is absolutely
continuous whenever so is the influential environment ψ .

PROPOSITION 5. Assume ψ 
 λ. Then μ∞ 
 λ for all α ∈ [0,1).

PROOF. For μ,ν ∈ P(X ), γ ∈ [0,1], define γ̄ := 1 − γ , and

Lγ (μ, ν) ∈ P(X ), 〈Lγ (μ, ν), ϕ〉 =
∫ ∫

ϕ(γ̄ x + γy)dμ(x)dν(y)

for every ϕ ∈ Cb(X ). Since Lγ is a rescaled convolution operator, and since ψ 

λ, one has that Lυ(μ,ψ) 
 λ. Similarly, Lω(μ∞,μ∞) = αL(μs∞,μs∞), where
μs∞ is the singular part of μ∞. Combining this with the fact that the asymptotic
measure satisfies

μ∞ = F(μ∞) = αLω(μ,μ) + ᾱLυ(μ,ψ),

one gets that

μs∞(X ) = α(Lω(μs∞,μs∞))(X ) = α(μs(X ))2.

Therefore,

μs∞(X )
(
1 − αμs∞(X )

) = 0.
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FIG. 1. Behavior in time of the ODE solution in d = 1, with initial condition μ0 uniform over
(0,10), heterogeneous environment dψ(x) = exp(−(1 − (x − 3)2)−1)1(2,4)(x) dx, and parameters
α = 0.5, ω = 0.5 and υ = 0.5. The Radon–Nikodym derivates of the asymptotic measure μ∞, and of
the influential environment ψ (dashed) are plotted as a reference.

Since μs∞(X ) ≤ 1 and α < 1, this necessarily implies that μs∞(X ) = 0. �

Figure 1 reports numerical simulations of the mean-field dynamics, when
started from a uniform distribution over an interval, and influenced by an ab-
solutely continuous environment. Coherently with Proposition 2, the solution re-
mains absolutely continuous during its evolution. As t grows large, μt converges
to a limit measure whose first moment coincides with that of ψ , and which is ab-
solutely continuous, as predicted by Propositions 4, and 5, respectively. Such a
limit density may be interpreted as resulting from a tension between the aggre-
gating forces represented by the first addend in the right-hand side of (3), and
the environment’s influence captured by the second addend in the right-hand side
of (3).

4.2. Bounded confidence opinion dynamics. We analyze now the case when
κ(·|·, ·) is in the form (3) with α = 1, and weight distribution θ(·|x, y) := θi(·|x, y)

supported on [0,ω0] for some ω0 ∈ [0,1[, and satisfying the symmetry assumption

θ(·|x, y) = θ(·|y, x)(33)

for all x, y ∈ X . The following result states weak convergence of μt .

PROPOSITION 6. Assume that
∫ |x|2 dμ0(x) < ∞. Then, there exists μ∞ ∈

P(X ) such that

lim
t→∞μt = μ∞,

weakly.

PROOF. We start by proving that the second moment m
(2)
t := ∫ |x|2 dμt(x) is

a Lyapunov function for the system. Observe that, for all x, y ∈ R
d , ω ∈ [0,1],
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ω̄ = 1 − ω, one has

|x + ω(y − x)|2 + |y + ω(x − y)|2 = (ω̄2 + ω2)(|x|2 + |y2|) + 4ωω̄x · y,

so that

2ωω̄|x − y|2 = 2ωω̄(|x|2 + |y|2 − 2x · y)

= (1 − ω2 − ω̄2)(|x|2 + |y|2) − 4ωω̄x · y
= |x|2 + |y2| − |x + ω(y − x)|2 − |y + ω(x − y)|2.

From the foregoing, and the symmetry of θ(·|x, y), it follows that

d

dt
m

(2)
t =

∫
|x|2 dF(μt)(x) − m

(2)
t

=
∫ ∫ ∫ (|x + ω(y − x)|2 − |x|2)

dθ(ω|x, y) dμt(x) dμt(y)

= 1

2

∫ ∫ ∫ (|x + ω(y − x)|2
(34)

+ |y + ω(x − y)|2 − |x|2 − |y|2)
dθ(ω|x, y) dμt(x) dμt(y)

= −
∫ ∫ ∫

ω(1 − ω)|x − y|2 dθ(ω|x, y) dμt(x) dμt(y)

≤ −(1 − ω0)ϒt ,

where

ϒt :=
∫ ∫ ∫

ω|x − y|2 dθ(ω|x, y) dμt(x) dμt(y).

Hence, in particular, d
dt

m
(2)
t ≤ 0, so that m

(2)
t is nonincreasing, and therefore con-

vergent. Define m
(2)∞ := limt→∞ m

(2)
t and observe that (34) implies that

lim
t→∞

∫ t

0
ϒs ds ≤ lim

t→∞− 1

1 − ω0

∫ t

0

d

ds
m(2)

s ds

= lim
t→∞

m
(2)
0 − m

(2)
t

1 − ω0
(35)

= m
(2)
0 − m

(2)∞
1 − ω0

.

Now, for any smooth and compact-supported test function ϕ ∈ C∞
c (Rd), we can

write

ϕ
(
x + ω(y − x)

) − ϕ(x) = ω(y − x) · ∇ϕ(x) + r(x, y),(36)
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with |r(x, y)| ≤ ω2|y − x|2� where � := ‖D2ϕ‖. Moreover, again from the sym-
metry of θ(·|x, y), one has∣∣∣∣

∫ ∫ ∫
ω(y − x) · ∇ϕ(x)dθ(ω|x, y) dμt(x) dμt(y)

∣∣∣∣
= 1

2

∣∣∣∣
∫ ∫ ∫

ω(y − x) · (∇ϕ(x) − ∇ϕ(y)
)
dθ(ω|x, y) dμt(x) dμt(y)

∣∣∣∣
≤ 1

2

∫ ∫ ∫
ω|y − x|∣∣∇ϕ(x) − ∇ϕ(y)

∣∣dθ(ω|x, y) dμt(x) dμt(y)(37)

≤ �

2

∫ ∫ ∫
ω|x − y|2 dθ(ω|x, y) dμt(x) dμt(y)

≤ �

2
ϒt.

From (36) and (37), it follows that

|〈F(μt) − μt,ϕ〉| =
∣∣∣∣
∫ ∫ ∫ (

ϕ
(
x + ω(y − x)

) − ϕ(x)
)
dθ(ω|x, y) dμt(x) dμt(y)

∣∣∣∣
≤

∣∣∣∣
∫ ∫ ∫

ω(y − x) · ∇ϕ(x)dθ(ω|x, y) dμt(x) dμt(y)

∣∣∣∣
+ �

∫ ∫ ∫
ω2|x − y|2 dθ(ω|x, y) dμt(x) dμt(y)

≤ 3�

2
ϒt,

so that

lim
t→∞

∫ t

0
|〈F(μs) − μs,ϕ〉|ds ≤ 3�

2
lim

t→∞

∫ t

0
ϒs ds

≤ 3�

2(1 − ω0)

(
m

(2)
0 − m(2)∞

)
.

Therefore, in particular, the limit

lim
t→∞〈μt,ϕ〉 = lim

t→∞

∫ t

0
〈F(μs) − μs,ϕ〉ds

exists and is finite. From the arbitrariness of ϕ ∈ C∞
c (X ), it follows that μt con-

verges in the sense of distributions. Finally, notice that, since the second moment
is bounded, the family {μt : t ∈ R

+} is tight, hence μt converges in P(X ). �

If we make the further assumption that the weight ω ∼ θ(·|x, y) is almost surely
strictly positive in a neighborhood of the diagonal {(x, x) :x ∈ X }, we have the
following characterization of the equilibrium points.
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PROPOSITION 7. Let R > 0 be such that

δ(R) := inf{ω : supp(θ(·|x, y)) ⊆ [ω,1] ∀x, y ∈ X , |x − y| < R} > 0.

Then μ∞ is a convex combination of Dirac’s deltas centered in points separated
by a distance not smaller than R.

PROOF. Assume by contradiction that there exist x∗, y∗ ∈ supp(μ∞) such
that |x∗ − y∗| < R. Then, one can find suitable neighborhoods A and B of x∗
and y∗, respectively, such that |x − y| < R for all x ∈ A and y ∈ B . Hence,
supp(θ(·|x, y)) ⊆ [δ(R),1] for all x ∈ A and y ∈ B . Then,∫ ∫ ∫

|x − y|2ωdθ(ω|x, y) dμ∞(x) dμ∞(y)

≥ δ(R)

∫
A

∫
B

|x − y|2 dμ∞(x) dμ∞(y) > 0.

This clearly contradicts (35). �

It is worth stating the following simple, though important, consequence of
Proposition 7, which, in particular, applies to the Gaussian interaction kernel (2).

COROLLARY 2. Suppose that⋃
ω0>0

{
(x, y) : supp

(
θ(·|x, y) ⊆ [ω0,1])} = X × X .

Then, μ∞ = δx0 where x0 = ∫
x dμ0(x).

Figure 2 reports numerical simulations of the mean-field ODE associated to
the bounded-confidence model of Deffuant–Weisbuch, in dimension d = 1, start-
ing from an initial condition uniform over the open interval (0,10). Observe that,
as predicted by Proposition 2, the solution remains absolutely continuous, with
bounded density, at any finite time t . It is possible to appreciate the effect of local
aggregation forces, which first lead to the formation of two peaks around the opin-
ion points x = 1,9, then of other two smaller peaks around the points x = 3,7,
and finally of a smaller peak in x = 5. As t grows large, the opinion density con-
verges to a convex combination of Dirac’s deltas, as predicted by Proposition 6,
separated by an inter-cluster distance of at least 1, as predicted by Proposition 7.
A schematic representation of the asymptotic opinion distribution, as studied in
[5], is plotted as well, presenting some minor clusters between the major ones.
The reader is referred to [5, 24] for extensive simulations of this model, and bifur-
cation studies for the asymptotic distribution. These results may be interpreted as
explaining how locally aggregating interactions modeling homophily can generate
global fragmentation.
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FIG. 2. Behavior in time of the ODE solution in d = 1, with initial condition μ0 uniform over
(0,10), and θ(·|x, y) = δ1/21[0,1](|x − y|)+ δ01(1,+∞)(|x − y|). A schematic representation of the
asymptotic distribution (t = +∞), as presented in [5], is reported as well.

We conclude this section by observing that arguments along the lines of the
proofs of Propositions 6 and 7, combined with a standard martingale convergence
theorem, can be used, for every finite population size n, to prove almost sure con-
vergence of the stochastic system μn

t to a random asymptotic measure μn∞, con-
sisting of a convex combination of Dirac’s deltas separated by a distance of at least
sup{R > 0 : δ(R) > 0}.

5. Concentration around the mean-field dynamics. In this section, we fi-
nally show that, as the population size n grows, the stochastic process {μn

t } con-
centrates around the solution {μt } of the ODE (7), at an exponential probability
rate. Throughout this section, we shall assume that X ⊆ R

d is bounded, with �

denoting its diameter, and that the stochastic kernel κ(·|·, ·) is globally Lipschitz
in the Kantorovich–Wasserstein metric, that is, that

W1(κ(·|x, y), κ(·|x′, y′)) ≤ LF

2
|(x, y) − (x′, y′)| ∀x, x′, y, y′ ∈ X(38)

holds for some finite positive constant LF . Our first step consists in showing that
the operator F inherits the Lipschitz property from the stochastic kernel κ(·|·, ·).
The proof of the next result relies on the duality formula ([3], (7.1.2))

W1(μ, ν) = sup{〈μ,ϕ〉 − 〈ν,ϕ〉 :ϕ ∈ Lip1(X )},(39)

where Lip1(X ) denotes the set of 1-Lipschitz functions on X .

LEMMA 2. If (38) holds, then

W1(F (μ),F (ν)) ≤ LF W1(μ, ν) ∀μ,ν ∈ P1(X ).
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PROOF. First, observe that, for arbitrary function ϕ ∈ Lip1(X ), and x, y, x′,
y′ ∈ X ,∫

ϕ(z) dκ(z|x, y) −
∫

ϕ(z) dκ(z|x′, y′) ≤ W1(κ(·|x, y), κ(·|x′, y′))

≤ LF

2
|(x, y) − (x′, y′)|

≤ LF

2
(|x − x′| + |y − y′|),

by (39) and (38). For μ,ν ∈ P(X ), let ξ ∈ P1(X × X ) be their optimal coupling,
that is, the one such that

∫∫ |x − y|dξ(x, y) = W1(μ, ν). Then

〈F(μ),ϕ〉 − 〈F(ν),ϕ〉
=

∫ ∫ ∫ ∫ ∫
ϕ(z) dκ(z|x, y) dμ(x)dμ(y)

−
∫ ∫ ∫ ∫ ∫

ϕ(z) dκ(z|x′, y′) dν(x′) dν(y′)

=
∫ ∫ ∫ ∫ ∫

ϕ(z)
(
dκ(z|x, y) − dκ(z|x′, y′)

)
dξ(x, y) dξ(x′, y′)

≤ LF

2

∫ ∫ ∫ ∫
(|x − x′| + |y − y′|) dξ(x, y) dξ(x′, y′)

= LF W1(μ, ν).

Hence, the claim follows by applying the duality formula (39) once more. �

Observe that there are three sources of randomness in the system: the empirical
measure of the initial opinions μn

0, the update times {Tk}, and the agents’ interac-
tion. The first two can be easily dealt with by appealing to the following classical
large deviations results.

LEMMA 3. For all μ0 ∈ P(X ), ε > 0, it holds that

lim sup
n

n−1 log P
(
W1(μ

n
0,μ0) ≥ ε

) ≤ −ε2/2.

PROOF. Sanov’s theorem ([29], Theorem 2.14) and the Csiszar–Kullback–
Pinsker inequality ([30], page 580) imply that

lim inf
n

−1

n
log P

(
W1(μ

n
0,μ0) ≥ ε

)
≥ inf{H(ν ‖ μ0) :ν ∈ P(X ),W1(ν,μ0) ≥ ε}
≥ inf

{1
2‖ν − μ0‖2 :ν ∈ P(X ),W1(ν,μ0) ≥ ε

}
≥ ε2/(2�2),
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where H(ν ‖ μ) denoted the relative entropy, and the last inequality follows from
the estimate W1(ν,μ) ≤ �‖ν − μ‖ ([30], Theorem 6.15). �

LEMMA 4. For t ∈ R
+, let ς(t) := sup{k ∈ Z

+ :Tk ≤ t}. For all τ ∈ R
+, a ≥ 1

it holds

lim sup
n

n−1 log P
(
sup

{
t − Tς(t) : 0 ≤ t ≤ τ

} ≥ ε
) ≤ −ε2/τ,

lim sup
n

n−1 log P
(
ς(τ) ≥ aτn

) ≤ −(a − 1)2τ.

PROOF. The first statement follows, for example, from [29], Theorem 5.1. The
second one, for example, from [29], Example 1.13. �

We are now left with the third source of randomness, originated by the selection
of the interacting agents, and their actual interaction. Observe that, in the right-
hand side of the duality formula (39), one may restrict the supremization to the
test functions ϕ belonging to

Lip�
1 := {ϕ ∈ Lip1(Y) : |ϕ(x)| ≤ �/2},

where Y is a hypercube of edge-length � containing X , and μ,ν are naturally
identified as elements of P(Y). The following result shows that the set Lip�

1 can
be approximated in the infinity norm by not-too-large a set of functions.

LEMMA 5. Let X ⊆ R
d be compact and convex. Then, for all ε ∈]0,�/2],

there exists a finite set Hε ⊆ Lip�
1 such that |Hε| ≤ 2

√
d+1
6

�
ε

3((�/ε)(
√

d+1))d , and

min{‖h − ϕ‖ :h ∈ Hε} ≤ ε ∀ϕ ∈ Lip�
1 .

PROOF. With no loss of generality, we shall restrict to the case X ⊆ Y =
[0,�]d . We introduce a discretization operator � : Lip�

1 → Lip�
1 as follows. Let

η := ε/(
√

d + 1/2) and define J := {0,1, . . . , ��/η�}. For any ϕ ∈ Lip�
1 and

j ∈ J d , let k(j) = i ∈ J iff ϕ(jη) ∈ [−1/2 + ηi,−1/2 + η(i + 1)[. Observe that,
since ϕ is 1-Lipschitz, one has∑

1≤l≤d

|jl − j ′
l | ≤ 1 �⇒ |k(j) − k(j′)| ≤ 1.(40)

Then, define �(ϕ) = h, by putting, for all x ∈ ∏
1≤l≤d [jlη, (jl + 1)η],

h(x) = ∏
1≤l≤d

((
k(j + δl) − k(j)

)
(xl − jlη) + ηk(j) − 1

2
+ η

2

)
.
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Thanks to (40), one has that �(ϕ) ∈ Lip�
1 for all ϕ ∈ Lip�

1 . Moreover, for all
j ∈ J d , one has |�(ϕ)(jη) − ϕ(jη)| ≤ η

2 . Observe that, for all x ∈ [0,�]d , there
exists j(x) ∈ J d such that |x − ηj| ≤ √

dη/2. Therefore,

|�(ϕ)(x) − ϕ(x)| ≤ |�(ϕ)(jη) − ϕ(jη)| + |�(ϕ)(jη) − �(ϕ)(x)|
+ |ϕ(jη) − ϕ(x)|

≤ η/2 + 2|jη − x|
≤ η

(√
d + 1/2

)
,

so that the second part of the claim follows by substituting the value of η.
It remains to estimate the cardinality of Hε := �(Lip�

1 ). To see that, first ob-
serve that k(0) can take at most �/η values. On the other hand, it follows from
(40) that, given k(j), k(j + δl) can assume at most three different values, for all
1 ≤ l ≤ d . This implies that

|Hε| ≤ �

η
3(�/η+1)d−1 = �

ε

2
√

d + 1

6
3((

√
d+1/2)�/ε+1)d

≤ �

ε

2
√

d + 1

6
3((

√
d+1)�/ε)d ,

the last inequality following since 1 ≤ �/(2ε). �

We can now estimate the error incurred when using an Euler approximation of
some future value of the empirical density process, centered on its current value.

LEMMA 6. For k ∈ Z
+, n ∈ N and σ ∈ [0,1],

P
(
W1

(
σ̄Mk + σF(Mk),Mk+�σn�

) ≥ K�σ 2) ≤ ρ,

where σ̄ = 1 − σ , K = KF + 1, with KF being the Lipschitz constant of F on
P(X ) in the variational distance, and

ρ := 4
√

d + 2

Kσ 2 exp
((

12

Kσ 2

(√
d + 1

))d

log 3 − K2σ 3

27 n

)
.(41)

PROOF. First, observe that the following control of the increments holds:

‖Mk+1 − Mk‖ ≤ 2/n.(42)

Define w := �σn� and ε := K�σ 2. Also, for ϕ ∈ Lip�
1 , define

Z
(ϕ)
j := 〈Mk+j − Mk,ϕ〉 − 1

n

∑
0≤i<j

〈F(Mk+i ) − Mk+i , ϕ〉
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for j = 0, . . . ,w, and

V (ϕ) :=
〈
Mk+w −

(
1 − w

n

)
Mk − w

n
F(Mk),ϕ

〉
− Z(ϕ)

w .

It follows from (42) that ‖Mk+j − Mk‖ ≤ 2j/n. Hence,

∣∣V (ϕ)
∣∣ = n−1

∣∣∣∣ ∑
0≤j<w

〈F(Mk+j ) − F(Mk),ϕ〉 − ∑
0≤j<w

〈Mk+j − Mk,ϕ〉
∣∣∣∣

≤ n−1
∑

0≤j<w

(‖F(Mk+j ) − F(Mk)‖ + ‖Mk+j − Mk‖)‖ϕ‖
(43)

≤ n−1
∑

0≤j<w

K
2j

n
‖ϕ‖

≤ ε/2,

the last inequality following from the fact that ‖ϕ‖ ≤ �/2. Observe that, for all
ϕ ∈ Lip1(X ), Z

(ϕ)
0 = 0, while {Z(ϕ)

j : 0 ≤ j ≤ w} is a martingale. Moreover, (42)
provides the following control on the increments:∣∣Z(ϕ)

j+1 − Z
(ϕ)
j

∣∣ ≤ |〈Mk+j+1 − Mk+j , ϕ〉| + n−1|〈F(Mk+j ) − Mk+j , ϕ〉|
≤ ‖Mk+j+1 − Mk+j‖‖ϕ‖ + n−1‖F(Mk+j ) − Mk+j‖‖ϕ‖(44)

≤ 4n−1‖ϕ‖.
Let H := Hε/12 ⊆ Lip1(X ) be as in Lemma 5. By first applying the union

bound, and then the Hoeffding–Azuma inequality ([2], Theorem 7.2.1) the proba-
bility of the event E := ⋃

h∈H{|Z(h)
w | ≥ ε/4} can be estimated as follows:

P(E) ≤ |H|P(∣∣Z(h)
w

∣∣ ≥ ε/4
) ≤ 2|H| exp

(
− ε2n2

27w�2

)
.(45)

Now, Lemma 5 and (44) imply that

Z(ϕ−h)
w ≤ 3

w

n
‖ϕ − h‖ ≤ 3σ

ε

12
≤ ε

4
for some h ∈ Hε/12. Hence, if E does not occur, then∣∣Z(ϕ)

w

∣∣ ≤ min
{∣∣Z(h)

w

∣∣ + ∣∣Z(ϕ−h)
w

∣∣ :h ∈ H
} ≤ ε

2
(46)

for every ϕ ∈ Lip�
1 . By combining (43), (45) and (46), one gets

P
(
W1

(
Mk+w, σ̄Mk + σF(Mk)

) ≥ ε
) = P

(
sup

{
Z(ϕ)

w + V (ϕ)} ≥ ε
)

≤ P

(
sup

{
Z(ϕ)

w

} ≥ 3

4
ε

)

≤ 2|H| exp
(
− ε2n2

27w�2

)
,
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and the claim follows upon substituting the expressions for w and ε, and applying
Lemma 5. �

We are now ready to prove point (b) of Theorem 1. Let L := LF − 1 and K =
KF + 1, where LF and KF are the global Lipschitz constants of F on P(X ) in
the Kantorovich–Wasserstein distance, and in the variational distance, respectively.
Let us fix some ε > 0, τ > 0, and introduce the quantities

σ := Lε

2�L + 3K�e2Lτ
, w = �σ/n�.

Without any loss of generality, let us assume that σ ∈]0,1], and put σ̄ = 1 − σ .
Further, let ρ be as in (41), and define

α0 = e−2Lτ ε/2, αi+1 = (1 + σL)αi + 3
2K�σ 2, i ∈ Z

+.(47)

Solving the iterative equation above, one obtains the estimate

αi = (1 + σL)i
(
α0 + 3K�σ

2L

)
− 3K�σ

2L
≤ eσLi

(
α0 + 3K�σ

2L

)
.(48)

For i ∈ Z
+, consider the random variable �n

i := W1(Miw,μσi), and the events
Ai := {�n

i ≥ αi}, Bi := ⋃
0≤j≤i Aj . We shall prove by induction that

P(Bi) ≤ (i + 1)ρ(49)

for all i ∈ Z+. First, it follows from Lemma 3 that (49) holds with i = 0, for
sufficiently small ε and sufficiently large n. Then, for any nonnegative integer i,
consider the intermediate measures

λ := σ̄Mwi + σF(Mwi), ν := σ̄μσi + σF(μσi).

From the duality formula (39), and Lemma 2, one has

W1(λ, ν) ≤ (σ̄ + σLF )�n
i = (1 + σL)�n

i .(50)

Furthermore, since {μt } is a solution of the ODE (12), it follows from (15), and
the estimate W1(μ, ν) ≤ �/2‖μ − ν‖,

‖μt − μσi‖ ≤ 2(t − s), W1(μt ,μs) ≤ �(t − s)(51)

for all t ≥ s. From the duality formula (39), the fact that {μt } solves the ODE (12),
and (51), one gets the estimate

W1
(
ν,μσ(i+1)

) = sup
{〈
μσ(i+1), ϕ

〉 − 〈ν,ϕ〉 :ϕ ∈ Lip�
1

}
≤

∫ σ(i+1)

σ i
sup{〈F(μt) − μt − F(μσi) + μσi, ϕ〉 :ϕ ∈ Lip�

1 }dt

≤ �

2
K

∫ σ(i+1)

σ i
‖μt − μσi‖dt(52)

≤ �K

∫ σ(i+1)

σ i
(t − σ i) dt

= �Kσ 2/2.
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From the triangle inequality, (50) and (52), one finds that

�n
i+1 ≤ W1

(
Mw(i+1), λ

) + W1(λ, ν) + W1
(
ν,μσ(i+1)

)
(53)

≤ W1
(
Mw(i+1), λ

) + K�σ 2/2 + (1 + σL)�n
i .

Therefore, (53), the inductive hypothesis (49), (47) and Lemma 6, imply that

P(Bi+1) = P(Bc
i ∩ Ai+1) + P(Bi)

≤ P
(
Bc

i ∩ {
W1

(
Mw(i+1), λ

)
> αi+1 − K�σ 2/2 − (1 + σL)αi

})
+ (i + 1)ρ

≤ P
(
W1

(
Mw(i+1), λ

)
> K�σ 2) + (i + 1)ρ

≤ (i + 2)ρ.

Hence, (49) holds for all i ∈ Z
+.

Observe that, if iw − w/2 ≤ k ≤ iw + w/2, then

W1(Mk,μk/n) ≤ W1(Mwi,μσi) + W1(Mwi,Mk) + W1(μk/n,μσi)
(54)

≤ �n
i + �σ.

Now, recall the definition of ς(t) given in Lemma 4, and consider the events C :=
{ς(τ) ≤ 3

2nτ } and D := {sup{|t − Tς(t)| : t ∈ [0, τ ]} ≤ ε/(4�)}. Observe that C

implies that, for all t ≤ τ ,

ι(t) :=
⌊

ς(t)

�σn� + 1

2

⌋
≤ 3τn/2

σn − 1
+ 1

2
≤ 2τ

σ
.(55)

It follows from (54), (51), (48) and (55), that, if the event Bc�2τσ� ∩ D ∩ C occurs,
then, for all t ∈ [0, τ ], the following estimate holds:

W1(μ
n
t ,μt ) = W1

(
Mς(t),μt

)
≤ W1

(
Mς(t),μTς(t)

) + W1
(
μTς(t)

,μt

)
≤ �n

ι(t) + �σ + �
∣∣t − Tς(t)

∣∣
≤ αι(t) + �σ + ε/4

≤ eσLι(t) + �σ + ε/4

≤ e2Lτ

(
α0 + 3K�σ

2L

)
+ �σ + ε/4

= ε,

where the last equality follows by substituting the expressions for σ and α0. For
sufficiently small ε and large n, Lemma 4 implies that P(C ∩ D) ≥ 1 − ρ. There-
fore, using (49), one gets that

P
(
sup{W1(μ

n
t ,μt ) : t ∈ [0, τ ]} > ε

) ≤ P
(
Bι(τ)

) + P(Cc ∪ Dc) ≤ (2τ/σ + 2)ρ,

from which point (b) of Theorem 1 follows.
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