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We study Atlas-type models of equity markets with local characteristics
that depend on both name and rank, and in ways that induce a stable capital
distribution. Ergodic properties and rankings of processes are examined with
reference to the theory of reflected Brownian motions in polyhedral domains.
In the context of such models we discuss properties of various investment
strategies, including the so-called growth-optimal and universal portfolios.

1. Introduction. In modeling equity market behavior, the goal is to construct
models that are simple enough to be amenable to mathematical analysis, yet com-
plicated enough to capture the salient characteristics of real equity markets. A par-
ticularly salient characteristic of an equity market is its capital distribution curve,

log k �→ logμ(k)(t), k = 1, . . . , n,(1.1)

that is, the logarithms of the individual companies’ relative capitalizations (market
weights) μ(·)(t) at time t , arranged in descending order μ(1)(t)≥ μ(2)(t) ≥ · · · ≥
μ(n)(t), versus the logarithms of their respective ranks from the largest company
k = 1 down to the smallest k = n.

The capital distribution curve for the US equity market has shown remarkable
stability over the last century (see, for instance, Figure 5.1 of Fernholz [13]), and
this stability has been captured in the Atlas and first-order models introduced in
[13] and studied by Banner, Fernholz and Karatzas [3] and others. These mod-
els assign growth rates and volatilities to the different stocks based purely on
the stocks’ rank in terms of relative capitalization at any given time, and roughly
speaking, if the smallest stocks are assigned big growth rates and big variances,
then a stable capital distribution does indeed emerge.

While Atlas and first-order models are able to reproduce the shape and stability
of the capital distribution curve, they still fail to provide an accurate representation
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of market behavior. It was shown in [3] that in these models each stock spends
about the same proportion of time in each rank over the long term. While this kind
of ergodicity may be a nice mathematical property, it does not seem to hold for
real markets: in real markets the largest stocks seem to retain their status for long
periods of time, while most stocks never reach the upper echelons of capitalization.
Hence, a more elaborate model is needed.

In this paper we generalize the first-order models by introducing name-based
effects of companies, in addition to the purely rank-based effects of the simpler
models studied in [3]. The resulting hybrid model (2.1) has more flexibility to
describe faithfully the complexity of the entire market; in particular, the model has
both stability properties and occupation time properties that are realistic.

Relation to extant literature. From a different point of view, the Atlas model
can be seen as a physical particle system with each company represented by a parti-
cle diffusing on the positive real line. These individual diffusive motions have drift
and volatility coefficients that depend on the entire configuration of particles at any
given moment, but not on the individual particles’ “identities” (tags). Recently, Pal
and Pitman [22] and Chaterjee and Pal [7, 8] studied such systems, specifically
when the drift coefficient is a function of the particle’s rank and all volatility co-
efficients are equal to a given constant. Under appropriate conditions on the drift
coefficients, the system has a unique invariant probability measure in a lower-
dimensional space; to wit, the system of the n particles is itself not ergodic, but the
projected system in a lower-dimensional hyperplane turns out to be ergodic, and
with invariant probability measure that has an explicit exponential-product-form
probability density function. Moreover, when the number of particles increases to
infinity, the system converges weakly to one described by a Poisson–Dirichlet dis-
tribution on the real line. These analyses are useful in studying the Atlas model for
an equity market, when the volatility coefficients are all equal.

The model is still tractable when its volatility coefficients depend on the rank-
ings. Questions of existence and uniqueness for such systems in this generality are
settled through the theory of martingale problems studied by Stroock and Varad-
han [26] and Bass and Pardoux [5]. An important new feature of such models is
that three or more particles may now collide with each other at the same time
with positive probability, or even with probability one, under a suitably “uneven”
volatility structure. This is a very significant departure from the constant-volatility
case. Some sufficient conditions on the volatility coefficients for the occurrence
and for the avoidance of triple (or higher-order) collisions, are derived in [18],
by comparison with Bessel processes and with help from properties of reflected
Brownian motion.

The ranked particle system has a deep relation with the theory of multi-
dimensional reflected Brownian motion studied intensively in the context of sto-
chastic network systems by Harrison, Reiman and Williams [15–17] and their col-
laborators. Recently, Dieker and Moriarty [11] provided necessary and sufficient
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conditions for the invariant density of semimartingale reflected Brownian motions
in a two-dimensional wedge to be expressed as a finite sum of terms of product-
of-exponential form, by extending the geometric considerations on the so-called
“skew-symmetry” condition. In the present paper we use this skew-symmetry con-
dition [see (5.8) in Lemma 3] for the n-dimensional reflected Brownian motions to
solve the basic adjoint relation introduced in the context of a piece-wise constant
drift coefficient structure, and thus compute an invariant density for the ranked
process of the hybrid Atlas model as a sum of products of exponentials. With this
explicit formula we compute the invariant distribution of the capital distribution
curve as well as the long-term average occupation times.

Another interesting system of ranked particles is Dyson’s process of noncollid-
ing Brownian motions, which are the ordered eigenvalues of a Brownian motion on
the space of Hermitian matrices. Recent work by Warren [27] constructs Dyson’s
process using Doob’s h-transform and Brownian motion in the Gelfand–Tsetlin
cone, as an extension of Dubédat’s work [12] on the relation between reflected
Brownian motions on the wedge and a Bessel process of dimension three. The
(infinite) ranked particle systems also appear in mean-field spin glass theory of
mathematical physics. In another recent development, Arguin and Aizenman [1]
analyze robust quasi-stationary competing particle systems with overlapping hi-
erarchical structures where the Poisson–Dirichlet distribution emerges as in [22].
Instead of taking Dyson’s process or the spin glass theory as our model for rankings
in equity markets, we obtain the ranked particle system through a general formula
of Banner and Ghomrasni [4] for continuous semimartingales in the hybrid Atlas
model.

Preview. This paper follows the following structure. We describe our model in
Section 2, its lower-dimensional ergodic properties in Section 3, the dynamics of
its rankings in Section 4, its invariant measure and occupation times in Section 5
and some portfolio analysis in its context in Section 6. In the Appendix we prove
some auxiliary results stated in the main sections.

Notation. The following notions and notation are useful to describe rankings
as in [3]. We consider a collection {Q(i)k }1≤i,k≤n of polyhedral domains in Rn,

where y = (y1, . . . , yn) ∈Q(i)k means that the coordinate yi is ranked kth among
y1, . . . , yn, with ties resolved in favor of the lowest index (or “name”). Note that
for every index i = 1, . . . , n and rank k = 1, . . . , n, we have the partition properties⋃n
�=1Q

(i)
� = Rn = ⋃n

j=1Q
(j)
k .

We shall denote by �n the symmetric group of permutations of {1, . . . , n}. For
each permutation p ∈ �n we consider Rp := ⋂n

k=1Q
(p(k))
k , the polyhedral cham-

ber consisting of all points y ∈ Rn such that yp(k) is ranked kth among y1, . . . , yn,
for every k = 1, . . . , n. The collection of polyhedral chambers {Rp}p∈�n is a par-
tition of all of Rn.
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Since for each y ∈ Rn there exists a unique p ∈�n such that y ∈ Rp (because
of the way ties are resolved), we shall find it useful to define an indicator map
Rn � (x1, . . . , xn)

′ = x �→ px ∈�n such that xpx(1) ≥ · · · ≥ xpx(n). In other words,
px(k) is the index of the coordinate in the vector x that occupies the kth rank
among x1, . . . , xn.

When matrices and vectors are used, the vector norm ‖x‖ := (∑n
i=1 x

2
i )

1/2 and
the inner product 〈x, y〉 := ∑

i=1 xiyi = x′y for x, y ∈ Rn, where ′ stands for trans-
position, are defined in the usual manner. The gradient ∇ and the Laplacian � op-
erators on the space C2 of twice continuously differentiable functions are used in
Section 5, as well as the notation C2

c (·) [resp., C2
b(·)] for the spaces of twice con-

tinuously differentiable functions which have compact support (resp., are bounded
functions).

2. Model. We shall study an equity market that consists of n assets (stocks)
with capitalizations X(t) = (X1(t), . . . ,Xn(t))

′ which are positive for all times
0 ≤ t <∞. The random variable Xi(t) represents the capitalization at time t of
the asset with index (name) i.

We shall assume that the log-capitalizations Yi(t) := logXi(t), i = 1, . . . , n,
satisfy the system of stochastic differential equations

dYi(t)=
(
n∑
k=1

gk1Q(i)k
(Y (t))+ γi + γ

)
dt +

n∑
j=1

ρi,j dWj (t)

(2.1)

+
n∑
k=1

σk1Q(i)k
(Y (t)) dWi(t), Yi(0)= yi, 0 ≤ t <∞

with given initial condition y = (y1, . . . , yn)
′. The process W(·) := (W1(·), . . . ,

Wn(·))′ is an n-dimensional Brownian motion. As long as the n-dimensional
process Y(·) := (Y1(·), . . . , Yn(·))′ of log-capitalizations is in the polyhedronQ(i)k ,
the ith-coordinate Yi(·) is ranked kth among Y1(·), . . . , Yn(·) and behaves like a
Brownian motion with drift gk+γi+γ and variance (σk+ρi,i)2 +∑

j �=i ρ2
i,j . The

constants γ, γi and gk represent respectively a common, a name-based and a rank-
based drift (growth rate) whereas the constants σk and ρi,j represent rank-based
volatilities and name-based correlations, respectively.

ASSUMPTION. Throughout this paper we assume (without loss of generality)
that the drift constants satisfy the stability condition

n∑
k=1

gk +
n∑
i=1

γi = 0.(2.2)

We shall assume that the (n× n) matrices

sp := diag
(
σp−1(1), . . . , σp−1(n)

)+ (ρi,j )1≤i,j≤n are positive definite(2.3)

for every p ∈�n, with σk > 0 for every k = 1, . . . , n.
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Equation (2.1) can be cast in vector form as

dY (t)=G(Y(t)) dt + S(Y (t)) dW(t), Y (0)= y ∈ Rn(2.4)

for 0 ≤ t <∞, where the functions G : Rn → Rn and S : Rn �→ Rn×n are

G(y) := ∑
p∈�n

1Rp(y) ·
(
gp−1(1) + γ1 + γ, . . . , gp−1(n) + γn + γ )′,

S(y) := ∑
p∈�n

1Rp(y) · sp, y ∈ Rn.

Thus (2.1) is a system of stochastic differential equations with coefficients that
are piecewise constant, the same in each polyhedral chamber Rp, p ∈ �n. Under
the assumption of positive definiteness in (2.3), the system (2.1) admits a weak
solution (Y,W) on a filtered probability space (�,F , {Ft},P) satisfying the usual
conditions. By the martingale-problem theory of Stroock and Varadhan [26] and
the results in Bass and Pardoux [5], this weak solution is unique in the sense of the
probability distribution.

3. Ergodicity. Thanks to assumption (2.2) on the drifts, and taking the av-
erage of both sides of (2.1), we obtain the average log-capitalization process
Y(·) := ∑n

i=1 Yi(·)/n in the form

Y (t)= 1

n

n∑
i=1

yi + γ t + 1

n

n∑
k=1

σkBk(t)+ 1

n

n∑
i,j=1

ρi,jWj (t),

(3.1)

where Bk(t) :=
n∑
i=1

∫ t

0
1
Q
(i)
k

(Y (s)) dWi(s), k = 1, . . . , n,

for 0 ≤ t <∞ because of
⋃n
i=1Q

(i)
k = Rn. Here B1(·), . . . ,Bn(·) are continuous

local martingales with quadratic (cross-)variations 〈Bk,B�〉 (t)= tδk,�, and hence
are independent standard Brownian motions by the Knight theorem. It follows that
the average Y(·) of the log-capitalizations Y1(·), . . . , Yn(·) grows at a rate equal to
the common drift γ , that is,

lim
T→∞

Y(T )

T
= γ holds a.s.,(3.2)

by the strong law of large numbers for Brownian motion.
In order to study the long-term behavior of the whole log-capitalizations, let us

quote Theorems 4.1 and 5.1 on pages 119–121 of Khas’minskii [20], since our
argument relies on them rather decisively.

PROPOSITION 1 (Khas’minskii). Consider a diffusion ξ(·) with values in a
subset E of Euclidean space. Assume that there exists a bounded domain U ⊂ E
with regular boundary, having the following properties:
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(B.1) In the domain U the smallest eigenvalue of the diffusion matrix of the
process ξ(·) is bounded away from zero.

(B.2) If x ∈E \U , the mean time τ at which a path issuing from x reaches the set
U is finite, and supx∈K Ex(τ ) <∞ for every compact subset K ⊂E.

Then the Markov process ξ(·) has a unique stationary distribution μ, and which
satisfies the Strong Law of Large Numbers

Px

(
lim
T→∞

1

T

∫ T

0
f (ξ(t)) dt =

∫
E
f (y)μ(dy)

)
= 1, x ∈E,

for any bounded, measurable function f :E→ R.

Let us introduce the column vector 1 := (1, . . . ,1)′ and the subspace

� := {y ∈ Rn|1′y = 0}.

THEOREM 1. In addition to (2.2) and (2.3), let us impose for every p ∈�n the
following stability condition:

�∑
k=1

(
gk + γp(k)

)
< 0, �= 1, . . . , n− 1.(3.3)

Then the deviations Ỹ (·) := (Y1(·)− Y(·), . . . , Yn(·)− Y (·)) of the log-capitaliza-
tions Y1(·), . . . , Yn(·) from their average are stable in distribution: there exists a
unique invariant probability measure μ for the �-valued Markov process Ỹ (·),
and for any bounded, measurable function f :�→ R we have the Strong Law of
Large Numbers

lim
T→∞

1

T

∫ T

0
f (Ỹ (t)) dt =

∫
�
f (y)μ(dy), a.s.(3.4)

PROOF. From (2.1) and (3.1), we have

dỸ (t)= G̃(Ỹ (t)) dt + S̃(Ỹ (t)) dW(t), Ỹ (0)= ỹ,(3.5)

where ỹ := y− 1′y · 1/n, G̃(y) :=G(y)− γ · 1 and S̃(y) := S(y)− 11′S(y)/n for
y ∈ Rn. By (2.3) the covariance matrix in (3.5) is uniformly nondegenerate: for all
x, y ∈� we have

x′S̃(y)x = x′S(y)x − x′11′S(y)x/n= x′S(y)x = ∑
p∈�n

1Rp(y) · x′spx

and

λ0‖x‖2 ≤ x′S̃(y)x ≤ λ1‖x‖2,(3.6)

where λ0(λ1) are the minimum (maximum) of the smallest (largest) eigenvalues
of the positive definite matrices sp over p ∈�n in (2.3).
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Summation-by-parts, along with (2.2) and (3.3), lead now to

y′G̃(y)=
n∑
i=1

yi
(
g(py)−1(i) + γi

) =
n∑
k=1

ypy(k)
(
gk + γpy(k))

= ypy(n)
n∑
k=1

(
gk + γpy(k))︸ ︷︷ ︸

=0

+
n−1∑
k=1

(
ypy(k) − ypy(k+1)

) k∑
�=1

(
g� + γpy(�))(3.7)

≤ c√n
n∑
k=1

(
ypy(k) − ypy(k+1)

) ≤ c‖y‖< 0, y ∈�∩ Rp,

where c := n−1/2 max1≤�≤n−1,p∈�n
∑�
k=1(gk+γp(k)) < 0. In the last inequality we

have used for p ∈ �n and y ∈� ∩ Rp the properties yp(1) ≥ yp(2) ≥ · · · ≥ yp(n),
thus also yp(1) ≥ 0 ≥ yp(n) and

‖y‖2 ≤ nmax
(
y2

p(1), y
2
p(n)

) ≤ n(yp(1) − yp(n)
)2
.

Now we consider the one-dimensional process N(t) := f (Ỹ (t)) with f (y) =
(‖y‖2 + 1)1/2 > ‖y‖ for y ∈�. An application of Itô’s rule gives

dN(t)= f̃ (Ỹ (t)) dt + [f (y)]−1y′S̃(y)|y=Ỹ (t) dW(t), 0 ≤ t <∞,
f̃ (y) := (f (y))−1(y′G̃(y)+ 1

2 trace(S̃(y)S̃(y)′)
)− 1

2(f (y))
−3y′S̃S̃(y)′y

for y ∈�. It follows from (3.6), (3.7) and the boundedness of S̃(·) that there exists
a constant κ > 0 such that f̃ (y)≤ c/2< 0 for ‖y‖> κ . The diffusion coefficient
[f (y)]−1y′S̃(y) of N(·) is a vector whose entries are uniformly bounded by some
constants from (3.6).

Thus N(·) is positive recurrent with respect to the interval (0, κ), and hence so
is Ỹ (·) with respect to B ∩� for some ball B ⊂ Rn centered at the origin.

Finally, we check the conditions (B.1) and (B.2) of Proposition 1. For our dif-
fusion ξ(·)= Ỹ (·) on E =� we have verified (B.1) in (3.6). Assumption (B.2) is
verified from the positive recurrence of Ỹ (·) with respect to U = B∩�. Therefore,
by Proposition 1, we obtain the existence of a unique invariant probability measure
μ that satisfies (3.4). �

Condition (3.3) ensures that, if y1 < y2 < · · · < yn and one subdivides at time
t = 0 the “cloud” of n particles diffusing on the real line according to the dynamics
of (2.1), into two “subclouds”—one consisting of the � leftmost, and the other of
the n − � rightmost, particles—the two subclouds will eventually merge. They
will not continue to evolve like separate galaxies, that never make contact with
each other (cf. the Remark following Theorem 4 in Pal and Pitman [22] for an
elaboration of this point in the case of the purely rank-based first-order model with
equal variances).
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COROLLARY 1. Under the assumptions of Theorem 1, the long-term average
occupation time that company i spends in the kth rank, that is,

θk,i := lim
T→∞

1

T

∫ T

0
1
Q
(i)
k

(X(t)) dt, i, k = 1, . . . , n,(3.8)

exists almost surely in [0,1].
The resulting array of numbers θk,i ∈ [0,1] satisfy

∑n
j=1 θk,j = ∑n

�=1 θ�,i = 1
for each “name” i = 1, . . . , n and “rank” k = 1, . . . , n; that is, ϑ := (θk,i)1≤k,i≤n
is a doubly stochastic matrix. Similarly, the average occupation time θp of the
market in the polyhedral chamber Rp, namely,

θp := lim
T→∞

1

T

∫ T

0
1Rp(X(t)) dt exists a.s. in [0,1](3.9)

for every p ∈ �n, and we have θk,i = ∑
θp, where the summation is over the set

{p ∈�n|p(k)= i} of permutations for 1 ≤ i, k ≤ n.

Indeed, by Theorem 1 and in particular (3.4), the quantity of (3.8) satisfies

θk,i = lim
T→∞

1

T

∫ T

0
1
Q
(i)
k

(X(t)) dt = lim
T→∞

1

T

∫ T

0
1
Q
(i)
k ∩�(Ỹ (t)) dt = μ

(
Q
(i)
k

)
,

where μ is the unique invariant probability measure for the process Ỹ (·) of (3.5).
Since

⋃n
�=1Q

(i)
� = Rn = ⋃n

j=1Q
(j)
k , it is obvious that

∑n
�=1 θ�,i =

∑n
j=1 θk,j = 1

for 1 ≤ i, k ≤ n. Equation (3.9), and the claim following it, are obtained similarly.

4. Rankings. Let us now look at the log-capitalizations of the various com-
panies listed according to rank, namely

Zk(t) :=
n∑
i=1

1
Q
(i)
k

(Y (t)) · Yi(t), k = 1, . . . , n,0 ≤ t <∞.(4.1)

These are the order statisticsZ1(·)≥ · · · ≥ Zn(·) for the log-capitalizations Y1(·)=
logX1(·), . . . , Yn(·) = logXn(·), listed from largest down to smallest. We recall
the indicator map px introduced at the end of Section 1, and define the �n-valued
index process

Pt := pX(t) = pY (t), 0 ≤ t <∞,
so that XPt (1)(t) ≥ · · · ≥ XPt (n)(t). We may thus write Zk(·) = YP·(k)(·) from
(4.1); loosely speaking, Pt (k) is the index (name) of the company that occupies
the kth rank, in terms of capitalization, at time t .

We shall also introduce the total market capitalization X(·) := ∑n
i=1Xi(·), as

well as the market weights (relative capitalizations) for the individual companies
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and their ranked counterparts, respectively,

μi(t) := Xi(t)

X(t)
, i = 1, . . . , n, and

(4.2)

μ(k)(t) := eZk(t)

X(t)
, k = 1, . . . , n.

COROLLARY 2. Under (2.2), (2.3) and (3.3), the process of ranked deviations
Z̃(·) := (Z1(·)−Y (·), . . . ,Zn(·)−Y (·))′ of the log-capitalizations Y1(·), . . . , Yn(·)
from their average, is stable in distribution by Theorem 1, and so is the ((R+)n−1 ×
�n)-valued process (�(·),P·), where �(·) := (Z1(·) − Z2(·), . . . ,Zn−1(·) −
Zn(·))′ is the rank-gap process of Y(·).

In fact, since Z̃(·) is obtained by permuting the components of Ỹ (·), the stability
in distribution of Ỹ (·) implies stability in distribution for Z̃(·) from Theorem 1.
Moreover, the components of the rank-gap process �(·) can be written as linear
combinations of those of Z̃(·), and the index process P· can be seen as P· = pZ̃(·),
where the range �n of the mapping p is a finite set. Thus, the process (�(·),P·)
is stable in distribution.

We shall denote by �k,j (t) := �Zk−Zj (t) the local time accumulated at the
origin by the nonnegative semimartingale Zk(·)− Zj(·) up to time t for 1 ≤ k <
j ≤ n, and set �0,1(·) ≡ 0 ≡ �n,n+1(·). Then from Theorem 2.5 of Banner and
Ghomrasni [4] it can be shown that we have for k = 1, . . . , n, 0 ≤ t < ∞ the
dynamics

dZk(t)=
n∑
i=1

1
Q
(i)
k

(Y (t)) dYi(t)

(4.3)

+ (Nk(t))−1

[
n∑

�=k+1

d�k,�(t)−
k−1∑
�=1

d��,k(t)

]
.

Here Nk(t) is the cardinality of the set of indices of those random variables among
Y1(t), . . . , Yn(t) which have the same value as Zk(t), that is, Nk(t) := |{i :Yi(t)=
Zk(t)}|. Note that under the assumptions on the coefficients, the finite variation
part of the continuous semimartingale Y(·) in (2.1) is absolutely continuous with
respect to Lebesgue measure a.s., and it follows from an application of Fubini’s
theorem and an estimate of Krylov [21] that the Lebesgue measure of the set
{t :Yi(t)= Yj (t)} is zero a.s. for 1 ≤ i �= j ≤ n. Thus we can verify the sufficient
conditions (2.11 and 2.12) of Theorem 2.5 in [4].

Each local time �k,�(·) is flat away from the set {0 ≤ t <∞|Zk(t) = · · · =
Z�(t)}; it increases only when the corresponding coordinate processes collide with
each other. Examples in [5, 18] study such multiple collisions of order three or
higher and use comparisons with Bessel processes in a crucial manner. Here again,
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the nonnegative semimartingale Zk(·)−Z�(·) is compared to an appropriate Bessel
process. Since a Bessel process with dimension δ > 1 does not accumulate any
local time at the origin (a consequence of Proposition XI.1.11 of [23] and of Theo-
rem V.48.6 in [24]), appropriate comparison arguments yield the following result;
its proof is in Section A.2.

LEMMA 1. Under (2.3), the local times �k,�(·) generated by triple or higher-
order collisions are identically equal to zero, that is, �k,�(·)≡ 0 for 1 ≤ k, �≤ n
and |k− �| ≥ 2, and (4.3) takes for k = 1, . . . , n,0 ≤ t <∞ the form

dZk(t)=
n∑
i=1

1
Q
(i)
k

(Y (t)) dYi(t)+ 1

2

(
d�k,k+1(t)− d�k−1,k(t)

)
.(4.4)

PROPOSITION 2. Under the convention (2.2) and the assumptions (2.3) and
(3.3), we obtain a Strong Law of Large Numbers for local times

lim
T→∞

1

T
�k,k+1(T )= −2

k∑
�=1

(
g� +

n∑
i=1

γiθ�,i

)
, k = 1, . . . , n− 1,(4.5)

almost surely. Moreover, we obtain the following long-term growth relations, in
addition to those of (3.2): all log-capitalizations grow at the same rate

lim
T→∞

Yi(T )

T
= lim
T→∞

logXi(T )

T
= γ, i = 1, . . . , n,(4.6)

almost surely. This holds also for the total market capitalization

lim
T→∞

1

T
logX(T )= lim

T→∞
1

T
log

(
n∑
i=1

Xi(T )

)
= γ, a.s.,(4.7)

and thus the model is coherent; that is, in the notation of (4.2) we have

lim
T→∞

1

T
logμi(T )= 0, a.s.; i = 1, . . . , n.(4.8)

PROOF. It follows from Corollary 2 that

lim
T→∞

1

T

(
Zk(T )−Zk+1(T )

) = 0, a.s.; k = 1, . . . , n− 1.

Combining this with (2.1), (3.8) and (4.4), we observe

lim
T→∞

1

2T

(
�k−1,k(T )+�k+1,k+2(T )− 2�k,k+1(T )

)
= gk +

n∑
i=1

γiθk,i −
(
gk+1 +

n∑
i=1

γiθk+1,i

)
= gk − gk+1, a.s.,
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where we have set gk := gk + ∑n
i=1 γiθk,i for k = 1, . . . , n− 1. Adding up these

equations over k = �, . . . , n− 1 yields

lim
T→∞

1

2T

(
��−1,�(T )−��,�+1(T )−�n−1,n(T )

) = g� − gn, a.s.(4.9)

for each �= 1, . . . , n; adding up over all these values of � and using the convention
(2.2) for clarity, we obtain

lim
T→∞

1

2T
�n−1,n(T )= gn, a.s.(4.10)

In conjunction with (4.9), we obtain from (4.10) that for k = 1, . . . , n

lim
T→∞

1

2T

(
�k−1,k(T )−�k,k+1(T )

) = gk = gk +
n∑
i=1

γiθk,i, a.s.(4.11)

Since
∑n
k=1 gk = 0 from (2.2) and Corollary 1, we obtain (4.5) from (4.10) and

(4.11). From this, (4.4), and the strong law of large numbers for Brownian motion,
we get the long-term average growth rate of ranked log-capitalizations,

lim
T→∞

Zk(T )

T
= γ, a.s.; k = 1, . . . , n.

This yields (4.6); the elementary inequality exp{ypy(1)} ≤ ∑n
i=1 exp{yi} ≤ n ×

exp{ypy(1)} for y ∈ Rn then implies (4.7), and equation (4.8) is a direct conse-
quence of (4.6) and (4.7). �

COROLLARY 3. Under (2.2), (2.3) and (3.3), the long-term average occupa-
tion times θk,i of (3.8) satisfy the equilibrium identity

n∑
k=1

θk,igk + γi = 0, i = 1, . . . , n.(4.12)

Indeed, by substituting (4.6) into (2.1), and using the strong law of large num-
bers for Brownian motion, we obtain the a.s. identities

lim
T→∞

1

T

n∑
k=1

gk

∫ T

0
1
Q
(i)
k

(Y (t)) dt = −γi, i = 1, . . . , n,

and so in conjunction with (3.8) we deduce (4.12).

EXAMPLE 1. Suppose that the rank-based growth parameters are given as
gn = (n − 1)g, g1 = · · · = gn−1 = −g < 0 for some g > 0. This is the “Atlas
configuration,” in which the company at the lowest capitalization rank provides all
the growth (or support, as with the Titan of mythical lore) for the entire structure.
Suppose also that the name-based growth rates γ1, . . . , γn satisfy

∑n
i=1 γi = 0 and

max1≤i≤n γi < g.
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It is then checked easily that conditions (2.2) and (3.3) are satisfied. By Corol-
lary 1, the average occupation times {θk,i} exist a.s. We shall provide an explicit
expression for the θk,i under an additional condition (5.7) on the correlation struc-
ture, in Section 5.2. For the time being, let us just remark that in this case we get
directly from (4.12) the long-term proportions of time

θn,i = 1

n

(
1 − γi

g

)
, i = 1, . . . , n,

with which the various companies occupy the lowest (“Atlas”) rank.

5. Invariant measure.

5.1. Reflected Brownian motions. Observe now from (4.4) the following rep-
resentation for the vector �(·) = (�1(·), . . . ,�n−1(·))′ of gaps in the ranked
log-capitalizations �k(·) := Zk(·) − Zk+1(·) = log(X(k)(·)/X(k+1)(·)) ≥ 0, k =
1, . . . , n− 1,

�(t)=�(0)+ ζ(t)+ R�(t), 0 ≤ t <∞.(5.1)

Here we have set ζ(·) := (ζ1(·), . . . , ζn−1(·))′ with

ζk(·)=
n∑
i=1

∫ ·
0

1
Q
(i)
k

(Y (s)) dY (s)−
n∑
i=1

∫ ·
0

1
Q
(i)
k+1
(Y (s)) dY (s);

and we have introduced the vector �(·) := (�1,2(·), . . . ,�n−1,n(·))′ = (��1(·),
. . . ,��n−1(·))′ of local times, as well as the ((n− 1)× (n− 1)) matrix

R :=

⎛⎜⎜⎜⎜⎜⎝
1 −1/2

−1/2 1 −1/2
. . .

. . .
. . .

−1/2 1 −1/2
−1/2 1

⎞⎟⎟⎟⎟⎟⎠ .(5.2)

This rank-gap process �(·) in (5.1) belongs to a class of processes which Harrison
and Williams [16, 17], Williams [28] and Dai and Williams [10] call “semimartin-
gale reflected (or regulated) Brownian motions” (SRBM) in polyhedral domains.

The process �(·) has state-space (R+)n−1 and behaves like the (n − 1)-
dimensional continuous semimartingale ζ(·) on the interior of (R+)n−1. When the
face Fk := {(z1, . . . , zn−1)

′ ∈ (R+)n−1|zk = 0}, k = 1, . . . , n− 1, of the boundary
is hit, the kth component of �(·) increases, which causes an instantaneous dis-
placement (reflection) in a continuous fashion. The directions of this reflection are
given by the entries in rk , the kth column of the matrix R. For every principal sub-
matrix R̃ of R, there exists a nonzero vector y such that R̃y > 0, and so the reflec-
tion matrix R satisfies the so-called completely-S (or “strictly semi-monotone”)
(see Dai and Williams [10] for details) condition for S = (R+)n−1.
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Let us define the differential operators A and Dk , acting on C2((R+)n−1) func-
tions

[Af ](z,p) := 1

2

n−1∑
k,�=1

ak,�(p)
∂2f (z)

∂zk ∂z�
+
n−1∑
k=1

bk(p)
∂f

∂zk
(z),

(z,p) ∈ (R+)n−1 ×�n,(5.3)

[Dkf ](z) := 〈rk,∇f (z)〉, z ∈ Fk, k = 1, . . . , n− 1.

Here (ak,�(·))1≤k,�≤n−1 is the covariance matrix corresponding to the semimartin-
gale ζ(·) with entries

ak,�(p) := (σ 2
k + σ 2

k+1) · 1{k=�} − σ 2
k · 1{k=�+1} − σ 2

k+1 · 1{k=�−1}

+
n∑
m=1

(
ρp(k),m − ρp(k+1),m

)(
ρp(�),m − ρp(�+1),m

)
(5.4)

+ ∑
(α,β)∈{(k,�),(�,k)}

{
σα

(
ρp(β),α − ρp(β+1),α

)
+ σα+1

(
ρp(β+1),α+1 − ρp(β),α+1

)}
for k, � = 1, . . . , n − 1,p ∈ �n; whereas the ((n − 1) × 1) vector rk is the kth
column of the reflection matrix R. We also define the ((n−1)×1) drift coefficient
vector b(·) := (b1(·), . . . , bn−1(·))′ for the semimartingale ζ(·), with components

bk(p) := gk + γp−1(k) − gk+1 − γp−1(k+1), k = 1, . . . , n− 1,p ∈�n.(5.5)

From Corollary 2 we know that there exists an invariant measure ν(·, ·) for the
((R+)n−1 × �n)-valued process (�(·),P·). Let us denote by ν0(·) the marginal
invariant distribution of �(·). As a consequence of Itô’s rule and the formulation
of the submartingale problem studied by Stroock and Varadhan [25] and Harrison
and Williams [16], we obtain a characterization of the invariant distribution ν(·, ·)
for (�(·),P·).

LEMMA 2. Recall convention (2.2), and conditions (2.3) and (3.3). For each
k = 1, . . . , n−1 there is a finite measure ν0k(·), absolutely continuous with respect
to Lebesgue measure on the kth face Fk , such that the so-called Basic Adjoint
Relationship (BAR) holds for any C2

b -function f : (R+)n−1 → R, namely∫
(R+)n−1×�n

[Af ](z,p) dν(z,p)+ 1

2

n−1∑
k=1

∫
Fk

[Dkf ](z) dν0k(z)= 0.(5.6)

This condition is necessary for the stationarity of ν(·, ·). A proof of Lemma 2
is given in Section A.3. It is not easy to solve (5.6) in general; however, following
Harrison and Williams [17], we may obtain an explicit formula for the invariant
joint distribution ν(·, ·) under the so-called skew symmetry condition between the
covariance and reflection matrices (see Theorem 2 and Corollaries 4 and 5).
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LEMMA 3. Assume that the rank-based variances {σ 2
k } grow linearly, and that

there are no name-based correlations in (2.1), that is,

σ 2
2 − σ 2

1 = σ 2
3 − σ 2

2 = · · · = σ 2
n − σ 2

n−1,
(5.7)

ρi,j = 0, 1 ≤ i, j ≤ n.
Then the components of the covariance matrix A ≡ (ak,�)1≤k,�≤n−1 from (5.4) be-
come

ak,� = (σ 2
k + σ 2

k+1) · 1{k=�} − σ 2
k · 1{k=�+1} − σ 2

k+1 · 1{k=�−1}
and do not depend on the permutation p ∈�n. Moreover, the matrix A satisfies the
so-called skew symmetry condition,

(2D − HD − DH − 2A)k,� = 0, 1 ≤ k, �≤ n− 1.(5.8)

Here we have introduced the diagonal matrix D := diag(A), and the ((n− 1)×
(n− 1)) matrix H := I − R from the reflection matrix R in (5.2).

Lemma 3 is proved by straightforward computation; details are in Section 5.5
of [18]. Note that, even under (5.7), the operator (5.3) still depends on the permu-
tation p through the drift component b(p) for p ∈�n in (5.5).

THEOREM 2. Under (2.2), (2.3), (3.3) and (5.7), the invariant joint distribu-
tion ν(·, ·) of the ((R+)n−1 ×�n)-valued process (�(·),P·) is

ν(A×B) :=
( ∑

q∈�n

n−1∏
k=1

λ−1
q,k

)−1 ∑
p∈B

∫
A

exp(−〈λp, z〉) dz(5.9)

for any measurable sets A ⊂ (R+)n−1 and B ⊂ �n, where λp := (λp,1, . . . ,

λp,n−1)
′ is the vector with components

λp,k := −4
∑k
�=1(g� + γp(�))

σ 2
k + σ 2

k+1

, p ∈�n,1 ≤ k ≤ n− 1.(5.10)

In particular, the density ℘(·) of the marginal invariant distribution ν0(·) of �(·)
has the sum-of-products-of-exponentials form

℘(z) :=
( ∑

q∈�n

n−1∏
k=1

λ−1
q,k

)−1 ∑
p∈�n

exp(−〈λp, z〉), z ∈ (R+)n−1.(5.11)

PROOF. First, we carry out a linear transformation of the state space to remove
the correlation between the components of �(·); this is possible, because the co-
variance matrix A does not depend on the index process P·, under (5.7) from
Lemma 3. Let U be the matrix whose columns are the orthogonal eigenvectors of
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the covariance A, and let L be the corresponding diagonal matrix of eigenvalues
such that L = U′AU. Define �̃(·) := L−1/2U�(·). By this deterministic rotation
and scaling, we obtain

�̃(t)= �̃(0)+ ζ̃ (t)+ R̃�(t), 0 ≤ t <∞,(5.12)

from (5.1) where ζ̃ (·) = L−1/2Uζ(·) is a Brownian motion with drift coefficient
b̃(·) := L−1/2Ub(·) and b(·) is defined in (5.5). We may regard �̃(·) as a reflected
Brownian motion in a new state space S := L−1/2U(R+)n−1 with faces F̃k :=
L−1/2UFk , k = 1, . . . , n − 1. The transformed reflection matrix R̃ := L−1/2UR

can be written R̃ = (Ñ+ Q̃)C̃ = (̃r1, . . . , r̃n−1), where C̃ := D−1/2, D := diag(A),
Ñ := L1/2UC̃ = (̃n1, . . . , ñn−1), Q̃ := L−1/2URC̃−1 − Ñ = (̃q1, . . . , q̃n−1). The
constant vectors r̃k, q̃k, ñk , k = 1, . . . , n− 1, are ((n− 1)× 1) column vectors.

The corresponding differential operators Ã, D̃k and their adjoints Ã∗, D̃∗
k are

defined by

[Ãf ](z,p) := 1
2�f (z)+ 〈b̃(p),∇f (z)〉,

[D̃kf ](z) := 〈̃rk,∇f (z)〉,
(5.13)

[Ã∗f ](z,p) := 1
2�f (z)− 〈b̃(p),∇f (z)〉,

[D̃∗
kf ](z) := 〈̃r∗k,∇f (z)〉,

where we define the adjoint direction r̃∗k := ñk − q̃k + 〈̃nk, q̃k 〉̃nk of reflection to r̃k

for k = 1, . . . , n− 1, z ∈ (R+)n−1, p ∈�n.
With these differential operators as in Lemma 2, we obtain the (BAR) for

the process (�̃(·),P·) and its invariant distribution ν̃(·, ·); that is, for every k =
1, . . . , n− 1, there exists a finite measure {̃ν0k(·)} which is absolutely continuous
with respect to the (n− 2)-dimensional Lebesgue measure on F̃k and such that for
any C2

b -function f :S �→ R we have∫
S×�n

[Ãf ](z,p) dν̃(z,p)+ 1

2

n−1∑
k=1

∫
F̃k

[D̃kf ](z) dν̃0k(z)= 0.(5.14)

Our argument, especially from here onward, relies heavily on the elaborate analy-
sis given by Harrison and Williams [16, 17]. The main distinction between their
setting and ours is in the drift coefficient b(·), which here varies from chamber to
chamber as well as within each chamber, and is evaluated along the path of the
index process P·. Here, however, we can use the following observation.

LEMMA 4. The following two conditions are equivalent:

(i) For each collection of constants {gk, γi;1 ≤ i, k ≤ n}, there are (n − 1)-
dimensional vectors λ̃p := (̃λp,1, . . . , λ̃p,n−1)

′ for p ∈ �n, such that a prob-
ability measure in the form of sum of products of exponentials

ν̃(A×B) := c∑
p∈B

∫
A

exp(〈̃λp, z〉) dz=: ∑
p∈B

∫
A
℘̃p(z) dz(5.15)
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for measurable sets A ⊂ S and B ⊂ �n, satisfies (5.14) for f (·) ∈ C2
c (S),

where c in (5.15) is a normalizing constant.
(ii) The covariance and the direction of reflection satisfy the skew symmetry con-

dition (5.8).

Indeed, substituting (5.15) into (5.14) and combining the summation over p ∈
�n, we observe that the left-hand side of (5.14) becomes∑

p∈�n

{∫
S

[Ãf ](z,p) · ℘̃p(z) dz+ 1

2

n−1∑
k=1

∫
F̃k

[D̃kf ](z) · ℘̃p(z) dz

}

for f ∈ C2
c (S), where the expression in the curly bracket corresponds exactly to

the BAR condition studied in [17] with some differences in notation. This way, we
may reduce our problem to the case of [17]. Following the proof of Lemma 7.1
in [17], we observe that condition (i) in Lemma 4 is equivalent to the following
conditions (iii) and (iv), where:

(iii) [Ã∗℘̃·](·, ·)= 0 in S ×�n, and
(iv) [D̃∗

k ℘̃p](·)= 2bk(·)℘̃p(·) on F̃k for k = 1, . . . , n− 1, p ∈�n.

Here the adjoint operators Ã∗, D̃∗
k are defined in (5.13).

Then the same reasoning as in the proof of Theorem 2.1 in [17] yields our
Lemma 4, and we obtain λ̃p = 2(I − ÑQ̃)−1b(p) for p ∈�n along the way. This
gives the invariant distribution ν̃(·) of �̃(·) in (5.12). Now transforming back to
�(·), we obtain (5.10), (5.9) and then (5.11). �

EXAMPLE 2. With γi = 0, ρi,j = 0, 1 ≤ i, j ≤ n and σ 2
1 = · · · = σ 2

n , we
recover the case studied by Banner, Fernholz and Karatzas [3] and Pitman and
Pal [22]. Our Theorem 2 is an extension of their results, to the case of variances
that are not necessarily equal and, as far as the second of these papers is concerned,
to a finite number of particles.

5.2. Average occupation times. The long-term average occupation time θp of
the vector process X(·) in the polyhedral chamber Rp of (3.9) is the probability
mass ν1(p) := ν((R+)n−1,p) assigned to such a particular chamber by the mar-
ginal invariant distribution of the index process P·, which we can compute directly
from (5.9) for p ∈�n.

COROLLARY 4. Under the assumptions of Theorem 2, the long-term average
occupation time θp of X(·) in the chamber Rp for p ∈ �n, and the long-term
proportion θk,i of time spent by company i in the kth rank as in (3.8), are explicitly
given by the respective formulae

θp =
( ∑

q∈�n

n−1∏
j=1

λ−1
q,j

)−1 n−1∏
j=1

λ−1
p,j and θk,i =

∑
θp.(5.16)
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Here λp is as in (5.10), and the summation for θk,i is taken over the set {p ∈
�n|p(k)= i} for 1 ≤ i, k ≤ n.

From Corollary 3, the average occupation times (θk,i) satisfy the equilibrium
identity (4.12). As a sanity check, we verify this identity for the expressions of
(5.16), through some algebraic computations in Section A.4.

EXAMPLE 3. It should be noted that in the presence of name-based variances,
(5.16) can fail significantly. Consider the case where n = 3, with γi = 0, for i =
1,2,3; σk = σ > 0, for k = 1,2,3; g3 = g > 0, g2 = 0 and g1 = −g; all ρi,j
is zero for i, j = 1,2,3 except ρ3,3 = ρ � σ . In this case, Y1(·) and Y2(·) will
vibrate quietly in the middle with variance rate σ 2, while Y3(·), with much greater
variance rate (σ + ρ)2, will be wandering far and wide. From Corollary 1 and
(4.12) we obtain

ϑ = (θk,i)1≤i,k≤3 =

⎛⎜⎜⎜⎝
1 − α

2

1 − α
2

α

α α 1 − 2α
1 − α

2

1 − α
2

α

⎞⎟⎟⎟⎠ ,(5.17)

where the parameter α is in the interval (1/3,1/2) for ρ > 0. The upper bound 1/2
is obtained as limρ→∞ θ1,3. Without name-based variances, that is, if the ρi,j were
all zero, the Yi(·) would each spend the same proportion of time in every rank,
yielding a matrix ϑ in (5.17) with all entries equal to 1/3 from Corollary 4. This
gives the lower bound 1/3.

EXAMPLE 4. Let us consider a numerical computation of (θk,i) for descend-
ing name-based drifts γi and ascending rank-based drifts gk , for example, n= 10
and σ 2

k = 1+k, as well as gk = −1 for k = 1, . . . ,9, g10 = 9, γi = 1− (2i)/(n+1)
for i = 1, . . . , n. This is a rather extreme case of Example 1, with g = 1. The over-
all maximum is θ1,1 = 0.5184, and the overall minimum is θ1,10 = 0.00485. The
company “i = 1” stays at the first rank longer than any other companies because of
its relatively strong name-based drift; whereas the company “i = 10” stays at the
first rank only for a tiny amount of time because of its relatively poor name-based
drift.

Figure 1 shows a gray scale heat map for the different values of {θk,i}; of course
we know from Example 1 that θ10,i = i/55, i = 1, . . . ,10.

For a larger number of companies, say n ∼ 5000, it seems rather hopeless for
the current computational environment to perform direct computations of θk,i via
the sum of (5.16) over (n− 1)! permutations in general.



626 T. ICHIBA ET AL.

FIG. 1. Different values of {θk,i} for (k, i), when the parameters are specified for an extreme case
in Example 4.

5.3. Capital distribution curve. The capital distribution curve is the log-log
plot of market weights in descending order, as in (1.1). The empirical capi-
tal distribution curves, for the U.S. stock market over the seven decades 1929–
1999, are shown in [13] (Figure 5.1 on page 95). Our next result computes
the capital distribution curves directly from Theorem 2, from the gaps �k(·) =
log(μ(k)(·)/μ(k+1)(·)) in the ranked log-market-weights to the ranked log-market-
weights ck(·) := logμ(k)(·) themselves.

COROLLARY 5. Under the assumptions of Theorem 2, the ranked market
weights μ(1)(·), . . . ,μ(n)(·) in (1.1), (4.2) have invariant distribution with

℘(m1, . . . ,mn−1)=
∑

p∈�n

[
θp ·

n−1∏
k=1

λp,k ·
(
n∏
j=1

m
λp,j−λp,j−1+1
j

)−1]
(5.18)

as its density, for 0<mn ≤mn−1 ≤ · · · ≤m1 < 1 and mn = 1 −m1 − · · · −mn−1.
Here we set λp,0 = 0 = λp,n, p ∈�n, for notational simplicity.

Moreover, the log-ranked market weights ck(·)= logμ(k)(·) have invariant dis-
tribution with density

℘(c1, . . . , cn−1)=
∑

p∈�n

[
θp ·

n−1∏
j=1

(
λp,j · e−(λp,j−λp,j+1)cj

) · eλp,n−1cn

]
(5.19)

for −∞< cn ≤ · · · ≤ c2 ≤ c1 < 0, cn = log(1 −∑n−1
j=1 e

cj ).
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From the invariant density functions given by (5.11) and (5.18), (5.19) [or sim-
ply (5.16)], the piecewise linear capital distribution curve (1.1) has the expected
slope

Eν
[

logμ(k+1) − logμ(k)
log(k + 1)− log k

]
= − Eν(�k)

log(1 + k−1)
= −

∑
p∈�n θpλ

−1
p,k

log(1 + k−1)
(5.20)

between the kth and the (k+1)st ranked stocks for k = 1, . . . , n−1, and the initial
value

Eν
(
logμ(1)

) = Eν(c1)= Eν
[− log

(
1+e−�1 +e−(�1+�2)+· · ·+e−(�1+···+�n−1)

)]
for the first rank. From (5.9) this expected initial value may be obtained through
a Monte Carlo simulation of generating (n− 1) independent exponential random
variables with intensities λp,j for j = 1, . . . , n− 1, p ∈�n. From (5.20) we obtain
the following simple criterion for convexity (or concavity) of the expected capital
distribution curves.

COROLLARY 6. Under the assumptions of Theorem 2, a sufficient condition
for the expected capital distribution curve logk �→ Eν(logμ(k)) under the invari-
ant distribution ν to be convex (resp., concave), is that

λp,k+1 log
(

1 + 1

k+ 1

)
− λp,k log

(
1 + 1

k

)
≥ 0 ∀p ∈�n(5.21)

(resp., ≤) hold for each k = 1, . . . , n− 2, where λp,k is given in (5.10).

EXAMPLE 5. Let us consider the first-order Atlas model which is a combina-
tion of the “Atlas configuration” in Example 1 with the further restrictions of Ex-
ample 2; to wit, gn = (n− 1)g, g1 = · · · = gn−1 = −g < 0 for some g > 0, as well
as γi = 0, ρi,j = 0, 1 ≤ i, j ≤ n, and σ 2

1 = · · · = σ 2
n = σ 2 > 0 for some σ 2 > 0.

From Corollary 6, the expected capital distribution curve is convex but almost lin-
ear for larger k. Indeed, the quantity λp,k log(1 + k−1)= 2(gk/σ 2) · log(1 + k−1)

increases in k ≥ 1, and converges to 2g/σ 2, as k ↑ ∞, for all p ∈ �n, and so the
difference in (5.21) is positive for each k = 1, . . . , n−2 but decreases to zero quite
rapidly in the order of O(k−2), as k ↑ ∞. Another explanation of such linearity
(“Pareto line”) of the capital distribution curves from an application of Poisson
point processes can be found in Example 5.1.1 on page 94 of [13].

EXAMPLE 6. Suppose now that we change only the rank-based variances in
Example 5; namely, we take linearly growing variances σ 2

k = kσ 2 for some σ 2 > 0,
k = 1, . . . , n. Then

λp,k log
(

1 + 1

k

)
= 4kg

(2k + 1)σ 2 · log
(

1 + 1

k

)
is decreasing in k ≥ 1 for every p ∈�n, and so the difference in (5.21) is negative
for each k = 1, . . . , n−2. Thus, from Corollary 6, the expected capital distribution
curve becomes concave.
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EXAMPLE 7 (“Pure” hybrid market conjecture). A pure hybrid market is one
in which all the parameters are determined by the “name” of the stock, with the
exception of the growth rate of the smallest stock. The log-capitalization Zn(·) of
the smallest stock has its growth rate incremented by g > 0, as in the Atlas model.
Hence, this market will look like

dYi(t)=
{−γi dt + σi dWi(t), if Yi(t) �=Zn(t),
(g − γi) dt + σi dWi(t), if Yi(t)=Zn(t),

for i = 1, . . . , n and t ∈ [0,∞), where γi > 0, σi > 0, and g = ∑n
i=1 γi . We con-

jecture that the capital distribution curve for this market is convex.
This conjecture is based on the following reasoning: The Atlas stock Zn(·)

performs a role similar to a local time process, reflecting each stock away from
the bottom position. Hence, outside the set where Yi(·) = Zn(·), the distance
Yi(·) − Zn(·) will be approximately exponentially distributed. Accordingly, sup-
pose we replace Yi(·)−Zn(·) by an exponentially distributed random variable Zi
with rate parameter αi = σ 2

i /(2γi)

P {Zi > x} = e−αix, x > 0, i = 1, . . . , n.

Let Z represent a generic member of such random variables (Zi , i = 1, . . . , n) as
a mixed exponential distribution

P {Z> x} = 1

n

n∑
i=1

e−αix, x > 0,

and define z(k) as P {Z> z(k)} = k/n for k = 1, . . . , n. In this case, the capital dis-
tribution curve is approximately proportional to the graph of z(k) versus log k, and
this graph, log k �→ z(k), k = 1, . . . , n, will be convex on average. In fact, the graph
of log(k/n)= log(

∑n
i=1 e

−αix/n), where logk is considered to be a function of x,
is convex, because with φ(x) := ∑n

i=1 e
−αix,

d2

dx2 logk = φ′′(x)φ(x)− (φ′(x))2

(φ(x))2
=

∑n
i,j=1(αi − αj )2e−(αi+αj )x

2(φ(x))2
≥ 0.

Note, of course, that this holds for the random variables (Zi , i = 1, . . . , n) and Z,
but that it holds for the process Yi(·) is only a conjecture. This conjecture is of in-
terest because, historically, capital distribution curves appear to be concave which
could imply that rank-based parameters as well as name-based parameters are
needed to explain stock market behavior.

EXAMPLE 8. To see different shapes of the expected capital distribution curve
under different parameter configurations apart from Examples 5 and 6, let us con-
sider a pure hybrid market whose drift and volatility coefficients do not depend
on ranks, except for the smallest (Atlas) stock. For example, take n= 5000, gk =
0,1 ≤ k ≤ n− 1, gn = c∗(2n− 1), γ1 = −c∗, γi = −2c∗,2 ≤ i ≤ n, σ 2

k = 0.075,
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FIG. 2. Expected capital distribution curve for the pure hybrid model in Example 8.

1 ≤ k ≤ n and ρi,j = 0 for 1 ≤ i, j ≤ n with a parameter c∗ = 0.02. These parame-
ters satisfy the assumptions of Theorem 2. We cannot apply Corollary 6 because
the difference in (5.21) is positive on {p ∈ �n : p(k + 1) �= 1} but negative on its
(smaller) complement. The resulting expected capital distribution curve is convex;
it is depicted in Figure 2.

EXAMPLE 9. Let us consider now a variant of this pure hybrid model, with a
variance structure that is observed in practice. The parameters are the same as in
Example 8, except for the different choices of the parameter c∗ and for the rank-
based variances σ 2

k := 0.075 + 6k × 10−5 which are obtained from the smoothed
annualized values for 1990–1999 data as in Section 5.4, page 109 of [13] (see
page 2319 of [3]). The criterion from Corollary 6 cannot apply directly to this
case because the inequalities (5.21) do not hold for all p ∈�n. The expected cap-
ital distribution curves under these parameters with (i) c∗ = 0.02, (ii) c∗ = 0.03,
(iii) c∗ = 0.04 are shown in Figure 3. The curve (i) is convex from the top rank to
about the 25th rank, then turns concave until the lowest rank. The other curves (ii)
and (iii) behave similarly.

EXAMPLE 10. Adopting the same parameter specifications in Example 9(i)
c∗ = 0.02, except the rank-based drift, that is, (iv) the upwind first ranked stock
g1 = −0.016, gk = 0,2 ≤ k ≤ n − 1, gn = (0.02)(2n − 1) + 0.016 and (v) the
windward top 50 stocks g1 = g2 = · · · = g50 = −0.016, gk = 0,51 ≤ k ≤ n− 1,
gn = (0.02)(2n− 1)+ 0.8, we obtain concave curves as in Figure 4. The observed
average curve and the estimated curve of the first-order Atlas model for 1990–1999
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FIG. 3. Expected capital distribution curves for the hybrid model in Example 9.

(Figure 3 of [3], page 2320) are concave. The statistical inference for the capital
distribution curves is an interesting problem that we do not discuss here.

6. Portfolio analysis. Let us consider investing in the market of (2.1) accord-
ing to a portfolio rule �(·)= (�1(·), . . . ,�n(·))′. This is an {Ft }-adapted, locally

FIG. 4. Expected capital distribution curves for the hybrid model in Example 10.
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square-integrable process with
∑n
i=1�i(·)= 1. Each �i(t) represents the propor-

tion of the portfolio’s wealth V�(t) invested in stock i at time t , so

dV �(t)

V �(t)
=

n∑
i=1

�i(t) · dXi(t)
Xi(t)

, V �(0)=w > 0.(6.1)

For example, we may choose for every t ∈ [0,∞) the vector of market weights
μi(t), i = 1, . . . , n, as in (4.2). We shall call the resulting �(·) ≡ μ(·) the
market portfolio and note V μ(·) = wX(·)/X(0), thus from Proposition 2:
limT→∞(1/T ) logV μ(T )≡ γ , a.s.

For a constant-proportion portfolio �(·) ≡ π ∈ �n := {(π1, . . . , πn)
′ ∈ Rn|∑n

i=1 πi = 1} (which of course the market portfolio is not), the solution of (6.1) is
given by

d logV π(t)= γ ∗
π (t) dt +

n∑
i=1

πid logXi(t), 0 ≤ t <∞.(6.2)

Here we shall denote by (aij (t))1≤i,j≤n = S(Y (t))S(Y (t))′ the covariance process
from (2.4), and introduce

γ ∗
π (t) :=

1

2

(
n∑
i=1

πiaii(t)−
n∑

i,j=1

πiaij (t)πj

)
, 0 ≤ t <∞,(6.3)

the excess growth rate of the constant-proportion �(·) ≡ π ∈ �n. Thus, for a
constant-proportion portfolio we can write the solution of (6.1), namely

V π(t)=w · exp

[
n∑
i=1

πi

{
Aii(t)

2
+ log

(
Xi(t)

Xi(0)

)}
− 1

2

n∑
i,j=1

πiAij (t)πj

]
(6.4)

as in (2.4) of [19], where Aij (·)= ∫ ·
0 aij (t) dt ; we set A(·) := (Aij (·))1≤i,j≤n.

6.1. Target portfolio. Let us assume that, for every (t,ω) ∈ [0,∞)×�, there
exists a vector �∗(t,ω) := (�∗

1(t,ω), . . . ,�
∗
n(t,ω))

′ ∈ �n that attains the maxi-
mum of the wealth V π(t,ω) over vectors π ∈ �n; and that the resulting process
�∗(·) defines a portfolio. Along with Cover [9] and Jamshidian [19], we shall call
this �∗(·) a Target Portfolio, and

V∗(t) := max
π∈�n V

π(t), 0 ≤ t <∞,(6.5)

the Target Performance for the model. [The quantity of (6.5) is not necessarily
equal to the performance V�

∗
(·) of the portfolio �∗.]

The Target Performance V∗(·) exceeds the performance of the leading stock,
of the value-line index (the geometric mean), and of any arithmetic average (such
as the Dow Jones Industrial Average): to wit, taking X1(0) = · · · = Xn(0) = 1,
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we have for every vector (α1, . . . , αn)
′ ∈ �n+ := {(π1, . . . , πn)

′ ∈ �n|πi ≥ 0, i =
1, . . . , n} the almost sure comparisons

V∗(·)≥ max

[
max

1≤i≤nXi(·),
(
n∏
j=1

Xj(·)
)1/n

,

n∑
j=1

αjXj (·)
]
.(6.6)

Under the assumptions of Theorem 1, the limits θp of the average occupation
times in (3.9) exist almost surely, and so do the limits of the average covariance
rate a∞

ij := limT→∞Aij (T )/T ; therefore, a∞ := (a∞
ij )1≤i,j≤n is

a∞ = lim
T→∞

1

T

∫ T

0
(aij (t))1≤i,j≤n dt

(6.7)

= lim
T→∞

1

T

∫ T

0

∑
p∈�n

1Rp(Y (s)) · sps′
p dt =

∑
p∈�n

θpsps′
p,

with sp defined in (2.3). It follows from (6.4) and Proposition 2 that the asymptotic
long-term-average growth rate of a constant-proportion portfolio π ∈ �n is

lim
T→∞

1

T
logV π(T )= γ + 1

2

(
n∑
i=1

πia
∞
ii −

n∑
i,j=1

πia
∞
ij πj

)
=: γ + γ∞

π .(6.8)

Maximizing this expression over π ∈ �n amounts to maximizing, over constant-
proportion portfolios, the excess growth rate

γ∞
π = 1

2

(
n∑
i=1

πia
∞
ii −

n∑
i,j=1

πia
∞
ij πj

)

that corresponds to the asymptotic covariance structure.
We shall call Asymptotic Target Portfolio a vector π̄ = (π̄1, . . . , π̄n)

′ ∈ �n
that attains maxπ∈�n γ∞

π . We can regard this portfolio as asymptotic growth-
optimal over all constant-proportion portfolios, in the sense that limT→∞(1/T )×
log(V π(T )/V π̄ (T ))≤ 0 holds a.s. for every π ∈ �n.

EXAMPLE 11. When there is no covariance structure by name, that is, ρi,j ≡ 0
for every 1 ≤ i, j ≤ n, we have Aij (·)≡ 0 for i �= j in accordance with (2.3), (2.4).
In this case, we compute a target portfolio �∗(·) as

�∗
i (t)=

(
2Aii(t)

n∑
j=1

1

Ajj (t)

)−1[
2 − n− 2

n∑
j=1

1

Ajj (t)
log

(
Xj(t)

Xj (0)

)]
(6.9)

+ 1

2
+ 1

Aii(t)
log

(
Xi(t)

Xi(0)

)
, i = 1, . . . , n,
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and an asymptotic target portfolio by

π̄i = 1

2

[
1 − n− 2

a∞
ii

(
n∑
j=1

1

a∞
jj

)−1]
= lim
t→∞�

∗
i (t), i = 1, . . . , n, a.s.(6.10)

This constant portfolio π̄ has exactly the same long-term growth rate as the
target performance in (6.5), in particular

lim
T→∞

1

T
logV∗(T )= lim

T→∞
1

T
logV π̄ (T )

(6.11)

= γ +
n∑
i=1

a∞
ii

2
π̄i(1 − π̄i) a.s.;

on the other hand, we see from (6.8) that it outperforms the overall market rather
significantly over long time horizons, namely

lim
T→∞

1

T
log

(
V π̄ (T )

V μ(T )

)
= 1

2

n∑
i=1

π̄i(1 − π̄i)a∞
ii

= 1

8

[
n∑
i=1

a∞
ii − (n− 2)2

(
n∑
j=1

1

a∞
jj

)−1]
(6.12)

≥ n− 1

2

(
n∑
i=1

1

a∞
ii

)−1

a.s., from the arithmetic mean–harmonic mean inequality.

With Cover [9] and Jamshidian [19], we shall say that stock i is asymptotically
active, if for the expression of (6.10) we have π̄i > 0; and that the entire market
is asymptotically active, if all its stocks are asymptotically active, that is, if π̄ ∈
�n++ := {(π1, . . . , πn)

′ ∈ �n|πi > 0, i = 1, . . . , n}.
EXAMPLE 12. A sufficient condition for asymptotic activity of the model with

n≥ 3 under the condition of Theorem 2, is obtained from (6.10) as

1

a∞
ii

<
1

n− 2

(
n∑
�=1

1

a∞
��

)
, or equivalently(6.13)

( ∑
p∈�n

σ 2
p−1(i)

n−1∏
j=1

λ−1
p,j

)−1

<
1

n− 2

[
n∑
�=1

( ∑
p∈�n

σ 2
p−1(�)

n−1∏
j=1

λ−1
p,j

)−1]
(6.14)

for every i = 1, . . . , n, with λp,j defined in (5.10); recall (6.7), (5.16) and (2.3).
This is the case in the constant variance model σ 2

1 = · · · = σ 2
n . In general, it seems

that the drift and volatility coefficients have nontrivial effects on the condition
(6.14).
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6.2. Universal portfolio. The universal portfolio of Cover [9] and Jamshidian
[19] is defined as

�̂i(t) :=
∫
�n+ πiV

π(t) dπ∫
�n+ V

π(t) dπ
, 0 ≤ t <∞,1 ≤ i ≤ n.

It is constructed completely in terms of quantities, such as the V π(·) for constant-
proportion portfolios π , that are observable: no model-specific knowledge is re-
quired for its construction. As can be checked easily, the wealth process of this
portfolio is given by the “performance-weighting”

V �̂(t)=
∫
�n+ V

π(t) dπ∫
�n+ dπ

, 0 ≤ t <∞,

yet another observable quantity. It follows from Theorem 2.4 of Jamshidian [19]
that the universal portfolio does not lag significantly behind the target portfolio: its
performance lag is only polynomial in time under an asymptotically active model.
To wit, there exists then a positive constant C, such that

lim
T→∞

(
V �̂(T )

V∗(T )
· T (n−1)/2

)
= C

holds almost surely, thus also

lim
T→∞

1

T
log

(
V �̂(T )

V π̄ (T )

)
= lim
T→∞

1

T
log

(
V �̂(T )

V∗(T )

)
= 0.(6.15)

In the context of the hybrid model, under the assumptions of Theorem 2 and
of Example 12, the universal portfolio attains the long-term growth rate of the
target portfolio �∗ and of the asymptotic target portfolio π̄ . These are precisely
the characteristics that make the universal portfolio interesting: it is constructed
based entirely on quantities which are completely observable, yet its long-term
performance matches that of V∗(·) in (6.5), and thus exceeds the performance of
any constant-proportion portfolio.

6.3. Growth-optimal portfolio. We shall call growth-optimal a portfolio
�(·) that satisfies the inequality limT→∞(1/T ) log(V �(T )/V � (T )) ≤ 0 almost
surely, for any portfolio �(·).

In order to find such a growth-optimal portfolio under no-name based corre-
lation ρi,j ≡ 0 for 1 ≤ i, j ≤ n, we need to maximize over π ∈ �n the quantity
(growth rate)

�(t;π) :=
n∑
i=1

(
γ̃i(t)+ 1

2
aii(t)

)
πi − 1

2

n∑
i=1

aii(t)π
2
i ,(6.16)
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where γ̃i(t)= ∑
p∈�n 1Rp(Y (t))gp−1(i) + γi + γ is the ith element of G(Y(t)) of

(2.4) (cf. Problem 4.6, page 108 in Fernholz and Karatzas [14]). By the Lagrange
multiplier method, we obtain a vector that attains this maximum, as

�i(t)= 1

2
+ γ̃i(t)+ γ (t)

aii(t)
, i = 1, . . . , n,0 ≤ t <∞,(6.17)

where the constraint
∑n
i=1�i(t)= 1 is enforced by the multiplier

γ (t)=
(
n∑
i=1

1

aii(t)

)−1(
1 − n

2
−

n∑
j=1

γ̃j (t)

ajj (t)

)
.

The growth rate �(t;�) of this portfolio �(·), in the notation of (6.16), (6.17)
and using (2.2), is

�(t;�)= nγ

2
+ 1

2

n∑
i=1

γ̃ 2
i (t)

aii(t)
− γ

2(t)

2

n∑
i=1

1

aii(t)
+ 1

8

n∑
i=1

aii(t).

• In order to make some comparisons, let us specialize to the equal-variance
case, that is, σ 2

1 = · · · = σ 2
n = σ 2 with no name-based correlations ρi,j ≡ 0; we

obtain under these assumptions the expression

�i(t)= 1

n
+ 1

σ 2

(
γi +

n∑
k=1

gk1Q(i)k
(Y (t))

)
, i = 1, . . . , n(6.18)

for the growth-optimal portfolio, and

lim
T→∞

1

T
logV�(T )= lim

T→∞
1

T

∫ T

0
�(t;�)dt

(6.19)

= γ + σ
2

2

(
1 − 1

n

)
+ 1

2σ 2

(
n∑
k=1

g2
k −

n∑
i=1

γ 2
i

)
,

and from (3.8), (4.12) we obtain

lim
T→∞

1

T

∫ T

0
�i(t) dt = 1

n
+ 1

σ 2

(
γi +

n∑
k=1

gkθk,i

)
= 1

n
= π̄i , i = 1, . . . , n,

almost surely. On the other hand, from (6.15), (6.10) and (6.8) we see that the
universal portfolio �̂(·) and the asymptotic target portfolio πi = 1

n
, i = 1, . . . , n,

have the same long-term growth rate, namely

lim
T→∞

1

T
logV π̄ (T )= lim

T→∞
1

T
logV �̂(T )= γ + σ

2

2

(
1 − 1

n

)
.(6.20)

Under the conditions of (2.2) and (3.3), we can verify
n∑
k=1

g2
k >

n∑
i=1

γ 2
i .(6.21)
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To show (6.21), we may assume without loss of generality γ1 ≥ · · · ≥ γn and hence
that there exists (δ1, . . . , δn−1)

′ ∈ (R+)n−1 \ {0} such that gk = −(γk + δk) for
k = 1, . . . , n− 1, and gn = −γn + (δ1 + · · · + δn−1) for (2.2) and (3.3). Then we
obtain

n∑
k=1

g2
k =

n−1∑
i=1

(γi + δi)2 + (−γn + (δ1 + · · · + δn−1)
)2

=
n∑
i=1

γ 2
i +

n−1∑
i=1

(
δ2
i + 2δi(γi − γn))+

(
n−1∑
i=1

δi

)2

>

n∑
i=1

γ 2
i .

We observe from (6.18)–(6.21) that the growth-optimal portfolio �(·) domi-
nates in the long run both the universal portfolio �̂(·) and the asymptotic target
portfolio π̄ , a.s. The advantage of the universal portfolio is that it can be con-
structed with total oblivion as to what the actual values of the parameters of the
model might be; some of these may be quite hard to estimate in practice. By con-
trast, constructing the growth-optimal portfolio �(·) as in (6.18) requires knowl-
edge of all the model parameters, and keeping track of the positions of all stocks
in all ranks at all times.

APPENDIX

A.1. Preparations for the proof of Lemma 1. The stochastic exponential

ζ(t)= exp
[
−
∫ t

0
〈ξ(u), dW(u)〉 − 1

2

∫ t

0
‖ξ(u)‖2 du

]
, 0 ≤ t <∞,

is a continuous martingale, where ξ(t) := S−1(Y (t))G(Y (t)) for 0 ≤ t <∞ and
‖x‖2 := ∑n

j=1 x
2
j , x ∈ Rn, and 〈x, y〉 = ∑n

j=1 xjyj , x, y ∈ Rn. Recall that S(·),
S−1(·) and G(·) in (2.4) are bounded. By Girsanov’s theorem

W̃ (t) :=W(t)+
∫ t

0
S−1(Y (u))G(Y (u)) du, 0 ≤ t <∞,

is an n-dimensional Brownian motion under the new probability measure Q, lo-
cally equivalent to P, that satisfies

Q(C)= EP(ζ(T )1C), C ∈ FT ,0 ≤ T <∞.(A.1)

Thus, equation (2.4) under P is reduced to

dY (t)= S(Y (t)) dW̃ (t), 0 ≤ t < T , under Q.(A.2)

A.1.1. Local time of Bessel processes. Let us denote the δ-dimensional Bessel
process by r(δ)(·) for δ > 1

r(δ)(t)= r(δ)(0)+
∫ t

0

δ− 1

2r(δ)(s)
ds + B̃(t), 0 ≤ t <∞,
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where B̃(·) is the standard Brownian motion. Since it is a continuous semimartin-
gale, there is a modification �r(δ)(·) of its local time accumulated at the origin,
defined by

�r(δ)(t)=
1

2

(
r(δ)(t)− r(δ)(0)−

∫ t

0
sgn

(
r(δ)(s)

)
dr(δ)(s)

)
, 0 ≤ t <∞,

where the function sgn is defined by sgn(x)= 1 if x > 0 and sgn(x)= −1 if x ≤ 0.
When δ ≥ 2, r(δ)(·) never hits the origin, and its local time at the origin is iden-
tically equal to zero. Thus let us consider the case 1 < δ < 2. By the occupation
times formula and the right continuity of the semimartingale local time, we obtain

�r(δ)(t)= lim
ε↓0

1

2ε

∫ t

0
1{0≤r(δ)(s)≤ε} ds almost surely for 0 ≤ t <∞.(A.3)

On the other hand, it can be shown from Lemma 3.1 and equation (3f) of Biane
and Yor [6], and also form pages 285–289 of Rogers and Williams [24] that there
exists a finite limit

lim
ε↓0

1

2εδ

∫ t

0
1{0≤r(δ)(s)≤ε} ds almost surely for 0 ≤ t <∞(A.4)

[see (A.8) below]. Combining this fact with (A.3), there is no accumulation of
local time at the origin for the case 1 < δ < 2. Therefore, we conclude that the
local time �r(δ)(·)of the δ-dimensional Bessel process r(δ)(·) accumulated at the
origin is identically equal to zero,

�r(δ)(t)≡ 0, 0 ≤ t <∞, δ > 1.(A.5)

PROOF OF (A.4) (Abridged from [6, 24]). Given the δ-dimensional Bessel
processes r(δ)(·), there is a one-dimensional Bessel process r(1)(·) which starts at
r(1)(0)= (2 − δ)−(2−δ)(r(δ)(0))2−δ and satisfies the following pathwise relation:

r(δ)(t)= (2 − δ)(r(1)(At ))1/(2−δ)
, At := inf{s ≥ 0 :Cs ≥ t},

(A.6)

Ct :=
∫ t

0

(
r(1)(s)

)(2δ−2)/(2−δ)
ds, 0 ≤ t <∞.

(This time-change formula is obtained with the parameters ν = −1/2, q = 2 − δ,
p = 2−δ

1−δ , − 2
p

= 2δ−2
2−δ > 0 in Proposition XI.1.11 of [23], which is originally

from Lemma 3.1 of [6]. The index ν = 1
2 − 1 corresponds to the one-dimensional

Bessel process and the index νq = δ
2 − 1 corresponds to the δ-dimensional Bessel

process.) The stochastic clocks C· and A· in (A.6) do not explode in a finite time
because of the instantaneous reflection of r(1)(·). Substituting this relation, we
compute the occupation time∫ t

0
1{0≤r(δ)(s)≤ε} ds =

∫ t

0
1{0≤(2−δ)(r(1)(As))1/(2−δ)≤ε} ds

(A.7)

=
∫ At

0
1{0≤(2−δ)(r(1)(s))1/(2−δ)≤ε} dCs.
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It follows from (A.6) that dCt
dt

= (r(1)(t))(2δ−2)/(2−δ) and hence the right-hand side
of (A.7) becomes∫ At

0
1{0≤(2−δ)(r(1)(s))1/(2−δ)≤ε} · (r(1)(s))(2δ−2)/(2−δ)

ds, 0 ≤ t <∞.

By the occupation time formula for the one-dimensional Bessel process r(1)(·),
this expression becomes

2
∫
(0,η)

y(2δ−2)/(2−δ)�r(1)

At
(y) dy,

where η := ( ε
2−δ )

2−δ and �r(1)

t (y) is the local time accumulated by r(1)(·) at the
level y ∈ [0,∞) over the time interval [0, t]. Changing the variable from y to

x = (2 − δ)y1/(2−δ) with dy = x1−δ
(2−δ)1−δ dx, we obtain∫ t

0
1{0≤r(δ)(s)≤ε} ds

= 2
∫ ∞

0
1{0≤x≤ε} · x2δ−2

(2 − δ)2δ−2 · x1−δ

(2 − δ)1−δ ·�r(1)

At

(
x2−δ

(2 − δ)2−δ
)
dx

= 2
∫ ε

0

xδ−1

(2 − δ)δ−1 ·�r(1)

At

(
x2−δ

(2 − δ)2−δ
)
dx, 0 ≤ t <∞.

Now by At <∞, 0 ≤ t <∞, and by the right continuity of y �→�r(1)· (y), we
obtain

�r(1)

At
(0)= lim

ε↓0

δ(2 − δ)δ−1

2εδ

∫ t

0
1{0≤r(δ)(s)≤ε} ds <∞, 0 ≤ t <∞.(A.8)

Therefore, we conclude that (A.4) holds for 1< δ < 2. �

A.1.2. Comparisons with Bessel processes. Now let us fix integers 1 ≤ i <
j < k ≤ n. Under Q in (A.1) we shall compare the rank gap process

η(t) := max
�=i,j,k Y�(t)− min

m=i,j,k Ym(t)

with a Bessel process of dimension δ > 1, using Lemmata 5 and 6 below.
We introduce the function g(y) := [(yi − yj )2 + (yj − yk)2 + (yk − yi)2]1/2 for

y ∈ Rn and note the comparison
√

3η(·)≥ g(Y (·)). An application of Itô’s rule to
g(Y (·)) yields the semimartingale decomposition

dg(Y (t))= h(Y (t)) dt + d (t), 0 ≤ t <∞,(A.9)

where we introduce the (n × 3) matrix Dijk := (di, dj , dk) with (n × 1) vectors
di := ei − ej , dj := ej − ek , dk := ek − ei , we denote by ei , i = 1, . . . , n, the ith
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unit vector in Rn, and

h(y) := (R(y)− 1)Q(y)

2g(y)
, R(y) := Tr(D′

ijkS(y)S
′(y)Dijk)

Q(y)
,

Q(y) := y′DijkD′
ijkS(y)S(y)

′DijkD′
ijky

y′DijkD′
ijky

, y ∈ Rn \ Z,

Z := {y ∈ Rn|g(y)= (y′DijkD′
ijky)= 0},(A.10)

 (t) :=
∫ t

0

( ∑
�=i,j,k

S′(y)d�d ′
�y

g(y)

∣∣∣∣
y=Y (s)

)
dW̃(s),

〈 〉(t)=
∫ t

0
Q(Y(s)) ds, 0 ≤ t <∞.

Here note that under the assumption on (2.3), and because 3DijkD′
ijk = Dijk ×

D′
ijkDijkD

′
ijk , we have

Q(·)= 3y′DijkD′
ijkS(·)S(·)′DijkD′

ijky

y′DijkD′
ijkDijkD

′
ijky

≥ 3 min
p∈�n

min
�=1,...,n

λ̃�,p > 0(A.11)

in Rn \ Z , where λ̃�,p, � = 1, . . . , n, are the eigenvalues of the positive-definite
matrices sps′

p for p ∈�n, and so 〈 〉(·) is strictly increasing when Y(·) ∈ Rn \ Z .
Now define the stopping time τu := inf{t ≥ 0|〈 〉(t)≥ u}, and note

G(u) := g(Y (τu))= g(Y (0))+
∫ τu

0
h(Y (t)) dt + B̃(u), 0 ≤ u <∞,

where B̃(u) :=  (τu), 0 ≤ u < ∞, is a standard Brownian motion, by the
Dambis–Dubins–Schwarz theorem of time-change for martingales. Note that
1/[Q(Y(τu))] = dτu/du, when Y(τu) ∈ Rn \ Z . Thus, with d(u) := R(Y (τu)),
we can write

dG(u)= d(u)− 1

2G(u)
du+ dB̃(u), 0 ≤ u <∞,G(0)= g(Y (0)).

The dynamics of the process G(·) are comparable to those of a Bessel process
r(δ)(·) with dimension δ, generated by the same B̃(·) and started at the same initial
point g(Y (0)). Since S(·)S(·)′ is positive definite under (2.3) and rank (Dijk)= 2,
the (3 × 3) matrix D′

ijkS(·)S(·)′Dijk is nonnegative definite and the number of
its nonzero eigenvalues is equal to rank(D′

ijkS(·)S(·)′Dijk)= 2. Let us denote by

λ̄�,p, � = 1,2,3, the eigenvalues of D′
ijkspsp′Dijk for p ∈ �n. Then for R(·) in

(A.10) we obtain

R(·)≥ δ0 := min
p∈�n

( ∑3
�=1 λ̄�,p

max1≤�≤3 λ̄�,p

)
> 1 in Rn \ Z,(A.12)
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and so d(·) ≥ δ0 > 1 when Y(τ·) ∈ Rn \ Z . By a comparison argument similar to
that in the proof of Lemma 2.1 of [18], we may show that G(t)≥ r(δ0)(t) for 0 ≤
t <∞ a.s. Since

√
3η(t) ≥ g(Y (t))= G(〈 〉(t)) implies

√
3η(t) ≥ r(δ0)(〈 〉(t))

for 0 ≤ t <∞, a.s., we obtain the following result.

LEMMA 5. For the process Y(·) of (A.2) with (2.3), the multiple
√

3η(·) of the
rank-gap process dominates, a.s. under Q, a time-changed Bessel process r̃(·) :=
r(δ0)(〈 〉(·)) with dimension δ0 as in (A.12)

Q
(√

3η(t)≥ r̃(t),0 ≤ t <∞) = 1.

LEMMA 6. Under Q, the rank-gap process η(·) satisfies 〈η〉(t)≤ c1t , 0 ≤ t <
∞ a.s. for some constant c1 > 0 and the local time �η(·) of η(·) at the origin is
identically equal to zero, that is, �η(·)≡ 0, a.s.

PROOF. In fact, since the diffusion coefficient matrix S(·) of Y(·) in (A.2)
is bounded and positive definite under (2.3), there exists a constant c1 such that
〈η〉(t)≤ c1t for 0 ≤ t <∞ a.s. Moreover, from (A.11) and Lemma 5, there exists
a constant c2 := minp∈�n,�=1,...,n λ̃�,p > 0, such that 〈 〉(t) ≥ c2t holds for 0 ≤
t <∞ a.s. It follows from the representation of local times (Theorem VI. 1.7 of
[23]) and (A.5) with Lemma 5 that

�η(t)= lim
ε↓0

1

2ε

∫ t

0
1{0≤η(s)<ε} d〈η〉(s)≤ lim

ε↓0

√
3c1

2ε

∫ t

0
1{0≤√

3η(s)<ε} ds

≤ lim
ε↓0

√
3c1

2ε

∫ t

0
1{0≤r̃(s)<ε} ds ≤ lim

ε↓0

√
3c1

2c2ε

∫ 〈 〉(t)
0

1{0≤r(δ)(u)<ε} du(A.13)

≤ √
3c1c

−1
2 �r(δ)(〈 〉(t))≡ 0, 0 ≤ t <∞. �

A.2. Proof of Lemma 1. Define an increasing family of events CT :=
{�η(t) > 0 for some t ∈ [0, T ]}, T ≥ 0. By Lemma 6 we obtain Q(C∞) = 0 and
0 = Q(C�)= P(C�) for �≥ 1. Then P(�η(t) > 0 for some t ≥ 0)= P(

⋃∞
�=1C�)=

lim�=∞ P(C�) = 0. Thus the local time �η(t) of the rank gap process η(·) for
(Yi(·), Yj (·), Yk(·)) is zero for 0 ≤ t <∞ a.s. under P.

Since the choice of i, j, k is arbitrary, there is no local time generated by the
rank gap process of any three coordinates. The rank gap process of more than
three coordinates [e.g., max�=h,i,j,k Y�(·)− minm=h,i,j,k Ym(·)] dominates that of
any three sub-coordinates. Therefore, by a similar argument as (A.13) and its con-
sequence, any local time of rank gap process of more than three coordinates is zero
for 0 ≤ t <∞ a.s. under P.

To establish (4.4) from this and (4.3), and thus complete the proof of Lemma 1,
consider any integers (ranks) 1 ≤ a ≤ � < m≤ b ≤ n with b− a ≥ 2, and observe
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that we have almost surely

0 ≡�a,b(t)=
∫ t

0
1{Za(s)=Zb(s)} d

(
Za(s)−Zb(s))

=
∫ t

0
1{Za(s)=Zb(s)} d

(
Za(s)−Z�(s))+

∫ t

0
1{Za(s)=Zb(s)} d

(
Z�(s)−Zm(s))

+
∫ t

0
1{Za(s)=Zb(s)} d

(
Zm(s)−Zb(s))

=
∫ t

0
1{Za(s)=Zb(s)} d

(
�a,�(s)+��,m(s)+�m,b(s))

≥
∫ t

0
1{Za(s)=Zb(s)} d��,m(s)≥ 0.

The a.s. equality
∫ t

0 1{Za(s)=Zb(s)} d��,m(s)= 0 follows readily from this, as does∫ t

0
1{Nk(t)≥3}

(
n∑

�=k+1

d�k,�(s)−
k−1∑
�=1

d��,k(s)

)
= 0

and thus (4.4) as well.

A.3. Proof of Lemma 2. For each k = 1, . . . , n− 1 the local time �k,k+1(·)
is a continuous additive functional of (�(·),P·) with support in Fk , and the ex-
pectation of �k,k+1(t) with respect to the invariant distribution ν(·, ·) is finite for
t ≥ 0.

It follows from the theory of additive functionals [2] that there is a finite measure
νk(·, ·) on Fk ×�n such that

1

T
Eν

[∫ T

0
g(�(s),Ps) d�

k,k+1(s)

]
= 1

2

∫
Fk×�n

g(z,p) dνk(z,p)(A.14)

for every bounded measurable function g :Fk×�n �→ R. Let us denote by ν0k(·)=
νk(·,�n) the marginal distribution on Fk . The absolute continuity of ν0k(·) with
respect to (n−1)-dimensional Lebesgue measure is argued by localization and the
properties of Reflected Brownian motion as in Theorem 7.1, Lemmata 7.7 and 7.9
of [16].

Now, by an application of Itô’s rule, for f ∈C2
b((R+)n−1) we obtain

f (�(T ))= f (�(0))+
∫ T

0
〈∇f (�(s)), dζmart(s)〉

+
n−1∑
k=1

∫ T

0
[Dkf ](�(s)) d�k,k+1(s)

+
∫ T

0
[Af ](�(s),Ps) ds, T ≥ 0,
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where ζmart(·) is the martingale part of ζ(·) and Dk and A are differential operators
defined in (5.3). Taking expectations with respect to P and then integrating for
the initial values with respect to the stationary distribution ν(·, ·) with Fubini’s
theorem and (A.14), we obtain

0 = T

2

n−1∑
k=1

∫
Fk

[Dkf ](z) dν0k(z)+ T
∫
(R+)n−1×�n

[Af ](z,p) dν(z,p).

Dividing by T > 0, we obtain the basic adjoint relationship (5.6).

A.4. A sanity check of Corollary 4. In this section we verify that the entities
(θk,i)1≤i,k≤n in (5.16) satisfy (4.12). Since θk,i is homogeneous in the product∏n−1
j=1[−4(σ 2

j +σ 2
j+1)

−1], it suffices to show
∑n
k=1 θ̃k,i(gk+γi)= 0 where we use

the modifications θ̃k,i := ∑
{p(k)=i} θ̃p,

θ̃p :=
( ∑

q∈�n

n−1∏
j=1

λ̃−1
q,j

)−1 n−1∏
j=1

λ̃−1
p,j , λ̃p,j :=

j∑
�=1

(
g� + γp(�)

)
of (θk,i , θp, λp,j ), 1 ≤ i, j, k ≤ n, p ∈ �n, for notational simplicity. Note that
λ̃p,n = 0 from (2.2) for p ∈�n.

First, observe for �= 2, . . . , n and i = 1, . . . , n,∑
{p : p(�−1)=i}

λ̃p,�−1θ̃p + ∑
{p : p(�)=i}

(g� + γi)θ̃p = ∑
{p : p(�)=i}

λ̃p,�θ̃p.(A.15)

In fact, for every i, � define another permutation p̃ from a (fixed) permutation p ∈
{q ∈�n : q(�− 1)= i} by

p̃(k) := p̃(k;p)=
⎧⎨⎩

p(k), k = 1, . . . , �− 2, �+ 1, . . . , n,
p(�), k = �− 1,
i, k = �,

which is obtained by exchanging (�− 1)st and �th elements of p ∈ {q ∈�n : q(�−
1) = i}, and also define M := (∑q∈�n

∏n−1
j=1 λ̃

−1
q,j )

−1 here. Then λ̃p,j = λ̃p̃,j for
j �= �− 1 and hence the left-hand side of (A.15) is

∑
{p : p(�−1)=i}

λ̃p,�−1 ·M
n−1∏
j=1

λ̃−1
p,j + ∑

{p : p(�)=i}
(g� + γi)M

n−1∏
j=1

λ̃−1
p,j

= ∑
{̃p : p̃(�)=i}

M

n−1∏
j �=�−1

λ̃−1
p̃,j + ∑

{̃p : p̃(�)=i}

(
g� + γp̃(�))M n−1∏

j=1

λ̃−1
p̃,j

= ∑
{̃p : p̃(�)=i}

[̃
λp̃,�−1 + g� + γp̃(�)

] ·M
n−1∏
j=1

λ̃−1
p̃,j = ∑

{p : p(�)=i}
λ̃p,�θ̃p,
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which is the right-hand side of (A.15). Now applying (A.15) for �= 2, . . . , n, we
obtain

n∑
k=1

(gk + γi)θ̃k,i = (g1 + γi)θ̃1,i + (g2 + γi)θ̃2,i +
n∑
k=3

(gk + γi)θ̃k,i

= ∑
{p : p(2)=i}

λ̃p,2θ̃p +
n∑
k=3

(gk + γi)θ̃k,i

= · · · = ∑
{p : p(n)=i}

λ̃p,nθ̃p = 0

for i = 1, . . . , n, because λ̃p,n = 0 for p ∈�n. Therefore, (4.12) is satisfied.
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