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Let (W,W ′) be an exchangeable pair. Assume that

E(W − W ′|W) = g(W) + r(W),

where g(W) is a dominated term and r(W) is negligible. Let G(t) =∫ t
0 g(s) ds and define p(t) = c1e−c0G(t), where c0 is a properly chosen con-

stant and c1 = 1/
∫ ∞−∞ e−c0G(t) dt . Let Y be a random variable with the prob-

ability density function p. It is proved that W converges to Y in distribution
when the conditional second moment of (W −W ′) given W satisfies a law of
large numbers. A Berry–Esseen type bound is also given. We use this tech-
nique to obtain a Berry–Esseen error bound of order 1/

√
n in the noncentral

limit theorem for the magnetization in the Curie–Weiss ferromagnet at the
critical temperature. Exponential approximation with application to the spec-
trum of the Bernoulli–Laplace Markov chain is also discussed.

1. Introduction and main results. Let W be the random variable of interest.
Typical examples of W include the partial sum of independent random variables
and functionals of independent random variables or dependent random variables
whose joint distribution is known. Since the exact distribution of W is not available
for most cases, it is natural to seek the asymptotic distribution of W with a Berry–
Esseen type error. Let (W,W ′) be an exchangeable pair. Assume that

E(W − W ′|W) = g(W) + r(W),(1.1)

where g(W) is a dominated term while r(W) is a negligible term. When g(W) =
λW , and E((W ′ − W)2|W) is concentrated around a constant, Stein’s method for
normal approximation shows that the limiting distribution of W is normal under
certain regularity conditions. We refer to Stein (1986), Rinott and Rotar (1997),
Chen and Shao (2005) and references therein for the general theory of Stein’s
method. The main aim of this paper is to find the limiting distribution of W as well
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as the rate of convergence for general g. The key step is to identify the limiting
density function. As soon as the limiting density function is determined, we can
follow the idea of the Stein’s method of exchangeable pairs for normal approxima-
tion. Let

G(t) =
∫ t

0
g(s) ds and p(t) = c1e

−c0G(t),(1.2)

where c0 > 0 is a constant that will be specified later and c1 = 1/
∫ ∞
−∞ e−c0G(t) dt is

the normalizing constant. Let Y be a random variable with the probability density
function p. Set:

(H1) g(t) is nondecreasing, and g(t) ≥ 0 for t > 0 and g(t) ≤ 0 for t ≤ 0;
(H2) there exists c2 < ∞ such that for all x,

min
(
1/c1,1/|c0g(x)|)(|x| + 3/c1)max(1, c0|g′(x)|) ≤ c2;

(H3) there exists c3 < ∞ such that for all x,

min
(
1/c1,1/|c0g(x)|)(|x| + 3/c1)c0|g′(x)| ≤ c3.

Let � = W − W ′. Our main result shows that W converges to Y in distribution
as long as c0E(�2|W) satisfies a law of large numbers.

THEOREM 1.1. Let h be absolutely continuous with ‖h′‖ = supx |h′(x)| < ∞.

(i) If (H1) and (H2) are satisfied, then

|Eh(W) − Eh(Y )|
≤ ‖h′‖

{
(1 + c2)

c1
E|1 − (c0/2)E(�2|W)|(1.3)

+ 1

2
c0(1 + c2)E|�|3 + c0c2E|r(W)|

}
.

(ii) If (H1) and (H3) are satisfied, then

|Eh(W) − Eh(Y )|
≤ ‖h′‖

{
(1 + c3)

c1
E|1 − (c0/2)E(�2|W)| + 1

2
c0(1 + c3)E|�|3(1.4)

+ c0

c1
E

((
|W | + 3

c1

)
|r(W)|

)}
.

When � is bounded, next theorem gives a Berry–Esseen type inequality.
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THEOREM 1.2. Assume that |W −W ′| ≤ δ, where δ is a constant. If (H1) and
(H3) are satisfied, then

|P(W ≤ z) − P(Y ≤ z)|
≤ 3E|1 − (c0/2)E(�2|W)| + c1 max(1, c3)δ + 2c0E|r(W)|/c1(1.5)

+ δ3c0{(2 + c3/2)E|c0g(W)| + c1c3/2}.

We remark that c0 can be chosen as follows. In order to make the error term on
the right-hand side of (1.3) small, it is necessary that E|1 − (c0/2)E(�2|W)| → 0
and therefore E(1 − (c0/2)E(�2|W)) must be small and we should choose c0 so
that c0 ∼ 2/E(�2).

The paper is organized as follows. In Section 2, we give a concrete application
of our general result to the magnetization of the Curie–Weiss model of ferromag-
nets at the critical temperature, and show that the rate of convergence achieves
O(n−1/2). In Section 3, we focus on approximation by the exponential distribution
with an application to the spectrum of the Bernoulli–Laplace Markov chain. We
present a general approach of Stein’s method of exchangeable pairs in Section 4
and postpone detailed proofs of our main results to Section 5.

2. Curie–Weiss model. Consider the Curie–Weiss model for n spins at tem-
perature T , that is, the probability distribution on {−1,1}n that puts mass

Z−1
T exp

(∑
1≤i<j≤n σiσj

T n

)

at σ ∈ {−1,1}n, where ZT is the normalizing constant. Let us fix T = 1, which is
the “critical temperature” for this model. Now let

W = W(σ) = n−3/4
n∑

i=1

σi.

This is a simple statistical mechanical model of ferromagnetic interaction, some-
times called the Ising model on the complete graph. For a detailed mathematical
treatment of this model, we refer to the book by Ellis (1985).

Following ideas in Simon and Griffiths (1973), it was proved by Ellis and New-
man (1978a, 1978b) that as n → ∞, the law of W converges to the distribution
with density proportional to e−x4/12. For various interesting extensions and re-
finements of their results, let us refer to Ellis, Newman and Rosen (1980) and
Papangelou (1989).

Below, we present a Berry–Esseen bound for this noncentral limit theorem ob-
tained via Theorem 1.2. Incidentally, Theorem 1.2 can also be used to obtain sim-
ilar error bounds for the other limit theorems in the aforementioned papers (in
particular, the Curie–Weiss model at noncritical temperatures), but we prefer to
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stick to this example only, since it is probably the most interesting and relevant
one.

Given a random element σ , construct σ ′ by choosing a coordinate I at random
and replacing σI by σ ′

I , where σ ′
I is generated from the conditional distribution of

σI given (σj )j �=I . In other words, we take one step of the Glauber dynamics. It is
easy to see that (σ, σ ′) is an exchangeable pair. Let W ′ = W(σ ′). We shall show
that (see Section 5)

E
∣∣E(W − W ′|W) − 1

3n−3/2W 3∣∣ = O(n−2),(2.1)

E
∣∣E(

(W ′ − W)2|W ) − 2n−3/2∣∣ = O(n−2),(2.2)

|W ′ − W | = O(n−3/4)(2.3)

and

E|W |3 = O(1).(2.4)

Let us now explain roughly how we arrive at (2.1), which is the most important
step. A simple computation shows that at any temperature,

E(W − W ′|W) = n−3/4(
m − tanh(m/T )

) + O(n−2),

where m := n−1/4W is the magnetization. Since m � 0 with high probability when
T ≥ 1, and tanhx = x − x3/3 + O(x5) for x � 0, we see that the right-hand
side in the above equation is like n−3/4m(1 − 1/T ) when T > 1, while it is like
n−3/4m3/3 when T = 1. This is what distinguishes between the high temperature
regime T > 1 and the critical temperature T = 1, and this is how we arrive at (2.1).

Let

g(w) = 1
3n−3/2w3, c0 = n3/2, δ = O(n−3/4).

Then

G1(w) = c0

∫ w

0
g(t) dt = w4/12.

With the above information, it can be easily checked that by Theorem 1.2, we get
the following theorem.

THEOREM 2.1. Let Y be a random variable with density function

p(w) = c1e
−w4/12 where c1 = 1∫ ∞

−∞ e−w4/12 dw
= 21/2

31/4�(1/4)
.

Then for all z,

|P(W ≤ z) − P(Y ≤ z)| ≤ cn−1/2,(2.5)

where c is an absolute constant.
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Incidentally, after this manuscript was submitted, it was brought to our at-
tention that an article by Eichelsbacher and Löwe (2009) was in preparation,
where the same result (Theorem 2.1) is proved, along the same lines as our proof.
Eichelsbacher and Löwe (2009) has generalizations of Theorem 2.1 to some other
mean-field models.

3. Exponential limit with application to spectrum of the Bernoulli–Laplace
Markov chain. In this section, we focus on the exponential limit. Let (W,W ′)
be an exchangeable pair satisfying

E(W − W ′|W) = 1/c0 + r(W),(3.1)

where c0 > 0 is a constant. Let � = W − W ′. As a special case of Theorems 1.1
and 1.2 with a constant function g, we have

THEOREM 3.1. Let Y have the exponential distribution with mean 1. Assume
(3.1) is satisfied.

(i) Let h be absolutely continuous with ‖h′‖ < ∞. Then:

|Eh(W) − Eh(Y )|
(3.2)

≤ ‖h′‖{E|1 − (c0/2)E(�2|W)| + c0E|�|3 + 3c0E|Wr(W)|}.
(ii) If |�| ≤ δ for some constant δ, then

|P(W ≤ z) − P(Y ≤ z)|
(3.3)

≤ 3E|1 − (c0/2)E(�2|W)| + δ + 2c0δ
3 + 3c0E|Wr(W)|.

We refer to Chatterjee, Fulman and Röllin (2008) and Peköz and Röllin (2009)
for other general results for the exponential approximation.

We now apply Theorem 3.1 to the spectrum of the Bernoulli–Laplace Markov
chain, a simple model of diffusion, following the work of Chatterjee, Fulman and
Röllin (2008). Two urns contain n balls each. Initially the balls in each urn are
all of a single color, with urn 1 containing all white balls, and urn 2 all black. At
each stage, a ball is picked at random from each urn and the two are switched.
Let the state of the chain be the number of white balls in the urn 1. Diaconis and
Shahshahani (1987) proved that (n/4) log(2n) + cn steps suffice for this process
to reach equilibrium, in the sense that the total variation distance to the stationary
distribution is at most ae−dc for positive universal constants a and d . In order to
prove this, they used the fact that the spectrum of the Markov chain consists of the
numbers

λi = 1 − i(2n − i + 1)/n2 for i = 0,1, . . . , n,(3.4)
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occurring with multiplicities

mi =
(

2n

i

)
−

(
2n

i − 1

)
for i = 0,1, . . . , n.

Let I have distribution P(I = i) = πi , where

πi =
(2n

i

) − ( 2n
i−1

)
(2n

n

)

for 0 ≤ i ≤ n. Then λI is a random eigenvalue chosen from {λi,0 ≤ i ≤ n} in
proportion to their multiplicities. Hora (1998) proved that W = nλI + 1 converges
in distribution to an exponential random variable with mean 1.

Noting that nλi + 1 = (n − i)(n + 1 − i)/n := μi , we can rewrite W = μI . To
apply Theorem 3.1, we construct an exchangeable pair (W,W ′) using a reversible
Markov chain on {0,1, . . . , n} with transition probability matrix K satisfying

π(i)K(i, j) = π(j)K(j, i) for all i, j ∈ {0,1, . . . , n}.
Given such a K , we obtain the pair (W,W ′) by letting W = uI where I is chosen
from the equilibrium distribution π , and W ′ = μJ where J is determined by tak-
ing one step from state I according to the transition probability K . As proved in
Chatterjee, Fulman and Röllin (2008), we have (with � = W − W ′)

E(�|W) = 1

2n2 − n + 1

2n2 I{W=0}, E(W) = 1,

E(�2|W) = 1

n2 and E|�|3 ≤ 6n−5/2.

Now applying Theorem 3.1, we have the following theorem.

THEOREM 3.2. Let Y have the exponential distribution with mean 1 and h be
absolutely continuous with ‖h′‖ < ∞. Then

|Eh(W) − Eh(Y )| ≤ 12n−1/2.(3.5)

As the difference between W and W ′ is large when I is small, Theorem 3.1 does
not provide a useful Berry–Esseen type bound. However, using a completely dif-
ferent approach and some heavy machinery, Chatterjee, Fulman and Röllin (2008)
are able to show that

sup
z

|P(W ≤ z) − P(Y ≤ z)| ≤ Cn−1/2,

where C is a universal constant.
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4. The Stein method via density approach. Let p be a strictly positive,
absolutely continuous probability density function, supported on (a, b), where
−∞ ≤ a < b ≤ ∞. Assume that a right limit p(a+) at a and a left limit p(b−)

exist. Let p′ be a version of the derivative of p and assume that
∫ b

a
|p′(t)|dt < ∞.

Let Y be a random variable with the probability density function p. In this section,
we develop the Stein method via density approach. The approach was developed
in Stein et al. (2004), but the properties presented in Section 4.2 are new.

4.1. The Stein identity and equation. A key step is to have Stein’s identity and
Stein’s equation. Let D be the set of bounded, absolutely continuous functions f

with f (b−) = f (a+) = 0. Observe that for any f ∈ D

E{f ′(Y ) + f (Y )p′(Y )/p(Y )} = E{(f (Y )p(Y ))′/p(Y )}
(4.1)

=
∫ b

a
(f (y)p(y))′ dy = 0.

The Stein identity is

Ef ′(Y ) + Ef (Y )p′(Y )/p(Y ) = 0 for f ∈ D.(4.2)

For any measurable function h with E|h(Y )| < ∞, let f = fh be the solution to
Stein’s equation

f ′(w) + f (w)p′(w)/p(w) = h(w) − Eh(Y ).(4.3)

It follows from (4.3) that

(f (w)p(w))′ = (
h(w) − Eh(Y )

)
p(w)

and hence

f (w) = 1/p(w)

∫ w

a

(
h(t) − Eh(Y )

)
p(t) dt

(4.4)

= −1/p(w)

∫ b

w

(
h(t) − Eh(Y )

)
p(t) dt.

Note that fh ∈ D.
Consider two classes of density functions. The first one is the family of expo-

nential distributions. It is easy to see that if Y has the exponential distribution with
parameter λ, that is, Y is a random variable with density function p(x) = λe−λx

for x > 0 and p(x) = 0 for x ≤ 0. Then p′(x)/p(x) = −λ and the Stein identity
(4.2) becomes

Ef ′(Y ) − λEf (Y ) = 0 for f ∈ D.(4.5)
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The second is the family

p(x) = αe−|x|α/β

2β1/α�(1/α)
, −∞ < x < ∞,

where α > 0, β > 0. Then p′(x)/p(x) = −α
β
|x|α−1sign(x) and hence the Stein

identity reduces to

Ef ′(Y ) − α

β
E|Y |α−1sign(Y )f (Y ) = 0 for f ∈ D.

4.2. Properties of the Stein solution. In order to determine error bounds for
the approximation to E(h(Y )), we need to understand some basic properties of the
Stein solution fh. In the following, we use the notation ‖g‖ := supx∈R|g(x)|.

LEMMA 4.1. Let h be a measurable function and fh be the Stein solution and
let F(x) = ∫ x

a p(t) dt .

(i) Assume that h is bounded and that there exist d1 > 0 and d2 > 0

min
(
1 − F(x),F (x)

) ≤ d1p(x)(4.6)

and

|p′(x)|min
(
F(x),1 − F(x)

) ≤ d2p
2(x).(4.7)

Then

‖fh‖ ≤ 2d1‖h‖,(4.8)

‖fhp
′/p‖ ≤ 2d2‖h‖(4.9)

and

‖f ′
h‖ ≤ (2 + 2d2)‖h‖.(4.10)

(ii) Assume that h is absolutely continuous with bounded h′. In addition to
(4.6), (4.7), assume that there exist d3 and d4 such that

min
(
E|Y |I{Y≤x} + E|Y |F(x),E|Y |I{Y>x} + E|Y |(1 − F(x)

))|(p′/p)′|
(4.11)

≤ d3p(x)

and

min
(
E|Y |I{Y≤x} + E|Y |F(x),E|Y |I{Y>x} + E|Y |(1 − F(x)

))
(4.12)

≤ d4p(x).

Then if h is absolutely continuous with bounded derivative h′,
‖f ′′

h ‖ ≤ (1 + d2)(1 + d3)‖h′‖,(4.13)

‖fh‖ ≤ d4‖h′‖(4.14)
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and

‖f ′
h‖ ≤ (1 + d3)d1‖h′‖.(4.15)

PROOF. (i) Let Y ∗ be an independent copy of Y . Then we can rewrite fh in
(4.4) as

f (w) = (
1/p(w)

)
E

(
h(Y ) − h(Y ∗)

)
I{Y≤w},

(4.16)
= −(

1/p(w)
)
E

(
h(Y ) − h(Y ∗)

)
I{Y>w},

which yields

|f (w)| ≤ 2‖h‖min
(
F(w),1 − F(w)

)
/p(w).(4.17)

Inequality (4.8) now follows from (4.6) and (4.17). Inequalities (4.17) and (4.7)
imply |fhp

′/p| ≤ 2d2‖h‖, that is (4.9), and now (4.10) follows from (4.3).
(ii) Let g1(x) = p′(x)/p(x). Recall by (4.3)

f ′′ = h′ − f ′g1 − fg′
1.(4.18)

To prove (4.13), it suffices to show that

‖fg′
1‖ ≤ d3‖h′‖(4.19)

and

‖f ′g1‖ ≤ (1 + d3)d2‖h′‖.(4.20)

By (4.16) again, we have

|f (w)p(w)| ≤ ‖h′‖min
(
E(|Y | + |Y ∗|)I{Y≤w},E(|Y | + |Y ∗|)I{Y>w}

)
= ‖h′‖min

(
E|Y |I{Y≤w} + E|Y |F(w),E|Y |I{Y>w}(4.21)

+ E|Y |(1 − F(w)
))

.

This proves (4.19) by assumption (4.7). This also proves (4.14) by (4.12).
It follows from (4.18) that

(h′ − fg′
1)p = p(f ′′ + f ′g1) = f ′′p + f ′p′ = (f ′p)′.

Thus

f ′(w)p(w) =
∫ w

a
(h′ − fg′

1)p dx = −
∫ b

w
(h′ − fg′

1)p dx

and hence

|f ′(w)p(w)| ≤ ‖h′‖(1 + d3)min
(
F(w),1 − F(w)

)
,

which gives (4.20) as well as (4.15) by (4.12) and (4.6), respectively. �

The next lemma shows that (4.6)–(4.12) are satisfied for p defined in (1.2).
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LEMMA 4.2. Let p be defined as in (1.2). Assume that (H1) and (H2) are
satisfied. Then (4.6)–(4.12) hold with d1 = 1/c1, d2 = 1, d3 = c2 and d4 = c2.

PROOF. Let g2(t) = c0g(t), G1(t) = c0G(t) and F(t) = P(Y ≤ t) be the dis-
tribution function of Y . We first show that (4.6) is satisfied with d1 = 1/c1. It
suffices to show that

F(t) ≤ F(0)p(t)/c1 for t ≤ 0(4.22)

and

1 − F(t) ≤ ((
1 − F(0)

)
/c1

)
p(t) for t ≥ 0.(4.23)

Let H(t) = F(t) − (F (0)/c1)p(t) for t ≤ 0. Noting that

H ′(t) = p(t) − (
F(0)/c1

)
p′(t)

= p(t) + (
F(0)/c1

)
g2(t)p(t)

= p(t)
(
1 + g2(t)F (0)/c1

)
.

Since g2(t) is nondecreasing, if H ′(0) > 0, then there is at most one t0 such that
H ′(t0) = 0; if H ′(0) ≤ 0, then H ′(t) ≤ 0 for t < 0. Hence, H achieves maximum
either at t = 0 or t = −∞. Notice that H(0) = H(−∞) = 0, H(t) ≤ 0 for all
t < 0. This proves (4.22). Similarly, (4.23) holds.

Next, we prove (4.7). Noting that p′ = −pg2, we have for t < 0

F(t) =
∫ t

−∞
p(s) ds

≤
∫ t

−∞
g2(s)p(s)

g2(t)
ds

(4.24)

=
∫ t

−∞
−p′(s)
g2(t)

ds

= p(t)

−g2(t)
= p(t)/|g2(t)|.

Similarly, we have

1 − F(t) ≤ p(t)/g2(t) for t ≥ 0.(4.25)

Hence, (4.7) is satisfied with d2 = 1.
Note that (4.6) and (4.7) imply that

1 − F(x) ≤ p(x)min
(
1/c1,1/|g2(x)|) for x ≥ 0(4.26)

and

F(x) ≤ p(x)min
(
1/c1,1/|g2(x)|) for x ≤ 0.(4.27)
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To verify (4.11), with x ≥ 0 write

E|Y |I{Y>x} = xP (Y > x) +
∫ ∞
x

P (Y ≥ t) dt

≤ xp(x)min
(
1/c1,1/|g2(x)|)

+
∫ ∞
x

p(t)min
(
1/c1,1/|g2(t)|)dt

≤ xp(x)min
(
1/c1,1/|g2(x)|)

(4.28)
+ min

(
1/c1,1/|g2(x)|)

∫ ∞
x

p(t) dt

≤ min
(
1/c1,1/|g2(x)|){xp(x) + (

1 − F(x)
)}

≤ min
(
1/c1,1/|g2(x)|){xp(x) + p(x)/c1}

≤ p(x)min
(
1/c1,1/|g2(x)|){x + 1/c1}.

Similarly, for x < 0,

E|Y |I{Y<x} ≤ p(x)min
(
1/c1,1/|g2(x)|){|x| + 1/c1}.(4.29)

Equations (4.28) and (4.29) with x = 0 also give E|Y | ≤ 2/c1. Hence, recalling
(4.26)

E|Y |I{Y>x} + E|Y |(1 − F(x)
)

(4.30)
≤ p(x)min

(
1/c1,1/|g2(x)|){x + 3/c1} for x > 0

and

E|Y |I{Y<x} + E|Y |F(x)
(4.31)

≤ p(x)min
(
1/c1,1/|g2(x)|){|x| + 3/c1} for x ≤ 0.

Thus, (4.11) holds with d3 = c2 by (H2).
Equations (4.30) and (4.31) also show that (4.12) is satisfied with d4 = c2.
This completes the proof of Lemma 4.2. �

From the proof of Lemma 4.2, one can see the following remark is true.

REMARK 4.1. Assume that (H1) and (H3) are satisfied. Then (4.6)–(4.11)
hold with d1 = 1/c1, d2 = 1 and d3 = c3, and hence (4.13) and (4.15).

5. Proof of main results. In this section, we prove the general error bounds
(Theorems 1.1 and 1.2), the result for the Curie–Weiss model (Theorem 2.1), and
Theorem 3.1.
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5.1. Proof of Theorem 1.1. Let f = fh be the solution to Stein’s equation
(4.3). Then

Eh(W) − Eh(Y ) = Ef ′(W) + Ef (W)p′(W)/p(W)
(5.1)

= Ef ′(W) − c0Ef (W)g(W).

Recall � = W − W ′ and observe that for any absolutely continuous function f

0 = E(W − W ′)
(
f (W ′) + f (W)

)
= 2Ef (W)(W − W ′) + E(W − W ′)

(
f (W ′) − f (W)

)
(5.2)

= 2E
{
f (W)E

(
(W − W ′)|W )} − E(W − W ′)

∫ 0

−�
f ′(W + t) dt

= 2Ef (W)g(W) + 2Ef (W)r(W) − E

∫ ∞
−∞

f ′(W + t)K̂(t) dt,

where

K̂(t) = E
{
�(I {−� ≤ t ≤ 0} − I {0 < t ≤ −�})|W}

.

Substituting (5.2) into (5.1) gives

Ef ′(W) − c0Ef (W)g(W)

= Ef ′(W) − (c0/2)

{
E

∫ ∞
−∞

f ′(W + t)K̂(t) dt − 2Ef (W)r(W)

}

= E
{
f ′(W)

(
1 − (c0/2)E(�2|W)

)}
(5.3)

+ (c0/2)E

∫ ∞
−∞

(
f ′(W) − f ′(W + t)

)
K̂(t) dt

+ c0Ef (W)r(W).

When (H1) and (H2) are satisfied, by Lemmas 4.1 and 4.2

‖fh‖ ≤ c2‖h′‖, ‖f ′
h‖ ≤ (1 + c2)‖h′‖/c1, ‖f ′′

h ‖ ≤ 2(1 + c2)‖h′‖(5.4)

and hence

|Ef ′
h(W) − c0Efh(W)g(W)|

≤ (1 + c2)‖h′‖
c1

E
∣∣(1 − (c0/2)E(�2|W)

)∣∣
+ (1 + c2)‖h′‖c0E|�|3/2 + c0c2‖h′‖E|r(W)|.

This proves (1.3).
Under (H1) and (H3), by Remark 4.1

‖f ′
h‖ ≤ (1 + c3)‖h′‖/c1, ‖f ′′

h ‖ ≤ 2(1 + c3)‖h′‖.(5.5)
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From (4.16), (4.30) and (4.31) it follows that

|f (w)| ≤ (
1/p(w)

)‖h′‖min
(
E|Y − Y ∗ |I{Y≤w},E|Y − Y ∗ |I{Y≥w}

)
≤ ‖h′‖min

(
1/c1,1/|g2(w)|)(|w| + 3/c1)(5.6)

≤ ‖h′‖(|w| + 3/c1)/c1.

This proves (1.4) by (5.3), (5.5) and (5.6).

5.2. Proof of Theorem 1.2. Since (1.5) is trivial when c1c3δ > 1, we assume

c1c3δ ≤ 1.(5.7)

Let F be the distribution function of Y and let f = fz be the solution to the equa-
tion

f ′(w) − c0f (w)g(w) = I (w ≤ z) − F(z).(5.8)

By (5.2),

2Ef (W)g(W) + 2Ef (W)r(W)

= E

∫ ∞
−∞

f ′(W + t)K̂(t) dt

= E

∫ δ

−δ
{c0f (W + t)g(W + t) + I (W + t ≤ z) − F(z)}K̂(t) dt

≥ E

∫ δ

−δ
c0f (W + t)g(W + t)K̂(t) dt + EI (W ≤ z − δ)�2 − F(z)E�2

and hence

EI (W ≤ z − δ)�2 − F(z)E�2

≤ 2Ef (W)g(W) + 2Ef (W)r(W)

− c0E

∫ δ

−δ
f (W + t)g(W + t)K̂(t) dt

(5.9)
= 2Ef (W)g(W)

(
1 − (c0/2)E(�2|W)

) + 2Ef (W)r(W)

+ c0E

∫ δ

−δ
{f (W)g(W) − f (W + t)g(W + t)}K̂(t) dt

:= J1 + J2 + J3.

From Lemmas 4.1 and 4.2 again, we obtain

‖fz‖ ≤ 2/c1, ‖fzg‖ ≤ 2/c0 and ‖f ′
z‖ ≤ 4.(5.10)

Therefore,

|J1| ≤ (4/c0)E|1 − (c0/2)E(�2|W)|.(5.11)
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and

|J2| ≤ (4/c1)E|r(W)|.(5.12)

To bound J3, we first show that

sup
|t |≤δ

|g(w + t) − g(w)| ≤ c1c3δ

2c0

(
c1 + c0|g(w)|).(5.13)

From (H2), it follows that

|g′(x)| ≤ c1c3

3c0 min(1/c1,1/|c0g(x)|)
= c1c3

3c0
max(c1, |c0g(x)|)(5.14)

≤ c1c3

3c0

(
c1 + |c0g(x)|).

Thus, by the mean value theorem,

sup
|t |≤δ

|g(w + t) − g(w)|

≤ δ sup
|t |≤δ

|g′(w + t)|

≤ c1c3δ

3c0

(
c1 + c0 sup

|t |≤δ

|g(w + t)|
)

≤ c1c3δ

3c0

(
c1 + c0|g(w)| + c0 sup

|t |≤δ

|g(w + t) − g(w)|
)

= c1c3δ

3c0

(
c1 + c0|g(w)|) + c1c3δ

3
sup
|t |≤δ

|g(w + t) − g(w)|

≤ c1c3δ

3c0

(
c1 + c0|g(w)|) + 1

3
sup
|t |≤δ

|g(w + t) − g(w)|

by (5.7). This proves (5.13).
Now by (5.10) and (5.13), when |t | ≤ δ

|f (w)g(w) − f (w + t)g(w + t)|
≤ |g(w)||f (w + t) − f (w)| + |f (w + t)||g(w + t) − g(w)|
≤ 4|g(w)||t | + 2

c1

c1c3δ

2c0

(
c1 + c0|g(w)|)

≤ (4 + c3)δ|g(w)| + δc1c3/c0.
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Therefore,

|J3| ≤ c0(4 + c3)δE|g(W)|�2 + δc1c3E�2

(5.15)
≤ (4 + c3)δ

3E|c0g(W)| + c1c3δ
3.

Combining (5.9), (5.12), (5.11) and (5.15) shows that

EI (W ≤ z − δ)�2 − F(z)E�2

≤ (4/c0)E|1 − (c0/2)E(�2|W)| + (4/c1)E|r(W)|(5.16)

+ (4 + c3)δ
3E|c0g(W)| + c1c3δ

3.

On the other hand, using F ′(z) = p(z) ≤ c1, we have

EI (W ≤ z − δ)�2 − F(z)E�2

= 2

c0

(
EI (W ≤ z − δ) − F(z − δ)

)

− 2

c0
E

{(
I (W ≤ z − δ) − F(z)

)(
1 − c0

2
E(�2|W)

)}

(5.17)

+ 2

c0

(
F(z − δ) − F(z)

)

≥ 2

c0

(
P(W ≤ z − δ) − F(z − δ)

)

− 2

c0
E

∣∣∣∣1 − c0

2
E(�2|W)

∣∣∣∣ − 2c1δ

c0
,

which together with (5.16) yields

P(W ≤ z − δ) − F(z − δ)(5.18)

≤ E|1 − (c0/2)E(�2|W)| + c1δ

+ c0

2

(
(4/c0)E|1 − (c0/2)E(�2|W)| + (4/c1)E|r(W)|

+ (4 + c3)δ
3E|c0g(W)| + c1c3δ

3)
= 3E|1 − (c0/2)E(�2|W)| + c1δ + 2c0E|r(W)|/c1

+ δ3c0{(2 + c3/2)E|c0g(W)| + c1c3/2}.(5.19)

Similarly, we have

F(z + δ) − P(W ≤ z + δ)(5.20)

≤ 3E|1 − (c0/2)E(�2|W)| + c1δ + 2c0E|r(W)|/c1

+ δ3c0{(2 + c3/2)E|c0g(W)| + c1c3/2}.(5.21)

This completes the proof of (1.5).
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5.3. Proof of Theorem 2.1. By (2.1)–(2.4)

E|r(W)| = O(n−2),

E
∣∣1 − (c0/2)E

(
(W − W ′)2|W )∣∣ = O(n−1/2),

E|W |3 = O(1).

Applying Theorem 1.2 gives Theorem 2.1.
We now show that (2.1)–(2.4) hold.

LEMMA 5.1. With W,W ′ as in Section 2, we have

E

∣∣∣∣E(W − W ′|W) − n−3/2

3
W 3

∣∣∣∣ ≤ 15n−2,(5.22)

E
∣∣E(

(W − W ′)2|W ) − 2n−3/2∣∣ ≤ 15n−2(5.23)

and

E|W |3 ≤ 15.(5.24)

Also, obviously, |W − W ′| ≤ 2n−3/4.

PROOF. Let m = n−1 ∑n
i=1 σi = n−1/4W , and for each i, let

mi = n−1
∑
j �=i

σj .

It is easy to see that for τ ∈ {−1,1}

P(σ ′
i = τ |σ) = emiτ

emi + e−mi
,(5.25)

and so

E(σ ′
i |σ) = emi

emi + e−mi
− e−mi

emi + e−mi
= tanhmi.

Hence,

E(W − W ′|σ) = 1

n

n∑
i=1

n−3/4(
σi − E(σ ′

i |σ)
)

(5.26)

= n−3/4m − n−7/4
n∑

i=1

tanhmi.

Now it is easy to verify that the function

d2

dx2 tanhx = −2 sinhx

cosh3 x
= −2(tanhx)(1 − tanh2 x)
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has exactly two extrema ±x∗ on the real line, where x∗ solves the equation
tanh2 x∗ = 1

3 . It follows that the maximum magnitude of this function is 4/33/2.
Thus, for all x, y ∈ R,

|tanhx − tanhy − (x − y)(coshy)−2| ≤ 2(x − y)2

33/2 .

It follows that∣∣∣∣∣
n∑

i=1

tanhmi − n tanhm + n−1(coshm)−2
n∑

i=1

σi

∣∣∣∣∣ ≤ 2n−1

33/2 ,

and therefore ∣∣∣∣∣
n∑

i=1

tanhmi − n tanhm

∣∣∣∣∣ ≤ |m| + 2n−1

33/2 .

Using this in (5.26) and the relation m = n−1/4W , we get

|E(W − W ′|σ) + n−3/4 tanhm − n−3/4m| ≤ n−2|W | + 2n−11/4

33/2 .(5.27)

Now consider the function f (x) = tanhx−x+ x3

3 . Note that f ′(x) = (coshx)−2 −
1 + x2 ≥ 0 for all x, and hence f is an increasing function. Also f (0) = 0. There-
fore, f (x) ≥ 0 for all x ≥ 0. Now, it can be easily verified that the first four deriv-
atives of f vanish at zero, and for all x ≥ 0,

d5f

dx5 = 16

cosh2 x
− 120

sinh2 x

cosh4 x
+ 120

sinh4 x

cosh6 x
≤ 16

cosh2 x
≤ 16.

Thus, for all x ≥ 0,

0 ≤ f (x) ≤ 16

5! x
5 = 2x5

15
.

Since f is an odd function, we get that for all x,
∣∣∣∣tanhx − x + 1

3
x3

∣∣∣∣ ≤ 2|x|5
15

.

Using this information in (5.27), we get
∣∣∣∣E(W − W ′|σ) − n−3/4

3
m3

∣∣∣∣ ≤ 2n−3/4|m|5
15

+ n−2|W | + 2n−11/4

33/2 .

Using the relation m = n−1/4W , we get
∣∣∣∣E(W − W ′|σ) − n−3/2

3
W 3

∣∣∣∣ ≤ 2n−2|W |5
15

+ n−2|W | + 2n−11/4

33/2 .(5.28)
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This implies, in particular, that
∣∣∣∣E(

(W − W ′)W 3) − n−3/2

3
E(W 6)

∣∣∣∣
(5.29)

≤ 2n−2E(W 8)

15
+ n−2E(W 4) + 2n−11/4E|W |3

33/2 .

Thus,

E(W 6) ≤ 3n3/2∣∣E(
(W ′ − W)W 3)∣∣ + 2n−1/2E(W 8)

5
(5.30)

+ 3n−1/2E(W 4) + 2n−5/4E|W |3
31/2 .

Using the crude bound |W | ≤ n1/4, we get

2n−1/2E(W 8)

5
+ 3n−1/2E(W 4) + 2n−5/4E|W |3

31/2
(5.31)

≤ 2E(W 6)

5
+ 3E(W 2) + 2n−1E(W 2)

31/2 .

Next, note that by the exchangeability of (W,W ′),

E
(
(W ′ − W)W 3) = 1

2E
(
(W ′ − W)(W 3 − W ′3)

)
= −1

2E
(
(W ′ − W)2(W 2 + WW ′ + W ′2)

)
.

Since |W − W ′| ≤ 2n−3/4, this gives
∣∣E(

(W ′ − W)W 3)∣∣ ≤ 6n−3/2E(W 2).(5.32)

Combining (5.30), (5.31) and (5.32), we get

E(W 6) ≤
(

21 + 2n−1

31/2

)
E(W 2) + 2E(W 6)

5
,

and therefore,

E(W 6) ≤ 5

3

(
21 + 2n−1

31/2

)
E(W 2) ≤ 36.9245E(W 2).

Since E(W 2) ≤ (E(W 6))1/3, this gives

E(W 6) ≤ (36.9245)3/2 ≤ 224.4(5.33)

and hence (5.24) holds.
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Combined with (5.28), this gives

E

∣∣∣∣E(W − W ′|W) − n−3/2

3
W 3

∣∣∣∣
(5.34)

≤ n−2
(

2(224.4)5/6

15
+ (224.4)1/6

)
+ 2n−11/4

33/2 ≤ 15n−2.

By (5.25), we have

E
(
(W − W ′)2|σ ) = 1

n

n∑
i=1

4n−3/2 e−miσi

emiσi + e−miσi

= 2n−5/2
n∑

i=1

(
1 − tanh(miσi)

)

= 2n−3/2 − 2n−5/2
n∑

i=1

σi tanhmi.

Using |tanhmi − tanhm| ≤ |mi − m| ≤ n−1, we get∣∣E(
(W − W ′)2|σ ) − 2n−3/2∣∣ ≤ 2n−5/2 + 2n−3/2m tanhm

≤ 2n−5/2 + 2n−3/2m2

= 2n−5/2 + 2n−2W 2.

Using (5.33), we get

E
∣∣E(

(W − W ′)2|W ) − 2n−3/2∣∣ ≤ 2n−5/2 + 2n−2(224.4)1/3 ≤ 15n−2.

This completes the proof of the lemma. �

5.4. Proof of Theorem 3.1. With p(w) = e−wI{w>0}, for given h, let fh be the
Stein solution given in (4.4)

fh(w) = ew
∫ w

0

(
h(t) − Eh(Y )

)
e−t dt = −ew

∫ ∞
w

(
h(t) − Eh(Y )

)
e−t dt

for w ≥ 0. Following the proof of Theorems 1.1 and 1.2, it suffices to show that

|fh(w)| ≤ 3 min(‖h‖,‖h′‖)w for w ≥ 0.(5.35)

By (4.17),

|fh(w)| ≤ 2‖h‖min(1 − e−w, e−w)ew = 2‖h‖min(1, ew − 1) ≤ 3w‖h‖
and by (4.21)

|fh(w)| ≤ ‖h′‖ew min
(−we−w + 2(1 − e−w), (w + 1)e−w)

≤ ‖h′‖min
(
w + 1,2(ew − 1)

) ≤ 3w‖h′‖.
This proves (5.35) and hence Theorem 3.1.
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